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Abstract

Data center power consumption is among the largest commodity expenditures for many organizations. Reduction

of power used in cloud data centres with heterogeneous physical resources can be achieved through Virtual-

Machine (VM) consolidation which reduces the number of Physical Machines (PMs) used, subject to Quality of

Service (QoS) constraints. This paper provides an in-depth survey of the most recent techniques and algorithms

used in proactive dynamic VM consolidation focused on energy consumption. We present a general framework

that can be used on multiple phases of a complete consolidation process.
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Introduction
Recent years has seen an exponential increase in the use

of the cloud computing industry in satisfying Informa-

tion Technology (IT) requirements. Data center power

usage has been among one of the large commodity IT

service expenditure for many organizations. The global

data center electricity usage in 2012 was around 300 −

400 TWh, about 2% of global electricity usage and it is

expected to triple by 2020 [16, 181], see Fig. 1 [136].

With up to 88% of this power going to powering and

cooling IT equipment’s, any energy use reduction can re-

sult in major power and cost savings. For example, an

estimate by Amazon shows the cost of energy for its

data centers has reached 42% of total cost of its oper-

ation [139]. In addition, according to Environmental

Protection Agency, each 1000kWh of power consump-

tion emits 0.72 tons of CO2 [171]. Hence, the reduction

of energy usage has become one of the key objectives in

the design of any modern data centers.

Today Data centres often consist of a large number of

Physical Machines (PMs), which are grouped into multiple

management clusters. Each of these clusters manages and

controls a large number of PMs. A cluster can be homoge-

neous in that all of its managed PMs are identical, or it

could be heterogeneous in that it manages PMs with dif-

ferent resource make and capacities [44].

Virtual Machines (VMs) are virtualized environments

with predetermined virtual resources such as CPU,

memory storage and bandwidth configured with an

operating system and/or middle-ware and one or more

application programs. VMs can execute workloads like

any PM. Cloud service providers offer their computing

resources to their clients based on Service Level Agree-

ment (SLA). Services provided are typically in a form of

VMs, which place on different PMs to carry out various

tasks. The virtualization ability not only enables service

providers to charge their clients based on their usage in

a pay as-you-go scheme, but also it provides clients the

ability to scale up or scale down resource utilization, as

their needs vary. These advantageous partially stem from

the fact that virtualization technology enables multiple

virtual servers to run on the same PM, resulting in bet-

ter resource utilization and reduction of aggregate power

consumption [68, 89, 90, 102].

Data centre energy efficiency measures reduction of

energy used by hardware or software equipment in data

centres for a given service or level of activity. Hardware

equipment includes both IT equipment (e.g. network

and servers) and supporting equipment (e.g. power sup-

ply, cooling and data center building itself ), whereas* Correspondence: ali.miri@ryerson.ca

Department of Computer Science, Ryerson University, 350 Victoria St,

Toronto, ON M5B 2K3, Canada

Journal of Cloud Computing:
Advances, Systems and Applications

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made.

Ismaeel et al. Journal of Cloud Computing: Advances, Systems and Applications

 (2018) 7:10 

https://doi.org/10.1186/s13677-018-0111-x

http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-018-0111-x&domain=pdf
http://orcid.org/0000-0002-7181-6352
mailto:ali.miri@ryerson.ca
http://creativecommons.org/licenses/by/4.0/


software equipment may include Cloud Management

Systems (CMSs) used to manage the entire data centre

or end-users’ applications [66, 125]. Given that a large

part of power consumption of data centers is in their

hardware equipment, this paper focuses on the problem

of reducing energy consumption through efficient man-

agement of PMs and VMs in Cloud Data Centre (CDC)

[18, 53]. We consider four different strategies:

– VM Resizing is the process of changing the number

of resources reserved for VMs through either adding

or removing resource elements, or increasing or

decreasing the capacity of each resource element in a

VM. All these processes will be done without executing

a reboot, an application restart, reconfiguration or

recreation of a VM [28]. This will attempt to adjust

PMs to their actual load and typically results in a

reduction of power use [27, 73, 105, 163].

– Optimal initial placement seeks to optimally assign

VM or group of VMs to servers - as part of an

initial state such that the mapping minimizes the

total inter-rack PMs used or traffic load in the

network to reduce energy [58]. Deterministic

Algorithms will discuss these algorithms, such as

those in ( [112, 144, 168]).

– Overbooking of physical resources refers to the

strategy of overlaying requested virtual resources onto

physical resources at a higher ratio than 1:1 [135].

This strategy can result in better utilization of PM idle

resources, which might have been otherwise reserved.

However, special care must be taken to reduce risks

associated with unmet Quality of Service (QoS)

demand over peak PM resource utilization [13, 116].

– VM Consolidation is the process of using minimum

active PMs as possible through migrating VMs over

time in an optimal fashion to reduce resource

consumption [109, 118, 142].

There are two general types of VM consolidation:

static and dynamic. In static consolidation, sizing and

placement of VMs on PMs are pre-determined when a

job arrives and the placement does not change over a

period of time. This type of VM consolidation therefore

is often suitable for short running jobs for a couple of

hours, where PMs resources for different types of VMs

are predefined [157]. Energy reduction will be mostly

based on simple heuristics or historical VMs demand

patterns. Although this may result in an increase of the

cost of application provider during low demand resource

period, whereas during high utilization periods, the

available resources may be insufficient [183]. Dynamic

VM consolidation can result in utilization of fewer PMs

by re-allocation or live migration of VMs among PMs

without significant interruption of services. It takes into

consideration the performance as it based on QoS which

is predefined via SLA between the tenant and the service

provider. This will increase the power efficiency in data

centres by turning off unused servers to save power [1,

66]. Dynamic provisioning-based energy consumption

can represent the most efficient methods to improve the

utilization of the resources and reduce energy [1, 14, 19].

Approaches took to dynamic provisioning fall under re-

active or proactive categories. Reactive provisioning is to

change initial placement after the system reaches a certain

undesired state. The change may be made because of the

performance, maintenance, power or load issues, or SLA

violations. In proactive, monitoring, historical data and

prediction algorithms are used to change the VM’s initial

placement before the system reaches a certain condition

[90, 121]. Proactive provisioning uses prediction based

approaches that help prepare ahead of changes in the

workload and system usage [158].

This article provides a comprehensive literature survey

of most recent proactive dynamic provisioning framework

in a data centre with a focus on energy conversation.

Dynamic consolidation frameworks typically consist of a

large number of overlapped domains, which we have

divided into the following five main subsystems, Fig. 2:

i. Workload Prediction Subsystem focuses on

clustering process, VM and user behavior

estimation, prediction window size, and forecasting

process as a part of workload prediction subsystem.

ii. Resource State Subsystem is used to identify the

state of physical and virtual resources. This subsystem

will not include the monitoring and tracking tools only

but it will be a focus on algorithms and techniques

used in defining the PMs states.

iii. VM Selection Subsystem focuses on VM selection

criteria.

iv. VM Placement and Migration Subsystem deal

with the question of how to migrate selected VMs.

Networking strategies play a pivotal role in this frame-

work, as network infrastructure topology and routing

Fig. 1 Projection of data centres electricity use
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protocols can have a direct impact on migration or con-

solidation with minimum network load [104].

Our survey will provide answers to the following

questions:

– How to predict workloads? How can we predict

future VM requests?

– What is the current state of the resources? How can

we monitor and track the behavior of physical and

virtual resources?

– Which VMs to migrate? And Where?

– How to migrate selected VMs?

The rest of the paper is organized according to subsys-

tems described above. Workload Prediction Subsystem

reviews application and techniques in workload predic-

tion subsystems. Resources State Subsystem reviews al-

gorithm related to data centre resource states, which are

then used in VM selection subsystems in VM Selection

Subsystem. VM and host selection presented in VM

Placement (VMP) Subsystem. VM placement and migra-

tion subsystem covered in VM Migration, while network

effect on all these subsystems are covered in Network

Effect. Comparison of work on related subsystem can be

found in Analysis of the State-of-the-Art Surveys in the

Literature, followed by conclusions in Conclusions.

Workload Prediction Subsystem
Resource estimation underlies various workload manage-

ment strategies including dynamic provisioning, workload

Fig. 2 Proactive dynamic VM consolidation literature review framework

Ismaeel et al. Journal of Cloud Computing: Advances, Systems and Applications  (2018) 7:10 Page 3 of 28



scheduling, and admission control. All these approaches

possess a prediction module in common which provides

estimations to determine respectively whether or not to

add more resources, rearrange the order of query execu-

tion, and admit or reject a new incoming query [89].

Prediction of the future resource behavior is a crucial

process for efficient resource utilization in dynamic cloud

computing environment because workload forecasting for

short or long periods will be necessary to real-time con-

trol, resource allocation, capacity planning and data centre

energy saving in cloud computing [90].

In recent years, cloud workload prediction is becoming

more and more important. Many performance predic-

tion algorithms and tools have been developed, which

can be applied to predict the future CPU, memory load,

VMs, etc. [97].

For propose of energy conservation, proactive ap-

proach to forecast required resources based on demand

history, must overcome some or all of the following

challenges [173]:

– Finding a way to make predictions that take into

account both user, virtual and physical resources

variations,

– Overcoming the problem of time varying demands,

– Estimating the required observation window size, and

– Detecting when the prediction is likely to be

incorrect and how we can overcome the problem.

In a cloud environment, it is too difficult to predict

the demand for each type of resource separately [44, 89]:

– Typically, VM requests consist of different amounts

and types of cloud resources (e.g., CPU, memory,

bandwidth, etc.). The multi-resource nature of these

VMs poses a unique challenge when it comes to de-

veloping prediction techniques.

– Different cloud clients may request different

amounts of VM resources which may be assigned

on the same PM and not on separate machines.

Therefore, it is both impractical and too difficult to

predict the demand for each type of resource

separately.

So, it is logical to create different categories of VM

clusters, and then develop prediction techniques for

each of these clusters. Thus, this review subsystem will

not cover the most practical and recent published pre-

diction algorithms but will include clustering literature,

most useful prediction window size recommendation,

and even literature discussed VM and user behaviors.

We classify workload prediction subsystem into four

functional areas, each will review publications in a separ-

ate subsection, namely [86, 90]:

– Clustering Process: Review the recent literature in

clustering applied.

– Prediction Process: Algorithms and techniques

used to forecast the future resource demand values.

– Prediction and Observation Windows Size:

Prediction window used to identify the length of the

time period in the future for which the workload

needs to be predicted. While observation window

used to identify the length of the time period

required to monitor past workload variations.

– User and VM Behavior: Current approaches in

analyzing and supporting users and resources

behaviors, which has a strong influence on the

overall cloud workload. This component analyzes

VM and user behaviors during the time of

requesting VMs. Uncovering the dependency

relationships between users and VMs helps improve

the prediction accuracy and excluding unwanted

(noise) data [99].

