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In this paper, we deal with the eavesdropping issue in Wireless Access in Vehicular Environments- (WAVE-) based vehicular
networks. A proactive flexible interval intermittent jamming (FIJ) approach is proposed which predicts the time length T of the
physical layer packet to be transmitted by the legitimate user and designs flexible jamming interval (JI) and jamming-free
interval (JF) based on the predicted T . Our design prevents eavesdroppers from overhearing the information with low energy
cost since the jamming signal is transmitted only within JI. Numerical analysis and simulation study validate the performance of
our proactive FIJ, in terms of jamming energy cost and overhearing defense, by comparing with the existing intermittent
jamming (IJ) and FIJ.

1. Introduction

A WAVE- (Wireless Access in Vehicular Environments-)
based vehicular network has been considered a promising
way to improve safety and driving experience with vehicular
level information exchange playing the most critical role.
However, wireless communication is vulnerable to eavesdrop-
ping threats due to its broadcasting nature. The information
exchanged among vehicles, including vehicle identities, loca-
tions, and speeds, is exposed to eavesdropping attackers. To
protect this private information from leakage, reliable eaves-
dropping defense mechanisms must be designed.

Friendly jamming is an effective approach to defend
against eavesdropping [1–5]. Continuous jamming (CJ),
which requires the friendly jammer to keep sending jamming
signals during the whole transmission of the legitimate
transmitter, has been extensively studied in literature.
Eavesdroppers are disabled via CJ in the cost of large energy
consumption. In recent work [6], the authors argued that it is

unnecessary to jam the whole transmission. Partially
jamming the transmission of a data packet is capable of pre-
venting eavesdroppers from getting sensitive information.
Therefore, they proposed an intermittent jamming (IJ)
scheme where the friendly jammer sends the jamming signal
only in the jamming interval (JI) and keeps silent in the
jamming-free interval (JF). This scheme can keep the infor-
mation safe with low energy cost. However, the length of JI
and JF was fixed in their design (as shown in Figure 1) with-
out considering the length of the packet transmitted by the
legitimate transmitter. This fixed design has drawbacks in
the following aspects. When the length of the transmitted
packet is short, unnecessary energy will be consumed during
a long JI. On the other hand, a combination of JI and JF will
occur repeatedly for a long packet. The jammer should switch
between JI and JF frequently, and energy will be wasted due
to the switching loss. Therefore, the length of the transmitted
packet should be considered when designing the length of JI
and JF to achieve better energy efficiency.
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In this paper, we try to design a flexible interval IJ (FIJ)
scheme by setting the length of JI and JF according to the time
length of the transmitted packet. For a specific physical packet
with time length T, we will find the time duration within
which the core information is transmitted and set this dura-
tion as JI. As for T, its actual value cannot be obtained before
the physical packet is generated. However, if the jammer
obtains the value of T after the packet has been generated
and decides the length of JI and JF accordingly, nonnegligible
time delay will be introduced before starting the jamming pro-
cess. This way, the jamming signal may not be able to be trans-
mitted synchronously with the physical packet leading to
degraded jamming performance. To deal with this problem,
this paper will predict the value of T and proactive FIJ will
be enabled to achieve better jamming performance. As a sum-
mary, the contributions of this paper are as follows.

(i) The physical packet structure in WAVE-based
vehicular networks is analyzed. For a specific physi-
cal packet with time length T , the time length of the
“Application Data,” which is generated in the appli-
cation layer and contains the core information to be
transmitted, is obtained

(ii) An FIJ scheme is proposed where the length of JI
depends on the value of T such that the friendly jam-
mer disables the eavesdropper with less energy cost

(iii) Support vector regression (SVR) is applied to learn
the characteristics of the time length of N historical
physical packets and predict the time length of the
future physical packet. Proactive FIJ is enabled by
designing the length of JI according to the predicted
time length of the next physical packet

The paper is organized as follows. Section 2 discusses the
related works. The considered system model is illustrated,
and the problem is formulated in Section 3. The FIJ scheme
is designed in Section 4, and the value of T is predicted based
on SVR in Section 5. Performance investigation is conducted
in Section 6. Finally, the paper is concluded in Section 7.

