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ABSTRACT

Proactive learning is a generalization of active learning de-
signed to relax unrealistic assumptions and thereby reach
practical applications. Active learning seeks to select the
most informative unlabeled instances and ask an omniscient
oracle for their labels, so as to retrain the learning algorithm
maximizing accuracy. However, the oracle is assumed to be
infallible (never wrong), indefatigable (always answers), in-
dividual (only one oracle), and insensitive to costs (always
free or always charges the same). Proactive learning relaxes
all four of these assumptions, relying on a decision-theoretic
approach to jointly select the optimal oracle and instance,
by casting the problem as a utility optimization problem
subject to a budget constraint. Results on multi-oracle op-
timization over several data sets demonstrate the superiority
of our approach over the single-imperfect-oracle baselines in
most cases.

Categories and Subject Descriptors

1.2.6 [Artificial Intelligence]: Learning—concept learning,
knowledge acquisition; H.0 [General]: [Classification, cost-
sensitive active learning]

General Terms

Algorithms, Experimentation

Keywords

Cost-sensitive active learning, decision-theory, multiple ora-
cles

1. INTRODUCTION

In most machine learning domains, unlabeled data is avail-
able in abundance, but obtaining class labels or ranking pref-
erences requires extensive human effort, sometimes from ex-
perts with very limited availability. For instance, it is easy
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to crawl the web, but much more costly to pay human an-
notators to examine carefully the web documents in order
to assign topics for cataloging or relevance-based judgments
in a document retrieval scenario. It is also simple to col-
lect images, but much harder to obtain linguistic content
labels. For tasks such as classifying galaxies in the Sloan
Sky Catalog, scarce expertise is required. Thus, it is crucial
to design methods that will considerably reduce the labeling
effort without sacrificing a significant loss of generalization
accuracy.

The active learning paradigm addresses this challenge. In
active learning, a few labeled instances are typically pro-
vided together with a large set of unlabeled instances. The
objective is first to select optimal instance(s) for an exter-
nal oracle to label, and then re-run the learning method
to minimize prediction error, i.e. to improve performance.
The active learning task attempts to optimize learning by
selecting the most informative instances to be labeled, where
informativeness is typically defined as maximal expected im-
provement in classification accuracy. Several studies [12, 10,
8, 4, 3] show that active learning greatly helps reduce the
labeling effort in various domains. However, active learn-
ing relies on unrealistic assumptions, largely swept under
the proverbial carpet thus far. For instance, active learn-
ing assumes there is a unique omniscient oracle. In real life,
it is possible and more general to have multiple sources of
information with differing reliabilities or areas of expertise.
Active learning also assumes that the single oracle is perfect,
always providing a correct answer when requested. In real-
ity, though, an “oracle” (if we generalize the term to mean
any source of expert information) may be incorrect (fallible)
with a probability that should be a function of the difficulty
of the question. Moreover, an oracle may be reluctant — it
may refuse to answer if it is too uncertain or too busy. Fi-
nally, active learning presumes the oracle is either free or
charges uniform cost in label elicitation. Such an assump-
tion is naive since cost is likely to be regulated by difficulty
(amount of work required to formulate an answer) or other
factors. In this paper, we propose proactive learning as a
new approach to address these issues. Proactive learning
enables active learning to reach practical applications.

We frame the proactive learning challenge as inherently
a decision-theoretic problem, and focus on three scenarios.
These scenarios are designed to explore different oracle types
in a multi-oracle setting, i.e. oracles reluctant to give an-
swers, oracles that charge non-uniform cost, and fallible or-
acles that might provide wrong answers. We assume that
each of these properties can be defined as a function of the



query difficulty, i.e. the level of difficulty to classify the
sampled instance. Each scenario analyzes a single property;
i.e. reluctance, non-uniform cost and fallibility. In multi-
oracle proactive sampling, it is crucial to select the optimal
data instance(s) to be queried as well as the optimal oracle.
We achieved promising results on benchmark classification
datasets by transforming the problem into expected utility
maximization. We further assume a pre-defined and fixed
budget; hence, the task becomes a constraint optimization
problem. The results demonstrate the effectiveness of joint
sampling of the optimal oracle-example pair as compared to
sampling with respect to a single oracle.

The remainder of the paper is organized as follows: Sec-
tion 2 reviews related work in active learning, and decision
theory and some recent work in cost-sensitive active learn-
ing. Section 3 describes in detail three scenarios we analyze
and presents the proposed solution to multi-oracle proactive
learning in classification. Section 4 discusses the experimen-
tal setup and the results. Finally, we give our conclusions in
Section 5.

2. RELATED WORK

Proactive learning is a brand new machine learning area,
although there is related work in cost-sensitive active learn-
ing. We review some recent work in this direction and give a
broad overview of decision-theory since it provides the math-
ematical tools necessary to develop algorithms for proactive
learning.

