Proactive Recovery in a Byzantine-Fault-Tolerant System

Miguel Castro and Barbara Liskov
Laboratory for Computer Science,
Massachusetts I nstitute of Technology,

545 Technology Square, Cambridge, MA 02139

{castro,|liskovi@cs.mt.edu

Abstract

Thispaper describes an asynchronous state-machinereplication
system that tolerates Byzantine faults, which can be caused
by malicious attacks or software errors. Our system is the
first to recover Byzantine-faulty replicas proactively and it
performs well because it uses symmetric rather than public-
key cryptography for authentication. The recovery mechanism
allows us to tolerate any number of faults over the lifetime of
the system provided fewer than 1/3 of the replicas become
faulty within a window of vulnerability that is small under
normal conditions. The window may increase under a denial-
of-service attack but we can detect and respond to such
attacks. The paper presents results of experiments showing
that overall performance is good and that even a small window
of vulnerability has little impact on service latency.

1 Introduction

This paper describes a new system for asynchronous
state-machine replication [17, 28] that offers both in-
tegrity and high availability in the presence of Byzan-
tine faults. Our system is interesting for two reasons:
it improves security by recovering replicas proactively,
and it is based on symmetric cryptography, which allows
it to perform well so that it can be used in practice to
implement real services.

Our system continuesto function correctly evenwhen
some replicas are compromised by an attacker; this
is worthwhile because the growing reliance on online
information servicesmakes maliciousattacksmorelikely
and their consequences more serious. The system also
survives nondeterministic software bugs and software
bugs due to aging (e.g., memory leaks). Our approach
improves on the usual technique of rebooting the system
becauseit refreshes state automatically, staggersrecovery
so that individual replicas are highly unlikely to fail
simultaneously, and has little impact on overall system
performance. Section 4.7 discusses the types of faults
tolerated by the system in more detail.

Because of recovery, our system can tolerate any
number of faultsover thelifetime of the system, provided
fewer than 1/3 of the replicas become faulty within

This research was supported by DARPA under contract F30602-98-1-
0237 monitored by the Air Force Research Laboratory.

a window of vulnerability. The best that could be
guaranteed previously was correct behavior if fewer
than 1/3 of the replicas failed during the lifetime of a
system. Our previouswork [6] guaranteed this and other
systems [26, 16] provided weaker guarantees. Limiting
the number of failures that can occur in a finite window
is a synchrony assumption but such an assumption is
unavoidable: since Byzantine-faulty replicas can discard
the service state, we must bound the number of failures
that can occur before recovery completes. But we
reguire no synchrony assumptionsto match the guarantee
provided by previoussystems. We compare our approach
with other work in Section 7.

The window of vulnerability can be small (e.g., a
few minutes) under normal conditions. Additionally, our
algorithm provides detection of denial-of-service attacks
aimed at increasing the window: replicas can time how
long a recovery takes and aert their administrator if it
exceeds some pre-established bound. Therefore, integrity
can be preserved even when there is a denial-of-service
attack.

The paper describes a number of new techniques
needed to solve the problems that arise when providing
recovery from Byzantine faults:

Proactive recovery. A Byzantine-faulty replica may
appear to behave properly even when broken; therefore
recovery must be proactive to prevent an attacker from
compromising the service by corrupting 1/3 of the
replicas without being detected. Our algorithm recovers
replicas periodically independent of any failure detection
mechanism. However a recovering replica may not
be faulty and recovery must not cause it to become
faulty, since otherwisethe number of faulty replicascould
exceed the bound required to provide safety. In fact, we
need to allow the replicato continue participating in the
reguest processing protocol while it is recovering, since
thisissometimesrequired for it to complete the recovery.
Fresh messages. An attacker must be prevented from
impersonating a replica that was faulty after it recovers.
This can happen if the attacker learns the keys used to
authenticate messages. Furthermore even if messages
are signed using a secure cryptographic co-processor,
an attacker might be able to authenticate bad messages
while it controls a faulty replica; these messages could
be replayed later to compromise safety. To solve this
problem, we define a notion of authentication freshness

and replicas reject messages that are not fresh. However,
this leads to a further problem, since replicas may be
unable to prove to a third party that some message they
received is authentic (because it may no longer be fresh).
All previous state-machine replication agorithms [26,
16], including the onewe described in [6], relied on such
proofs. Our current algorithm does not, and this has
the added advantage of enabling the use of symmetric
cryptography for authentication of all protocol messages.
This eliminates most use of public-key cryptography, the
major performance bottleneck in previous systems.
Efficient state transfer. State transfer is harder in the
presence of Byzantine faults and efficiency is crucial to
enable frequent recovery with little impact on perfor-
mance. To bring arecovering replicaup to date, the state
transfer mechanism checks the local copy of the state to
determinewhich portionsare both up-to-date and not cor-
rupt. Then, it must ensurethat any missing stateit obtains
from other replicasis correct. We have devel oped an effi-
cient hierarchical statetransfer mechanism based on hash
chaining and incremental cryptography [1]; the mecha-
nism tolerates Byzantine-faults and state modifications
whiletransfers arein progress.

Our algorithm has been implemented as a generic
program library with a simple interface. This library
can be used to provide Byzantine-fault-tolerant versions
of different services. The paper describes experiments
that compare the performance of areplicated NFSimple-
mented using the library with an unreplicated NFS. The
results show that the performance of the replicated sys-
tem without recovery is close to the performance of the
unreplicated system. They also show that it is possible
to recover replicas frequently to achieve a small window
of vulnerability in the normal case (2 to 10 minutes) with
little impact on service latency.

The rest of the paper is organized as follows. Sec-
tion 2 presents our system model and lists our assump-
tions; Section 3 states the properties provided by our al-
gorithm; and Section 4 describes the algorithm. Our im-
plementation is described in Section 5 and some perfor-
mance experiments are presented in Section 6. Section 7
discussesrelated work. Our conclusions are presented in
Section 8.

2 System Modd and Assumptions

We assume an asynchronous distributed system where
nodes are connected by a network. The network may
fail to deliver messages, delay them, duplicate them, or
deliver them out of order.

We use a Byzantine failure model, i.e., faulty nodes
may behave arbitrarily, subject only to the restrictions
mentioned below. We allow for a very strong adversary
that can coordinate faulty nodes, delay communication,
inject messagesinto the network, or delay correct nodesin
order to cause the most damage to the replicated service.
We do assume that the adversary cannot delay correct
nodes indefinitely.

We use cryptographic techniques to establish session
keys, authenti cate messages, and produce digests. Weuse

the SFS [21] implementation of aRabin-Williamspublic-
key cryptosystem with a 1024-bit modulus to establish
128-bit session keys. All messages are then authenti-
cated using message authentication codes (MACS) [2]
computed using these keys. Message digests are com-
puted using MD5 [27].

We assume that the adversary (and the faulty nodesit
controls) iscomputational ly bound so that (with very high
probability) it is unable to subvert these cryptographic
techniques. For example, the adversary cannot forge
signatures or MACs without knowing the corresponding
keys, or find two messages with the same digest. The
cryptographic techniqueswe use arethought to have these
properties.

Previous Byzantine-fault tol erant state-machinerepli-
cation systems [6, 26, 16] aso rely on the assumptions
described above. We require no additional assumptions
to match the guarantees provided by these systems, i.e.,
to provide safety if lessthan 1/3 of the replicas become
faulty during the lifetime of the system. To tolerate more
faults we need additional assumptions: we must mutu-
ally authenticate afaulty replicathat recoversto the other
replicas, and we need areliable mechanism to trigger pe-
riodic recoveries. These could be achieved by involving
system administrators in the recovery process, but such
an approach is impractical given our goal of recovering
replicas frequently. Instead, we rely on the following
assumptions:

Secure Cryptography. Eachreplicahasasecurecrypto-
graphic co-processor, e.g., aDallas SemiconductorsiBut-
ton, or the security chip in the motherboard of the IBM
PC 300PL. The co-processor stores the replica’s private
key, and can sign and decrypt messageswithout exposing
thiskey. It also containsatrue random number generator,
e.g., based on thermal noise, and acounter that never goes
backwards. This enables it to append random numbers
or the counter to messages it signs.

Read-Only Memory. Eachreplicastoresthe public keys
for other replicas in some memory that survives failures
without being corrupted (provided the attacker does not
have physical accesstothe machine). Thismemory could
be a portion of the flash BIOS. Most motherboards can
be configured such that it is necessary to have physical
access to the machine to modify the BIOS.

Watchdog Timer. Each replica has a watchdog timer
that periodically interrupts processing and hands control
to a recovery monitor, which is stored in the read-
only memory. For this mechanism to be effective, an
attacker should be unable to change the rate of watchdog
interrupts without physical access to the machine. Some
motherboards and extension cards offer the watchdog
timer functionality but allow the timer to be reset without
physical access to the machine. However, thisis easy to
fix by preventing write access to control registers unless
some jumper switch is closed.

Theseassumptionsarelikely to hold when the attacker
does not have physical access to the replicas, which we
expect to be the common case. When they fail we can
fall back on system administratorsto perform recovery.