2. Related Works

From the application layer to the link layer, the security
threat has long been under concern [7–11]. The multimedia

streaming scheme proposed in [12] deals with the security
issues in the application layer. Authentication schemes are
designed to ensure the confidentiality of communication in
the transport layer [13–15]. The secured routing protocol
proposed in [16, 17] provides a safe transmission in the net-
work layer. [18] detects possible denial of service ahead of
confirmation time in the link layer.

According to the IEEE 802.11p standard, driving-related
information, including identity, location, speed, and direction,
is transmitted through vehicle to vehicle (V2V) communication
and vehicle to infrastructure (V2I) communication. This sensi-
tive information is transmitted on the air and is exposed to
eavesdropping attack in the physical layer due to the natural
characteristics of wireless communication. By eavesdropping
this information, a malicious user may track the driving infor-
mation and analyze the driving route of legitimate users [19].
Therefore, it is necessary to tackle the eavesdropping attack in
the physical layer for secure sensitive information transmission.

Friendly jamming has been widely applied to defend
against eavesdropping attacks. It can help to improve the
security of vehicle localization [20], location verification
[21], and secure communication [22]. In most existing
friendly jamming schemes, friendly jammers keep sending
jamming signals. These schemes are known as CJ which con-
sumes a large amount of energy. In order to reduce power
consumption, [23] proposes temporary jamming to provide
information security when encryption is limited. A later
research [6] advances an IJ scheme where the friendly jam-
mer sends the jamming signal only in the JI and keeps silent
in the JF. The IJ scheme greatly decreases the power con-
sumption while providing information security via achieving
a high package error rate (PER) at the eavesdropper. How-
ever, this scheme fixes the length of JI and JF without consid-
ering the length of the packet transmitted by the legitimate
transmitter. For a short physical packet, unnecessary energy
will be consumed during a long JI. On the other hand, a com-
bination of JI and JF will occur repeatedly for a long packet.
Energy will be wasted during the frequent change between
JI and JF. In order to further reduce the energy cost of the
IJ scheme, this paper will design flexible JI and JF depending
on the length T of the transmitted packet.

In order to predict the time length T of the physical
packet to be transmitted in the next time, machine learning
will be applied. Typical machine learning algorithms include
linear regression, logistic regression, ridge regression, and
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Figure 1: Continuous jamming, intermittent jamming, and flexible interval intermittent jamming.
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support vector regression [24–29]. Linear regression [24]
uses least square methods as cost function and optimizes
the target model by Newton iteration. However, linear
regression may obtain local optimum solution for some
applications. Logistic regression [25] is based on the probabi-
listic mechanism, which determines parameters by maxi-
mum likelihood estimation. However, logistic regression is
a linear model in essence and may not be suitable for the
vibrating samples. By adding an additional degree of devia-
tion to the regression estimate, ridge regression can effec-
tively reduce the variance [27]. Nevertheless, this model
requires samples involved to be multidimensional. In our
work, the time length of the historically transmitted physical
packets will be taken as the samples. They are one-
dimensional vibrating samples. Therefore, neither logistic
regression nor ridge regression fits our application. On the
other hand, support vector regression (SVR) [28] maps sam-
ples into the high-dimensional feature space by nonlinear
change. Thus, the performance of SVR is independent of
the sample dimension. Besides, SVR shows effective fitting
ability for vibrating samples. Therefore, we will utilize the
SVR model to learn the characteristics of the time length of
N historical physical packets and predict the time length of
the physical packet to be transmitted.

3. Problem Formulation

We are under a general vehicle communication scenario in a
vehicular network under the WAVE protocol. As shown in
Figure 2, the legitimate user UA is sending its driving infor-
mation toUB. Meanwhile, there is an eavesdropper UE trying
to overhear the packets being sent. A cooperative jammer UJ
located near UA is sending jamming signals with power PJ to
degrade the packets received by eavesdropper UE.