Statistical decision theory is an appealing framework for
proactive learning since it offers a systematic way to repre-
sent cost-benefit tradeoffs, in decision-making under uncer-
tainty. Uncertainty usually refers to a state of nature, which
is typically unknown, but controls the sampling distribution
of the observed data. A decision is defined in terms of a
policy § : X™ — A that takes an action based on a set of
observations (z1,x2,...,&n), ; € X. Given a non-negative
loss function L : § — [0, 4+00), each action can be associated
with an expected loss (risk):

R(6) = Eo{L(d(z1,...,zn))}

where 6 encodes the parameter that governs the distribution
p(0) that generates the observed data (z1,...,z»). In addi-
tion to the risk, each action § is associated with a reward
(benefit), denoted by a utility function U () whose expecta-
tion is taken over all possible outcomes resulting from tak-
ing the action. We can denote the cost-benefit tradeoffs of
different policies with a utility-risk pair (U(d), R(d)). The
goal of decision-making is, then, to take the best action that
maximizes the expected utility while minimizing the risk.

We can formulate proactive learning in the above decision-
theoretic framework. The decision rule or policy corresponds
to deciding whether or not to elicitate data from an oracle,
i.e. querying a set of instances to obtain their labels from
a human expert in a classification setting. Taking the elic-
itation action introduces a certain expected reward due to
the effect of the additional data on improving the learn-
ing model, e.g. [10]. However, the elicitation effort incurs a
cost, possibly depending on the difficulty of the task. Proac-
tive learning, built with tools provided by decision theory,
systematically addresses this utility-cost tradeoff for incre-
mentally optimal data selection (Globally optimal selection
in the general case is NP-hard).

Although active learning has received great attention among
researchers, incorporating cost-benefit tradeoffs into active
learning is a rather new line of investigation. Traditional ac-
tive learning assumes access to unlabeled data and acquires
the labels of the most informative instances at zero or uni-
form cost. However, the right way is to take into account the
labeling costs to design economically reliable learning meth-
ods. Saar-Tsechansky and Provost [11] took a step towards
that direction by proposing an active learning framework
as a decision-making task. Consider the decision of initi-
ating a business action such as offering a costly incentive
for contract renewal. Active learning targeting improved
accuracy, or in other words reduced loss, may not be suit-
able for cost-effective decision making. Thus, they propose a
goal-oriented strategy that selects only the examples where a
small change in model estimation can affect decision-making
[11]. Specifically, each unlabeled example is assigned a score
that reflects the expected effect the example has on decision-
making if labeled and added to the training set.

Dimitrakakis and Savu-Krohn [2] address labeling costs
explicitly, where the learning goal is defined as a minimiza-
tion problem over a function of the expected model perfor-
mance and the total cost of labeling. This problem repre-
sents a weighted combination of the generalization error of
the model incurred after obtaining additional training exam-
ples and the total cost associated with acquiring their labels.
But, the main focus of [2] is to develop an optimal stopping
criterion for sampling based on the comparison between the
expected performance gain and the cost of acquiring more
labels. However, the proposed stopping strategy requires
the use of independent and identically distributed examples,
which makes it problematic to couple with active learning.

Melville et al [6] address the cost-sensitivity in active learn-
ing in the context of feature-value acquisition. In some ma-
chine learning tasks, the training data has missing feature
values which are often quite expensive to obtain. The goal of
active feature-value acquisition is to incrementally select fea-
ture values that are most cost-effective for improving learn-
ing performance. Melville et al propose a selection approach
based on the expected utility of acquiring the value of a fea-
ture. The utility of an acquisition is defined in terms of the
improvement in model accuracy per unit cost [6]. Since the
true values for the model accuracy (accuracy on the unseen
test data) is unknown, it is estimated by the training set
accuracy. If the feature costs are assumed to be equal, this
strategy is similar to the loss reduction principles presented
earlier in several research studies [10, 8, 3]. Note that they
still assume a single perfect oracle.

Although cost-benefit tradeoffs have started to appear in
active learning, there has not yet been any notion of multi-
ple oracles, with different costs, different reliabilities, differ-
ent probabilities of answering, and possibly different exper-
tise. The general proactive learning problem requires joint
maximization of the expected improvement of the learner
over oracle and instance choice. In this paper, we propose
a decision-theoretic approach where the most cost-effective
(highest utility) oracle-instance pair is selected for data elic-
itation.