Note that all previous proactive security algo-
rithms [24, 13, 14, 3, 10] assume the entire program run
by areplicaisin read-only memory so that it cannot be
modified by an attacker. Most also assume that there are
authenti cated channel s between the replicasthat continue
to work even after areplicarecoversfrom acompromise.
These assumptions would be sufficient to implement our
algorithm but they are less likely to hold in practice.
We only require a small monitor in read-only memory
and use the secure co-processorsto establish new session
keys between the replicas after arecovery.

The only work on proactive security that does not
assume authenticated channels is[3], but the best that
a replica can do when its private key is compromised
in their system is alert an administrator. Our secure
cryptography assumption enables automatic recovery
from most failures, and secure co-processors with the
propertieswerequirearenow readily available, e.g., IBM
is selling PCs with a cryptographic co-processor in the
motherboard at essentially no added cost.

We also assume clients have a secure co-processor;
this simplifiesthe key exchange protocol between clients
and replicas but it could be avoided by adding an extra
round to this protocol.

3 Algorithm Properties

Our algorithmisaform of state machinereplication [17,
28]: the service is modeled as a state machine that is
replicated across different nodes in a distributed system.
The agorithm can be used to implement any replicated
service with astate and some operations. The operations
are not restricted to simple reads and writes; they can
perform arbitrary computations.

The service is implemented by a set of replicas
R and each replica is identified using an integer in
{0, ...,|R| — 1}. Each replica maintains a copy of the
service state and implements the service operations. For
simplicity, we assume |R| = 3f + 1 where f is the
maximum number of replicasthat may befaulty. Service
clients and replicas are non-faulty if they follow the
algorithm and if no attacker can impersonate them (e.g.,
by forging their MACS).

Like al state machine replication techniques, we
impose two requirements on replicas: they must start
inthe same state, and they must be deterministic (i.e., the
execution of an operationin agiven state and with agiven
set of arguments must always produce the same result).
We can handle some common forms of non-determinism
using the technique we described in [6].

Our agorithm ensures safety for an execution pro-
vided at most f replicas become faulty within a window
of vulnerability of size T,,. Safety means that the repli-
cated service satisfies linearizability [12, 5]: it behaves
like a centralized implementation that executes opera-
tions atomically one at atime. Our agorithm provides
safety regardless of how many faulty clients are using
the service (even if they collude with faulty replicas).

We will discuss the window of vulnerability further in
Section 4.7.

The algorithm also guarantees liveness: non-faulty
clients eventually receive replies to their reguests pro-
vided (1) at most f replicas become faulty within the
window of vulnerability T;,; and (2) denial-of-service at-
tacksdo not last forever, i.e., thereis some unknown point
in the execution after which all messages are delivered
(possibly after being retransmitted) within some constant
time d, or al non-faulty clients have received replies to
their requests. Here, d is a constant that depends on the
timeout values used by the algorithm to refresh keys, and
trigger view-changes and recoveries.

4 Algorithm

The agorithm works as follows. Clients send requests
to execute operations to the replicas and all non-faulty
replicas execute the same operations in the same order.
Sincereplicasare deterministic and start inthe samestate,
al non-faulty replicas send replies with identical results
for each operation. Theclient waitsfor f + 1 repliesfrom
different replicas with the same result. Since at least one
of these replicasis not faulty, thisis the correct result of
the operation.

The hard problem is guaranteeing that all non-faulty
replicas agree on a total order for the execution of
requests despite failures. We use a primary-backup
mechanismto achievethis. Insuch amechanism, replicas
movethrough asuccession of configurationscalled views.
In aview one replicais the primary and the others are
backups. We choose the primary of a view to be replica
p such that p = v mod |R|, where v is the view number
and views are numbered consecutively.

The primary picks the ordering for execution of
operations requested by clients. It doesthis by assigning
asequence number to each request. But the primary may
be faulty. Therefore, the backups trigger view changes
when it appearsthat the primary hasfailed to select anew
primary. Viewstamped Replication [23] and Paxos [18]
use asimilar approach to tolerate benign faults.

To tolerate Byzantine faults, every step taken by a
node in our system is based on obtaining a certificate. A
certificateis a set of messages certifying some statement
iscorrect and coming from different replicas. Anexample
of a statement is: “the result of the operation requested
by aclientisr”.

Thesize of the set of messagesin acertificateiseither
f+lor2f + 1, depending on the type of statement and
step being taken. The correctness of our system depends
on a certificate never containing more than f messages
sent by faulty replicas. A certificate of size f + 1 is
sufficient to prove that the statement is correct because it
contains at least one message from a non-faulty replica.
A certificate of size 2f + 1 ensures that it will also be
possible to convince other replicas of the validity of the
statement even when f replicas are faulty.

Our earlier algorithm [6] used the same basic ideas
but it did not providerecovery. Recovery complicatesthe

construction of certificates; if areplicacollects messages
for a certificate over a sufficiently long period of time
it can end up with more than f messages from faulty
replicas. We avoid this problem by introducing a notion
of freshness; replicas reject messages that are not fresh.
But thisrai sesanother problem: theview change protocol
in[6] relied on the exchange of certificates between
replicas and this may be impossible because some of
the messages in a certificate may no longer be fresh.
Section 4.5 describes a new view change protocol that
solves this problem and aso eliminates the need for
expensive public-key cryptography.

To provide liveness with the new protocol, areplica
must be able to fetch missing state that may be held by
a single correct replica whose identity is not known. In
this case, voting cannot be used to ensure correctness of
the data being fetched and it is important to prevent a
faulty replica from causing the transfer of unnecessary
or corrupt data. Section 4.6 describes a mechanism to
obtain missing messages and state that addresses these
issues and that is efficient to enable frequent recoveries.

The sections below describe our algorithm. Sec-
tions 4.2 and 4.3, which explain normal-caserequest pro-
cessing, are similar to what appeared in [6]. They are
presented here for completeness and to highlight some
subtle changes.

4.1 Message Authentication

We use MACs to authenticate all messages. Thereis a
pair of session keysfor each pair of replicas< and j: k; ;
is used to compute MACs for messages sent from 4 to j,
and k;; is used for messages sent from j to.

Some messagesin the protocol containasingle MAC
computed using UMAC32 [2]; we denote such amessage
as (m),,,, where i isthe sender j is the receiver and the
MAC is computed using k; ;. Other messages contain
authenticators;, we denote such a message as (m);,
where i is the sender. An authenticator is a vector of
MACs, one per replicaj (j # 1), where the MAC in
entry j iscomputed using k; ;. Thereceiver of amessage
verifies its authenticity by checking the corresponding
MAC in the authenticator.

Replicas and clients refresh the session keys used
to send messages to them by sending new-key messages
periodicaly (e.g., every minute). Thesamemechanismis
used to establishtheinitial sessionkeys. Themessagehas
the form (NEW-KEY, 4, ..., {kj i}, .-, t)o; - The message
is signed by the secure co-processor (using the replica’s
private key) and ¢ is the value of its counter; the counter
is incremented by the co-processor and appended to
the message every time it generates a signature. (This
prevents suppress-replay attacks [11].) Each k;; is the
key replicaj should useto authenticate messagesit sends
to 4 in the future; k; ; is encrypted by j’s public key, so
that only j canread it. Replicas usetimestamp¢ to detect
spurious new-key messages: ¢ must be larger than the
timestamp of the last new-key message received from i.

Each replica shares a single secret key with each
client; this key is used for communication in both

directions. Thekey isrefreshed by theclient periodicaly,
using the new-key message. If aclient neglectsto do this
within some system-defined period, a replica discards
its current key for that client, which forces the client to
refresh the key.

When a replica or client sends a new-key message,
it discards all messages in its log that are not part of a
completecertificateand it rejectsany messagesit receives
in the future that are authenticated with old keys. This
ensures that correct nodes only accept certificates with
equally fresh messages, i.e., messages authenticated with
keys created in the same refreshment phase.

4.2 Processing Requests

We use a three-phase protocol to atomically multicast
requeststothereplicas. Thethreephasesarepre-prepare,
prepare, and commit. The pre-prepare and prepare phases
are used to totally order requests sent in the same view
even when the primary, which proposes the ordering
of requests, is faulty. The prepare and commit phases
are used to ensure that requests that commit are totally
ordered across views. Figure 1 shows the operation of
the algorithm in the normal case of no primary faults.

Client reguest ‘pre-prepareé prepare commit reply
Replica 0 \ //'(/’
Replica 1 /7 M

Replica 2 \ : :%E

apicas N \n NN

unkﬁown pre—prépared prebared comn:1itted

Figure 1: Norma Case Operation.
primary, and replica 3 is faulty

Replica 0 is the

Each replica stores the service state, alog containing
information about requests, and an integer denoting the
replica’s current view. The log records information
about the request associated with each sequence number,
including its status; the possibilities are: unknown (the
initial status), pre-prepared, prepared, and committed.
Figure 1 also showsthe evolution of the request status as
the protocol progresses. We describe how to truncate the
log in Section 4.3.

A client ¢ requests the execution of state machine
operation o by sending a (REQUEST, o, t, ¢),, Mmessage to
the primary. Timestamp ¢ is used to ensure exactly-once
semantics for the execution of client requests [6].