For a physical packet with time length T, UJ sends jam-
ming signals in the JI with length TJ and keeps silence in the
JF with length TF . Here, T J ≤ T, TF ≤ T, and TJ + TF = T.
Let WJ indicate the energy cost of the cooperative jammer,
BJ indicate the bit error rate (BER) ofUE during JI, BF indicate
the BER of UE during JF, and BE indicate UE

’s average BER
within T. It can be derived that

WJ = TJ · PJ , ð1Þ

BE =
TJ

T
· BJ +

TF

T
· BF : ð2Þ

The closed-form expressions of the BERs for different
modulation schemes have been given in [30]. It can be
found that BER is always a decreasing function of the signal
to noise plus interference ratio (SNIR), denoted by γb. Dur-
ing JF, no jamming signal is transmitted by the jammer.
Therefore, γJFb = Eb/N0 when calculating BF . Here, Eb is
the received signal energy per bit and N0 is the power spec-
tral density of the noise. On the other hand, the receiving
performance of UE is degraged by the jammer during JI.
Therefore, γJIb = Eb/ðN0 + ϕJÞ when calculating BJ . Here,

ϕJ = PJ jhJEj2/B is the received jamming signal power spec-

tral density with jhJEj2 indicating the channel gain fromUJ to
UE and B being the channel bandwidth. Obviously, γJIb ≤ γJ Fb
and BJ ≥ BF . Therefore, BE is an increasing function of TJ .
According to (1), it can be found thatWJ is also an increasing
function of TJ . Recall that we want to disable the eavesdrop-
ping of UE with low energy cost; we need to decide a proper
T J that can ensure a high enough BER at UE while achieving
a WJ as low as possible.

4. Design of Flexible Interval IJ Scheme

In order to obtain a high enough BE while maintaining a low
WJ , the jammer should transmit jamming signals only dur-
ing the transmission time of the most significant part of the
physical packet. Figure 3 shows the component of a physical
packet. Intuitively, the “Application Data,” which is gener-
ated in the application layer, contains the core information
to be transmitted by UA to UB. Therefore, “Application
Data” is the most significant part of the physical packet. If
the jammer can identify the time duration within which the
“Application Data” is transmitted and sends jamming signals
only during this time, UE’s eavesdropping will be disabled
and UJ ’s energy cost will be reduced. Therefore, the main
challenge to be solved in our design is to identify the time
duration within which the “Application Data” is transmitted.

According to [31], a physical packet is consisting of a
16μs PLCP preamble, a 4μs Signal Field, and a variable-
length Data Field. The Data Field is constructed by 16 bits
of the PLCP Header, the WSMP-T-Header, the WSMP-N-
Header, the LLC Header, the MAC Header, 32-bit FCS,
6-bit tail, and variable-length Application Data. Moreover,
n bits pad bits are also added in the Data Field to make the
length of the Data Field divisible by NDBPS. Therefore, n takes
a value between 0 andNDBPS − 1. The value ofNDBPS depends
on the modulation schemes and the coding rates. Typical
values of NDBPS in WAVE-based vehicular networks are
listed in Table 1.

When the Data Field is constructed, it will be divided into
symbols. Each symbol consists of NDBPS bits and is 4 μs long
in time. According to [6], the minimum length of the
WSMP-T-Header, the WSMP-N-Header, the LLC Header,
and the MACHeader is 2 bytes, 2 bytes, 2 bytes, and 24 bytes,
respectively. There are a total of 30 bytes, which are 240 bits,
in the physical packet before the Application Data in the Data
Field. In the time domain, the time length of these 240 bits
will be t1 = 240/NDBPS × 4 μs. As mentioned before, there
are 6-bit tail, 32-bit FCS, and 0 toNDBPS − 1 bits pad bits after
the Application Data. These are totally 38 to 37 +NDBPS bits,
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Figure 2: General communication scenario.
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and the time length of these bits is denoted by t2. t2 takes
value from 38/NDBPS × 4 μs to ð37 +NDBPSÞ/NDBPS × 4 μs.
The PLCP preamble, the Signal Field, and the headers are
transmitted before the Application Data. The time length
before transmitting the Application Data in the physical
packet, which is denoted by T1

