
Proactive Edge Computing in Latency-Constrained

Fog Networks
Mohammed S. Elbamby∗, Mehdi Bennis∗†, and Walid Saad‡

∗Centre for Wireless Communications, University of Oulu, Finland,

emails: {mohammed.elbamby,mehdi.bennis}@oulu.fi
†Department of Computer Engineering, Kyung Hee University, South Korea

‡Wireless@VT, Bradley Department of Electrical and Computer Engineering,

Virginia Tech, Blacksburg, VA, USA, email: walids@vt.edu

proposed in [4]. The power-delay tradeoff in centralized mo-

bile edge computing (MEC) systems is discussed in [5] using

tools from stochastic optimization. However, these works

rely on centralized solutions in which the MEC network

has information about all users requests and channel-state

information (CSI). Game-theoretic solutions are studied in [6]

to design decentralized computing offloading schemes in cases

of homogeneous and heterogeneous users. Recently, an online

secretary framework for fog network formation is proposed in

[7] under uncertainty on the arrival process of fog nodes.

While interesting, the vast majority of the literature in

fog networking is based on the reactive computing paradigm

in which task computing starts only after the task data is

offloaded to the fog node [3]. Moreover, prior art has not

explicitly accounted for stringent latency and reliability con-

straints in fog networks. Due to the distributed nature of these

networks, having computing resources closer to the network

edge allows for providing personalized type of computing

services to end-users [3]. Clearly, harnessing the correlation

between end-user requests motivates the need for proactive

computing to minimize computing latency. For example, for

augmented reality (AR) services provided in a museum,

proactively computing popular AR services of visitors can

aid in minimizing computational latency [8]. Using proactive

computing, the fog network can keep track of the popularity

patterns of user tasks and cache their computing results in

advance. This eliminates the need to request the task data

multiple times thus reducing the burden on the task offloading

transmissions [3]. A possible first step towards proactive

computing is the idea of task data prefetching [9], in which

part of the upcoming task data is predicted and prefetched

during the computing of the current one such that the fetching

time is minimized.

While the idea of proactive networks has been recently

studied in the context of wireless content caching, such as

[10] and [11], none of these works investigate the problem of

proactive caching of computing tasks. In contrast to content

caching, computing caching poses new challenges. First, while

in content caching, popular contents are prefetched from the

core network during off-peak times to alleviate the burden

on the backhaul links, computing caching decreases the load

on the access link by providing computing results to end-

user nodes (UNs) without the need to prefetch their task data

Abstract—In this paper, the fundamental problem of distribu-
tion and proactive caching of computing tasks in fog networks
is studied under latency and reliability constraints. In the
proposed scenario, computing can be executed either locally
at the user device or offloaded t o a n e dge c loudlet. Moreover,
cloudlets exploit both their computing and storage capabilities by
proactively caching popular task computation results to minimize
computing latency. To this end, a clustering method to group
spatially proximate user devices with mutual task popularity
interests and their serving cloudlets is proposed. Then, cloudlets
can proactively cache the popular tasks’ computations of their
cluster members to minimize computing latency. Additionally,
the problem of distributing tasks to cloudlets is formulated
as a matching game in which a cost function of computing
delay is minimized under latency and reliability constraints.
Simulation results show that the proposed scheme guarantees
reliable computations with bounded latency and achieves up
to 91% decrease in computing latency as compared to baseline
schemes.

I. INTRODUCTION

The emergence of the Internet of things (IoT) and machine-

to-machine communication is paving the way for a seamless

connectivity of a massive number of resource-limited devices

and sensors [1]. The unprecedented amount of IoT data com-

munication and computation requirements impose stringent

requirements in end-to-end latency, mandating ultra-reliable

and low-latency communications (URLLC). However, the fi-

nite computation capabilities of end-user devices challenge

the possibility of coping with the stringent computing and

processing latency requirements of IoT networks. Therefore,

mobile cloud computing (MCC) services have been recently

proposed to allow end-users to offload their resource consum-

ing tasks to remote cloud centers. However, despite having

high computational resources, MCC solutions are inefficient

in handling latency-critical computing services due to the high

propagation delays between the end-user device and the cloud

data center.