Clustering Process

The objective of the prediction subsystem is to use pre-

vious usage patterns to estimate future VM request

workloads in a data center. In a cloud environment, it is

too difficult to predict the demand for each type of re-

source separately for the following reasons [89]:

– Typically, VMs consists of different amounts and

types of cloud resources (e.g., CPU, memory,

bandwidth, etc.). The multi-resource nature of these

VMs poses a unique challenge when it comes to de-

veloping prediction techniques.

– Different cloud clients may request different

amounts of the same resources. Therefore, it is both

impractical and too difficult to predict the demand

for each type of resource separately.

So, it is logical in any proactive VM consolidation to

use clustering. Clustering, precisely partitioned cluster-

ing, use to map each request received into one of a set

of clusters with different types of VMs or tasks during

the predefined period of time. Notice that for fuzzy par-

titioning, a point can belong to more than one group

[96]. The prediction algorithm used to predict the num-

ber of VM in each cluster rather than predicting each

type of VM [86].

In this section, a brief summary of the latest useful clus-

tering techniques in the literature. A recommended general

clustering system will be described by end of this section.

The K-means method is one of the most famous and

widely used clustering algorithms. Given a data set of N

points, a partitioning method constructs K (N ≥ K)

partitions of the data, with each partition representing a

cluster. Where a number of clusters in the data should
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be pre-specified and each data point belongs to exactly

one group. The basic K-means-described in Algorithm

1-works as follows [167]:

K-means has been used by Dabbagh et al [44] and

Chowdhury et al [40] to create a set of clusters to group

all types of VM requests. Each request represents a VM

with CPU and memory for Google traces data [146].

K-means algorithm inputs included Google traces and

the number of clusters, while the output was centres of

these clusters. The selection of K should be balanced be-

tween two conflicting objectives: reducing errors and

maintaining low overhead [89].

Khan et al introduced a co-clustering algorithm to

identify VM groups and the time periods in which cer-

tain workload patterns appear in a group. Then, they

used Hidden Markov Model (HMM) to explore the tem-

poral correlations in workload pattern changes. This

help to predict individual VM’s workload based on the

groups found in clustering step [101].

A kernel Fuzzy C-means FCM clustering algorithm

was used to forecast the future CPU loads by Xu et al

[179]. They divided historical long CPU load time series

data into short equal sequences and used kernel FCM to

put the subsequences into different clusters.

Canali and Lancellotti [33] used Principal Component

Analysis (PCA) as an automated methodology to cluster

VMs by leveraging the similarity between VMs’ behavior.

They considered VMs as a member of classes running in

the same software component. This methodology has been

applied to two case studies, a virtualization tested and a real

enterprise data center. This methodology can reduce the

amount of collected data, thus effectively contribute to ad-

dressing the scalability issues of the monitoring system.

This technique is very useful for monitoring and reporting

but it is difficult to use it as an input to a prediction algo-

rithm to forecast each type of VMs in nearest future. This

is because: (1) PCA relies on linear assumptions (2) PCA

based on mean vector and covariance matrix, some distri-

butions may be characterized by this but not all.

Claudia and Lancellotti combined the Bhattacharyya

distance and ensemble techniques to evaluate the simi-

larity between the probability distributions of multiple

VM resource usage [32]. They considered both system

and network related data. Their proposal achieves high

and stable performance in automatic VM clustering

through their experiments on real-data collected from

an enterprise data center. VM Clustering was used to re-

duce the amount of data required in cloud monitoring.

The workload is always driven by the users, therefore

realistic workload models must include user behavioral

patterns linked to tasks. The approaches previously de-

scribed completely focus on tasks, neglecting the impact

of user behavior on the overall environment workload

[133]. Raed et al [99] labeled clusters with ranges of

workload percentages into Very Big, Big, Medium and

Small with 25% workload difference between each clus-

ter. They incorporated users’ behaviors and VM cluster-

ing with multi-way prediction technique to estimate

incoming workload at a data centre. They got more ac-

curate prediction results by comparing theirs with other

well-known prediction models.

General clustering system used in VM clustering with

user behaviors proposed by our previous work [86, 90].

General clustering system consists of the following com-

ponents (see Fig. 3):

User and VM Behavior: used to analyze VM and user

behaviors on real time VMs request. Uncovering the

Fig. 3 Recommended Clustering System [90]
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dependency relationships between users and VMs helps

improve the prediction accuracy and excluding

unwanted (noise) data [99].

Off-line clustering: is used to create a set of clusters for

different types of VMs and users using long term

historical data. The centres of these clusters used to

classify incoming request during a specific time frame.

Trace decomposer: maps each request received during a

given observation time into one cluster according to

long term cluster centres calculated off-line.

User and VM behaviors have a strong influence on the

overall cloud workload. Comprehensive workload

models must consider both VMs and users behaviors to

reflect realistic conditions by excluding unwanted VMs

or users from future workload estimation process.

Historical Workload represents the historical data,

which should be updated periodically and used to

predict the next period VM request for each

observation. Also, it used to calculate centres of

clusters from time to time using long term

observations.

VM Request Gathering includes cloud monitoring tools

which can help in detecting and tracing the variations

or failure of resources and applications during an

observation.

The number of clusters should balance two conflicting

objectives: (1) reducing errors and (2) maintaining low

overhead. For example, in Google workload trace, Xia et

al [178] and Rasheduzzaman et al [145] chose K = 6, K

= 5, respectively, for K-means clustering algorithm. Xia

and Rasheduzzaman depend on the minimum value of

K to reduce error. They didn’t take into consideration

the effect of increasing K on the performance of the

predictor. This problem was discussed in Dabbagh et al

[44, 48]; They suggested to choose K = 4 for his work.

While Moreno et al [133] selection was K = 3 as the best

selection because he included users behavioral patterns.

Ismaeel and Miri compared between K-means and FCM

for different numbers of VM clusters and User clusters

[90]. They concluded that, although the FCM algorithm

needs long off-line training time, it produces better results

than the K-means for a fewer number of clusters. FCM

provided a fewer number of clusters with a small error by

balancing reducing errors and maintaining low overhead

requirements through the use of minimizing the number

of inputs in the prediction process [86].

After studying these techniques it is observed that vari-

ous clustering techniques currently used for analyzing

workload characteristics do not provide a structured

model which can be used for conducting simulations. All

we can do is to compare on the basis of execution time

and cluster quality. Workload analyses need to explore

more than coarse-grain statistics and cluster centroids. To

capture the patterns of clustered individuals it is also ne-

cessary to conduct an analysis of the parameters and study

the trends of each cluster characteristic. This will lead us

to conclude that the need for new methodologies espe-

cially for real time and online streaming data [15, 133].

Prediction Process

As discussed in the previous section, a proactive dynamic

VM consolidation is to triggering resource requests, this

can be taken by forecasting future resource demand values

based on demand history. Since workloads tend to trace

of resources patterns based on time, it is expected that

time series forecasting methods are reliably predicted

resource demand [173].

In recent years, many performance prediction algo-

rithms and tools have been developed, which can be

applied to predict the future CPU, memory load, VMs ...

etc. Their focuses were on how to save energy, improve

performance and increase profit and so on [97]. In next

subsections, the most recent prediction techniques, espe-

cially ML techniques, applied in the field of VM consoli-

dation based energy consumption will be reviewed. Before

we do that, a simple description of the basic principle of

prediction problem and these techniques will give.

Basically, prediction problem is to estimate the value

of an output Y from the set(s) of readily available in-

put(s) X, and can be formulated simply by:

Ŷ kð Þ ¼ f̂ X kð Þð Þ … ð1Þ

Where Ŷ (k) is the predicted value(s) and f̂ ðXðkÞÞ is

the estimated relation between inputs and outputs of the

system. This relation is either linear or nonlinear. In Lin-

ear Regression (LR) models, the relation between one or

more input variables and dependent output variable(s)

described by using a linear equation to observed data,

like Auto-regressive (AR), Moving average (MA) and

Gray Forecasting Model (GFM), and Wiener filter [173].

Sometimes linear models are not sufficient to capture

the real-world phenomena, and thus nonlinear models

are necessary. But in many situations, we do not know

much about the underlying nature of the process being

modeled, or else modeling it precisely is too difficult. In

these cases, we typically turn to a few models in

Machine Learning (ML) that are widely-used and quite

effective for many problems. These methods include

basis function regression including Radial Basis Func-

tions (RBF), Artificial Neural Networks (ANN), and

K-Nearest Neighbors (KNN) [80].
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Auto-regressive Integrated Moving Average (ARIMA)

The basic assumption made to implement this mode is

that the considered time series is linear and follow a par-

ticular statistical distribution, such as Normal distribu-

tion. It Combination of AR and MA models.

In an AR(Tp) model the future value of a variable is

assumed to be a linear combination of Tp past observa-

tions and a random error together with a constant term.

Mathematically the AR(Tp) model can be expressed as:

Ŷ kð Þ ¼ const þ
XTp

i¼1
φ ið ÞY k−ið Þ þ ∈ kð Þ ð2Þ

where Tp is an integer constant represents the order of the

model, φ(k) and ϵ(k) are the actual value and random

error at time period k, respectively, φ(i)(i = 1, 2,…,Tp) are

model parameters and const is a constant. Yule-Walker

equations usually used to relate AR model parameter to

the auto-covariance of the random process [29]. While the

model order Tp selected by using different criteria like

Akaike Information Criterion (AIC), Bayesian Information

Criterion (BIC) and Cross Validation (CV) [4].

MA model uses past errors as the explanatory vari-

ables. The MA model is given by:

Ŷ kð Þ ¼ μþ
Xo

j¼1
θ jð Þ∈ k− jð Þ þ ∈ kð Þ ð3Þ

where O is the order of the model with white noise

process, θ(j)(j = 1, 2,…,O) is model parameters and μ is

mean of the series. Fitting an MA model to a time series is

more complicated than fitting an AR model because in

the former one the random error terms are not predicted.

Auto-regressive and MA models can be effectively

combined together to form the ARMA (Tp, O) models,

as represented by:

Ŷ kð Þ ¼ const þ
XTp

i¼1
φ ið ÞY k−ið Þ þ

Xo

j¼1
θ jð Þ∈ k− jð Þ þ ∈ kð Þ

ð4Þ

Usually, ARMA models are manipulated using the lag

operator, refer to [166] for more details.

If the original process Y (k) is not stationary, we can

look at the first order difference process ∆Y (k + 1) = Y

(k) – Y(k – 1) or the second order differences ∆2Y (k +

1) = Y (k) − 2Y (k − 1) + Y (k − 2) and so on.