F , can be calculated as T1
F =

16 μs + 4 μs + t1: On the other hand, the FCS, the tail bits,
and the pad bits are transmitted after the Application Data.
Therefore, the time length after transmitting the Application
Data in the physical packet, which is denoted by T2

F , can be
calculated as T2

F = t2: Then, for a physical packet of length
T , the flexible interval IJ scheme will be designed as shown
in Figure 4. According to the value of NDBPS given in
Table 1, the value of T1

F , T
2
F can be easily obtained. For exam-

ple, T1
F = 60μs and 6:3 μs ≤ T2

F ≤ 10:17 μs when the physical
packet is BPSK modulated with the coding rate being 1/2.
Then, we have T J = T − TF = T − T1

F − T2
F . Theoretically,

the best antieavesdropping performance can be achieved
when T2

F takes the lower bound value, which is T2
F = 6:3 μs

in the aforementioned example, while most energy can
be saved when T2

F takes the upper bound value, that is,
T2

F = 10:17 μs in the example.

5. Predicting the Time Length of the Physical
Packet Based on SVR

This section is aimed at obtaining the time length T of the
physical packet to be transmitted. As discussed in Section 1,
the jamming performance will be degraded if the jammer
tries to obtain the value of T after the physical packet has
been generated. To solve this problem, we learn the charac-
teristics of the time length of N historical physical packets
and predict the time length of the physical packet to be trans-
mitted (that is, the ðN + 1Þ‐th physical packet) via machine
learning. Then, proactive FIJ will be enabled by designing
the length of JI and JF according to the predicted result,
and the jamming signal will be able to be transmitted syn-

chronously with the physical packet to ensure the jamming
performance.

Let fðx1, t1Þ, ðx2, t2Þ,⋯,ðxN , tNÞg denote N historical
records, called as samples, regarding the time length of the
physical packets. Here, xi = i, 1 ≤ i ≤N , is the index of the
physical packet that has been transmitted with the xN-th
physical packet being the most recently transmitted one. ti
is the time length in μs of the xi-th physical packet. Then,
we utilize the SVR model [28] to learn the characteristics of
the time length of N historical physical packets by finding
the hyperplane that fits the N samples. To simplify the calcu-
lation, we first scale the time length values of the samples. Let
yi denote the scaled value of ti, then

yi = 10 × ti
tmax

, ð3Þ

with tmax = max ft1, t2,⋯,tNg. The scaled value yi will be dis-
tributed within ½0, 10�. SVR define the function of the fitting
hyperplane as

f xð Þ =wTx + b: ð4Þ

Here, x = ðx1, x2,⋯,xNÞT , w = ðw1,w2,⋯,wNÞT , and
b = ðb1, b2,⋯,bNÞT . The SVR model is aimed at minimizing
the maximum margin between y = ðy1, y2,⋯,yNÞT and f ðxÞ.
According to [32], the target function of the SVR model can
be defined as

min 1
2 wk k2 + C〠

N

i=1
ξi + ξ∗i
� � ð5Þ

subject to yi − wixi + bið Þ ≤ ε + ξi, i = 1, 2,⋯,N
wixi + bð Þ − yi ≤ ε + ξ∗i , i = 1, 2,⋯,N

ξ ≥ 0, ξ∗i ≥ 0, i = 1, 2,⋯,N:

ð6Þ

PLCP preamble Signal field Data field

PSDU (MPDU) Tail Pad bitsPLCP header

MAC header Application data FCSWSMP-T-headerWSMP-N-headerLLC header

Figure 3: Physical packet structure.

Table 1: Values of NDBPS for different modulation schemes and coding rates.