Recently, the idea of fog computing has been introduced

[2] to bring computing resources closer to where tasks are

requested. In order to minimize computing latency in fog

networks, smarter communication and computing resource

utilization schemes are needed [3]. A centralized joint com-

munication and computation resource allocation scheme is

This research was supported by the Academy of Finland (CARMA) project,
NOKIA donation on fog (FOGGY project), and by the U.S. Office of Naval
Research (ONR) under Grant N00014-15-1-2709.

beforehand. Second, computing tasks can be of diverse types

UN u offloads

computing tasks to

cloudlet e

Computing results are

proactively stored in the

cloudlet cache according to

cluster’s popular task vector

A cluster of cloudlets and user nodes

Popular

task

vector

Tasks

 arriving λu

se ce

a3 non-cacheable task

requiring k3 cycles/bit and of

size L3

a1, a2 cacheable tasks

requiring k1, k2 cycles/bit and

of size L1, L2 respectively

Figure 1. An illustration of the cache-enabled fog network model

and depend on the computing environment, while some of

the content is cacheable for reuse by other devices, personal

computing data is not cacheable, and must often be computed

in real time. Finally, due to the nature of IoT networks, with

large number of deployed servers and low density of UNs

per server [12], it is not practical to build popularity patterns

locally at each server. Instead, studying popularity distributions

over larger sets of servers can provide a broader view on the

popularity patterns of computing tasks.

The main contribution of this paper is to investigate the

problem of edge computing and proactive edge caching in

fog computing networks. We exploit both computing and

storage resources to minimize computing latency via joint task

offloading and proactive caching of popular and cacheable

computing tasks. A cacheable task has a computing result that

can be reused by several other devices. Moreover, we impose

constraints on computing latency and reliability so as to ensure

computing delay bounds with high levels of reliability. In

the proposed framework, clusters of UNs and their serving

edge computing nodes (cloudlets) are formed based on spatial

proximity and mutual interests in popular tasks. Accordingly,

cloudlets proactively cache computed results of popular tasks

in their clusters thereby ensuring minimal latency. Moreover,

the problem of task distribution to cloudlets is modeled as a

matching game between cloudlets and UNs. To this end, an

efficient distributed matching algorithm is proposed to reach

a stable matching of UN requests to cloudlets or to their

local device such that the minimal task computing delay is

incurred and a reliable service latency is guaranteed. Simula-

tion results show that the proposed framework can guarantee

reliable computations with bounded latency and achieve up to

91% decrease in computing latency as compared to baseline

schemes.

The rest of this paper is organized as follows. Section II

describes the system model and problem formulation. The

proposed clustering scheme as well as the joint caching and

matching scheme are studied in Section III. The performance

of the proposed framework is analyzed in Section IV. Finally,

Section V concludes the paper.

II. SYSTEM MODEL

Consider a fog network that consists of a set E of E
cloudlets, each of which having a CPU computing and storage

capability of ce and se, respectively, and a set U of U
UNs that are distributed uniformly over the network area.

Cloudlets share the same frequency channel and operate in

time-division-duplex (TDD). In our model, we focus on the

uplink transmission. UNs have computing tasks that arrive

following a Poisson process with mean λu. UNs are interested

in a set A of A tasks. Each task has a required CPU cycles

of κ per bit of task data, and the task data size follows an

exponential distribution of mean La. UNs can offload their

computing tasks to any cloudlet within their coverage, where

coverage is decided based on a threshold path loss value1. Task

data must be offloaded to the cloudlet prior to computation. To

minimize the task data offloading delay, cloudlets proactively

cache the computed results of the most popular cacheable

tasks. We assume that a subset Ac ⊂ A of the tasks are

cacheable and another subset Anc ⊂ A is non-cacheable such

that Ac∪Anc = A. An illustration of the studied fog network

model is shown in Fig. 1.

A. Computing Model

The computation of each task a ∈ A by UN u can be either

performed locally or offloaded to a cloudlet. The total local

computing time is:

Dl
ua(t) =

κLa

clocal

+W l
ua(t) + τLP, (1)

where W l
ua(t) is the queuing delay of task a in the local queue

of UN u at time t, clocal is the local computing capability in

cycles/second, and τLP is the local processing delay.