Whenthe primary p receivesarequest m fromaclient,
it assignsasequence number n tom. Thenit multicastsa
pre-prepare message with the assignment to the backups,
and marks m as pre-prepared with sequence number n.
Themessagehastheform ((PRE-PREPARE, v, 1, d) o, , M),
where v indicatesthe view in which the messageisbeing
sent, and d ism’s digest.

Like pre-prepares, the prepare and commit messages

sent in the other phases also contain n and v. A replica
only acceptsone of these messagesif itisinview v; it can
verify the authenticity of the message; and n is between
a low water mark, h, and a high water mark, H. The
last condition is necessary to enable garbage collection
and prevent a faulty primary from exhausting the space
of sequence numbers by selecting a very large one. We
discusshow H and h advancein Section 4.3.

A backup i accepts the pre-prepare message provided
(inaddition to the conditionsabove): it hasnot accepted a
pre-preparefor view v and sequence number n containing
adifferent digest; it can verify the authenticity of m; and
dism’sdigest. If 7 accepts the pre-prepare, it marks m
as pre-prepared with sequence number n, and enters the
prepare phase by multicasting a {PREPARE, v, n,d, %) q;
message to all other replicas.

When replica ¢ has accepted a certificate with a
pre-prepare message and 2f prepare messages for the
same sequence number n and digest d (each from a
different replicaincluding itself), it marksthe message as
prepared. The protocol guarantees that other non-faulty
replicas will either prepare the same request or will not
prepare any regquest with sequence number n in view v.

Replica : multicasts (COMMIT, v, n,d, 1), Saying it
prepared the request. This starts the commit phase.
When a replica has accepted a certificate with 2f + 1
commit messages for the same sequence number n and
digest d from different replicas (including itself), it marks
the request as committed. The protocol guarantees that
the request is prepared with sequence number n in view
v a f + 1 or more non-faulty replicas. This ensures
information about committed requests is propagated to
new views.

Replica i executes the operation requested by the
client when m is committed with sequence number n and
the replica has executed all requests with lower sequence
numbers. Thisensuresthat all non-faulty replicasexecute
requests in the same order as required to provide safety.

After executing the requested operation, replicas
send a reply to the client ¢. The reply has the form
(REPLY, ,t,¢,1,7),,, Where t is the timestamp of the
corresponding request, i isthereplicanumber, and r isthe
result of executing the requested operation. Thismessage
includes the current view number v so that clients can
track the current primary.

The client waits for a certificate with f + 1 replies
from different replicas and with the same ¢t and r, before
accepting the result ». This certificate ensures that the
result isvalid. If the client does not receive replies soon
enough, it broadcasts the request to all replicas. If the
request is not executed, the primary will eventualy be
suspected to be faulty by enough replicasto cause aview
change and select a new primary.

4.3 Garbage Collection

Replicas can discard entries from their log once the
corresponding requests have been executed by at least
f + 1 non-faulty replicas; this many replicas are needed

to ensure that the execution of that request will be known
after aview change.

We can determine this condition by extra communi-
cation, but to reduce cost we do the communication only
when arequest with asequence number divisibleby some
constant K (e.g., K = 128) isexecuted. We will refer to
the states produced by the execution of these requests as
checkpaints.

When replica i produces a checkpoint, it multicasts
a (CHECKPOINT, n, d, 1) o, message to the other replicas,
wheren isthe sequence number of the last request whose
execution is reflected in the state and d is the digest of
the state. A replica maintains several logical copies of
the service state: the current state and some previous
checkpoints. Section 4.6 describes how we manage
checkpoints efficiently.

Each replicawaits until it has a certificate containing
2f + 1 valid checkpoint messagesfor sequence number n
withthesamedigest d sent by different replicas(including
possibly its own message). At this point, the checkpoint
is said to be stable and the replica discards all entriesin
its log with sequence numbers less than or equal to n; it
also discardsall earlier checkpoints.

The checkpoint protocol is used to advance the low
and high water marks (which limit what messages will
be added to the log). The low-water mark A is equal to
the sequence number of the last stable checkpoint and the
high water mark is H = h + L, where L isthelog size.
The log size is obtained by multiplying K by a small
constant factor (e.g., 2) that is big enough so that replicas
do not stall waiting for a checkpoint to become stable.

4.4 Recovery

The recovery protocol makes faulty replicas behave
correctly again to alow the system to tolerate more than
f faults over its lifetime. To achieve this, the protocol
ensures that after a replica recoversit is running correct
code; it cannot beimpersonated by an attacker; and it has
correct, up-to-date state.

Reboot. Recovery is proactive — it starts periodically
when the watchdog timer goes off. Therecovery monitor
saves the replica’s state (the log and the service state)
to disk. Then it reboots the system with correct code
and restarts the replica from the saved state. The
correctness of the operating system and service code is
ensured by storing them in aread-only medium (e.g., the
Seagate Cheetah 18LP disk can be write protected by
physically closing a jumper switch). Rebooting restores
the operating system data structures and removes any
Trojan horses.

After this point, the replica’s code is correct and it
did not lose its state. The replica must retain its state
and use it to process requests even whileit is recovering.
This is vital to ensure both safety and liveness in the
common case when the recovering replicais not faulty;
otherwise, recovery could cause the f + 1st fault. But
if the recovering replica was faulty, the state may be
corrupt and the attacker may forge messages because it

knowsthe MAC keys used to authenticate both incoming
and outgoing messages. Therest of the recovery protocol
solves these problems.

The recovering replicas starts by discarding the keys
it shareswith clientsand it multicasts a new-key message
to change the keys it uses to authenticate messages sent
by the other replicas. This is important if ¢ was faulty
because otherwisethe attacker could prevent asuccessful
recovery by impersonating any client or replica
Run estimation protocol. Next, i runsasimple protocol
to estimate an upper bound, H s, on the high-water mark
that it would haveinitslogif it werenot faulty. It discards
any entries with greater sequence numbers to bound the
sequence number of corrupt entriesin the log.

Estimation works as follows: 4 multicasts a
(QUERY-STABLE, 1,), Messageto al the other replicas,
where r isarandom nonce. When replica j receivesthis
message, it replies (REPLY-STABLE, ¢, p, 1,) ,;, , Where c
and p are the sequence numbers of the last checkpoint
and the last request prepared at j respectively. i keeps
retransmitting the query message and processing replies;
it keeps the minimum value of ¢ and the maximum value
of p it received from each replica. It also keeps its own
values of ¢ and p.

The recovering replica uses the responses to select
Hps asfollows. Hyr = L + cpr where L isthe log size
and ¢,y isavalue c received from replica j such that 2f
replicas other than j reported values for ¢ less than or
equal to cpr and f replicas other than j reported values
of p greater than or equal to ¢y,

For safety, cpy must be greater than any stable
checkpoint so that 4 will not discard log entries when
it is not faulty. Thisis insured because if a checkpoint
is stable it will have been created by at least f + 1 non-
faulty replicas and it will have a sequence number less
than or equal to any value of ¢ that they propose. The
test against p ensures that cjs is close to a checkpoint
at some non-faulty replica since at least one non-faulty
replica reports a p not less than cys; this is important
because it prevents a faulty replica from prolonging i’'s
recovery. Estimation is live because there are 2f + 1
non-faulty replicas and they only propose a value of ¢
if the corresponding request committed and that implies
that it prepared at at least f + 1 correct replicas.

After this point ¢ participates in the protocol as if it
were not recovering but it will not send any messages
above H)s until it has a correct stable checkpoint with
seguence number greater than or equal to Hy.

Send recovery request. Next 7 sends a recovery request
with the form: (REQUEST, (RECOVERY, Hps),t, %), -
This message is produced by the cryptographic co-
processor and ¢ is the co-processor’s counter to prevent
replays. The other replicasreject the request if it isare-
play or if they accepted arecovery request from recently
(where recently can be defined as half of the watchdog
period). Thisisimportant to prevent a denial-of-service
attack where non-faulty replicas are kept busy executing
recovery requests.

Therecovery request istreated like any other request:
it is assigned a sequence number ng and it goes through
the usual three phases. But when another replicaexecutes
the recovery request, it sends its own new-key message.
Replicas also send a new-key message when they fetch
missing state (see Section 4.6) and determine that it
reflects the execution of a new recovery request. Thisis
important because these keys are known to the attacker if
therecovering replicawasfaulty. By changing thesekeys,
we bound the sequence number of messages forged by
the attacker that may be accepted by the other replicas —
they are guaranteed not to accept forged messages with
sequence humbers greater than the maximum high water
mark in the log when the recovery request executes, i.e.,
HR = I_’I’LR/KJ x K+ L.

The reply to the recovery request includes the se-

guence number ngr. Replica i uses the same protocol
as the client to collect the correct reply to its recovery
request but waitsfor 2f 4+ 1 replies. Then it computesits
recovery point, H = maxz(Hpr, Hg). It aso computes
avalid view (see Section 4.5); it retains its current view
if thereare f + 1 repliesfor views greater than or equal
to it, else it changes to the median of the views in the
replies.
Check and fetch state. While i is recovering, it uses
the state transfer mechanism discussed in Section 4.6 to
determine what pages of the state are corrupt and to fetch
pages that are out-of-date or corrupt.