Modulation Coding rate NDBPS (bits) Modulation Coding rate NDBPS (bits)

BPSK 1/2 24 16-QAM 1/2 96

BPSK 3/4 36 16-QAM 3/4 144

QPSK 1/2 48 64-QAM 2/3 192

QPSK 3/4 72 64-QAM 3/4 216
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Here, C > 0 is the constant regularization parameter and ξ
and ξ∗ are slack variables whose values are close to 0. Slack
variables are introduced according to soft margin loss theory
to cope with infeasible constraints of the optimization prob-
lem. The Lagrangian function of (5) is given in

L w, b, α, ξ, ηð Þ = 1
2 wk k2 + C〠

N

i=1
ξi + ξ∗i
� �

+ 〠
N

i=1
αi w

Txi + b − yi − εi − ξ
� �

− 〠
N

i=1
α∗i wTxi + b − yi − εi − ξ∗
� �

− 〠
N

i=1
ηiξi + η∗i ξ

∗
i

� �
:

ð7Þ

Here, L is the Lagrangian and ηi, η∗i , αi, α∗i are Lagrange
multipliers (also referred to as dual variables) that should sat-
isfy positivity constraints, i.e., αi ≥ 0, α∗i ≥ 0, ηi ≥ 0, and η∗i ≥ 0.
In this condition, the target function of the SVR model can be
transferred to its dual problem. By optimizing the dual vari-
ables in Lagrangian function, the original target function (5)
would be solved as well. Specifically, according to the SVR
framework and Karush-Kuhn-Tucker (KKT) conditions, we
optimize the minimum of the partial derivatives of L with
respect to the variables ðw, b, ξi, ξ∗i Þ, namely,

∂L
∂w

= 0⟶w = 〠
N

i=1
αi − α∗ið Þxi, ð8Þ

∂L
∂b

= 0⟶ 〠
N

i=1
αi − α∗ið Þ = 0, ð9Þ

∂L
∂ξi

= 0⟶ C − αi − ηi = 0, ð10Þ

∂L
∂ξ∗i

= 0⟶ C − α∗i − η∗i = 0: ð11Þ

Substituting (8), (9), (10), and (11) into (7), the dual
optimization problem can be yielded, and the problem
converts to minimizing the objective function as follows:

min
αi ,α∗i

1
2〠

N

i=1
〠
N

j=1
αi − α∗ið Þ αi − α∗ið Þ xTi xj

� �

+ 〠
N

i=1
yi αi − α∗ið Þ + ε αi + α∗ið Þ:

ð12Þ

Obviously, (12) is the dual form of the target function and
a typical quadratic programming problem. The problem could
be easily solved by several mathematic frameworks, such as
SMO, and obtained the corresponding αi, α∗i . In the involved
experiments, we directly apply the toolkit in MATLAB. Then,
the hyperplane function (4) becomes

f xð Þ =wTx + b = 〠
N

i=1
αiyix

T
i x + b: ð13Þ

The SVR model usually takes linear function, polynomial
function, Radial Basis Function (RBF), or sigmoid function
as kernel function. In our work, considering that ti is one-
dimensional and vibrates greatly, smooth kernel function is
applicable. Besides, [33] has proved that RBF with proper δ
could smoothly fit any curve compared with other kinds of
kernel functions. Accordingly, we choose RBF given in (14)
as kernel function when training the SVR model [33]:

K xi, xð Þ = exp −
xi − xk k2
2δ2

� �
: ð14Þ

That is, xTi x in (13) should be replaced by Kðxi, xÞ as
shown in (14).

After getting the hyperplane function given in (13), we
can predict the time length T of the xN+1-th physical packet
by substituting x =N + 1 into (13) and conducting the
reverse conversion of (3). That is, T = f ðN + 1Þ ∗ tmax/10.

6. Numerical Analysis and Simulation Study

In this section, we first investigate the performance of FIJ for
securing the transmission of physical packets with a known
time length. Then, SVR is applied to find the hyperplane that
fits the samples of 500 historically transmitted physical
packets and predict the time length of the physical packet
to be transmitted. Proactive FIJ is conducted based on the
prediction result, and the performance is studied.