3. METHODOLOGY

In this section, we present a proactive learning method
for classification. We focus on three scenarios embodying
the notion of multiple oracles with differing properties and



costs. Let us begin by explaining “Scenario 1”. In this sce-
nario, we assume there exist one reliable oracle and one re-
luctant oracle. The reliable oracle gives an answer every
time it is invoked with a query, and the answer is always
correct. The reluctant oracle, on the other hand, does not
always provide an answer, but when it answers it does so
correctly. The probability of getting an answer from the re-
luctant oracle depends on the difficulty of the classification
task. Not surprisingly, they charge different fees: the reliable
oracle is more expensive than the reluctant one. We experi-
mented with various cost combinations to simulate different
real-world situations, with results in the next section.

Rather than fixing the number of instances to sample, as
in standard active learning, proactive learning fixes a maxi-
mum budget envelope since instances and oracles may have
variable costs. Now, let us formulize the problem step by
step as a joint optimization of which instance(s) to sample
and which oracle to use to purchase their labels. The objec-
tive is to maximize the information gain under a pre-defined
budget:

maximize E[V (S)] subject to B

where B is the budget, S is the set of instances to be sam-
pled, and E[V(S)] is the expected value of information of
the sampled data to the learning algorithm. V() is a value
function that can be replaced with any active selection cri-
terion. For instance, it could be the estimated uncertainty
of the current learning function at S, or a density weighted
uncertainty score, or the estimated error on the unlabeled
data if S is labeled and added to the training set. In our
experiments, we adopted the density weighted uncertainty
score proposed in [4], which significantly outperforms other
strong baselines.

The above equation can be rewritten by incorporating the
budget constraint into the objective function:

max E[V(S)] - A tx+Ck) st

SCUL
Ztk*ck:B7Ztk:|S|
k k

where the subscript £ € K denotes the chosen oracle from
the set of oracles, K, and X is the parameter controlling the
relative importance of maximizing the information and min-
imizing the cost. For simplicity, we assumed A = 1 in this
paper. Ci and tj indicate the cost of the chosen oracle and
the number of times it is invoked, respectively. UL is the set
of unlabeled examples, |S| is the total size of the sampled
set’. Although this formulation is appealing, there is a ma-
jor drawback. It is at best difficult to optimize directly due
to the fact that the maximization is over the entire set of
potential sampling sequences, an exponentially large num-
ber. However, the learning function is updated with each
additional example, which affects which examples will be
sampled in the future, though we can only calculate this ef-
fect after we know which examples are chosen and labeled.
Thus, we cannot decide all the points to be sampled at once.
A tractable alternative is a greedy approximation that will
perform the optimal strategy at each round where only a sin-
gle example or a small batch of examples is sampled. Now,

!The extension of this formulation to more than two oracles
is straightforward.

let us see below how the greedy approach works:

@ k) =arg_max (BJV@)]-C) (1)

Ei[V(x)] is the expected value of information of the example
x with respect to corresponding oracle k. We can extend
the above expectation by incorporating the probability of
receiving an answer and obtain the following?:

(z*, k") = arg hax (P(ans | z,k) *V(z) — Cr) (2)

Our goal in this scenario is to attain the maximum gain
under the budget constraint. If both oracles were reliable,
then the most cost-effective solution would be to use the
cheapest oracle for every query. However, the cheapest or-
acle may not respond to every request, especially when the
query is difficult. We define a utility score, U(zx, k), which
is a function of the oracle k and the data point x:

U(z,k) = Plans | z,k) * V(z) — Ck

When the utility is defined as above, it is often necessary to
normalize the scores and the costs into the same range. In
order to avoid the normalization, we re-define the utility of
an example given the oracle as the information value of that
example at unit cost:

P(ans | z, k) * V(x)
Ck

Unfortunately, there do not exist real-world datasets that
have ground truth information on the reliability (in this case,
P(ans | z, k)) of the labeling source (e.g. oracle, annotator).
Therefore, we simulate the reliability as follows. We assume
the amount of labeled training data available to an oracle de-
termines its knowledge (expertise). For instance, the reliable
(perfect) oracle resembles a system that has been trained on
the entire dataset so it has perfect knowledge on each and
every data point. Unlike the perfect oracle, a reluctant ora-
cle has access only to a small portion of the data; therefore,
it is not knowledgeable for every point. Whenever it en-
counters an ambiguous data point to classify, it becomes
reluctant to provide an answer. We train a classifier on a
small random subset of the entire data to obtain a posterior
class distribution P(y | ). For its simplicity and probabilis-
tic nature, we adopted logistic regression in our experiments
to calculate the class posterior. The class posterior is then
used for measuring uncertainty, minyey P(y | ), where Y
is the set of target labels. We assume that the chance of
obtaining an answer from the reluctant oracle is low when
the uncertainty is high and vice versa. We explain how we
design the reluctance in Section 4.1 in more detail.