Replica 7 is recovered when the checkpoint with
sequence number H is stable. This ensures that any
state other replicas relied on 4 to have is actually held
by f + 1 non-faulty replicas. Therefore if some other
replica fails now, we can be sure the state of the system
will not be lost. This is true because the estimation
procedure run at the beginning of recovery ensures that
whilerecovering i never sendsbad messagesfor sequence
numbers above the recovery point. Furthermore, the
recovery request ensures that other replicas will not
accept forged messages with sequence numbers greater
than H.

Our protocol has the nice property that any replica
knowsthat 7 has completed its recovery when checkpoint
H isstable. Thisalowsreplicasto estimate the duration
of ’srecovery, which isuseful to detect denial-of-service
attacks that slow down recovery with low false positives.

45 View Change Protocol

The view change protocol provides liveness by allowing
the system to make progress when the current primary
fails. The protocol must preserve safety: it must ensure
that non-faulty replicas agree on the sequence numbers
of committed requests across views. In addition, the
protocol must provide liveness. it must ensure that non-
faulty replicas stay in the same view long enough for the
system to make progress, even in the face of a denial-of-
service attack.

The new view change protocol uses the techniques
described in [6] to address liveness but uses a different
approach to preserve safety. Our earlier approach relied

on certificates that were valid indefinitely. In the new
protocol, however, the fact that messages can become
stale means that a replica cannot prove the validity of a
certificate to others. Instead the new protocol relies on
the group of replicasto validate each statement that some
replica claims has a certificate. The rest of this section
describes the new protocol.

Datastructures. Replicasrecord information about what
happenedin earlier views. Thisinformationismaintained
in two sets, the PSet and the QSet. A replica also
stores the requests corresponding to the entries in these
sets. These sets only contain information for sequence
numbers between the current low and high water marks
inthelog; therefore only limited storageisrequired. The
sets alow the view change protocol to work properly
even when more than one view change occurs before the
system is able to continue normal operation; the sets are
usually empty while the system is running normally.

ThePSet at replicas storesinformation about requests
that have prepared at 4 in previous views. Its entries
are tuples (n, d,v) meaning that a request with digest d
prepared at ¢ with number n in view v and no request
prepared at 7 in alater view.

The QSet stores information about requests that have
pre-prepared at i in previous views (i.e., requests for
which 4 has sent a pre-prepare or prepare message). Its
entries are tuples (n, {..., (dg, vx), -..}) meaning that for
each k, vy is the latest view in which a request pre-
prepared with sequence number . and digest dy, at 4.

View-change messages. View changes are triggered
when the current primary is suspected to be faulty (e.g.,
when a request from a client is not executed after some
period of time; see [6] for details). When a backup i
suspectsthe primary for view v isfaulty, it entersview v+
1 and multicastsa (VIEW-CHANGE, v+ 1,1s,C, P, Q,)4,
message to all replicas. Herels is the sequence number
of the latest stable checkpoint known to ¢; C is a set
of pairs with the sequence number and digest of each
checkpoint stored at 4; and P and Q are sets containing
atuplefor every request that is prepared or pre-prepared,
respectively, at . These sets are computed using the
information in the log, the PSet, and the QSet, as
explained in Figure 2. Once the view-change message
has been sent, i stores P in PSet, Q in QSet, and clears
itslog. The computation bounds the size of each tuplein
QSet; it retainsonly pairs corresponding to f + 2 distinct
requests (corresponding to possibly f messages from
faulty replicas, one message from a good replica, and
one specia null message as explained below). Therefore
the amount of storage used is bounded.

View-change-ack messages. Replicas collect view-
change messagesfor v+ 1 and send acknowledgmentsfor
themtov+1'sprimary, p. Theacknowledgmentshavethe
form (VIEW-CHANGE-ACK, v + 1,1, j, d) .., Wherei isthe
identifier of the sender, d isthe digest of the view-change
message being acknowledged, and j is the replica that
sent that view-change message. These acknowledgments
allow the primary to prove authenticity of view-change
messages sent by faulty replicas as explained later.

let v be the view before the view change, L be the size of
the log, and h be the log's low water mark

foral nsuchthaa h < n < h+ L do
if request number n with digest d is prepared or
committed in view v then
add (n,d,v) to P
elseif 3 (n,d’,v') € PSetthen
add (n,d’,v') to P
if request number n with digest d is pre-prepared,
prepared or committed in view v then
if =3 (n,D) € QSet then
add (n,{{(d,v)}) to Q
elseif 3 (d,v') € D then
add (n, D U {(d,v)} — {(d,v")}) to Q
elseif [D| > f+ 1 then
remove entry with lowest view number from D
add (n,D U {{(d,v)})to Q
eseif 3 (n,D) € QSet then
add (n,D) to Q

Figure 2: Computing P and Q

New-view message construction. The new primary
p collects view-change and view-change-ack messages
(including messages from itself). It stores view-change
messages in a set S. It adds a view-change message
received from replicas to S after receiving 2f — 1 view-
change-acks for i’s view-change message from other
replicas. Each entry in S isfor adifferent replica

let D={({n,d) | 32f+1messagesm € S: m.s < n
A3 f+1messagesm € S:(n,d) € m.C}

if 3(h,d) € D: V{(n',d) € D: n' < hthen

select checkpoint with digest d and humber h

else exit

foral nsuchthaa h < n < h+ L do
A if 3m € Swith (n,d,v) € m. P that verifies:
A1l32f +1messagesm’' € S:
m'ls < n A m'. P hasnoentry forn or
A(n,d,v'Ye m' . P:v< vV (vV=vAd=4d
A23 f+1messagesm’ € S:
A (n,{., {dv),. e m. . Q:v>v Ad=d
A3. the primary has the request with digest d
then select the request with digest d for number n

B. dseif 3 2f + 1 messagesm € &S such that
m.ds < n A m.P hasno entry for n
then select the null request for number n

Figure 3: Decision procedure at the primary.

The new primary uses the information in S and the
decision procedure sketched in Figure 3 to choose a
checkpoint and a set of requests. This procedure runs
each time the primary receives new information, e.g.,
when it adds a new messageto S.

The primary starts by selecting the checkpoint that is
going to be the starting state for request processing in
the new view. It picks the checkpoint with the highest
number A from the set of checkpoints that are known
to be correct and that have numbers higher than the low

water mark inthelog of at least f + 1 non-faulty replicas.
The last condition is necessary for safety; it ensures that
the ordering information for requeststhat committed with
numbers higher than A is still available.

Next, the primary selects a request to pre-prepare in
the new view for each sequence number between h and
h + L (where L isthe size of thelog). For each humber
n that was assigned to some request m that committed
in a previous view, the decision procedure selects m to
pre-prepare in the new view with the same number. This
ensures safety because no distinct request can commit
with that number in the new view. For other numbers, the
primary may pre-prepare a request that was in progress
but had not yet committed, or it might select a special
null request that goes through the protocol as a regular
request but whose execution is a no-op.

We now argue informally that this procedure will
select the correct value for each sequence number. If
a request m committed at some non-faulty replica with
number n, it prepared at at least f + 1 non-faulty replicas
and the view-change messages sent by those replicaswill
indicate that m prepared with number n. Any set of at
least 2f + 1 view-change messagesfor the new view must
include amessagefrom one of the non-faulty replicasthat
prepared m. Therefore, the primary for the new view
will be unable to select a different request for number n
because no other request will be ableto satisfy conditions
Alor B (inFigure 3).

The primary will also be able to make the right de-
cision eventually: condition A1 will be satisfied because
thereare 2f + 1 non-faulty replicas and non-faulty repli-
cas never prepare different requests for the same view
and sequence number; A2 isalso satisfied since arequest
that prepares at a non-faulty replica pre-prepares at at
least f + 1 non-faulty replicas. Condition A3 may not be
satisfied initially, but the primary will eventually receive
therequest in aresponseto its status messages (di scussed
in Section 4.6). When amissing request arrives, thiswill
trigger the decision procedureto run.

Thedecision procedureendswhen the primary has se-

lected arequest for each number. ThistakesO(L x |R|%)
local stepsin the worst case but the normal case is much
faster because most replicas proposeidentical values. Af-
ter deciding, the primary multicasts a new-view message
to the other replicas with its decision. The new-view
message has the form (NEw-VIEW, v + 1, V, X),,. Here,
Y contains a pair for each entry in S consisting of the
identifier of the sending replicaand the digest of itsview-
change message, and X identifies the checkpoint and
request val ues selected.
New-view message processing. The primary updatesits
state to reflect the information in the new-view message.
It recordsall requestsin X' as pre-preparedin view v + 1
initslog. If it doesnot have the checkpoint with sequence
number A it alsoinitiatesthe protocol to fetch the missing
state (see Section 4.6.2). Inany casethe primary does not
accept any prepare or commit messages with sequence
number less than or equal to A and does not send any
pre-prepare message with such a sequence number.

Thebackupsfor view v+ 1 collect messagesuntil they
have a correct new-view message and a correct matching
view-change message for each pair in V. If some replica
changesits keysin the middle of aview change, it hasto
discard all the view-change protocol messagesit already
received with the old keys. The message retransmission
mechanism causes the other replicas to re-send these
messages using the new keys.