The process Y (k + 1) is said to be an Auto-regressive

Integrated Moving Average process, ARIMA(Tp, d, O), if

∆
dY (k) is an ARMA(Tp, O) process.

Researches on workload prediction have been done

based on statistical approaches, such as [31, 57, 108]

who proposed an ARIMA algorithm. The basic assump-

tion that the considered time series is linear and follows

a particular statistical distribution, such as Normal dis-

tribution. If the original process is not stationary, we can

look at the first order difference process or the second

order differences and so on. If we ever find that the dif-

ference process is a stationary process we can look for

an ARMA model of that. AR, MA, ARMA and ARIMA

techniques can be used to model many time series. A

key tool in identifying a model is an estimate of the

auto-covariance function [173].

Gray Forecasting Model (GFM)

Grey forecast can be used to predict the behavior of

non-linear time series. This is a non-statistical forecast-

ing method that is particularly effective when the num-

ber of observations is insufficient.

Grey forecasting model, precisely GM(1, 1) model, is

one of the most widely used technique in the Grey

system [42, 94]. In this technique, the predicted value of

Ŷ ðkÞ can be obtained by accumulated generation se-

quence of the original data sequence.

Ŷ
1ð Þ

kð Þ ¼
Xk

i¼1
Y ið Þ

; k ¼ 1; 2;…;Tn ð5Þ

Where the sequence Ŷ
ð0Þ

¼ Xð0Þð1Þ;Xð0Þð2Þ;…;Xð0ÞðTpÞ

is an original data sequence, Tn is the sample size of data,

and Ŷ
ð1Þ

¼ Xð1Þð1Þ;Xð1Þð2Þ;…;Xð1ÞðTpÞ is the accumulated

generation sequence of Y (0).

The GM(1,1) model can be represented by a first order

difference equation with time response equation given by:

Ŷ
1ð Þ

k þ 1ð Þ ¼ Y 0ð Þ 1ð Þ−
b

a

� �

e−ak þ
b

a
; k ¼ 1; 2;…;Tn−1

ð6Þ

where x̂ðk þ 1Þ denotes the prediction x x at time k +

1 and a and b represent the adjusting and effect factors,

respectively. These coefficients, or parameter series, [a,

b]T can be obtained by ordinary least squares method, as

described in [175].

The main characteristics of GFM are it is simple and

has the ability in time series prediction with least

amount of historical data. This is done by extracting of

actual laws in a system using existing data [117], where

number of historical data must be more or equal to four.

But the main drawback is, it assumes new data grows

exponentially and they use time dependency rather than

data dependency in a time series forecasting model.

Jheng et al [94] proposed a GFM to predict the work-

load of the PMs in a cloud data centre. The main char-

acteristics of GFM are the simplicity and the ability to

predict with least amount of historical data. This is done

by extracting of actual laws in a system using existing

data [117], where the number of historical data must be

more or equal to four. But, the main drawbacks are (1)

it assumes new data grows exponentially and (2) it uses

time dependency rather than data dependency in a time

series forecasting model.

Ismaeel et al. Journal of Cloud Computing: Advances, Systems and Applications  (2018) 7:10 Page 7 of 28



Wiener Filter

Wiener filter is an optimal-linear discrete time filter

which can be used to produce an estimate of a desired

or target random process by linear time-invariant

multi-filtering of an observed noisy process assuming

known stationary signal and noise spectra and additive

noise [22].

Dabbagh et al [44, 48], proposed a framework to pre-

dict the number of VM requests, to be arriving in the

near future, along with the amount of CPU and memory

resources associated with each of these requests. The

K-means clustering was used to create a set of clusters

contain all types of VM requests. Stochastic Wiener Fil-

ter (SWF) was used to estimate the workload of each

cluster. Although, Wiener filter is unreliable for the dy-

namic behavior of demand cloud resources because it is

suitable to estimate the target random process by Linear

Time-Invariant (LTI) for known stationary signal and

noise spectra [30], Dabbagh et al improved the original

Wiener filter to support online learning, making it more

adaptive to changes in workload characteristics.

An alternative approach to address the prediction

problem is LR [7], which models the relationship be-

tween one or more input variables and dependent

output variable by using a linear equation to observed

data. Sometimes linear models are not sufficient to

capture the real-world phenomena, and thus nonlin-

ear models are necessary. In regression, all such

models will have the same basic form, i.e. Eq. 1. But

in many situations, we do not know much about the

underlying nature of the process being modeled, or

else modeling it precisely is too difficult. In these

cases, we typically turn to a few models in ML that

are widely-used and quite effective for many prob-

lems. These methods include basis function regression

(including RBFs), ANNs, and KNNs [80].

Many researchers use combination pre-described

techniques and other to increase prediction accuracy.

Cao et al [35], suggested an ensemble model for online

CPU load prediction. Their model has multiple pre-

dictor sets include Auto-regression model, Weighted

Nearest Neighbors (WNN) model, Exponential Smooth-

ing Model (ESM), most similar pattern model, and WNN

model for differenced data (DWNN). Each predictor has a

specific membership which can dynamically adjust. CPU

workload has been estimated by these combined sets

through the scoring algorithm. The main drawbacks

in this predictors are: 1) it consists of two levels of

prediction; all the predictors have specific weight and

it is very difficult to find the optimal weight for each

predictor; 2) relatively time-consuming in applying

different algorithms at the same time; 3) most of the

suggested set of predictors are based on statistical

approaches.

Basis Function Regression

A one dimension basis function can simple represented by:

Ŷ kð Þ ¼
XMb

i
wibi Xð Þ ¼ b xð ÞTW ð7Þ

where bðxÞ ¼ ½b1ðxÞ;…; bMb
ðxÞ�T and Mbare the number

of basis functions and w ¼ ½w1;…;wMb
�T .

Two common choices of basis functions are polyno-

mials and RBF. Radial basis functions and the resulting

regression model are given by [4]:

b xð Þ ¼
X

e−
x kð Þ−ckð Þ2

2σ2 ð8Þ

Ŷ xð Þ ¼
X

wke
−

x kð Þ−ckð Þ2

2σ2 ð9Þ

where ck is the center of the basis function and σ2 deter-

mines the width of the basis function. Both of these are pa-

rameters of the model that must be determined somehow.

In practice, there are many other possible choices for

basis functions, including sinusoidal functions, and other

types of polynomials. Also, basis functions from different

families, such as monomials and RBFs, can be combined.

We might, for example, form a basis using the first few

polynomials and a collection of RBFs.

In general, we ideally want to choose a family of basis

functions such that we get a good fit to the data with a

small basis set so that the number of weights to be esti-

mated is not too large.

To fit these models least-squares regression can be

used to minimize the sum of squared residual error be-

tween model predictions and the training data outputs,

refer to [4] for more details.

Artificial Neural Networks

Another choice of basis function is the sigmoid function,

the most common choice of sigmoid is:

b xð Þ ¼
1

1þ e−x
ð10Þ

Sigmoids can be combined to create a model called an

ANN. For regression with multi-dimensional inputsX∈ℝk
2 ,

and multi-dimensional outputs Y∈ℝ2
1 , and for 1D case

model:

Ŷ xð Þ ¼
X

w
1ð Þ
j b w

1ð Þ
j xþ bias

2ð Þ
j

� �

þ bias 1ð Þ ð11Þ

Hence, the neural network is a linear combination of

shifted (smoothed) step functions, linear ramps, and

the bias term. This objective function cannot be opti-

mized in closed-form, and numerical optimization pro-

cedures must be used. Neural network and LR are

widely applied in previous works to forecast VMs work-

load in cloud environments [103]. The main problem
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with this approach, and in most of the LR applications, as

they considered the fact that future workload could be in-

dependent of their previous workload pattern [144]. On

the other hand, the workload has an obvious nonlinear

feature [39], and LR demands workloads that have simpler

behavior than those that ANN-based method [31].

Several studies use ANN as prediction model [38, 140,

150]. Although ANN represents a universal approxima-

tion, but still have the drawbacks of in choosing a suit-

able algorithm, network structure, and initial condition.

For butter performance, ANN may be combined with

the typical prediction methods such as Sliding Window

Method (SWM) [85], Auto-regression model [39], and

Fuzzy System (FS) [23, 39, 144].

Dynamic behavior forecasting problem can be resolved

with ANN [38, 140, 150], Adaptive Neuro-Fuzzy Inference

System (ANFIS) [23, 39, 144], Support Vector Machine

(SVM) [7], and latent feature learning based models [35,

36, 39].

Bey et al [23]; combined Adaptive Network-based

Fuzzy Inference Systems (ANFIS) and clustering process

to estimate the future value of CPU load. The model

carried out on real CPU load time series to determine

the optimal number of clustering for one machine. The

results of their work showed that the CPU load predic-

tion using ANFIS model for each category performs bet-

ter than using one ANFIS for the whole of CPU time

series without clustering.

Bey’s work was improved by Chen et al [39], an ensem-

ble model and subtractive-fuzzy clustering based fuzzy

neural network was adopted. Fuzzy-Neural network per-

formance was optimized using fuzzy-subtractive clustering

algorithm. The Fuzzy-subtractive algorithm is composed

of FCM clustering algorithm and subtractive clustering

algorithm.

In [144], a neural network model was proposed to

predict workload patterns in VMs, while Fuzzy Expert

System (FES) was used to control near future changes in

workload patterns for every VM. This scheme has been

used to determine the time that VMs will be overloaded

and need to be migrated.

Combining fuzzy and NN improves the modeling and

prediction process, even ANFIS has better performance

than NN [12, 87], but both of them require training be-

fore use.

Karim et al [99] proposed a model for predicting in-

coming number and types of VM based on user require-

ments using multi-way prediction technique. They

incorporated user behavior to improve the prediction re-

sults. On the other hand, our previous works [89, 90]

proposed framework combines clustering algorithm and

Extreme Learning Machine (ELM) to forecast the VM

requests in a CDC, Fig. 4. This work considers a single

network to predict the number of VMs requested in

each cluster and the optimal weights for the predictor in

one step. This work was developed to use clustering not

only on VM requests but also on user requests to filter

for unexpected VM requests caused by unpredictable

users’ actions. We suggested to use this type of predic-

tion to overcome the following challenges:

– Finding a way to make predictions that take into

account both user and VM variations. Most related

work in workload prediction only takes into account

VM variability.

– Overcoming the problem of multivariate time

varying VM requests

– Eliminating the restrictions on observation window

size and number of VM clusters

Table 1 shows the prediction techniques can be divided

into statistical, machine learning and hybrid approaches.

In this table, Owin and Pwin are the observation and pre-

diction windows, respectively.