In order to calculate the utility as shown in Equation 3, we
need to know the answer probability of the reluctant oracle.
However, it is unrealistic to be given each oracle’s knowl-
edge level and response characteristics apriori, so we esti-
mate these properties in a discovery phase. First, we cluster
the unlabeled data using kmeans clustering [5]. The number
of clusters depends on the pre-defined budget available for
this phase and the cost of the reluctant oracle. Second, for
each cluster, we inquire the label of the data point closest
to the centroid. The number of successful inquiries (i.e. the
number of data points that we obtain the labels of) varies

Uz, k) =

where k € K (3)

2The expectation is equal to the actual value of information
for the reliable oracle since P(ans | z, reliable) =1 V.



depending on the reluctance of the oracle . We hypothesize
that if the oracle does not provide the label of a data point
then it is unlikely to provide the labels for the nearby points
since we assume that similar points share similar posterior
class probabilities. Therefore, it is reasonable to estimate
the answer probability of the reluctant oracle by inquiring
the labels of the cluster centroids.

For each cluster, if we obtain the label of the centroid,
then we increase the answer probability of the points in this
cluster. Similarly, we decrease the answer probability of the
points in the clusters whose centroids we did not obtain the
labels of. This step can be regarded as a belief propagation
step. If we receive the label of a centroid, then we prop-
agate our belief in receiving a label to similar points and
vice versa. Initially, we assume the answer probability for
each unlabeled point is 0.5, which indicates a random guess.
Then, we adopt the following update to estimate the answer
probability of each point so that it changes as a function of
the proximity of the point to the cluster centroid and oracle
responsiveness:

P(ans | z, reluctant) =
0.5 hZeysYer) , mazqg — ||Te, — :cH)
— xexp : In -
Z ( 2 [#e, — |l
Vo € Cy (4)

where Z is a normalization constant. z., is the centroid of
the cluster C; that includes x. h(zc,yc) € {1, —1} is an indi-
cator function which is equal to 1 when we receive the label
y. for the centroid x., and —1 otherwise. In Algorithm 1,
g denotes the number of centroids for which we receive the
label. ||z.—z|| is the Euclidean distance between the cluster
centroid z. and the point z, and maxq := maxa,,z ||z — ||
is the maximum distance between any cluster centroid and
data point.

We substitute the estimated answer probability into the
utility function, i.e. U(x, k) = w. The joint
sampling of the oracle-example pair can now be performed
as shown in Algorithm 1. The algorithm works in rounds
till the budget is exhausted. Each round corresponds to
a single label acquisition attempt where sampling persists
until obtaining a label. One important point to note here
is that we need to restrain from spending too much on a
single attempt by adaptively penalizing the reluctant oracle
every time it refuses to answer. At any given round, if the
algorithm chooses the reluctant oracle and does not receive
an answer, the utility of remaining examples with respect to
this oracle decreases by the amount spent thus far at this
round:

0 (, reluctant) — P(ans | z,reluctant) x V (x)

Cr'ound

where Ciound is the amount spent thus far in the given
round. This penalization only applies to the reluctant ora-
cle since the reliable oracle always provides the label. Algo-
rithm 1 selects the maximum utility examples. This frame-
work leads to an incrementally optimal solution in the sense
that the most useful data is sampled at the minimum cost.
In real-world, there might also be fallible oracles which
answer each query, but the credibility of the answer is ques-

3We experimented with varying reluctance levels for a thor-
ough investigation.

Algorithm 1 Proactive Learning: Scenario 1

Input: a classifier f, labeled data L, unlabeled data UL,
entire budget B, clustering budget Bc < B, two oracles,
each with a cost Cy, k € K = {reliable, reluctant}
Output: f

- Cluster UL into p = Bc/Clreiuctant Clusters

- Let z., be the data point closest to its cluster centroid,
Vi=1,...,p

- Query the label y., for each cluster centroid x,

- Identify {x¢,, ..., zc,} for which we obtain the labels

- Estimate P(ans | &, reluctant) via Equation 4
- Update L = L U {@ey, yo, oy, UL = UL\ {0, yer Ko
- cost spent so far Cr = B¢
while Cr < B do
- Train f on L
- Initialize the cost of this round Cround = 0 and the
set of queried examples Q = {}
-Vk € K,z € UL estimate utility U (z, k)
repeat
1. Choose k™ = arg max maxzeUL\Q{(j(x, k)}
2. Choose z* = arg x| {U(z,k")}
3. Update Cround = Cround + Ch»
4.Q=Qu{a"}
5. Query the label y* with probability P(ans | z*, k™)
until label y* is obtained
- Update Cr =Cr 4+ Cround
- Update L = LU (z*,y*) and UL =UL\ (z*,y")
end while