Each task a requested by user u and offloaded to the cloudlet

e experiences a total computing delay that consists of the

task data transmission time, cloudlet computing time, cloudlet

queuing time, and processing time, as follows:

Df
ea(t) =

(

κLa

ce
+

La

rue(t)
+W f

ea(t)

)

(1−yea(t))+ τEP, (2)

where rue = BW log2

(

1 + Puhue/(No + Ie)
)

is the uplink

data rate2 from UN u to the cloudlet e, W f
ea(t) is the waiting

time of task a due to the previous computing tasks in the queue

Qe of cloudlet e, yea(t) is a binary variable that equals 1 when

the computation result of task a is cached in cloudlet e, and

τEP is the cloudlet latency which accounts for the downlink

transmission of computed data and the cloudlet processing

latency. Consequently. the delay incurred by the computation

of a given task a will be:

Da(t) = xea(t)D
f
ea(t) +

(

1−
∑

e∈E

xea(t)

)

Dl
ua(t), (3)

where xea is a binary variable that equals 1 if task a is

distributed to cloudlet e.

1Path loss is used as a coverage metric such that UN’s cloudlet list does
not change frequently due to wireless channel dynamics.

2BW is the channel bandwidth, Pu is the transmit power of UN u, hue is
the channel gain between UN u and cloudlet e, Ie is the interfering power
from other UNs, and No is the noise power.

Similar to other works [9], we assume that the latency due

to downlink transmission of computed data is negligible com-

pared to the uplink task data offloading time and computing

time, and, hence, it is not accounted for in the optimization

problem. This assumption is due to the typically small size of

computed data and the relatively high transmission power of

cloudlet compared to end-user devices.

Our objective is to minimize the total task computing

latency under reliability constraints, by efficiently distributing

and proactively caching the results of computing tasks. The

UN task distribution to cloudlets and task caching matrices are

expressed as X = [xea] and Y = [yea], respectively. Reliabil-

ity is modeled as a probabilistic constraint on the maximum

offloaded computing delay. This optimization problem is:

min
X,Y

∑

u∈U

Da(t) (4a)

Pr(Df
ea(t) ≥ Dth) ≤ ǫ, ∀e ∈ E , (4b)

∑

e∈E

xea(t) ≤ 1, ∀u ∈ U , (4c)

∑

a∈Qe

xea(t) ≤ 1, ∀e ∈ E , (4d)

∑

a∈A

yea(t) ≤ se, ∀e ∈ E , (4e)

where (4b) is a probabilistic delay constraint that ensures the

latency is bounded by a threshold value Dth with a proba-

bility 1 − ǫ. Constraints (4c) and (4d) ensure the one-to-one

correspondence of distributing new requests to cloudlets. (4e)

limits the number of cached tasks to a maximum of se. The

above problem is a combinatorial problem with a non-convex

cost function and probabilistic constraints, for which finding

an optimal solution is computationally complex [13]. The non-

convexity is due to the service rate term in the delay equation

which is function of the interference from other offloading

UNs. To make the problem tractable, we use the Markov’s

inequality to convert the probabilistic constraint in (4b) to a

linear constraint [13] expressed as E{Df
ea(t)} ≤ Dthǫ, where

E{.} denotes the expectation over time. Since the delay of

computing a cached task is very small, we are interested in

keeping the delay of non-cached tasks below a pre-defined

threshold. Hence, the constraint can be written as:

E

{

κLa

ce
+

La

rue(t)
+W f

ea(t) + τEP

}

≤ Dthǫ, (5)

substituting the queuing time as W f
ea(t) =

∑

ai∈Qe

L′

ai
(t)

rie(t)
:

E

{

La

rue(t)

}

≤ Dthǫ− E

{

∑

ai∈Qe

L′
ai
(t)

rie(t)

}

−
κLa

ce
− τEP, (6)

where L′
ai
(t) is the remaining task data of task ai in the queue

Qe of cloudlet e at time instant t. Finally, the constraint can

be expressed as:

La

r̄ue(t)
≤ Dthǫ−

κLa

ce
−

∑

ai∈Qe

L′
ai
(t)

r̄ie(t)
− τEP. (7)

The above constraint implies that to reach the desired

reliability, a maximum value of La

r̄ue(t)
is allowed for the newly

admitted requests to the queue of cloudlet e. The average

service rate r̄ue(t) is estimated at each cloudlet e for each

UN u within its coverage using a time-average rate estimation

method, as follows:

r̄ue(t) = ν(t)rue(t− 1) + (1− ν(t))r̄ue(t− 1). (8)

Next, we propose a joint matching [14] and caching scheme

to solve the optimization problem in (4).

III. JOINT TASK MATCHING AND CACHING

To simplify the computational complexity of the optimiza-

tion problem in (4), we decouple the problem into two separate

subproblems: distributing UN tasks to cloudlets and caching

popular cacheable task results. Due to the large size of IoT

networks, it is not practical to perform task matching over

the whole network set of cloudlets and UNs. Therefore, a

clustering scheme is introduced to group UNs into disjoint

sets based on spatial proximity and mutual interest in popular

tasks, followed by the calculation of a task popularity matrix.

Subsequently, a joint task distribution and caching scheme is

proposed. UN clustering and task popularity matrix calcula-

tions are assumed to be performed during a network training

period during which information about UNs’ requests and their

serving cloudlets are reported to a higher level controller, e.g.

a cloud data center. While a central controller is involved

in the training period calculations, we emphasize that this

process does not need to be updated as frequently as the

task distribution and caching processes, since a given user’s

interests are likely to remain unchanged for a number of time

instants Nt (≫ 1).

A. Network Clustering and Task Popularity Matrix

We start by grouping UNs into k disjoint clusters C1, . . . , Ck
based on their mutual-coupling in distance and task popularity

such that a task popularity matrix, defined as Ξ = [ξ1, . . . , ξk]
is calculated, where ξi is a vector of the popularity order

of tasks in cluster Ci. Essentially, identifying the similarities

between neighboring UNs and their mutual interests is the

first step in bringing computing resources closer to them. To

that end, we exploit the similarity of different UNs in terms

of their similar task popularity patterns to allow cloudlets in

their proximity to store the computing results of their tasks.

1) Distance-based Gaussian similarity: The Gaussian sim-

ilarity metric is used to quantify the similarity between UNs

based on their inter-distance. A distance Gaussian similarity

matrix is defined as Sd = [dij], with dij being:

dij = exp

(

− ‖ vi − vj ‖
2

2σ2
d

)

, (9)

where vi is a vector of the geographical coordinates of UN i,
and σd is a similarity parameter to control the neighborhood

size.

2) Task popularity-based similarity: To discover the task

popularity patterns of different UNs, the task request oc-

currence is recorded for each UN during a training pe-

riod set. Subsequently, a task occurrence vector nu =
[nu,1, . . . , nu,|Ac|] is calculated for each UN. This vector

Algorithm 1 UN clustering and popularity matrix calculation.

1: Training phase: For a sequence of training time instants:

• Record nu of each UN.
• Calculate the similarity matrix S from (11).
• Set kmin = 2 and kmax = U/2.
• Record the number of times a cloudlet served each UN.

2: Clustering phase:

• Perform spectral clustering using the similarity matrix S, use the
largest eigenvalue gap method [15] to select the number of clusters
k ∈ {kmin, . . . , kmax}.

• Obtain k disjoint clusters of UNs C1, . . . , Ck .

3: Popularity list construction phase:

• Mark a cloudlet most preferred cluster as the cluster from which it
received the highest number of requests during the training period.

• Calculate the task popularity matrix Ξ of each cluster using the
number of request occurrences nu of its set of UNs.