Dabbagh et al [44, 50] estimated prediction window

size based on the difference between the energy cost for

keeping the PM idle and PM OFF/ON power cost, as

described in the following equations:

Prediction Window Size

It is the time period for which the workload needs to be

predicted to decide whether PMs need to be switched to

sleep mode. It totally depends on the configuration of

CDC, especially the server hardware, and its values

affecting on workload prediction section. It represents

the algorithms and optimization techniques used to

determine the minimum number of times the prediction

calculations must be performed. Based on prediction

window, clustering and prediction algorithms used, the

time required to monitor which is called observation

window, should determine.

Fig. 4 Recommended prediction system
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Esleep ¼ E0 þ Psleep � Tp−T 0

� �

ð12Þ

Where Tp is the length prediction window, Psleep is the

consumed power when in the sleep mode, E0 is the

energy needed to switch the PM to the sleep mode plus

the energy needed to wake up it later, and T0 is the tran-

sitional switching time. The estimated time required to

keep the PM ON and idle (Tb) consumes an amount of

energy that is equal to the energy consumed due to

mode transition plus that consumed while the PM is in

the sleep mode during that same period:

Pidle � Tb ¼ E0þ Psleep � Tb−T 0ð Þ ð13Þ

Where Tb is the beak-even time. This means energy

can be saved by switching PM to sleep mode if and only

if the PM stays idle for a time period longer than Tb.

That is, Tp ≥ Tb must hold in order for the power

switching decisions to be energy efficient.

According to above, if we have PMs Profiles we can

easily estimate the value of Tp. Dabbagh used the energy

measurement study of PMs conducted in [153] to esti-

mate the break-even time, Tb.

On the other hand, Prevost et al [139], presented a

dynamic prediction quantization method to determine

the optimal number of prediction calculation intervals to

be performed within required future load SLAs [86].

Observation Window Size

As defined in Workload Prediction Subsystem, it is a

process of observing and monitoring past workload varia-

tions during a time period. It is a specific time frame used

to classify gathering data (new request and/or already exist

VMs) that will be used in clusters process described in

Clustering Process.

Di et al [54] found, based on their experiments, that

maximum prediction accuracy for Google trace data

[146] is to set the observation window to the half of the

prediction window length. This setting is absolutely dif-

ferent from the well-known that a large observation win-

dow size leads to higher accuracy. This is may be a

special case for Google host load used, which fluctuates

much more drastically with higher noise.

Unlike Di et al, Ismaeel and Miri [89] and Dabbagh et

al [44, 50] used to estimate the size of the observation

window after classifying the workload into clusters. Where

Ismaeel and Miri find a unique observation window size

for all clusters, and Dabbagh et al find different observa-

tion window size for each cluster.

Dabbagh et al used experiments to estimate the length

of the observation window in each cluster. They in-

creased the size of observation window gradually until

the reaches a point beyond which the prediction error

can no longer be reduced even window size increase.

Ismaeel and Miri [79] selected the observation window

to be 3 times longer than the prediction one, as in Eq. 14:

Ci k þ 1ð Þ ¼ Ci kð Þ;Ci k−1ð Þ;Ci k−2ð Þð Þ ð14Þ

Where Ci represents the number of VM requests in

the ith cluster, and k represents the sampling interval.

This means the observation window is 3 times equal

prediction window size. This is due to the dynamic be-

havior of cloud provisioning, making the predicted out-

put not only depends on the current state of the input

Table 1 Workload prediction techniques

Techniques References Parameter Clustering User
behavior

Window size

VM PM

Statistical ARIMA [31, 127] √ Fixed

[57] √ Fixed

GFM [94] √ Fixed

HMM [101] √ co-clustering Fixed

Bays Model [54] √ √ Owin=1/2 Pwin

Multi-Way Data Analysis [99] √ FCM √ Fixed

Hybrid AR Model, ESM, WNN, DWNN [35] √ Owin=2 Pwin

ECNN and LR [85] √ Fixed

Ensemble Model based FNN [39] √ FCM/subtractive Fixed

Static and adaptive Winner Filter [44] √ k-means Fixed/overlapped

ML SVM, NN, and LR [7] √ Fixed

GA to optimize Elman NN [179] √ Kernal FCM Fixed/overlapped

NN and Fuzzy expert [144] √ Fixed

ELM [89] √ k-mean √ Fixed/overlapped

Multivariate ELM [90] √ FCM √ Fixed
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but also totally affected by the previous state of the output.

This work has been developed to eliminate restrictions on

observation window size in an on-line multivariate time

series ELM [90]. They used the current state and previous

sates to cover all possible observation window states.

User and VM Behavior

Analyzing and supporting behaviors of users and tasks is

a crucial process for both data centre providers and their

perspective users. The behavior analysis within a specific

course of time helps decision makers plan ahead for in-

coming workloads into data centers and make sure all

requirements are fulfilled. As more and more data is

stored and processed in data centres, it becomes a chal-

lenging task to anticipate the behavior of users and

tasks. The workload can be modeled and analyzed in

order to simulate requests and consumption patterns in

data center environments [133]. The workload (CPU

and memory) analysis captures both user and task be-

haviors. Then, users and tasks are clustered based on

characteristics defined during the workload modeling.

Clustering is an effective unsupervised learning tech-

nique that group together items that are naturally simi-

lar to each other based on a certain metric [120]. The

k-mean clustering technique is used by dividing observa-

tions into k clusters and data are grouped around cluster

centroids. Important applications of CPU and memory

data modeling and clustering are improving resource

utilization, reducing energy waste and supporting accur-

ate forecasting. In their model [133], users with profiles

U submitting tasks with profiles T. The expectation E(ui)

of a user profile is given by its probability P(ui), and the

expectation E(ti) of a task profile is given by its probabil-

ity P(ti) conditioned to the probability of P(uj).

E uið Þ ¼ uiP uið Þand E tið Þ ¼ tiP tið Þ P u j

� �
�

� ð15Þ

Behavior prediction models predict application behaviors

as well as VM behaviors in the cloud by tracing recently

observed patterns which can be used to guide dynamic

management decision. Adapting to frequent changes of

workloads in order to calculate the required resources has

been dealt with using heuristic techniques (predefined

thresholds) at the Service Level Agreement (SLA) time to

manage the scaling process as the application behaviors

change dynamically [172]. Auto-scaling is another tech-

nique that performs scaling operations (adding or removing

resources) without needs of human interactions [155]. An-

other technique that monitors changes in behaviors is His-

tory Table Predictor (HTP) [143]. In the history table, each

row presents a pattern of the changes. When a new pattern

found, the model attempts to find a match in the table to

predict the next phase or to store that new pattern in the

case of no matches is found. A more effective technique is

the Statistical Metric Model (SMM) [152] that outperforms

the HTP technique and other historical predictors for its

long term global patterns modeling in application behavior,

and its effective response to variable patterns.

The SMM model can be applied in cloud environments

using common resource components which represent the

behavior of the workload; in particular, these components

are Memory utilization Umem, CPU utilization Ucpu, and

network utilization Unet. The three components can be

combined using the load volume notation introduced in

[177] and formulated as Datacenters:

LV ¼
1

1−Umemð Þ
�

1

1−UCPUð Þ
�

1

1−Unetð Þ
ð16Þ

Data mining techniques can be used to discover Fre-

quent Workload Patterns (FWPs) according to the previ-

ous history of resource usages [110]. The resource

allocations can be determined by using the Association

Rules Technique (ART) according to the prediction of

resource availability in a given time period. The idea of

using ART is on the discovered data patterns is to find

out the possibility that the same patterns will repeat in

future. In other words, ART can be used to represent the

correlation between data patterns.

The technique mentioned above work well in discover-

ing patterns in workload data and prepare them for

subsequent operations such as resource allocations and

predictions. Different other techniques can be used to

perform these operations. The assumption is that since

the data has already been trained, the resource alloca-

tions and predictions will be improved. However, this is

not always the case. For example, Ismaeel et al [86] have

tested his ML model by feeding it with the trained data

(using clustering algorithms) to predict incoming re-

quests to a CDC. The results were not promising (i.e.

not a good prediction accuracy). More comprehensive

techniques can do dual processes. They can be used not

only to discover data patterns and hidden relationships

(training) but also to perform these subsequent opera-

tions and produce more accurate results. Some examples

of these techniques are Multi-Way Data Analysis [98]

and Pearson Correlation Coefficient [97].

Resources State Subsystem
As described in in Introduction, VM planner needs to

optimally assign VM or group of VMs to server-racks

such that the mapping minimizes the total inter-rack PMs

used or traffic load in the network to reduce energy, as an

initial state [58]. Dynamic VM consolidation within a typ-

ical data centre can be done though migrating VMs over

time in an optimal fashion. The typical data centre, a data

centre with old and new PMs with different types. In other

words, in a typical data centre, PM’s power consumption
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is not constant but depends on the PM’s load [119]. So,

for any efficient VM consolidation, it is very important to

identify the state of physical resources before and after

initial assignment of VMs.

The objective of this section is not to review the practical

useful monitoring tools in CDC only, but also to discuss the

most recent algorithms and techniques used in literature to

define PMs state. According to these algorithms, host(s) will

be selected. This host represents the best placement of new

or selected VM to migrate. Although, host selection may

depend on several factors like workload dependencies, se-

curity, and network load, in next sections will cover selec-

tion process based on PM load. Host Underload Detection

and Host Overload Detection discusses algorithms related

to select the host that will be switched off (Host underload)

and the host that will move some of the VMs from because

of overloading (Host overload). But before that the practical

CDC monitoring tools will be discussed.

CDC Monitoring tools

CDC state monitoring represents all physical components

considerations and monitoring by tracking the behavior of

these resources. In other words, it is the process of continu-

ously measuring and accessing infrastructure and application

behaviorism terms of performance, reliability, and power

usage while maintaining a good QoS. Perfect CDC monitor-

ing tools used in dynamic consolidation most able to:

– provide power information as well as the state of

PMs and VMs,

– combine monitoring data arrived at different

sampling rate from unrelated monitoring systems,

– analyze the measurement data, and select the most

affected parameters to reduce the storage and

computation load, and

– Select the suitable PM to switch on or off.

Monitoring the power consumption is required not only

for understanding how power is consumed, but also for

assessing the impact of energy management policies [148].

It will help in detecting and tracing the variations or failure

of resources and applications [77]. There are many tools

used in cloud monitoring such as: Collectd, Nagios, and

Ganglia, which are providing the capability to monitor the

computing, networking and storage resources utilization

[93]; Ceilometer from OpenStack is used to reliably collect

measurements of the utilization of the physical and virtual

resources comprising deployed cloud [91]. Ceilometer col-

lects data from different levels of the entire computing in-

frastructure (e.g., VM container, hypervisors, storage, and

network) and the software resources (e.g., web server, appli-

cation server, database server, and virtual applications) [77,

107]; Data Center Infrastructure Manager (DCIM) which

provides detailed information about a server configuration,

hardware, network connections, installed software, and so

on. DCIM profiles the power consumed by each part of

hardware in data centre [86]. Cloud monitoring tools and

platforms properties, issues, analyzing, and comparisons

surveys can be found in [2, 43, 64, 76, 78, 91, 92].