6.1. Performance Investigation of FIJ for Securing the
Transmission of Physical Packets with Known T . This subsec-
tion compares the performance of the FIJ scheme with the IJ
scheme proposed in [6]. Besides, the performance of our
design when T2

F takes the lower bound value (referred to as
FIJ-shortest TF in the following) and the upper bound value
(referred to as FIJ-longest TF in the following) is also investi-
gated. The simulation is performed in MATLAB 2018b using
the WLAN toolbox. We use function “wlanNonHTConfig”
to generate non-HT packets transmitted in the WAVE-
based vehicular network. The channel bandwidth is set to
be 10MHz, and we are using the default sampling rate for

Physical packet of length T

T T
J

1

F
T
2

F

Flexible interval IJ

Figure 4: Flexible interval IJ scheme for a physical packet of length
T:
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10MHz. We set the delay profile as “Urban NLOS” because
most of the V2V communication happens in an urban area
and does not have a line of sight. BPSK modulation is used,
and the coding rate r is set to be 1/2 and 3/4.

The performance comparison is conducted from two
aspects. To validate the antieavesdropping performance of
our design, the packet error rate (PER) of UE , which is the
ratio of the number of physical packets not successfully
decoded by UE to the number of the physical packets sent
by the transmitter UA, is adopted. The function “V2VPERSi-
mulator” from MATLAB is utilized to simulate the PER. The
energy cost for sending jamming signals referred to as the

jamming energy cost in the following is used to investigate
the energy efficiency of our design.

According to [6], the optimal transmission power ofUJ is
set to be PJ = 760mW for BPSK modulation with coding rate
r being 1/2. The corresponding T J and TF are 47:12 μs and
28:88 μs, respectively, in the IJ scheme. While for BPSKmod-
ulation with r = 3/4, the IJ scheme is set as PJ = 760mW,
T J = 37:2 μs, and TF = 22:8 μs. The setting of the IJ scheme
is fixed regardless of the length of the transmitted physical
packet. On the other hand, the length of T J and TF = T1

F +
T2

F in our design is flexible which can be calculated as given
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Figure 6: Jamming energy cost comparison with different PSDU lengths.
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in Section 4. UJ ’s transmission power in our flexible interval
IJ scheme is set to be the same as that in the IJ scheme, which
is PJ = 760mW.

We change the length of the PSDU from 38 octets to
438 octets resulting in the time length of the physical
packets changing from 76 μs to 608 μs for BPSK modula-
tion with r = 1/2 and from 60 μs to 412 μs for BPSK mod-
ulation with r = 3/4. The PER of UE is shown in Figure 5. It
can be found that UE ’s PER increases with the increasing of
the PSDU length for schemes other than FIJ-shortest TF.
With the increase of the PSDU length, more information
bits are enclosed in a physical packet. The probability of
information bits within a physical packet being incorrectly
decoded will increase resulting in an increased PER. For
the FIJ-shortest TF scheme, UE’s SNR keeps low since UJ

sends jamming signals during the whole transmission time
of the “Application Data.” Therefore, UE’s PER is always
close to 100% regardless of the PSDU length. Small perfor-
mance fluctuations occur for the FIJ-longest TF scheme. In
the FIJ-longest TF scheme, the length of T2

F is fixed to be
ð37 +NDBPSÞ/NDBPS × 4 μs by assuming that there are
always NDBPS − 1 pad bits in the physical packet. However,
the length of the pad bits varies with the PSDU length lead-
ing to insufficient jamming of the “Application Data” for
some PSDU length and thus performance fluctuations on
UE’s PER. Moreover, one can see that a higher coding rate
r causes a higher PER. A higher r implies more information
bits, and less redundant bits are enclosed in a physical packet,
which means that more information is transmitted in a phys-
ical packet and the transmission efficiency is improved. How-
ever, the redundant bits play an important role in error
correction, and less redundant bits can decrease UE’s error
correction capability and lead to a higher PER.

The results regarding the jamming energy cost are given
in Figure 6. We found that our FIJ scheme consumes less
energy when the physical packet is short (for example, when
the PSDU is 100 bytes long). While for long physical packets,
the IJ scheme performs better in terms of energy cost. This is
because the length of T J and TF is fixed in IJ. In other words,
T J /T is fixed for any PSDU length (i.e., any physical packet

length). In the flexible interval IJ scheme, the length of
TF = T1

F + T2
F is fixed, while the length of TJ = T − TF

increases with the length of the physical packet. Therefore,
T J /T increases with the increasing of the PSDU length
leading to more jamming energy cost compared with the
IJ scheme proposed in [6].