• Report to each cloudlet the task popularity vector ξi of its most
preferred cluster Ci.

captures the UN’s task arrival rate and helps to build similarity

between UNs. A cosine similarity metric is considered to

measure the similarity between UNs. The task popularity

similarity matrix is Sp = [pij], where pij is expressed as:

pij =
ni.nj

‖ ni ‖‖ nj ‖
. (10)

3) UN clustering and popularity matrix calculation: Since

we are interested in groups of UNs that are close to each

other and having similar task popularity patterns, we consider

a similarity matrix that blends the distance and task popularity

matrices together. The similarity matrix S is calculated as:

S = θSd + (1− θ)Sp, (11)
where θ is a parameter that adjusts the impact of distance and

task popularity. Subsequently, we use spectral clustering [15]

to group UNs into k disjoint clusters, C1, . . . , Ck.

To bring the popular tasks closer to the network edge, the

task popularity matrix of UN clusters is reported to cloudlets

so that they cache the computing result of the most popular

tasks. Accordingly, the most preferred cluster by a cloudlet

is obtained by calculating how frequently the members of

each cluster were assigned to this specific cloudlet during the

training period. The vector ξi of tasks that are most popular

for a cluster i is reported to the cloudlets that have cluster Ci as

their most preferred cluster. The proposed UN clustering and

task popularity matrix calculation is described in Algorithm 1.
B. Computing Caching Scheme

During network operation, cloudlets seek to minimize the

service delay of their UNs’ requests by proactively caching the

computing results of the popular tasks they receive. The caches

of each cloudlet are assumed to be empty at the beginning

of the network operation. As UNs start to offload computing

tasks, cloudlets will cache as many computing results as their

storage capacity allows. Once a cloudlet’s storage is full, a new

arriving request that is more popular than the least popular

task currently in the cache will replace it. The algorithm

implementation per cloudlet is described in Algorithm 2.

Next, if the cloudlet receives a computation request of a

task that is cached in its storage, there is no need to offload

the task data or recompute the task, and only processing delay

is incurred. Each cloudlet aims to find the optimal caching

policy that minimizes the total latency.

Algorithm 2 Proactive task caching algorithm.

1: Initialization:

• Define the set Ψe as the cache content of cloudlet e.
• Ψe = φ, ∀e ∈ E .

2: foreach a ∈ Qe

3: if | Ψe |< se
4: a → Ψe.
5: else if | Ψe |= se
6: if there exists at least one task ai ∈ Ψe with lower index than a in

ξe
7: task ai is removed from Ψe.
8: a → Ψe.
9: else

10: the computing result of task a is not stored.
11: end if

12: end if

13: end foreach

C. UN Task Distribution

Our next step is to propose a task distribution scheme

that solves the constrained minimization problem in (4). The

task distribution problem is formulated as a matching game

between UNs and cloudlets where, at each time instant, UNs

requesting new tasks are matched to a serving cloudlet aiming

to minimize their service delay. Matching theory [14] is

a framework that solves combinatorial problems in which

members of two sets of players are interested in forming

matching pairs with a player from the opposite set. Preferences

of both the cloudlets and UNs, denoted ≻e and ≻u, represent

how each player ranks the players of the opposite set.

Definition 1. Given the two disjoint sets of cloudlets and UNs

(E ,U), a matching is defined as a one-to-one mapping Υ from

the set E ∪U into the set of all subsets of E ∪U , such that for

each e ∈ E and u ∈ U :

1) For each u ∈ U ,Υ(u) ∈ E ∪ u, where Υ(u) = u means

that a UN is not matched to a cloudlet, but will perform

local computing instead.

2) For each e ∈ E ,Υ(e) ∈ U ∪{e}, where Υ(e) = e means

that no UN is assigned to the cloudlet e.
3) | Υ(u) |= 1, | Υ(e) |= 1; 4)Υ(u) = e ⇔ Υ(e) = u.

By inspecting the problem in (4), we can see that the con-

straints (4c)-(4d) are satisfied by the one-to-one mapping

of the matching game. Moreover, matching allows defining

preference profiles that capture the cost function of the players.

To this end, the preference profiles of UNs are defined so as

to minimize their task service delay as follows:

e ≻u e′ ⇔ Df
ea(t) < Df

e′a(t), (12)

u ≻u e ⇔ Dl
ua(t) < Df

ea(t). (13)

Note that since a UN has no information about the queue

length at each cloudlet, it considers the transmission, comput-

ing and processing delay of its own task data in calculating

its preference profile.