tionable. We simulate this setting in “Scenario 2”, where
we assume two oracles; one reliable and one unreliable or-
acle. The reliable oracle is the perfect oracle that always
provides the correct answer to any query. The unreliable or-
acle in this scenario is fallible that it may provide the wrong
label for a given example. Specifically, if an example ap-
proaches the decision boundary, the probability of correct
classification approaches 0.5 (random guess). The proba-
bility of acquiring a correct label, P(correct | x, fallible)
is modeled the same way as in “Scenario 1”. The solution
we propose is similar to the method introduced for “Sce-
nario 17, with slight variations. For instance, the learning
method receives a random label for the queried example x
with probability 1 — P(correct | x, fallible). Moreover, we
use the clustering step exploiting the fallible oracle to es-
timate the correctness probability P(correct | x, fallible).
Similar to the previous scenario, we inquire the labels of the
cluster centroids. Unlike the reluctant oracle, the fallible
oracle provides the label together with its confidence. The
confidence is its posterior class probability for the provided
label, P(y | ). If the class posterior is within an uncertainty
range, then we decide not to use the provided label since it
is likely to be noisy (See Section 4.1 for details). We de-
crease the correctness probability for the points in the cluster
whose centroid has a class posterior in the uncertainty range.
We increase the correctness probability for the points in the
clusters with highly confident centroids; i.e. P(correct |
x, fallible) = %5 emp(h(zc“yc“) In mazdiuzc‘fz“)v:c € C

Z 2 [z, —ll

where h(e,,ye,) = —1 if min, P(y | z.,) is in the uncer-
tainty range, and 1 otherwise. In Algorithm 2, h denotes



Algorithm 2 Proactive Learning: Scenario 2

Input: a classifier f, labeled data L, unlabeled data UL,
entire budget B, clustering budget Bc < B, two oracles,
each with a cost Ci, k € K = {reliable, fallible}
Output: f
- Cluster UL into p = B¢ /Cltauibie clusters
- Let z., be the data point closest to its cluster centroid,
Vi=1,...,p
- Query the label y., for each cluster centroid x,
- Identify {zc,,..., ¢, } for which the fallible oracle has
high confidence
- Estimate P(correct | x, fallible)
- Update L = LU {x¢,,ye, Yooy, UL = UL\ {Zc,, Yoy }1es
- cost spent so far Cr = Be
while Cr < B do

1. Train f on L

Vke K,z UL Ula,k) = Dlcorrectin)Vie)

k
. Choose k" = arg max maxycvr{U(z,k)}
€

. Update Cr = Cr + Ci
Update L = L U (z",y*) and UL = UL\
(z*,y") where y* is the correct label with probability
P(correct | z*, k™)
end while

2
3
4. Choose z* = arg max {U(z,k*)}
5
6

the number of high confident centroids.

Thus far, we have only considered the settings where a uni-
form fee is charged for every query by an oracle, although
each oracle may charge differently. Fraud detection in bank-
ing transactions is a good example for this setting. The
customer records are saved in the bank database so it takes
the same amount of time and effort, hence the same cost, to
look up any entry in the database. On the contrary, it is pos-
sible that the costs are distributed non-uniformly over the
set of instances. For instance in text categorization, it might
be relatively easy for an annotator to categorize a web page;
hence the cost is modest. On the other hand, assigning a
book into a category incurs a considerable reading time and
therefore cost. Another example of a non-uniform cost sce-
nario is medical diagnosis. Some diseases such as herpes are
easy to diagnose. Such diagnoses are not costly since there is
usually a major definitive symptom, i.e. outbreak of blisters
on the skin. On the other hand, diagnosing hepatitis can be
very costly since it may require blood and urine tests, CT
scans, or even a liver biopsy. In “Scenario 3", we explore the
problem of deciding which instances to query for the labels
when label acquisition cost varies with the instance. We as-
sume two oracles one of which has a uniform and fixed cost
for each query whereas the other charges according to the
task difficulty. We further assume that these oracles always
provide an answer and both are perfectly reliable in their
answers.

In order to simulate the variable-cost (non-uniform) ora-
cle, we model the cost of each example = as a function of
the posterior class distribution P(y | ). We use the class
posterior calculated similarly in the previous scenarios. The
non-uniform cost Crhon—unif(x) per instance is then defined
as follows:

maxyey Py | z) = 1/]Y)
1-1/|Y]

Cnonfunif(-r) =1-

The cost increases as the instance approaches the decision
boundary and vice versa. In other words, the oracle charges
based on how valuable the instance is to the learner. This
may not exactly be the case in the real world, but this sets
up a more challenging decision in terms of the utility-cost
trade-off. The utility score in this scenario is calculated as
the difference between the information value and the cost
instead of the information value per unit cost*. This is to
avoid infinitely large utility scores as a result of the division
by small e-cost. Thus, the revised utility score per oracle is
given as follows:

U(z,unif) = V(x)— Cunis (5)
U(z,non —unif) = V(z)— Cron—unif(x)

where Clyniy is the fixed cost of the uniform-cost oracle. The
pseudocode of the algorithm is given in Algorithm 3. There

Algorithm 3 Proactive Learning: Scenario 3
Input: a classifier f, labeled data L, unlabeled data UL,
entire budget B, two oracles, each with a cost Ci, k €
K = {unif,non —unif}
Output: f
cost spent so far Cr =0
while Cr < B do
1. Train f on L
Vk € K,z € UL calculate U(z, k) via Equation 5.
. Choose k" = arg max maxycvr{U(z, k)}

. Choose z* = arg max {U(z, k")}

. Update Cr = Cr + C~

. Update L = LU (z*,y*), UL =UL\ (z*,y")
end while

is no clustering phase in Algorithm 3 since we assume we
know the cost of every instance, which is realistic for many
real-world applications.

4. EXPERIMENTAL EVALUATION

In this section, we first describe the problem setup, and
then present the empirical results on various benchmark
datasets.

4.1 Problem Setup

In order to simulate the reliability of the labeling source
(oracle), we assume that a perfectly reliable oracle resembles
by a classifier trained on the entire data. An unreliable ora-
cle, then, resembles a classifier trained on only a small subset
of the entire data. We randomly sampled a small subset from
each dataset and trained a logistic regression classifier on
this sample to output a posterior class distribution. Then,
we identified the instances whose class posterior falls into
the uncertainty range, i.e. miny, P(y | ) € [0.45,0.5]. This
range is used to filter the instances that the reluctant oracle
does not answer or the fallible oracle outputs a random la-
bel. One can argue that the same effect can be achieved by
randomly picking such instances. However, our simulation
forces a trade-off between the reliability and the information
value of an instance since uncertain instances are generally
informative for active learners. In order to cover a wider

4In general, if the cost and information value are not as-
sessed in the same units, then they are normalized into the
same range.



Table 1: Oracle Properties and Costs. B¢ is the
clustering budget, B is the entire budget. Uncertain
% is the percentage of the uncertain data points.
Cost Ratio is the ratio of the cost of the reliable
oracle to the cost of the unreliable one.

Scenario Uncertain % | Cost Ratio | Bc | B
45-55% 1:3 20

Scenario 1 | 55-60% 1:4 30 | 300
65-70% 1:5 50
45-55% 1:5 20

Scenario 2 | 55-60% 1:6 30 | 300
65-70% 1:7 50

spectrum, we varied the percentage of instances that fall
into the uncertainty range [.45,.5]. The second column in
Table 1 shows the different percentages used in our exper-
iments. The cost of the unreliable oracle is inversely pro-
portional to its reliability. We choose higher cost ratios for
the fallibility scenario since receiving a noisy label should be
penalized more than receiving no label at all. The tradeoff
between cost and unreliability is crucial to have an incen-
tive to choose between oracles rather than exploiting a single
one. See Table 1 for details.

The other case we need to simulate is the uniform and
non-uniform cost oracles. The cost of each instance for the
variable-cost oracle is defined as a function of the class poste-
rior obtained on the randomly chosen subset. This indicates
a positive relationship between the difficulty of classifying an
instance with its cost, which is realistic for many real-world
situations. The cost of labeling each instance is known to
the learning algorithm. Thus, we do not need any clustering
phase in Scenario 3. We choose the cost of the uniform-cost
oracle within the range of instance costs for the variable-
cost oracle. Hence, the costs will be comparable in the same
range. We varied the fixed cost such that there is always an
incentive to choose between oracles instead of fully exploit-
ing a single one.

‘We compared our method against sampling with randomly
chosen oracles and sampling with a single oracle. Each base-
line uses the clustering step for a fair comparative analysis.
However, only our method estimates the oracle unreliability
to help sampling the optimal oracle-example pair.

All the results reported in this paper are averaged over
10 runs. At each run, we start with one randomly chosen
labeled example from each class. The rest of the data is con-
sidered unlabeled. The learner selects one example at each
iteration to be labeled, and the learning function is tested
on the remaining unlabeled set once the label is obtained.
The learner pays the cost of each queried example regardless
of whether a label is obtained. To show the effectiveness of
each method, the learning curves display the classification
error versus the data elicitation cost. The budget is fixed at
300 in Scenario 1 and 2, and at 20 in Scenario 3. A small
budget is enough for the latter since the cost of individual
instances can be very small depending on the posterior prob-
ability. We have observed that 20 is more than enough to
reach a desirable accuracy in this scenario. The clustering
budget, on the other hand, varies according to the unreli-
ability, but is the same for each baseline under the same
scenario (See Table 1). The number of clusters, though, is
determined by dividing the clustering budget by the cost of

Table 2: Overview of Datasets. -+ /- is the posi-
tive/negative ratio. Dim is the dimensionality.

| Data | Face Spambase Adult VY-letter |
Size 2500 4601 4147 1550
+/- 1 0.65 0.33 0.97
Dim | 400 57 48 16

the oracle used during this phase. For the initial clustering
phase, the unreliable oracle is used in our method and in
the unreliable-oracle baselines. Thus, they obtain the same
labeled data during this step, which results in the same er-
ror rate. The random oracle baseline uses a fixed number of
clusters, but for each cluster centroid it randomly chooses
the oracle to invoke and continues until the clustering sub-
budget exhausts.