Host Underload Detection

Host underload refers to the state of a host in which all

VMs should be migrated from. In the literature, the two

common techniques used for determining host under-

load state are the least utilized host and static threshold

[14]. It is the process of finding the host with the mini-

mum utilization compared to the other hosts. i.e. the

host that all VMs should be migrated from, so it should

be switched off. If all VMs from the source host cannot

be allocated, the host is kept active.

Several algorithms are used to determine the underloaded

PMs, most of these algorithms depend on the CPU load in

the PM. See Table 2 that summarizes as follows [14, 21]:

Least utilized: This technique uses CPU usage of the

PM as a measure of determining underloaded PMs.

PM is considered as being underloaded when it uses

minimum resources. This algorithm is cost-effective

because any monitoring system for the CPU utilization

will be sufficient to decide which PM is the underload.

But, it does not consider the number of VMs on that

Host and the cost of moving such them to other PM.

Static Threshold: It depends on the mean of the latest

CPU utilization measurements and compares it with a

predefined threshold. If the mean CPU utilization is

lower than the threshold, a host underload is detected.

Put in Kashyap et al [100] use 0.2 for host CPU

underload threshold. The problem is that using

constant values of the threshold will be useless

especially in a heterogeneous environment. Because

it is difficult to find an optimal value of this threshold

useful for all host.

Available capacity: This approach considers the

available resource capacity instead of resource

utilization as a measure of determining underloaded

PMs. This is done by selecting a PM with an available

capacity which is the least among all candidate PMs.

The main drawback of this technique is that PMs with

adequate resources not necessarily has less power than

the others. Also, it does not consider the number of

VM on a specific host.

Migration delay: PMs will be selected based on

minimum time to complete all VMs migration process

to other PMs. After pre-estimated the migration delay

for each VM for different PMs. This technique needs a
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lot of prediction and estimation which may cost more

power, regardless the complexity of VM migration

cost estimation in networking and or the energy

consumption estimation of moving specific VM

on a predetermined PM.

Hybrid: A multi-criteria decision-making method that

takes into consideration available capacity of the PM,

the number of VMs on the PM, and the migration

delays of VMs. Although this algorithm may give more

accurate result it will be more complicated and difficult

for practical implementations.

Weighted CPU utilization and VMs on Host: It

combines the Host CPU utilization CPUHi and number

of VMs on the Host V MHi according to following

equation [81]:

UH i
¼ α � CPUH i

þ β � VMH i
… ð17Þ

where UHi is the utilization of host Hi, α and β are

weighted for CPUHi and VMHi, respectively. Such that,

α+β = 1, 0 ≤ α ≤ 1, 0 ≤ β ≤ 1. And their values are opti-

mized based on workload type with hill claiming method.

The same technique used in [124], by combining of

the CPU utilization and the number of VMs according

to reward function. Comparing this technique with

Hybrid we can notice the following: 1) it reduces the

number of required migrated VMs; 2) host with least

number of VMs has a better chance to be switched to

sleep mode in comparison with a host with more VMs;

3) it depends on both Host utilization and VM number

of VMs on that Host. It still needs more computation to

find the optimal values of α and β for each Host.

Host Overload Detection

Host overload detection is the process of deciding if a

host is considered to be overloaded so that some VMs

should be migrated from it to other active or reactivated

hosts to avoid violating the QoS requirements. Static

utilization thresholds, Adaptive utilization base, and

Regression Based are some of the useful techniques [18].

Abdelsamea et al. [1] classified the host overload detec-

tion process into, see Table 3:

Static utilization threshold

It is exactly the same as the static threshold in host

underload algorithm. The algorithm compares the

Table 2 Host underload detection algorithms

Algorithm Policies Characteristic

Available
Capacity

Migration
Delay

Number of VM Host
power

Least utilized host [21] √ Base on a host with minimum resources
Not cover number of VMs on the host

Static Threshold [21] √ Depend on the mean of the last CPU used
Difficult to find the optimal value of the threshold

Available capacity [14] √ Base on available host capacity compared to others;
Not necessary PMs has less power than the other

Migration delay [14] √ Base on minimum time to complete VMs migration
process; Need a lot of predication and estimation

Hybrid [14] √ √ √ based on MCDM
More complicated and difficult for practical

Weighted CPU utilization [124] √ √ Combines host utilization and number of VMs
Need less computation then hybrid

Table 3 Host overload detection algorithms

Algorithms Characteristics

Static utilization threshold [21, 100] Depend on the mean of the last CPU used.
Unsuitable for dynamic and unpredictable workload

Adaptive utilization threshold [18] Median Absolute Deviation Depend on statistical dispersion
Similar to the static threshold

Inter-quartile range [130] Same as Median but compare third and first quartiles
Provide poor prediction of host overloading

Regression based algorithms [1, 17] Local regression algorithms By fitting simple models to CPU utilization

regression robust Use regression to predict the future CPU utilization

Markov overload detection Add constraint in estimation increase the computation
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latest CPU utilization measurements with a predefined

threshold [21]. As discussed in CDC Monitoring tools,

this technique is unsuitable for dynamic and unpre-

dictable workloads. e.g. Kashyap et al [100] use 0.8 for

host CPU overload threshold.

Adaptive utilization threshold

This is done by using an adaptive threshold based on a

statistical analysis of historical data of the VMs. Beloglazov

[18, 20] proposed two adjustment criteria Median Absolute

Deviation (MAD) and Interquartile Range. MAD depends

on statistical dispersion, where a PM with large CPU

utilization deviations is weighted more heavily than the

others. Once the threshold is calculated, the algorithm acts

similarly to the static threshold algorithm by comparing the

current CPU utilization with the calculated threshold.

Interquartile Range follows the same principle of MAD but

the distance is calculated by computing the difference

between the third and first quartiles in descriptive sta-

tistics [130].

Generally, adaptive utilization threshold algorithms are

more robust than static CPU utilization threshold algo-

rithms in case of dynamic environments. However, these

algorithms provide a poor prediction, and most of them

depend on single resource usage value, which can lead

to hasty decisions, unnecessary live migration overhead

and stability issues [128].

Masoumzadeh and Hlavacs [122] proposed an intelligent

and adaptive threshold-based algorithm for detecting over-

loaded hosts by Dynamic Fuzzy Q-learning (DFQL). The

main deference with previous technique that the algo-

rithm benefits from experiment gained by learning

procedure to decide better about the numerical value

of CPU utilization threshold in the future.

Prediction-based algorithms

They are based on the estimation of the future CPU

utilization. They provide better predictions of host

overloading but are more complex. Prediction algo-

rithms include:

Local algorithms: this is done by fitting simple models

to localized observations of the CPU utilization, in order

to build a curve that approximates the CPU utilization.

Robust algorithms: the algorithm estimates the

local parameter and uses them to predict the future

CPU utilization at the next time step, taking into

account the VM migration time which should be

estimated [128].

Markov overload detection: In this algorithm, a

constraint on the overload time fraction value will be added

as a parameter of the algorithm, while maximizing the time

betweenVM migrations, thus improving the quality of VM

consolidation but increase the computation [17].

K-nearest neighbor: Farahnakian et al [62, 63]

proposed two regression methods to predict CPU

utilization of a PM. These methods use the LR and the

KNN regression algorithms, respectively, to approximate

a function based on the data collected during the

lifetimes of the VMs. Therefore, they used the function

to predict an overloaded or an under-loaded PM for

reducing the SLA violations and energy consumption.

Host overload detection will become more complex

problem when a VM has multiple (e.g. CPU, memory, stor-

age capacity, etc.). As an example, authors [149] propose to

use Multi-Criteria Decision Making (MCDM) algorithms

as a promising to tackle the problem of VM selection that

involves multiple computing resources. In this approach,

these resources can represent the multiple criteria in the

problem domain of VM sections. Using common MCDM

algorithms such as Analytic Hierarchy Process (AHP) and

Analytic Network Process (ANP), pair-wise comparisons

can be performed so a decision maker (e.g. a cloud engineer

or a data scientist) can determine the importance of each

computing resource by assigning a weight (e.g. 1 to 10) or

he/she determines the influence of one criterion on the

others. There are not too many efforts made to tackle the

VM selection problem based on multiple resources. The

current research focuses on VM as a whole component

such as the work presented in [106, 169].

VM Selection Subsystem
In dynamic VM consolidation base energy consumption,

energy saving will be done through migrating all VMs

from low usage host (underloaded) to switch it to sleep

mode or it can be shut down. In contrast, due to the vari-

ability of workloads and keeping SLA, if a host usage is

high (overloaded) some of the VMs moved to hosts which

have a moderate load [59, 81]. VM Selection is the process

of selecting one or more VMs from the full set of VMs al-

located to the server and the future predicted new VMs,

which must be located or reallocated to other servers [19].

VM selection answers to the two simple questions: which

VMs to migrate, and where. The main function of VM se-

lection subsystem is to determine the best subset of VMs

to migrate that will provide the most beneficial system re-

configuration in terms of energy consumption and many

other parameters like security and bandwidth.

The VM selection is a process of picking the best one

or more VMs from overloaded PMs to migrate them

with minimum energy consumption constraints. Unlike

Abdelsamea et al [1] who classified the selection techniques
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into techniques with fixed or multiple criteria, this survey

will divide the techniques into conventional and ML ap-

proaches, Conventional VM Selection Techniques and Ma-

chine Learning VM Selection Techniques, respectively.

Conventional VM Selection Techniques

Conventional in this section means the techniques with-

out ML application. The first three of them described in

details by Beloglazov [18, 21].

Random Choice (RC): This is the simplest policy, in

which the selection of VM is based on the uniform

random process [18].

Dynamic Management Algorithm (DMA): To reduce

the processing overhead, the VM selection process

should be based on the CPU utilization of VMs, i.e.

the VMs with the lowest CPU utilization is selected.

Minimum Migration Time (MMT): Based on

minimum time to complete the migration process

relative to other VMs allocated on the same host, VM

will be selected. Beloglazov [18, 20] suggested that the

migration time is the amount of RAM utilized by the

VM divided by the spare network bandwidth available

for the host.

Maximum Correlation (MC): In this algorithm, the

VMs will be selected by calculating the probability

correlation between resources usage by an application

that runs on the oversubscribed server. If there is a

higher correlation between the resource usages by

applications running on an oversubscribed server, will

lead to higher probability of server being overloaded.

It means that if the correlation of the CPU utilization

of VMs of a particular host is high then the probability

of this host being overloaded is also high [131].