The utility of cloudlets will essentially reflect the latency

and reliability constraint in (7), taking into account the waiting

time in the queue. Therefore, we define the utility when UN

u is assigned to cloudlet e as:

Φeu(t) = Dthǫ−
kaLa

ce
−

∑

ai∈Qe

L′
ai
(t)

r̄ie(t)
− τEP −

La

r̄ue(t)
. (14)

Algorithm 3 DA algorithm for UN-cloudlet matching.

1: Initialization: all UNs and cloudlets start unmatched.
2: Each UN constructs its preference list as per (12)-(13).
3: Each cloudlet constructs its preference list as per (15)-(16).
4: repeat an unmatched UN u, i.e., Υ(u) = φ proposes to its most

preferred cloudlets e that satisfies e ≻u u.
5: if Υ(e) = φ,
6: UN u proposal is accepted.
7: Υ(e) = u, Υ(u) = e.
8: elseif Υ(e) = u′,
9: if u′ ≻e u

10: UN u proposal is rejected.
11: UN u removes cloudlet e from its preference list.
12: elseif u ≻e u′

13: UN u proposal is accepted.
14: Υ(e) = u,Υ(u) = e.
15: Υ(u′) = φ.
16: UN u′ removes cloudlet e from its preference list.
17: end if

18: end if

19: until all UNs are either matched or not having cloudlets that satisfy
e ≻u u. in their preference lists.

20: Υ(u) = u for all remaining unmatched UNs.
21: Output: a stable matching Υ.

The preference of each cloudlet can be expressed as follows:

u ≻e u
′ ⇔ Φeu(t) > Φeu′(t), (15)

e ≻e u ⇔ Φeu(t) < 0, (16)

where (16) states that a cloudlet is not interested in being

matched to a UN that will violate its reliability constraint. In

other words, the utility of each cloudlet is to seek a matching

that maximizes the difference between the right hand side

and the left hand side of the inequality in (7), such that the

constraint is met as a stable matching is reached.

The above problem is a one-to-one matching game. Next,

we define matching stability and provide an efficient algorithm

based on deferred acceptance (DA) [14] to solve this game.

Definition 2. Given a matching Υ with Υ(e) = u and Υ(u) =
e, and a pair (u′, e′) with Υ(e) 6= u′ and Υ(u) 6= e′, (u′, e′)
is said to be blocking the matching Υ and form a blocking

pair if: 1) u′ ≻e u, 2) e′ ≻u e. A matching Υ∗ is stable if

there is no blocking pair.

Remark 1. DA algorithm described in Algorithm 3, converges

to a two-sided stable matching of UNs to cloudlets [14].

IV. SIMULATION RESULTS

In this section, we present and illustrate insights from sim-

ulation results of the proposed scheme. We also compare the

proposed proactive computing scheme against the following

two baseline schemes:

1) Baseline 1, which is a reactive version of the proposed

scheme, in which the latency and reliability constrained

task distribution scheme is considered, but with no

caching capabilities in the cloudlets.

2) Baseline 2, in which latency and reliability constraints

are not considered. Instead, UNs and cloudlets rank each

other based on the wireless access link quality, without

taking delay queues or proactiveness into account.

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Total delay (ms)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
a
il

d
is

tr
ib

u
ti
o
n

Proactive (1/3)

Proactive (1/6)

Baseline 1

Baseline 2

0 200 400 600 800 1000
0

0.05

0.1

0.15

0.2

Figure 2. The total delay tail distribution for the proposed (proactiveness of
1/6 and 1/3 of cacheable contents) and the baseline schemes, with E = 30
cloudlets, U = 3× 30 UNs, and traffic intensity of 9 Mbps.

We use a set of default parameters3 unless stated otherwise.

Three different sets of task popularity distributions are as-

signed randomly to UNs, where popularity varies among tasks

following the Zipf popularity model with parameter z [10].

Accordingly, the request rate for the ith most popular task

is proportional to 1/iz . Furthermore, one third of the tasks,

uniformly selected, are assumed to be cacheable.