In order to further improve the jamming energy cost of
the flexible interval IJ scheme, we conduct enhanced-FIJ in
our simulation study. The enhanced-FIJ is designed by taking
the same T1

F and T2
F as that of the FIJ scheme. While for the

“Application Data” transmitted within TJ , the IJ scheme pro-
posed in [6] is applied. That is, T J is further divided into sub-
jamming intervals and subjamming-free intervals according
to the IJ scheme proposed in [6]. The performance of
enhanced FIJ-shortest TF and enhanced FIJ-longest TF is
shown by green dashed lines and black solid lines in
Figures 5 and 6. We found that enhanced FIJ-shortest TF
can achieve PER performance almost the same as the IJ
scheme while saving 10% energy.

6.2. Performance Investigation of Proactive FIJ. In this
subsection, we first generate 600 samples ðxi, tiÞ with xi = i,
1 ≤ i ≤ 600. 68μs ≤ ti ≤ 3140 μs is generated as follows. (1)
Generate a random number following a lognormal distribu-
tion with the mean μ being 2 and the standard deviation σ
being 0.5. (2) The generated random number first times
785 then is rounded down to a multiple of 4 to match the pat-
tern of the time length of physical packets. (3) If the result is
not within the section of proper time length (68μs-3140μs),
repeat the process until the result falls into the section. (4)
Repeat the process until the value of t1, t2,⋯, t600 is gener-
ated. Then, we train the SVR model with the scaled first
500 samples, that is, ð1, y1Þ, ð2, y2Þ,⋯, ð500, y500Þ, to find
the hyperplane that fits these 500 samples.

Taking the RBF kernel function into consideration, two
parameters need to be set in the SVR model, namely, regular-
ization parameter C and Gaussian kernel parameter δ. We
use the grid search technique to find the optimal values.
Specifically, the optimal range of regularization parameter
C is f10−3, 10−2, 10−1, 1, 5, 10, 102, 103g, and the range of
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Scaled time length yi

Figure 7: The training result of 500 historical physical packets based on SVR model.
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δ is f10−3, 10−2, 10−1, 1,10,102, 103g. In our training exper-
iment, we set the constant regularization parameter C = 5,
the slack variables ξ, ξ∗ close to 0, and δ in the Gaussian
kernel equal to 100. The training result is shown in
Figure 7. Based on the trained SVR model, we predict
the value of f ð501Þ then design the length of JI, denoted
by T501

J , according to Section 4 with T = T501 = f ð501Þ ∗
tmax/10 (the reverse conversion of (3)). Sequentially, we train
the SVR model with samples ð2, y2Þ, ð3, y3Þ,⋯, ð501, y501Þ
and predict the value of f ð502Þ; train the SVR model with
samples ð3, y3Þ, ð4, y4Þ,⋯, ð502, y502Þ and predict the value
of f ð503Þ,⋯; and train the SVR model with samples ð60, y60Þ,
ð61, y61Þ,⋯, ð559, y559Þ and predict the value of f ð560Þ. Then,
we will get T502

J , T503
J ,⋯, T560

J . After that, we transmit 500
packets for each time length tk, 501 ≤ k ≤ 560, and jam their
transmission according to the obtained Tk

J to observe the
PER. The results are given in Figure 8. It can be found that
proactive FIJ based on SVR can lead to similar PER compared
with the FIJ scheme derived from known time length. Taking
an average of the results for T = t501 to T = t560, the average
PER by using proactive FIJ is 96.59%. It is 0.77% less than
the average PER achieved by using FIJ with known time
length. Proactive FIJ based on SVR can effectively secure the
transmission of the physical packets in WAVE-based vehicu-
lar networks.

7. Conclusion

In conclusion, FIJ provides a way to save more energy than
existing IJ when dealing with eavesdropping attacks in
WAVE-based vehicular networks. Proactive FIJ leads to no
processing delay for deciding the length of JI and JF thanks
to its capability of predicting T . Simulation results confirm
that our design is capable of defending eavesdropping attacks
while enhancing the performance in energy saving.
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