If a backup did not receive one of the view-change
messages for some replica with a pair in V, the primary
alone may be unableto provethat the messageit received
is authentic because it is not signed. The use of view-
change-ack messages solves this problem. The primary
only includesapair for aview-changemessagein S after
it collects 2f — 1 matching view-change-ack messages
from other replicas. Thisensuresthat at least f + 1 non-
faulty replicas can vouch for the authenticity of every
view-change message whose digest isin V. Therefore, if
the original sender of aview-changeisuncooperative, the
primary retransmits that sender’s view-change message
and the non-faulty backupsretransmit their view-change-
acks. A backup can accept aview-changemessagewhose
authenticator is incorrect if it receives f view-change-
acks that match the digest and identifier in .

After obtaining the new-view message and the match-
ing view-change messages, the backups check whether
these messages support the decisions reported by the pri-
mary by carrying out the decision procedurein Figure 3.
If they do not, the replicas move immediately to view
v + 2. Otherwise, they modify their state to account for
the new information in away similar to the primary. The
only difference is that they multicast a prepare message
for v 4+ 1 for each request they mark as pre-prepared.
Thereafter, the protocol proceeds as described in Sec-
tion 4.2.

The replicas use the status mechanism in Section 4.6
to request retransmission of missing reguests as well
as missing view-change, view-change acknowledgment,
and new-view messages.

4.6 Obtaining Missing Information

This section describes the mechanisms for message
retransmission and state transfer. The state transfer
mechanism is necessary to bring replicas up to date when
some of the messages they are missing were garbage
collected.

4.6.1 Message Retransmission

We use a receiver-based recovery mechanism similar to
SRM [8]: areplica ¢ multicasts small status messages
that summarize its state; when other replicas receive a
status message they retransmit messages they have sent
in the past that 7 is missing. Status messages are sent
periodically and when thereplicadetectsthat it ismissing
information (i.e., they also function as negative acks).

If areplicaj isunableto validate a status message, it
sends its last new-key message to ¢. Otherwise, j sends
messages it sent in the past that 4+ may be missing. For

example, if 7 isin a view less than j's, j sends i its
latest view-change message. In all cases, j authenticates
messages it retransmits with the latest keysit received in
a new-key message from i. Thisis important to ensure
liveness with frequent key changes.

Clients retransmit requests to replicas until they re-
ceive enough replies. They measure response times to
compute the retransmission timeout and use a random-
ized exponential backoff if they fail to receive a reply
within the computed timeout.

4.6.2 State Transfer

A replica may learn about a stable checkpoint beyond
the high water mark in its log by receiving checkpoint
messages or astheresult of aview change. Inthiscase, it
uses the state transfer mechanism to fetch modifications
to the service state that it is missing.

It is important for the state transfer mechanism to
be efficient because it is used to bring a replica up to
date during recovery, and we perform proactive recover-
iesfrequently. The key issuesto achieving efficiency are
reducing the amount of information transferred and re-
ducing the burden imposed on replicas. This mechanism
must also ensure that the transferred state is correct. We
start by describing our data structures and then explain
how they are used by the state transfer mechanism.

Data Structures. We use hierarchical state partitions
to reduce the amount of information transferred. The
root partition corresponds to the entire service state
and each non-leaf partition is divided into s equal-
sized, contiguous sub-partitions. We call leaf partitions
pages and interior partitions meta-data. For example,
the experiments described in Section 6 were run with a
hierarchy withfour levels, s equal to 256, and 4K B pages.

Each replica maintains one logical copy of the parti-
tion tree for each checkpoint. The copy is created when
the checkpoint is taken and it is discarded when a later
checkpoint becomes stable. The tree for a checkpoint
stores a tuple (Im, d) for each meta-data partition and a
tuple {Im, d, p) for each page. Here, Im is the sequence
number of the checkpoint at the end of thelast checkpoint
interval where the partition was modified, d is the digest
of the partition, and p is the value of the page.

The digests are computed efficiently as follows. For
a page, d is obtained by applying the MD5 hash func-
tion [27] to the string obtained by concatenating the in-
dex of the page within the state, its value of Im and p.
For meta-data, d is obtained by applying MD5 to the
string obtained by concatenating the index of the parti-
tionwithinitslevel, itsvalueof im, and thesum moduloa
largeinteger of the digests of its sub-partitions. Thus, we
apply AdHash [1] at each meta-datalevel. Thisconstruc-
tion has the advantage that the digests for a checkpoint
can be obtained efficiently by updating the digests from
the previous checkpoint incrementally.

The copies of the partition tree are logical because
we use copy-on-write so that only copies of the tuples
modified since the checkpoint was taken are stored. This

reduces the space and time overheads for maintaining
these checkpoints significantly.
Fetching State. The strategy to fetch state is to recurse
down the hierarchy to determine which partitions are out
of date. This reduces the amount of information about
(both non-leaf and | eaf) partitionsthat needsto befetched.
A replica¢ multicasts (FETCH, , z,lc, c, k, 1), to dll
replicasto obtain information for the partition with index
z inlevel [of the tree. Here, lc is the sequence number
of the last checkpoint 7 knows for the partition, and c is
either -1 or it specifies that 7 is seeking the value of the
partition at sequence number ¢ from replica k.

When areplicas determines that it needs to initiate
a state transfer, it multicasts a fetch message for the root
partition with lc equal to its last checkpoint. The value
of ¢ is non-zero when 1 knows the correct digest of the
partition information at checkpoint ¢, e.g., after a view
change completes 7 knows the digest of the checkpoint
that propagated to the new view but might not haveit. i
also creates a new (logical) copy of the tree to store the
stateit fetchesandinitializesatable LC inwhichit stores
the number of the latest checkpoint reflected in the state
of each partition in the new tree. Initially each entry in
the table will contain lc.

If (FETCH, I, z,lc,c, k,1)q, IS received by the desig-
nated replier, k, and it has a checkpoint for sequence
number ¢, it sends back (META-DATA, ¢, I, z, P, k), where
P isaset with atuple (z',Im, d) for each sub-partition
of (I,z) with index z', digest d, and Im > lc. Sincei
knows the correct digest for the partition value at check-
point ¢, it can verify the correctness of the reply without
the need for voting or even authentication. This reduces
the burden imposed on other replicas.

The other replicas only reply to the fetch message if
they have a stable checkpoint greater thanIc and c. Their
replies are similar to k’'s except that ¢ is replaced by
the sequence number of their stable checkpoint and the
message contains a MAC. These replies are necessary
to guarantee progress when replicas have discarded a
specific checkpoint requested by i.

Replica i retransmits the fetch message (choosing a
different & each time) until it receives avalid reply from
somek or f+1equally fresh responseswith the same sub-
partition val uesfor the same sequence number cp (greater
thanlcandc). Then, it comparesits digestsfor each sub-
partition of (I, z) with thosein thefetched information; it
multi casts afetch message for sub-partitionswhere there
is a difference, and sets the value in LC to ¢ (or cp) for
the sub-partitions that are up to date. Since ¢ learns the
correct digest of each sub-partition at checkpoint ¢ (or
¢p) it can use the optimized protocol to fetch them.

The protocol recurses down the tree until 7 sends
fetch messages for out-of-date pages. Pages are fetched
like other partitions except that meta-datareplies contain
the digest and last modification sequence number for the
pagerather than sub-partitions, and the designated replier
sends back (DATA, z, p). Here, z isthe page index and p
is the page value. The protocol imposes little overhead
on other replicas; only one replica replies with the full

page and it does not even need to compute a MAC for
the message since s can verify the reply using the digest
it already knows.

When i obtains the new value for a page, it updates
the state of the page, its digest, the value of thelast modi-
fication sequence number, and the val ue corresponding to
the pagein LC. Then, the protocol goes up to its parent
and fetches another missing sibling. After fetching all
the siblings, it checksif the parent partition is consistent.
A partition is consistent up to sequence number c if ¢
is the minimum of al the sequence numbersin LC for
its sub-partitions, and ¢ is greater than or equal to the
maximum of the last modification sequence numbersin
its sub-partitions. If the parent partition isnot consistent,
the protocol sends another fetch for the partition. Other-
wise, the protocol goes up again to its parent and fetches
missing siblings.

The protocol ends when it visits the root partition
and determines that it is consistent for some sequence
number c. Then the replica can start processing requests
with sequence numbers greater than c.

Since statetransfer happens concurrently with request
execution at other replicas and other replicas are free to
garbage collect checkpoints, it may take sometime for a
replicato complete the protocol, e.g., each timeit fetches
a missing partition, it receives information about yet a
later modification. This is unlikely to be a problem in
practice (this intuition is confirmed by our experimental
results). Furthermore, if thereplicafetching the state ever
is actually needed because others have failed, the system
will wait for it to catch up.

4.7 Discussion

Our system ensures safety and liveness for an execution
7 provided at most f replicas become faulty within a
window of vulnerability of size T, = 2T} + T,. The
values of T}, and T, are characteristic of each execution
7 and unknown to the algorithm. T}, is the maximum
key refreshment period in 7 for anon-faulty node, and 7',
is the maximum time between when a replica fails and
when it recoversfrom that fault in 7.