A. Proactiveness and Computation Delay

In Fig. 2, we show the tail distribution of the instantaneous

total computing delay, i.e., the complementary cumulative

distribution function (CCDF) F̄D(d) = Pr(D > d), for

different schemes. The proposed scheme is simulated for

different proactiveness levels of 1/3 and 1/6. In other words,

the cloudlet storage can store up to 1/3 and 1/6 of the

computing results of the cacheable tasks. From Fig. 2, we

can see that the proposed scheme maintains a 99% reliability

constraint (ǫ = 0.01) for both the proactive and the reactive

cases. Moreover, the probability of having higher delay values

significantly decreases as the proactiveness level increases

since storing more computing results closer to UNs will further

reduce the computing delay.

The average total delay performance is presented in Fig. 3

under different proactiveness levels. Comparing Baseline 1

and Baseline 2 schemes, about 72% decrease in the average

computing delay can be seen. In Baseline 2 scheme, requests

that will violate the latency constraints are not admitted,

and are computed locally instead. Furthermore, the proactive

scheme significantly decreases the computing delay as the

proactiveness level increases. By storing more computing

results close to UNs, up to 91% decrease in delay is observed.

The impact of proactiveness on the delay and cache hit

rate is investigated in Fig. 4 for different discrepancy levels

3E = 30 cloudlets, U = 3×30 UNs, | A |= 90 tasks, z = 0.6, Dth = 1s,
ǫ = 0.01, UN power = 20 dBm, θ = 0.5, σ2

d
= 500, ν(t) = 1/t0.55,

κ/clocal = 10−7, κ/ce = 10−8, se = 10 tasks, τLP = Unif(0, 1

8
)ms,

τEP = Unif(1
8
, 1

4
)ms.

0 10 20 30 40 50 60 70 80 90 100

Proactiveness (%)

0

50

100

150

200

250

300
T

o
ta

l
d

e
la

y
 (

m
s
) Proactive

Baseline 1

Baseline 2
The computing delay is constant

for the baseline schemes since

proactiveness is not exploited

Figure 3. Total delay performance at different proac-
tiveness levels

20 30 40 50 60 70 80 90 100

Proactiveness (%)

15

20

25

30

T
o

ta
l
d

e
la

y
 (

m
s
)

30

40

50

C
a

c
h

e
 h

it
 r

a
te

 (
%

)

Figure 4. Total delay (solid lines) and cache hit rate
(dashed lines) at different values of z

4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9

Traffic Intensity (Mbps)

0

50

100

150

200

250

300

T
o
ta

l
d
e
la

y
 (

m
s
)

Proactive

Baseline 1

Baseline 2

Figure 5. Total delay performance as the arrival
traffic intensity increases

of the task popularity distributions, represented by the Zipf

parameter z. As z increases, the popularity gap between the

most and least popular tasks increases. At high values of z,

most of the computing requests are for the most popular tasks.

Accordingly, it is possible to serve more requests from the

cache, resulting in low computing delay and high cache hit

rate, even at low proactiveness levels. On the other hand, at

low values of z, high proactiveness levels are needed to store

the most popular task results. Therefore, a steep decrease in

computing delay and an increase in the cache hit rate are

observed as proactiveness level increases.

B. Impact of Traffic Intensity

Next, we study how the performance changes with the

traffic intensity. Intuitively, at low traffic intensity conditions,

cloudlets can cope with the computing requests with minimal

latency, and there is no need to assign requests to local

computing. However, at high traffic conditions, offloading all

requests causes the cloudlet queues to grow rapidly, unless

stringent latency requirements are imposed. From Fig. 5, we

can see that as the traffic intensity increases, there exists a

threshold point in which higher traffic intensity will cause

severe delay for the baseline scheme with unbounded latency.

Below this point, Baseline 1 scheme achieves similar or lower

delay values than Baseline 2 as there is no compelling need

to maintain latency bounds by assigning requests to local

computing. Moreover, both the reactive and proactive schemes

achieve low delay performance, with proactiveness gains of up

to 65% at high traffic intensity.