4.2 ActiveLearning Method

We followed the density-sensitive sampling method pro-
posed by [4] to evaluate the value of information of the un-
labeled instances in our experiments. The method of [4]
relies on conditional entropy maximization weighted by a
density measure. The proposed scoring function captures
not only the information content of an instance (measured
by the uncertainty, i.e. miny P(y | z), but also the prox-
imity weighted information content of its neighbors. The
original method adopts a density-sensitive distance function
and performs sampling in pairs of instances. However, we
use Euclidean distance and sample a single point at a time
in our experiments:

Ute) =tog{ | min, (P | oc0))}+

S exp(—flei - @xl)* min {P(yumk,m}}

kA ie N yr€{£1}
(6)

[4] argues that using Euclidean distance to measure the pair-
wise proximity gives comparable results and faster compu-
tation.

4.3 Datasets

We study the performance of the proposed methods on
various real-world benchmark datasets. The face detection
dataset [9] has a total number of 393360 images, which we
used a random subsample of size 2500 as in [4]. UCI-Letter
is another image dataset for recognizing English capital let-
ters where we labeled the letter 'V’ as the positive class
and the letter 'Y’ as the negative class. This is one of the
most ambiguous pairs in the data. The Spambase and the
Adult datasets are also popular datasets available from the
UCI Machine Learning Repository [7]. The Spambase data
contains 4601 instances and 57 condition attributes. It is
used to classify emails as spam and non-spam. Most of
the attributes indicate whether a certain word or charac-
ter appears frequently in emails. For the Adult dataset, we
adopted the smaller version constructed for the IJCNN 2007
Workshop on Agnostic Learning [1]. This version has 48 fea-
tures and 4147 instances in total. The task of Adult data is
to discover high revenue people from the census bureau. A
summary of datasets is provided in Table 2.
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Figure 1: Performance Comparison for Scenario 1 (Reluctance) on the Spambase dataset. The cost ratio is

indicated above each plot.

4.4 Empirical Evaluation

We conducted a thorough analysis to examine the perfor-
mance of our method under various conditions. Due to the
lack of existing work on cost-sensitive active learning with
multiple oracles, we compared our method against active
sampling with randomly chosen oracles and active sampling
with a single oracle. We denote our method of jointly opti-
mizing oracle and instance selection Joint, the random sam-
pling of oracles Random. Reliable, Reluctant, and Fallible
refer to the corresponding single oracle baseline.

We next clarify why the maximum cost of data elicitation,
shown in Figures 1-8, differ in various tasks and scenarios.
The results are averaged over 10 runs for each experiment.
At each run, the total number of iterations to spend the
entire budget may differ depending on how the budget is
allocated between oracles. In order to take the average of
the results, we rely on the minimum number of iterations
attained over 10 runs for each experiment. This ensures
that all runs equally contribute to the average. This also
results in different maximum elicitation costs smaller than
the budget for different experiments. Nevertheless, the Joint
strategy outperforms the others even after spending only a
small amount in most cases.

Figure 1 shows the results for the reluctance scenario on
the Spambase dataset. Each plot indicates a different cost
ratio. Our method outperforms the others on every case
while the performance gap increases with the cost ratio.
This is largely because the oracle differences leave more room
for improvement via oracle selection in the latter case. When
the unreliability gets higher, the reluctant oracle tends to
spend almost the entire budget on a single label acquisition
attempt. This leads to acquiring only a small amount of
labeled data; hence, its poor performance. As a result, we
do not report the reluctant oracle baseline except in its best
case, the 1 : 3 cost ratio.

Figures 2 and 3 show the comparison between our method
and the other baselines for Scenario 1 on the Adult and VY-
Letter datasets, respectively. For the Adult dataset, our
Joint method outperforms the others when the cost ratio
is 1 : 3 while it tracks the best performer for the other
cost ratios. Generally, Joint tracks the best performer when
the best performer is a clear winner for the entire operating
range. This pattern is also evident in Figure 3 for the cost

ratio 1 : 3. For the other cost ratios, Joint significantly
outperforms the other baselines on the VY-Letter dataset.