The message authentication mechanism from Sec-
tion 4.1 ensures non-faulty nodes only accept certificates
with messages generated within an interval of size at
most 2T%.1 The bound on the number of faults within
T, ensures there are never more than f faulty replicas
within any interval of size at most 27}. Therefore, safety
and liveness are provided because non-faulty nodes never
accept certificates with more than f bad messages.

We have little control over the value of T, because
T, may be increased by a denial-of-service attack, but
we have good control over T}, and the maximum time
between watchdog timeouts, T.,, because their values
are determined by timer rates, which are quite stable.
Setting these timeout values involves a tradeoff between

1t would be T}, except that during view changesreplicas may accept
messages that are claimed authentic by f + 1 replicas without directly
checking their authentication token.

security and performance: small valuesimprove security
by reducing the window of vulnerability but degrade
performance by causing more frequent recoveries and
key changes. Section 6 analyzes this tradeoff.

The value of T, should be set based on R,,, thetime
it takesto recover a non-faulty replicaunder normal load
conditions. There is no point in recovering a replica
when its previous recovery has not yet finished; and we
stagger the recoveries so that no more than f replicas
are recovering at once, since otherwise service could be
interrupted even without an attack. Therefore, we set
T, = 4 x s x R,,. Here, the factor 4 accounts for the
staggered recovery of 3f + 1replicas f at atime, and s is
a safety factor to account for benign overload conditions
(i.e., no attack).

Another issueisthe bound f on the number of faults.
Our replication techniqueis not useful if thereisastrong
positive correlation between the failure probabilities of
the replicas; the probability of exceeding the bound may
not be lower than the probability of asingle fault in this
case. Therefore, it isimportant to take steps to increase
diversity. One possibility isto have diversity in the exe-
cution environment: the replicas can be administered by
different people; they can bein different geographicloca-
tions; and they can havedifferent configurations(e.g., run
different combinationsof services, or run schedulerswith
different parameters). Thisimprovesresilienceto several
types of faults, for example, attacks involving physical
access to the replicas, administrator attacks or mistakes,
attacks that exploit weaknesses in other services, and
software bugs due to race conditions. Another possibil-
ity isto have softwarediversity; replicas can run different
operating systems and different implementations of the
service code. There are several independent implemen-
tationsavailablefor operating systems and important ser-
vices (e.g. file systems, data bases, and WWW servers).
Thisimprovesresilienceto software bugs and attacksthat
exploit software bugs.

Even without taking any steps to increase diversity,
our proactive recovery technique increases resilience to
nondeterministic software bugs, to software bugs due
to aging (e.g., memory leaks), and to attacks that take
more time than T, to succeed. It is possible to improve
security further by exploiting software diversity across
recoveries. One possibility is to restrict the service
interface at areplica after its state is found to be corrupt.
Another potential approach is to use obfuscation and
randomizationtechniques [7, 9] to produceanew version
of the software each time areplica is recovered. These
techniques are not very resilient to attacks but they can
be very effective when combined with proactiverecovery
because the attacker has a bounded time to break them.

5 Implementation

We implemented the algorithm as a library with a very
simpleinterface (see Figure 4). Some components of the
library run on clients and others at the replicas.

On the client side, the library provides a procedure

Client:
int Byz_init_client(char xconf);
int Byz_invoke(Byz_req xreq, Byz_rep xrep, bool read_only);

Server:

int Byz_init_replica(char xconf, char xmem, int size, UC exec);

void Byz_-modify(char *xmod, int size);

Server upcall:
int execute(Byz-req *req, Byz_rep *rep, int client);

Figure 4: Thereplication library API.

to initialize the client using a configuration file, which
contains the public keys and | P addresses of the replicas.
The library also provides a procedure, invoke, that is
caled to cause an operation to be executed. This
procedure carries out the client side of the protocol and
returns the result when enough replicas have responded.

On the server side, we provide an initialization
procedure that takes as arguments a configuration file
with the public keys and IP addresses of replicas and
clients, the region of memory where the application state
is stored, and a procedure to execute requests. When
our system needs to execute an operation, it makes an
upcall to the execute procedure. This procedure carries
out the operation as specified for the application, using
the application state. As the application performs the
operation, each timeit is about to modify the application
state, it calls the modify procedure to inform us of the
locations about to be modified. This call alows us to
maintain checkpoints and compute digests efficiently as
described in Section 4.6.2.

6 Performance Evaluation

This section has two parts. Firgt, it presents results of
experimentsto evaluate the benefit of eliminating public-
key cryptography fromthe critical path. Then, it presents
an analysis of the cost of proactive recoveries.

6.1 Experimental Setup

All experiments ran with four replicas. Four replicas can
tolerate one Byzantine fault; we expect this reliability
level to suffice for most applications. Clients and
replicas ran on Dell Precision 410 workstations with
Linux 2.2.16-3 (uniprocessor). These workstations have
a 600 MHz Pentium 111 processor, 512 MB of memory,
and a Quantum Atlas 10K 18WLS disk. All machines
were connected by a 100 Mb/s switched Ethernet and
had 3Com 3C905B interface cards. The switch was an
Extreme Networks Summit48V4.1. The experimentsran
on an isolated network.

The interval between checkpoints, K, was 128 re-
quests, which causes garbage collection to occur severa
times in each experiment. The size of the log, L, was
256. The state partition tree had 4 levels, each interna
node had 256 children, and the leaves had 4 KB.

6.2 Thecost of Public-Key Cryptography

To evaluate the benefit of using MACs instead of public
key signatures, we implemented BFT-PK. Our previous
algorithm [6] relies on the extra power of digital sig-
natures to authenticate pre-prepare, prepare, checkpoint,
and view-change messages but it can be easily modified
to use MACs to authenticate other messages. To provide
afair comparison, BFT-PK isidentical tothe BFT library
but it usespublic-key signaturesto authenticatethese four
types of messages. We ran amicro benchmark, and afile
system benchmark to compare the performance of ser-
vicesimplemented with the two libraries. Therewere no
view changes, recoveriesor key changes in these experi-
ments.

6.2.1 Micro-Benchmark

The micro-benchmark compares the performance of two
implementations of asimpleservice: oneimplementation
uses BFT-PK and the other uses BFT. This service has
no state and its operations have arguments and results of
different sizes but they do nothing. We also evaluated
the performance of NO-REP: an implementation of
the service using UDP with no replication. We ran
experiments to evaluate the latency and throughput of
the service. The comparison with NO-REP shows the
worst case overhead for our library; in real services, the
relative overhead will belower dueto computation or 1/0
at the clients and servers.

Table 1 reports the latency to invoke an operation
whentheserviceisaccessed by asingleclient. Theresults
were obtained by timing a large number of invocations
in three separate runs. We report the average of the three
runs. The standard deviations were always below 0.5%
of the reported value.

system 0/0 0/4 4/0
BFT-PK | 59368 | 59761 | 59805
BFT 431 999 1046
NO-REP | 106 625 630

Table 1. Micro-benchmark: operation latency in mi-
croseconds. Each operationtypeisdenoted by a/b, where
aand b are the sizes of the argument and result in KB.

BFT-PK has two signatures in the critical path and
each of them takes 29.4 ms to compute. The agorithm
described in this paper eliminates the need for these
signatures. As a result, BFT is between 57 and 138
timesfaster than BFT-PK. BFT'slatency is between 60%
and 307% higher than NO-REP because of additional
communication and computation overhead. For read-
only requests, BFT usesthe optimization described in [6]
that reduces the slowdown for operations 0/0 and 0/4 to
93% and 25%, respectively.

We also measured the overhead of replication at the
client. BFT increases CPU time relative to NO-REP by
up to afactor of 5, but the CPU time at the client is only
between 66 and 142us per operation. BFT also increases
the number of bytes in Ethernet packets that are sent or

30000000 X% 3= o -y 30007 ,..p..x
! !
2 ! 2 60007 o
! Q
B i :
& 200001 o 4 2000
a ! S 4000 g
2 | 2 2
S | S 5
® : ® ®
g 10000 8 2000- i 1000
o o o
o s <
o o
S Ottt .] R ———
0 50 100 150 200 0 50 100 150 200 0 20 40 60

number of clients

number of clients

number of clients

Figure 5: Micro-benchmark: throughput in operations per second.

received by the client: 405% for the 0/0 operation but
only 12% for the other operations.

Figure 5 comparesthe throughput of the differentim-
plementations of the service as a function of the number
of clients. The client processes were evenly distributed
over 5 client machines? and each client process invoked
operationssynchronoudly, i.e., it waited for areply before
invoking a new operation. Each point in the graph isthe
average of at least three independent runs and the stan-
dard deviationfor all pointswas below 4% of thereported
value (except that it was as high as 17% for the last four
pointsin the graph for BFT-PK operation 4/0). There are
no points with more than 15 clients for NO-REP opera-
tion 4/0 because of lost request messages;, NO-REP uses
UDP directly and does not retransmit requests.

The throughput of both replicated implementations
increases with the number of concurrent clients because
the library implements batching [4]. Batching inlines
several requestsin each pre-prepare message to amortize
the protocol overhead. BFT-PK performs 5 to 11 times
worse than BFT because signing messages leads to a
high protocol overhead and thereis alimit on how many
reguests can be inlined in a pre-prepare message.