V. CONCLUSIONS

In this paper, we have proposed a task distribution and

proactive computing scheme for cache-enabled fog computing

networks under ultra-reliability and low-latency constraints.

In the proposed scheme, clusters of cloudlets and edge user

nodes are formed based on spatial proximity and similar

interests in computing results. To ensure minimal computing

delays, each cluster proactively caches computing results in

the storage of its cloudlets. Moreover, we have proposed

a matching algorithm to distribute the computing tasks to

cloudlets such that computing delay is minimized and latency

constraints are met. Simulation results have shown that the

proposed scheme significantly minimizes the computing delay

under different proactiveness and traffic intensity levels, and

is able to guarantee minimal latency bounds with high levels

of certainty.

REFERENCES

[1] Z. Dawy, W. Saad, A. Ghosh, J. G. Andrews, and E. Yaacoub, “To-
ward massive machine type cellular communications,” IEEE Wireless

Commun., vol. 24, no. 1, pp. 120–128, February 2017.
[2] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and

its role in the internet of things,” in Proc. the First Edition of the MCC

Workshop on Mobile Cloud Computing, ser. MCC ’12, 2012, pp. 13–16.
[3] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “Mobile edge

computing: Survey and research outlook,” ArXiv e-prints, 2017.
[4] S. Barbarossa, S. Sardellitti, and P. D. Lorenzo, “Joint allocation of

computation and communication resources in multiuser mobile cloud
computing,” in Proc. IEEE 14th Workshop on Signal Processing Ad-

vances in Wireless Communications (SPAWC), June 2013, pp. 26–30.
[5] Y. Mao, J. Zhang, S. H. Song, and K. B. Letaief, “Power-delay tradeoff

in multi-user mobile-edge computing systems,” in Proc. IEEE Global

Commun. Conf. (GLOBECOM), Dec 2016, pp. 1–6.
[6] X. Chen, L. Jiao, W. Li, and X. Fu, “Efficient multi-user computation

offloading for mobile-edge cloud computing,” IEEE/ACM Trans. Netw.,
vol. 24, no. 5, pp. 2795–2808, Oct 2016.

[7] G. Lee, W. Saad, and M. Bennis, “An online secretary framework for
fog network formation with minimal latency,” in Proc. IEEE Int. Conf.

on Commun. (ICC), May 2017, pp. 1–6.
[8] E. Baştuğ, M. Bennis, M. Médard, and M. Debbah, “Towards inter-

connected virtual reality: Opportunities, challenges and enablers,” IEEE

Commun. Mag., to be published, 2017.
[9] S. W. Ko, K. Huang, S. L. Kim, and H. Chae, “Live prefetching

for mobile computation offloading,” IEEE Trans. Wireless Commun.,
vol. PP, no. 99, pp. 1–1, 2017.

[10] E. Baştuğ, M. Bennis, and M. Debbah, “Living on the edge: The role
of proactive caching in 5g wireless networks,” IEEE Commun. Mag.,
vol. 52, no. 8, pp. 82–89, Aug 2014.

[11] M. S. ElBamby, M. Bennis, W. Saad, and M. Latva-aho, “Content-aware
user clustering and caching in wireless small cell networks,” in Proc.

11th Intl. Symp. on Wireless Communications Systems (ISWCS), Aug
2014, pp. 945–949.

[12] A. Anpalagan, M. Bennis, and R. Vannithamby, Design and Deployment

of Small Cell Networks. Cambridge University Press, 2015.
[13] A. Mukherjee, “Queue-aware dynamic on/off switching of small cells

in dense heterogeneous networks,” in IEEE Globecom Workshops (GC

Wkshps), Dec 2013, pp. 182–187.
[14] Y. Gu, W. Saad, M. Bennis, M. Debbah, and Z. Han, “Matching theory

for future wireless networks: fundamentals and applications,” IEEE

Commun. Mag., vol. 53, no. 5, pp. 52–59, May 2015.
[15] J. Cranshaw, R. Schwartz, J. I. Hong, and N. Sadeh, “The livehoods

project: Utilizing social media to understand the dynamics of a city,”
in Proc. International AAAI Conference on Weblogs and Social Media,
2012, p. 58.