Constant Fixed Selection (CFS): It is almost the same

as Random Choice policy but the selection will be

constant either first, center or last position in the VM list

which should be moved from the overloaded host [156].

Although DMA, MMT and CFS are indentation tech-

niques and sufficient in static cloud environments but are

not suitable for decision-making in dynamic environments.

While MC need more calculation but give best selection

approach because it selects the VM which will have less

predicted correlation with a CPU usage of current PM.

Multi-objective optimization: Song et al [159] proposed

a multi-objective optimization model based on analysis of

the impact of CPU temperature, resource usage and

power consumption in VM selection. The developed

algorithm was evaluated by comprehensive experiments

that are based onVM monitor Xen. Their results showed

that combining all these factors can achieve

the best VM selection with respect to resource usage,

CPU temperature, and power consumption.

Machine Learning VM Selection Techniques

Most of these techniques are based on fuzzy logic because

the selection process is a decision-making problem.

Fuzzy Q-Learning (FQL) [123]: It is an online decision

making strategy. Its principle is to integrate multiple

VM selection techniques and dynamically choose

suitable VM selection approach for a current state.

In other words, it is the process to find the optimal

strategy to be used in the VM selection process [1].

Fuzzy VM selection [132]: This method has been

proposed to select VM from an overloaded host. It

incorporates the migration control in Fuzzy VM

selection method. Simulation based on the CloudSim

platform was used to show that this method provides

the best performance considering all parameters.

The main difficulty in the FS is to formulate the

problem. This is because the VM selection process

should take into consideration as many as unrelated

elements. Fuzzy logic is able to relate these elements

in a systematic manner [88].

VM Placement (VMP) Subsystem
Virtual Machine Placement (VMP) is the process of map-

ping VMs to PMs in such a way that the hosts (PMs) can

be utilized to their maximum efficiency. This will help to

shut down unused PMs depending on load conditions.

Each of the VMP algorithms works well under certain spe-

cific conditions. Thus, it is important to choose a technique

that suits the needs of the cloud user and cloud provider.

Also, the parameters to these algorithms should be properly

specified. The performance metrics are measured at both

system level and application level. The system level metrics

are measured in terms of CPU load and the application

level metrics are measured in terms of response time of ap-

plications. Physical and virtual machines are characterized

by their CPU (MIPS), RAM (MB) and bandwidth (Mbps).

The goal of VMP problem is to determine the minimum

number of PMs required by the set of VMs.

Fixed mapping VMP during the lifetime of the VM is

called static VMP. While allowing to change initial

placement due to reach a certain undesired state in the

system performance, maintenance, power or load (React-

ive), or before it reaches these conditions (Proactive) is

called dynamic VMP [121].
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Pires and Bar´an [115] listed all publications, up-to

2014, in different applications such as energy-efficiency,

SLA, cloud service markets, QoS and carbon dioxide

emissions. Also, there are comprehensive surveys can be

found in [1, 6, 53, 121, 160, 184]. The following subsection

will review the most up-to-date algorithms used for dy-

namic VMP to the maximum power efficiency of PMs in a

data centre. In another word, we are going to review VMP

algorithms used to map VMs to PMs in such a way the

servers (PMs) can be utilized to their maximum power ef-

ficiency in a single CDC.

To simplify the review process, several classifications of

VMP schemes proposed in the literature. In this work,

VMP techniques have classified based on solution tech-

niques into Deterministic, Heuristic, Approximation and

Meta-heuristic algorithms [137]. We are going to give the

simple description of each solution technique in general

with a simple example without describing all technique in

details. By the end of this section, a list of most recent lit-

erature will summarize the techniques, considered re-

sources, a new aspect of the technique, evaluation process

and comparison with other, Table 4.

Table 4 VMP algorithms based solution techniques

Solution Category References Considered Resources Aspect Evaluation Performance
Better Than

Deterministic Linear Programming [37] CUP, storage
and network

PMs’ resources subject
to linear function

Simulation Non

Integer Linear
Programming

[170] network Tree and forest
formulated on graph

Simulation BF

Constraint
Programming

[72] CPU Objective functions
for optimality

Simulation BF heuristic

Constraint
Programming

[95] CPU and bandwidth maximum link
utilization optimization

Simulation BFD and Random
algorithms

Convex function [49] CPU PMs meeting all
tasks’ demands

Google Trace data BF with Min, Max
and random

Heuristic Bin-packing [162] CPU, memory
and network

Volume to size ratio Simulation FF, BF, FFD

Bin-packing [40] CPU and memory Redesign CloudSim

PABFD [20] CPU on-line CloudSim FF, BF, FFD

Enhanced FFD [11] CPU VM reuse strategy CloudSim FFD and Round-Robin

PABFD + minimum
correlation coefficient

[68] CPU PABFD with minimum
correlation VMs

CloudSim PADFB

Approximation Utilization Aware BFD [61] CPU and memory Use VM and PM
prediction

CloudSim Modified BFD,
Modified FFD

Utilization Aware BFD [74] number of network
and server resources

Network connection Simulation FFD

Utilization Aware BFD [51] Number of VMs Use VM and PM prediction Simulation CPLEX Optimization
Studio [84]

Meta-heuristic GA [114] CPU, memory,
bandwidth and
storage

multi-objective
formulation of
the VMP

Itaipu Technological
Park DC

brute force exhaustive
search algorithm

Hybrid genetic
algorithm (HGA)

[168] CPU and network scalable with
problem size

Simulation GA

Non-dominated
Sorting Genetic
Algorithm (NSGA)

[3] CPU, memory
and bandwidth

Non-dominated
Sorting GA

Simulation GA

Ant colony
optimization (ACO)

[65] CPU, memory
and bandwidth

Modeling
Multidimensional
bin-packing

Simulation multi-dimensional
bin-packing

Ant Colony
System (ACS)

[59] CPU Find near optimal CloudSim SLA violation
and migrations

multi-objective
ACS

[69] CPU, network
and storage

Vector-algebra based
resource utilization

Simulation single-objective
ACO, FFD
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Deterministic Algorithms

This kind of algorithm is based on optimization tech-

niques where VM sizes and constraints are pre-defined.

The problem can be modeled as follows:

Let P is set of PMs, V is set of VMs, vj is the maximum

number of VMs can be hosted on Pj ∈ P. The following equa-

tion allows to model the objective function as follows [127]:

Max
XP

i¼1

XV

j¼1
aij � v j

n o

þ Min σp

	 


ð18Þ

Subjected to the following constraint:

X Vj j

j¼1
aij≤Pi; ∀i∈1; 2;…; Pj j ð19Þ

where aij are Boolean variables to assign the VMj to

the PMi. σP is the standard deviation of the distribution

of the VMs among the active PMs (i.e. each active PM

exists at least has one of the aij = 1). σP can be given by:

σP ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PP
i¼1

PV
j¼1 aij � v j−V

� �2

Vj j−1

s

ð20Þ

and |V | given by

V
�

�

�

� ¼

PP
i¼1

PV
j¼1aij � v j

Vj j
ð21Þ

Optimize the objective function, Eq. 18 will be done by

minimizing σP, this means to maximize the number of

assigned VMs to a given PM. This will lead to reducing the

number of active servers and then the power consumption.

Algorithms listed in this category are: Linear programming

(LP) [37], Binary integer programming (BIP) [170], Con-

straint programming [72, 95], Convex optimization [49],

Pseudo-Boolean optimization and many other algorithms.

The simplest algorithm used is the LP, where the per-

formance goal is linearly related to the placement of VMs.

For example, the optimal placing of new VMs on different

PMs with the assumption that the minimal number of PMs

required and the resources in each server subject to a linear

function [113]. In BIP each variable can only take on the

value of 0 or 1, i.e. it represents the selection or rejection of

a placement (PM). Constraints programming is to design

some extension constraints for the LP, like restrict the num-

ber of VMs in a single PM, or limiting the number of VM

migrations, etc. While convex optimization is a special class

of mathematical optimization problems, that includes both

least-squares and LP problems [25, 26]. The general com-

mon issues in these algorithms are:

– Need a long time to generate the optimal solution,

depending on a number of constraints.

– Very useful in static VM consolidation, because it

required exact size and constraints of the VM.

Heuristic Algorithms

Heuristic algorithms are used to find a solution step by step

by taking a local best decision. In other words, the Np hard

bin-packing problem principle is based on local best deci-

sion to pack a series of VMs having specified sizes into a

least possible number of PMs [40]. Most approaches used

in the literature are based on classic packing algorithms like

First Fit (FF), Best Fit (BF), First Fit Decreasing (FFD),

First-Come First-Served (FCFS), and Best Fit Decreasing

(BFD) algorithms [181]. These algorithms can be classified

into online and offline algorithms. In online algorithms,

such as FF, assign VMs to PMs as they arrive. There is no

need for prior knowledge of the VMs which will be submit-

ted in the future. While offline algorithms, which is useful

in DCVM, do have the knowledge about all the VMs to be

assigned thus they are able to sort them beforehand. In off-

line, such as FFD, VMs are assumed to arrive sequentially

and are placed on the first PM which can accommodate

them, starting from the first PM sorted according to a pre-

defined metric, power efficiency in our case [66].

Algorithm 2 represents a simple Power Aware Best Fit

Decreasing (PABFD) algorithm proposed by Beloglazov

and Buyya [21]. This algorithm sorts the VMs according

to their CPU utilization in decreasing order and then for

each VM it checks all the PMs and finds the suitable PM

where the increase of power consumption is minimum.

The quality of a polynomial time approximation algo-

rithm A, is measured by its approximation ratio R(A), to

optimal algorithm OPT, Eq. 22 [53, 162].

R Að Þ ¼ lim
n→∞

sup
OPT Lð Þ

¼ n
A Lð Þ

OPT Lð Þ
ð22Þ

Where A(L) is the number of PMs used under the

algorithm A, OPT(L) is the number of PMs used

under optimal algorithm OPT and L is the list of VM

sequence.
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Significant research has been done to improve

bin-backing algorithms, like those used by CloudSim [18],

Chowdhury et al [40] and Farahnakian et al [60]. But all

of them have the following characteristics [125, 181]:

– Very fast and need fewer computation resources

because it is done by comparing the VM’s demand

with server’s available capacity, without considering

the balanced utilization of multidimensional

resources.

– Not guaranteed to be optimal but can be considered

for immediate goals or suboptimal solutions.

– Minimum number of PMs used will not necessarily

the solution for less energy because this totally

depends on the PMs Hardware.

An interesting work has been done to improve these al-

gorithms by extending them, such as, but not limited to:

– Extend classical BF heuristic by taking into account

VMs’ release times in order to reduce the number of

active PMs over time [45–47].