The bottleneck in operation 0/0 is the server's CPU;
BFT’s maximum throughput is 53% lower than NO-
REP's due to extra messages and cryptographic oper-
ations that increase the CPU load. The bottleneck in
operation 4/0 is the network; BFT’s throughput is within
11% of NO-REP sbhecause BFT doesnot consumesignif-
icantly more network bandwidth in this operation. BFT
achieves a maximum aggregate throughput of 26 MB/s
in operation 0/4 whereas NO-REP is limited by the link
bandwidth (approximately 12 MB/s). The throughput is
better in BFT because of an optimization that we de-
scribed in [6]: each client chooses one replicarandomly;
this replica’s reply includes the 4 KB but the replies of
the other replicas only contain small digests. Asaresult,
clients obtain the large replies in parallel from different
replicas. Werefer the reader to [4] for adetailed analysis
of these latency and throughput results.

2Two client machines had 700 MHz Pllls but were otherwise
identical to the other machines.

6.2.2 File System Benchmarks

We implemented the Byzantine-fault-tolerant NFS ser-
vice that was described in [6]. The next set of exper-
iments compares the performance of two implementa-
tionsof thisservice: BFS, which uses BFT, and BFS-PK,
which uses BFT-PK.

The experiments ran the modified Andrew bench-
mark [25, 15], which emulates a software development
workload. It has five phases: (1) creates subdirectories
recursively; (2) copies a source tree; (3) examines the
status of all the files in the tree without examining their
data; (4) examines every byte of datain al the files; and
(5) compiles and links the files. Unfortunately, Andrew
is so small for today’s systems that it does not exercise
the NFS service. So we increased the size of the bench-
mark by a factor of n as follows. phase 1 and 2 create
n, copies of the source tree, and the other phases operate
in al these copies. We ran a version of Andrew with
n equal to 100, Andrew100, and another with n equal
to 500, Andrew500. BFS builds a file system inside a
memory mapped file [6]. We ran Andrew10Q0 in a file
system file with 205 MB and Andrew500 in a file sys-
tem file with 1 GB; both benchmarks fill 90% of theses
files. Andrew100 fits in memory at both the client and
the replicas but Andrew500 does not.

We a so compare BFS and the NFSimplementationin
Linux, NFS-std. The performance of NFS-std is a good
metric of what is acceptable because it is used daily by
many users. For al configurations, the actual benchmark
coderan at the client workstation using the standard NFS
client implementation in the Linux kernel with the same
nmount options. The most relevant of these options for
the benchmark are: UDP transport, 4096-byte read and
write buffers, allowing write-back client caching, and
allowing attribute caching.

Tables 2 and 3 present the results for these experi-
ments. We report the mean of 3 runs of the benchmark.
The standard deviation was always below 1% of the re-
ported averages except for phase 1 where it was as high
as 33%. The results show that BFS-PK takes 12 times
longer than BFS to run Andrew100 and 15 times longer
to run Andrew500. The dowdown is smaller than the
one observed with the micro-benchmarks because the

phase | BFS-PK | BFS | NFS-std
1 254 0.7 0.6
2 1528.6 39.8 26.9
3 80.1 34.1 30.7
4 875 41.3 36.7
5 29351 | 2654 | 237.1
total 4656.7 | 381.3 | 3320

Table 2: Andrew100: elapsed time in seconds

client performs a significant amount of computation in
this benchmark.

Both BFS and BFS-PK use the read-only optimiza-
tion described in [6] for reads and lookups, and as a
conseguence do not set the time-last-accessed attribute
when these operations are invoked. This reducesthe per-
formance difference between BFS and BFS-PK during
phases 3 and 4 where most operations are read-only.

phase | BFS-PK BFS | NFSstd
1 122.0 4.2 35
2 8080.4 | 204.5 139.6
3 3875 170.2 157.4
4 496.0 262.8 232.7
5 23201.3 | 1561.2 | 12484
total | 32287.2 | 22029 | 1781.6

Table 3: Andrew500: elapsed time in seconds

BFS-PK isimpractical but BFS sperformanceisclose
to NFS-std: it performs only 15% slower in Andrew100
and 24% slower in Andrew500. The performance dif-
ference would be lower if Linux implemented NFS cor-
rectly. For example, we reported previously [6] that BFS
was only 3% slower than NFS in Digital Unix, which
implements the correct semantics. The NFS implemen-
tation in Linux does not ensure stability of modified data
and meta-data as required by the NFS protocol, whereas
BFS ensures stability through replication.

6.3 TheCost of Recovery

Frequent proactive recoveries and key changes improve
resilienceto faults by reducing the window of vulnerabil-
ity, but they also degrade performance. We ran Andrew
to determine the minimum window of vulnerability that
can be achieved without overlapping recoveries. Thenwe
configured the replicated file system to achieve this win-
dow, and measured the performance degradation relative
to a system without recoveries.

The implementation of the proactive recovery mech-
anism is complete except that we are simulating the se-
cure co-processor, the read-only memory, and the watch-
dog timer in software. We are also simulating fast re-
boots. TheLinuxBIOS project [22] hasbeen experiment-
ing with replacing the BIOS by Linux. They claim to be
abletoreboot Linuxin35s(0.1 sto get thekernel running
and 34.9 to execute scriptsin/ et ¢/ rc. d) [22]. This
means that in a suitably configured machine we should
be ableto reboot in lessthan asecond. Replicassimulate

a reboot by sleeping either 1 or 30 seconds and calling
nmsync to invalidate the service-state pages (this forces
reads from disk the next time they are accessed).

6.3.1 Recovery Time

The time to complete recovery determines the minimum
window of vulnerability that can be achieved without
overlaps. We measured therecovery timefor Andrew100
and Andrew500 with 30s reboots and with the period
between key changes, T}, set to 15s.

Table 4 presentsabreakdown of themaximumtimeto
recover areplicain both benchmarks. Sincethe processes
of checking the statefor correctness and fetching missing
updates over the network to bring the recovering replica
up to date are executed in parallel, Table 4 presents a
single line for both of them. The line labeled restore
state only accounts for reading the log from disk the
service state pages are read from disk on demand when
they are checked.

Andrew100 | Andrew500
save state 2.84 6.3
reboot 30.05 30.05
restore state 0.09 0.30
estimation 0.21 0.15
send new-key 0.03 0.04
send request 0.03 0.03
fetch and check 9.34 106.81
total 42.59 143.68

Table 4: Andrew: recovery time in seconds.

Themost significant components of the recovery time
are the time to save the replica’s log and service state
to disk, the time to reboot, and the time to check and
fetch state. The other components are insignificant. The
timeto reboot isthe dominant component for Andrew100
and checking and fetching state account for most of the
recovery time in Andrew500 because the state is bigger.

Given these times, we set the period between watch-
dog timeouts, T, to 3.5 minutesin Andrew100 and to 10
minutes in Andrew500. These settings correspond to a
minimum window of vulnerability of 4 and 10.5 minutes,
respectively. We also run the experimentsfor Andrew100
with a 1s reboot and the maximum time to complete re-
covery in this case was 13.3s. This enables awindow of
vulnerability of 1.5 minuteswith T, set to 1 minute.

Recovery must be fast to achieve a small window of
vulnerability. Whilethe current recovery timesarelow, it
is possible to reduce them further. For example, thetime
to check the state can be reduced by periodically backing
up the state onto a disk that is normally write-protected
and by using copy-on-write to create copies of modified
pages on a writable disk. This way only the modified
pages need to be checked. If the read-only copy of the
state is brought up to date frequently (e.g., daily), it will
be possible to scale to very large states while achieving
even lower recovery times.

6.3.2 Recovery Overhead

We also eval uated the impact of recovery on performance
in the experimental setup described in the previous sec-
tion. Table 5 shows the results. BFS-rec is BFS with
proactive recoveries. The results show that adding fre-
guent proactive recoveries to BFS has a low impact on
performance: BFS-rec is 16% slower than BFS in An-
drew100 and 2% slower in Andrew500. In Andrew100
with 1sreboot and awindow of vulnerability of 1.5 min-
utes, thetimeto compl ete the benchmark was 482.4s; this
isonly 27% slower than the time without recoverieseven
though every 15s one replica starts arecovery.

The results also show that the period between key
changes, T}, can be small without impacting performance
significantly. T}, could besmaller than 15sbut it should be
substantially larger than 3 message delays under normal
load conditionsto provide liveness.

system Andrew100 | Andrew500
BFS-rec 4435 2257.8
BFS 381.3 2202.9
NFS-std 3320 1781.6

Table 5: Andrew: recovery overhead in seconds.

There are severa reasons why recoveries have a
low impact on performance. The most obvious is that
recoveries are staggered such that there is never more
than one replica recovering; this allows the remaining
replicas to continue processing client requests. But it is
necessary to perform a view change whenever recovery
is applied to the current primary and the clients cannot
obtain further service until the view change completes.
These view changes are inexpensive because a primary
multicastsaview-change messagejust beforeitsrecovery
startsand thiscausesthe other replicasto moveto the next
view immediately.