Figure 4 compares the performances for Scenario 2 on the
VY-Letter dataset. The Fallible oracle in this scenario per-
forms poorly when the relative cost ratio is high. As shown
in Table 1, the cost ratio increases with the number of unre-
liable instances. In other words, a higher cost ratio indicates
a more unreliable oracle. Thus, the Fallible oracle may in-
crease the classification error with more labeled data since
the labels are increasingly likely to be noisy. This pattern
is especially evident in Figure 4 for the cost ratio 1 : 7. On
the other hand, Joint strategy is quite effective for reducing
the error in this scenario, indicating that it is capable of re-
ducing the risk of introducing noisy data through strategic
selection between oracles.

We present the rest of the results in Table 3. Due to
space constraints, we selected a representative cost ratio for
each dataset. The values in bold correspond to the winning
methods. Joint wins frequently (i.e. 10 out of 16) and is a
close runner-up on the other cases.

Figures 5, 7 and 8 present the evaluation results when the
cost varies non-uniformly across the set of instances. We ex-
perimented with different assignments of the fixed cost, each
of which is a function of the average instance cost, denoted
avg, for the non-uniform cost oracle. We present two rep-
resentative assignments for each dataset: Costl:= avg/1.5
and Cost2:= avg/2. The remaining cost values are not in-
cluded since they are similar to those reported here. On the
Face and the Spambase datasets, Joint is the best performer
throughout the full operating range. Moreover, Joint pre-
dominantly outperforms the others on the VY-letter dataset.
The performance difference between Joint and each baseline
is also statistically significant based on a paired two-sided
t-test (p < 0.01). For the Adult dataset, both cost cases
performed equivalently; hence, there was no opportunity for
“Joint” to optimize further.

In order to investigate if the initial clustering phase helps
all the baselines, we re-ran each baseline excluding the clus-
tering step. In this case, there is no separate clustering
budget; hence, the entire budget is spent in rounds for data
elicitation. Figure 6 compares each baseline with the clus-
tering restriction on the Spambase dataset for Scenario 1.
Every baseline significantly benefits from clustering, with
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Table 3: Results on different datasets for two scenarios. Cost column shows the total cost spent to reach the
corresponding error rate. The best result on each row is given in bold.

Error Rate
Scenario Dataset & Cost Ratio Cost Joint Random Reliable Unreliable
60 0.195 0.294 0.347 0.188
. 120 0.179 0.275 0.261 0.192
Scenario 1 Face & 1:4 180 0.144 0201  0.163 0.178
240 0.119 0.137 0.118 0.168
70 0.250 0.294 0.468 0.343
Face & 1:5 130 0.233 0.298 0.298 0.271
’ 190 0.165 0.330 0.193 0.250
250 0.152 0.215 0.153 0.233
70 0.285 0.335 0.264 0.369
Scenario 2 . 120 0.243 0.328 0.289 0.373
Spambase & 1:7 170 0.185  0.311 0.279 0.357
220 0.151 0.281 0.262 0.337
70 0.334 0.386 0.302 0.363
130 0.309 0.358 0.295 0.362
Adult & 1:6 190 0.288 0.300 0.284 0.350
250 0.269 0.278 0.281 0.342
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Figure 5: Comparison of different algorithms under
non-uniform cost structures (Scenario 3) on Face. a)
(Top panel) Fixed-Cost oracle has Costl b) (Bottom
panel) Fixed-Cost oracle has Cost2.

the biggest boost in improvement occurring for the Reluc-
tant oracle. Hence, both the baselines and the “Joint” strat-
egy benefit from the diversity-based sampling via clustering
in their initial steps. Without pre-clustering, the Reluctant
oracle is prone to spend too much on a single elicitation at-
tempt due to unsuccessful labeling requests. It can, however,
maximize the chance of receiving a label through diversity
sampling during the clustering step instead of getting stuck
in one round for a single label.
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5. CONCLUSIONS

In this paper, we proposed proactive learning to over-
come the unrealistic assumptions of active learning. We
introduced three scenarios that analyze the effect of mul-
tiple imperfect oracles with differing properties and costs on
selective sampling. The proposed methods formulated in a
decision-theoretic framework rely on expected utility maxi-
mization across oracle-example pairs. The empirical results
demonstrate the effectiveness of this approach against ran-
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Figure 8: Comparison of different algorithms un-
der non-uniform cost structures (Scenario 3) on VY-
Letter. a) (Top panel) Fixed-Cost oracle has Costl
b) (Bottom panel) Fixed-Cost oracle has Cost2.

dom oracle selection and exploitation of a single oracle, even
the best one. This paper takes a step towards filling in a
gap between active learning and real-world tasks to make
active learning reach practical applications. As future work,
we will investigate relocating resources in scenarios with no
apriori information about oracle properties to optimize the
cost-benefit tradeoff.
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