– Use a heuristic algorithm to optimize network

performance and reduce the energy consumption of

PMs and network elements [55]

– Use multiple resources best fit and worst fit policies

taking into account VMs’ CPU, RAM, disk and

bandwidth [138]

– Heuristic algorithms based on PMs fault-aware

scheduling [154]

Approximation Algorithms

These algorithms depend on prediction algorithms where

prices of resources are not known but for example, their

probability distributions can be estimated such that net-

work bandwidth of the VM as in [181]. Unlike determinis-

tic algorithms which can be implemented using mean or

maximum of the demand as its estimated value. As an

example, Farahnakian et al [61] formulate a VM consoli-

dation as a bin-packing problem considering both the

current and future utilization of resources. The future

utilization of resources was predicted using a KNN regres-

sion based model. Their experimental results show that

this approach provides a substantial improvement over

other heuristic algorithms in reducing energy consump-

tion, a number of VM migrations and number of SLA

violations.

Authors in [74] suggested a heuristic algorithm to

solve multi-dimensional energy-efficient resource alloca-

tion. In their approach, they create multiple copies of

VMs and then uses dynamic programming and local

search to place these copies on the PMs. Local Search

attempts to reduce the cost of energy by shutting down

the underutilized servers, while dynamic programming

initially identifies the number of VM clones to be placed

on PMs. They minimize the length of networks connect-

ing of all PMs to minimize the total connection costs

and reduce energy.

Dalvandi et at [51], reduce power consumptions by

maximizing the benefit from the overall traffic send by

VMs to the root through proposing a time-aware VMP

routing algorithm. Where each task requires a given

number of network resources and server resources for

a time duration. They formulate this problem as a

mixed integer LP optimization based on a power

utilization model. A heuristic algorithm is developed

to fix the optimization issue. The main advantages of

these approaches are:

– Not need to predefine constrained, because they

depend on the probability of the parameters.

– Need less computation than the deterministic

algorithms but more than heuristic ones.

– Useful for dynamic VM consolidation.

Meta-heuristic

Meta-heuristic or biology-based optimization is a way to

solve the bin-packing problem with certain constraints.

These approaches are based on Biology optimization

techniques like Genetic algorithm (GA) [3], Ant Colony

Optimization (ACO) method [65], and Hybrid Genetic

Algorithm (HGA) [168]. These algorithms require more

computation time and higher computing resources as

compared to classic packing problem [1].

Tang and Pan [168] used an HGA for the energy

efficient VM placement problem on PMs with commu-

nication network consideration in data centers. They de-

veloped a Java program that can randomly generate VM

placement problems of different configurations, fixed

and variable number of PMs with 20 and 80 random

VMs. The experimental results show that the HGA is

better than the original GA.

Feller et al [65] developed a multidimensional bin

packing to place VMs into the least number of PMs ne-

cessary for the current workload based on ACO.

Genetic algorithms, nondominated sorting GA I and II

were compared with common solution representation

[3]. The simulation shows that the nondominated sort-

ing GA II gives good and wind range of solutions com-

pared to the former algorithms.

Lopez and Baran [114] proposed three objective func-

tions to apply multi-objective mimetic in solving VMP

problems, where the critical application was considered

for a specific SLA. They concluded that by increasing

the percentage of VMs with critical SLA, the number

of solutions and execution time to find these solutions

decrements.
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VM Migration
Performing VM live migration in data centers is not a

straightforward task. Several challenges need to be ad-

dressed such as maintaining a reasonable level of QoS

requirements and optimum resource utilization for en-

ergy conservation [115]. The live migration process has

been modeled and quantified in several articles. Two

criteria can be identified for efficient VM migration:

down time during the migration and the migration time

itself [24]. Down time refers to the time when services

are down due to the migration process. Migration time

refers to the time required to transfer a VM from a

node to another within a cluster [129]. Both criteria

have low tendency meaning that we seek to minimize

their values so that the migration process does not

interrupt the provisioning process.

Different techniques have been used to execute live mi-

grations. Some well-known techniques are described below:

Pure stop and copy technique: In this This technique

uses CPU usage its content to the destination and then

the new VM is restarted. This process is simple but the

service downtime could be large and it is proportional

to the allocated memory to the migrated VM [24].

Post copy technique: In this technique, only essential

data structures are transferred to the destination which

can be restarted. The other parts are migrated on

demand across the data centre. This technique

minimizes the migration downtime but the migration

time still takes much time [41].

Pre-copy technique: This technique involves iteratively

copying memory from the source VM to the

destination server while keeping the migrated VM

running. The iterative process is performed to consider

any updates that could occur in the migrated VM so

that updates are available at the destination server [82].

Hybrid technique: This technique combines the

pre-copy and post-copy algorithms. Besides transferring

the VCPU registers and devices states in post-copy, a

small subset of memory is also transferred which is

frequently accessed by the VM. Advantages of both the

pre-copy and post copy can be exploited in the hybrid

algorithm which makes it more suitable for VM

migrations [151].

Due to the fact that live migration costs energy and any

reconfiguration aims to reduce energy consumption, one of

the most important tasks is to select those VMs whose re-

placements save at least as much energy as their migrations

cost. To make energy efficient, decisions in terms of VMs

migration requires a migration cost model that enables to

quantify the energy overhead of VM live migration in ad-

vance. The LR technique is derived to model the energy

overhead of live migration [71, 75, 83, 164]. The following

model is used for energy consumption during live migra-

tion in a heterogeneous cluster:

Emigration ¼ Esource þ Edest

¼ asource þ adestð ÞVmigration þ βsource þ βdest

ð23Þ

where αsource, αdest, βsource, and βdest are parameters to

be trained. The minimization function of energy con-

sumption is modeled as follows:

min
X

Copr þ Cmgrð Þ ð24Þ

where Copr denotes operational energy consumption cost

and Cmgr denotes migration energy consumption cost.

The Cmgr is the sum of the cost due to the size of system

resource and the cost due to the bandwidth usage.

Akiyama et al [8] proposed to integrate a performance

model and an energy model of live migration to simulate

dynamic VM placement. The proposed performance

model estimates how long a live migration takes under a

given environment. The input is the size of the target

VM, network bandwidth

available for migration, and workload running on the

VM. This model is used to simulate dynamic VM

placements. Energy model estimates how much energy

is lost by performing live migrations to process dynamic

VM placements.

The input is a number of memory pages transferred

during a live migration. The advantage of their approach

is the combination of energy consumption models of the

placement and migration operations since both operations

complement each other in CDC environments. Moreover,

it can simulate pre-copy live migration, as it works per-

fectly as a pre-copy live migration by reusing non-updated

memory in the initial memory transfer. However, their

model needs to be tested based on the hybrid migration

technique where both the pre-copy and post copy algo-

rithms are fused.

Network Effect
With increasing numbers of servers and switches in data

centres, the communication bandwidth has to scale ex-

ponentially to meet increasing requirements of data

accessing, processing and storing. On the other hand,

Yang et al [180] reported that thousands of MapReduce

programs implemented and run in different applications

such as Yahoo, Facebook, Google’s data centers every

day, and petabytes of daily data flow are transmitted

among distributed jobs within CDC. This incurs a very
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high cost and energy wastes. The energy consumption at

the switches tier can be calculated as follows [34]:

Pswitch ¼ Pchassis þ ninecards � Pinecards þ
XR

i¼1
nports � Pr

ð25Þ

where Pchassis and Pswitch denote the power consumed

by the switch-based hardware and an active line card. Pr
denotes the power consumed by the live port which is

running at the rate r. Pr denotes the switch’s scaling

transmission rate.

One way to deal with this scenario is to find efficient

and cost effective approaches. In data centres, there are

two main approaches for network setup: switches-centric

and servers-centric [111].

Switches-centric: It implements the hierarchical

network topology which is constructed from off-shelf

components. In this approach, servers are positioned so

they are at the leaves of the hierarchy of the network.

The advantage of such approach is better to load

balancing and less prone to bottleneck [10, 141]. The

disadvantage is the limitation in terms of the scalability

because of the size of routing tables in switches [111].

Servers-centric: It implements the Cayley graph [56].

The CDC network resides within servers as opposed to

the first approach (switches-based network). It provides

programmable capabilities and intelligent routing.

Thus, servers not only process applications and data

but also act as routers to relay traffic. The main

advantages of this approach are: 1) the low cost of

interconnections in data centres besides the ability to

remove bottleneck at the architectural level. 2) It is

highly scalable so expanding the network does not

require to physically modify/upgrade existing servers.

Liao et al [111] presented DPillar, highly scalable

network architecture for data centres. DPillar is built

with dual-port servers and n-port switches where

server columns and switch columns are alternately

placed along a cycle. One disadvantage of DPillar was

not designed to produce a short path routing rather it

focuses on simplicity. Erickson et al [56] proposed to

improve the DPillar algorithm efficiency by developing

a single-path routing algorithm that always produces

the shortest path. Wang et al [176] presented a survey

on different network topologies used in data centres

and divided their networks into:

– Tree-based topologies: classified into Basic-tree,

Fattree, and VL2. It is mainly based on switch

routing architecture.

– Recursive-based topologies: classified into DCell,

BCube, FiConn, FlatNet, and SprintNet. It is mainly

based on server routing architecture.

Although Recursive-based topologies provide a substan-

tial remedy to the problems of the Tree-based topologies,

they still have their own shortcomings. DCell is built

based on low-level links thus it may cause a bottleneck.

BCube is considered a topology with high wiring complex-

ity. FiConn suffers from deficiencies in fault tolerance,

network capacity, and long path traffic. FlatNet and

SprintNet have low scalability compared to other topolo-

gies. The improved version of DPillar topology [111, 134]

has the remedy for these problems by providing highly

scalable network topology, good fault tolerance, improved

bottleneck throughput and latency, and shortest path

routing within data centre network.

Analysis of the State-of-the-Art Surveys in the
Literature
In this section, we review some of the existing surveys in

the literature on VM consolidation operations as they

pertain to energy efficiency and consumption models.

We will then highlight the differences between the work

presented in this paper and those in the literature.

The survey presented by Abdul et al [77] focused on

energy-efficient resource allocation techniques. They

defined four approaches for designing energy efficient

cloud data centers: a) reducing energy using energy

efficient resource allocation and management of data

centers, b) ensuring the performance of infrastructure

to reduce the usage of other devices, c) geographically

distributing computational loads to meet end users’

needs, d) minimizing self-management and flexibility.

Key concepts of energy efficient resource allocation

were identified:

– Resource adoption policy: the ability of a resource

allocation mechanism to adapt to dynamic

conditions.

– Objective function: single and composite objective

functions. The former deals with the energy

consumption dimension and the latter deals with

the SLA violation dimension.

– Allocation method: power-aware and thermal-aware

allocation methods.

– Allocation operation: service migration and service

shutdown categories.