7 Related Work

Most previous work on replication techniques assumed
benign faults, e.g., [17, 23, 18, 19] or asynchronoussys-
tem model, e.g., [28]. Earlier Byzantine-fault-tolerant
systems [26, 16, 20], including the algorithm we de-
scribed in [6], could guarantee safety only if fewer than
1/3 of the replicas were faulty during the lifetime of the
system. This guarantee is too weak for long-lived sys-
tems. Our system improvesthis guarantee by recovering
replicas proactively and frequently; it can tolerate any
number of faults if fewer than 1/3 of the replicas be-
come faulty within awindow of vulnerability, which can
be made small under normal load conditions with low
impact on performance.

In a previous paper [6], we described a system that
tolerated Byzantine faults in asynchronous systems and
performed well. This paper extends that work by
providing recovery, astate transfer mechanism, and anew
view change mechanism that enables both recovery and
an important optimization — the use of MACsinstead of

public-key cryptography.

Rampart [26] and SecureRing [16] provide group
membership protocols that can be used to implement
recovery, but only in the presence of benign faults. These
approaches cannot be guaranteed to work in the presence
of Byzantinefaultsfor two reasons. First, the system may
be unable to provide safety if areplicathat is not faulty
is removed from the group to be recovered. Second, the
algorithmsrely on messages signed by replicas even after
they are removed from the group and there is no way to
prevent attackers from impersonating removed replicas
that they controlled.

The problem of efficient state transfer has not been
addressed by previous work on Byzantine-fault-tolerant
replication. We present an efficient state transfer mecha-
nism that enables frequent proactive recoveries with low
performance degradation.

Public-key cryptography was the major performance
bottleneck in previous systems [26, 16] despite the fact
that these systems include sophisticated techniques to
reducethe cost of public-key cryptography at the expense
of security or latency. They cannot use MACs instead
of signatures because they rely on the extra power of
digital signaturesto work correctly: signatures alow the
receiver of amessage to proveto othersthat the message
isauthentic, whereasthis may beimpossiblewith MACs.
The view change mechanism described in this paper does
not require signatures. It allows public-key cryptography
to be eliminated, except for obtaining new secret keys.
Thisapproach improvesperformance by up to two orders
of magnitude without loosing security.

The concept of a system that can tolerate more than
f faults provided no more than f nodes in the system
become faulty in some time window was introduced
in[24]. This concept has previously been applied
in synchronous systems to secret-sharing schemes [13],
threshold cryptography [14], and more recently secure
information storage and retrieval [10] (which provides
single-writer single-reader replicated variables). But our
algorithm is more general; it allows a group of nodesin
an asynchronous system to implement an arbitrary state
machine.

8 Conclusions

This paper has described a new state-machinereplication
system that offers both integrity and high availability in
the presence of Byzantine faults. The new system can
be used to implement real services because it performs
well, works in asynchronous systems like the Internet,
and recoversreplicas to enable long-lived services.

The system described here improves the security and
robustness against software errors of previous systems
by recovering replicas proactively and frequently. It
can tolerate any number of faults provided fewer than
1/3 of the replicas become faulty within a window
of vulnerability. This window can be small (e.g., a
few minutes) under normal load conditions and when
the attacker does not corrupt replicas copies of the
servicestate. Additionally, our system providesintrusion

detection; it detects denial-of-service attacks aimed at
increasing the window and detects the corruption of the
state of arecovering replica.

Recovery from Byzantine faultsis harder than recov-
ery from benign faults for several reasons: the recovery
protocol itself needs to tolerate other Byzantine-faulty
replicas; replicas must be recovered proactively; and at-
tackers must be prevented from impersonating recovered
replicas that they controlled. For example, the last re-
guirement prevents signatures in messages from being
valid indefinitely. However, this leads to a further prob-
lem, since replicasmay be unableto proveto athird party
that some message they received is authentic (becauseits
signature is no longer valid). All previous state-machine
replication algorithms relied on such proofs. Our algo-
rithm does not rely on these proofs and has the added
advantage of enabling the use of symmetric cryptogra-
phy for authentication of all protocol messages. This
eliminates the use of public-key cryptography, the major
performance bottleneck in previous systems.

The agorithm has been implemented as a generic
program library with a simple interface that can be used
to provide Byzantine-fault-tolerant versions of different
services. We used the library to implement BFS, a
replicated NFS service, and ran experimentsto determine
the performance impact of our techniques by comparing
BFS with an unreplicated NFS. The experiments show
that it is possible to use our algorithm to implement real
serviceswith performance closeto that of an unreplicated
service. Furthermore, they show that the window of
vulnerability can be made very small: 1.5 to 10 minutes
with only 2% to 27% degradation in performance.

Acknowledgments

We would like to thank Kyle Jamieson, Rodrigo Ro-
drigues, Bill Weihl, and the anonymous refereesfor their
helpful comments on drafts of this paper. We also thank
the Computer Resource Services staff in our laboratory
for lending us a switch to run the experiments and Ted
Krovetz for the UMAC code.

References

[1] M. Bellare and D. Micciancio. A New Paradigm for Collision-
free Hashing: Incrementality at Reduced Cost. In Advances in
Cryptology - EUROCRYPT, 1997.

[2] J. Black et al. UMAC: Fast and Secure Message Authentication.
In Advancesin Cryptology - CRYPTO, 1999.

[3] R. Canetti, S. Halevi, and A. Herzberg. Maintaining Authen-
ticated Communication in the Presence of Break-ins. In ACM
Conference on Computers and Communication Security, 1997.

[4] M. Castro. Practical Byzantine Faul Tolerance. PhD thesis,
Massachusetts Institute of Technology, Cambridge, MA, 2000.
In preparation.

[5] M. Castro and B. Liskov. A Correctness Proof for a Practi-
cal Byzantine-Fault-Tolerant Replication Algorithm. Technical
Memo MIT/LCS/TM-590, MIT Laboratory for Computer Sci-
ence, 1999.

[6] M. Castro and B. Liskov. Practical Byzantine Fault Tolerance.
In USENIX Symposium on Operating Systems Design and |mple-
mentation, 1999.

(7

(8]

(9

(10

[11]

(12]

(13]

[14]

(19]

(16]

(17]
(18]
(19]

(20

(21]

[22]

(23]

(24

[29]

[26]

[27]

(28]

C. Collberg and C. Thomborson. Watermarking, Tamper-
Proofing, and Obfuscation - Toolsfor Software Protection. Tech-
nical Report 2000-03, University of Arizona, 2000.

S. Floyd et a. A Reliable Multicast Framework for Light-
weight Sessions and Application Level Framing. |EEE/ACM
Transactions on Networking, 5(6), 1995.

S. Forrest et a. Building Diverse Computer Systems. In
Proceedings of the 6th Workshop on Hot Topics in Operating
Systems, 1997.

J. Garay et a. Secure Distributed Storage and Retrieval. Theo-
retical Computer Science, to appear.

L. Gong. A Security Risk of Depending on Synchronized Clocks.
Operating Systems Review, 26(1):49-53, 1992.

M. Herlihy andJ. Wing. Axiomsfor Concurrent Objects. InACM
Symposium on Principles of Programming Languages, 1987.

A. Herzberg et al. Proactive Secret Sharing, Or: How To Cope
With Perpetual Leakage. In Advancesin Cryptology - CRYPTO,
1995.

A. Herzberg et al. Proactive Public Key and Signature Systems.
In ACM Conference on Computers and Communication Security,
1997.

J. Howard et al. Scale and Performance in a Distributed File
System. ACM Transactions on Computer Systems, 6(1), 1988.

K. Kihlstrom, L. Moser, and P. Melliar-Smith. The SecureRing
Protocols for Securing Group Communication. In Hawaii Inter-
national Conference on System Sciences, 1998.

L. Lamport. Time, Clocks, and the Ordering of Events in a
Distributed System. Communications of the ACM, 21(7), 1978.

L. Lamport. The Part-Time Parliament. Technical Report 49,
DEC Systems Research Center, 1989.

B. Liskov et a. Replication in the Harp File System. In ACM
Symposium on Operating System Principles, 1991.

D. Makhi and M. Reiter. Secure and Scalable Replication in
Phalanx. In IEEE Symposium on Reliable Distributed Systems,
1998.

D. Maziéreset a. Separating Key Management from File System
Security. In ACM Symposium on Operating System Principles
1999.

Ron Minnich. The Linux
http://www.acl.lanl.gov/linuxbios, 2000.

B. Oki andB. Liskov. Viewstamped Replication: A New Primary
Copy Method to Support Highly-Available Distributed Systems.
In ACM Symposium on Principles of Distributed Computing,
1988.

R. Ostrovsky and M. Yung. How to Withstand Mobile Virus
Attacks. In ACM Symposium on Principles of Distributed
Computing, 1991.

J. Ousterhout. Why Aren’t Operating Systems Getting Faster as
Fast as Hardware? In USENIX Summer, 1990.

M. Reiter. The Rampart Toolkit for Building High-Integrity
Services. Theory and Practice in Distributed Systems (LNCS
938), 1995.

R. Rivest. The MD5 Message-Digest Algorithm. Internet RFC-
1321, 1992.

F. Schneider. Implementing Fault-Tolerant Services Using The
State Machine Approach: A Tutorial. ACM Computing Surveys,
22(4), 1990.

BIOS Home Page.