– Interoperability: the capability of energy optimization

technique to work across multiple resource types

during the resource allocation process.

The paper evaluated and summarized the work that

proposes energy-efficient approaches with respect to the

defined key concepts of resource allocation mechanisms.

Toni et al [126] survey focused on energy efficiency of

infrastructure utilities of data centres that power ICT ma-

chinery. Two domains are covered, servers and networks.
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The authors organized their paper based on two types of

energy inefficiency terms, energy loss and energy waste.

The four goals are defined for reducing energy:

– Minimizing the input energy that is not consumed

by a subsystem.

– Reducing the overhead of supporting systems

(e.g. cooling systems).

– Reducing idle run of the system.

– Minimizing energy consumption where the system

performs redundant operations.

Based on the above criteria, the paper provided a litera-

ture review to find current research directions that focus

on energy consumption efficiency in cloud infrastructures.

It categorized cloud computing infrastructure software

and hardware with a consideration of energy consump-

tion. The paper put each category in the two defined do-

main in the context of the energy consumption domain,

then it defined actions for reducing energy consumption,

and presented challenges and research directions.

Dayarathana et al [52] presented an in-depth study of

the existing work that addresses the problem of power

consumption. They defined a general approach to man-

age data centre energy consumption which consists of

four main steps: feature extraction, model construction,

model validation and application of the model. The

paper presented the surveyed work based on proposed

energy consumption models: a) Additive server power

models, i.e. models are based on aggregating energy con-

sumed by server components (CPU, memory and I/O

devices). b) System utilization models, i.e. models that

leverage CPU utilization as their metrics in modeling the

whole system power consumption.

c) Systems’ performance setting related, i.e. regression

based power modeling and queuing theory based. The

paper presented work that proposes energy consumption

models of a group of servers, data center networks, cool-

ing systems, power condition systems. On the software

level, the authors categorized the surveyed models into

compute-intensive, data-intensive, communication inten-

sive applications, OS and general software. Although this

paper provides a comprehensive survey of energy con-

sumption models. However it does not consider the VM

consolidation techniques and operations and how energy

consumption is handled and modeled in the literature.

Work that deals with resource management in cloud en-

vironments has been reviewed in [93]. It identified several

challenges relate to providing predictable performance for

cloud-hosted applications, achieving global manageability

for cloud systems, engineering scalable resource manage-

ment systems, understanding economic behavior and cloud

pricing, and developing solutions for the mobile cloud para-

digm. The surveyed work in this paper covers virtualization

environments operations including: a) resource demand

profiling, b) resource utilization estimation, c) resource pri-

cing and profit maximization, d) application scaling and

management, and e) cloud management systems. However,

the paper did not provide information about user behaviors

and profiling and their influences on the resource manage-

ment process.

Uddin et al [171] analyzed three energy efficient

algorithms for task scheduling to get the most efficient

algorithm. The evaluated algorithms are Resource Aware

Scheduling Algorithm (RASA), Two Phases Power Con-

vergence (TPPC) and Power Aware Load Balancing

(PALB). Three parameters are defined to evaluate the

algorithms: a) power efficiency, b) cost effectiveness, and

c) the amount of CO2 emissions. The authors focused on

dynamics power management techniques.

Zhi-Hui et al [182] tackled the problem of cloud re-

source scheduling. They describe the problem as an

NPhard problem whose intractability increases a lot with

the increasing of the number of variables if deterministic

techniques are used. They presented the taxonomy of

three categories of cloud resource management and

scheduling: a) scheduling in the application layer, b)

scheduling in the virtualization layer, and c) scheduling

in the deployment layer. Each layer has been analyzed

and challenges have been identified. Hence each layer

was divided into subcategories as follows:

– Scheduling in the application layer: includes

scheduling for user QoS, scheduling for provider

efficiency and scheduling for negotiation.

– Scheduling in the virtualization layer: includes

scheduling for load balance, scheduling for energy

conservation and scheduling for cost effectiveness.

– Scheduling in the deployment layer: includes

scheduling for service placement, scheduling for

partner federation and scheduling for data routing.

A state-of-art literature review under each sub cat-

egory was presented which also illustrates different re-

source scheduling algorithms. Among the surveyed

techniques, the paper focused on Evolutionary Comput-

ing as a promising optimization paradigm for solving the

cloud resource scheduling problem.

Fischer et al [67] presented a survey study on virtua-

lized networks as a promising solution for the high

demands of applications and different services in data cen-

tres. The virtualized data center provides better manage-

ment, low cost, and better resource utilization and energy

efficiency, and virtualized networks is a subset of the

virtualized data centres. A comprehensive review of the

existing work in Virtual Network (VN) has been provided

under different classifications. Some future research direc-

tions of VN was also presented such as virtualized edge
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data centres, virtual data centre embedding, security,

pricing and programmable network. Although this paper

introduced a rich survey on VN characteristics challenges

and future research directions in CDC networks, there

was a little emphasis on energy consumption and effi-

ciency while reviewing current work or suggesting future

research.

In [6], a comprehensive review of VM migration ap-

proaches in data centres was presented, their strengths,

weaknesses and future research. The paper also dis-

cussed developing optimal methods for VM migration

which are inspected through qualitative and quantita-

tive parameters. The paper provided a review and com-

parisons of different VM consolidation approaches in

the literature based on migration models and migration

triggering points. Different server consolidation frame-

works that reactively or proactively trigger migration

was listed. The authors classified the VM migration

optimization into three schemes: a) bandwidth optimization,

b) DVFS enabled power optimization, and c) storage

optimization. For each scheme, a brief overview of existing

work was presented.

The literature review of VMP [115] presented in three

optimization approaches: a) the mono-objective which con-

siders the optimization of one objective or multiple objec-

tives one at a time. b) the multi-objective which considers

multiple objective functions fused into one objective func-

tion. c) the pure multi-objective. Objective functions have

been classified based on the studies articles into 5 objec-

tives: energy consumption minimization, network traffic

minimization, economic costs minimization, performance

maximization and resource utilization maximization.

Many literature surveys focus on some domains in VM

consolidation based energy consumption process, as

shown in Table 5. So, these surveys do not provide us with

a complete plan of how the VM consolidation is imple-

mented. They only emphasize on one or two domains of

their interest. In other words, they concentrated on a

partial consolidation domain, note cover all VM consoli-

dation process. In this work, we provide an in-depth

survey of the most recent techniques and algorithms used

in proactive dynamic VM consolidation focused on energy

consumption. The survey was presented based on a pro-

posed general framework that can be used in multiple

phases of a complete consolidation process. This will help

researchers by providing a complete guidance on how

these components work together (in a correlative manner)

in a CDC environment to meet end user requirements ac-

cording to the SLAs. Also, it will make easy to focus on

fields requires further attention for future research.

Conclusions
This paper presents a comprehensive survey and analysis

work on VM consolidation focusing on energy consump-

tion in CDCs. In particular, the paper focuses on proactive

dynamic VM consolidations in CDCs with heterogeneous

environments. We presented a general framework with

multiple phases that achieves a complete consolidation

process.

Our framework includes and covers a comprehensive

analysis of various techniques and algorithms used in

implementing proactive dynamic VM consolidations.

Our analysis identified a number of key observations:

– Consideration of QoS parameters related toVM

performance such as availability, response time and

reliability is a must as part of the consolidation process. It

is very important to make sure that the level of QoS is

maintained according to SLA while attempts are made to

fully utilize data center resources.

– Most algorithms only consider CPU as their primary

input. For better performance, these alogrithms

should be extended to consider other important

resources, such as memory, storage, bandwidth, etc.

– Algorithms cannot always be compared to one

another, as they may consider different input,

operation criteria or goals [53].

– For VM clustering process, Prediction Process, the

framework proposed by [86] is based on efficient use

of historical VM request, user cluster algorithms, the

Table 5 Analysis of the existing survey papers in the literature

References Hardware and Application modelling VM consolidation Energy Efficiency

Migration Placement VM Selection Networks

[115] √ √

[52, 77, 126, 171] √ √

[67, 70, 126, 174] √

[70] √ √ √

[5, 6, 52] √ √

[147] √ √

[165] √

[93] √ √
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current state of the data centre and an effective

prediction window size. This model should be

extended to include long term historical workload

time series data and use this data to find the optimal

number of clusters and centres of VM size clusters.

– Prediction window size can play an important role in

the workload prediction calculations and its accuracy.

Dabbagh et al [44, 46] is an important contribution

in this area that takes into account prediction

windows. More work should focus on further

analysis of this problem to evaluate the current

prediction models in the literature and use its

result to propose an enhanced model to more

accurately predict future workloads in CDCs.

– As stated in Clustering Process, identifying the

behaviors of cloud users’ requests resources strongly

influence the overall cloud workload. Uncovering the

dependency relationships between users and VMs

helps improve the prediction accuracy and excluding

unwanted data. More research work should take into

consideration this behavior as in [90, 99].

– More work should be done on multi-criteria VM se-

lection models that consider multiple infrastructure

resources (e.g. CPU, memory, storage, and band-

width), especially for energy consumption.

– The capabilities of the PMs in the data center play a

key role in the consolidation process. Existing

research mostly focused on workload characteristics.

More focus is needed on taking into account PM

characteristics [119].

– Most VMP algorithms compare their proposed

algorithms against trivial heuristics. A comparison

against real data can provide more meaningful

results, which in return can result in improved

algorithms.

– Simplifying assumptions made by algorithm

designers, such as homogeneity of PMs or ignorance

of PMs’ power consumption characteristics degrade

algorithm performance in realistic settings. In

particular, the heterogeneity of PMs in terms of

capacity and power efficiency needs to be taken into

account when designing a VMP algorithm.

– Most of VMP algorithms and techniques have

neglected the security related objective in the VM

placement operations [121]. Security is one of the

crucial factors which should be considered in the

future VMP researches and studies.

– There are different VM selection criteria, each of

them has weakness and strength for different

application and specifications, VM Selection

Subsystem. It is useful to have a rule base system,

using fuzzy logic for example, to improve the process

of selection between these techniques according to

environment states [40, 161].

– Cloud computing QoS aware resource allocation polices

plays an important role in energy efficient allocation of

resources. A comprehensive study of services offered by

cloud and workload distribution is needed to identify a

common pattern of behaviors [77].

– VM migrations usually occur when there is over/

under utilization of the resources. Extra VM

migration may affect energy efficiency, leading to

further power consumption. So, VM migration is a

very critical process that should be optimally done to

avoid unnecessary VM migration [9], and attempt to

balances energy saving energy resulting from turning

off PMs not in use with energy use required for the

migration process.

– Failures due to power outages or network component

are called correlated failures. The impact of these

failures can cause reliability to be overestimated by at

least two orders of magnitude [154]. Correlated failure

impact on energy consolidation needs more attention

in future research.
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