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Proactive Relay Selection with Joint Impact of

Hardware Impairment and Co-channel Interference
Tran Trung Duy, Trung Q. Duong, Senior Member, IEEE, Daniel Benevides da Costa, Senior Member, IEEE,

Vo Nguyen Quoc Bao, Member, IEEE, and Maged Elkashlan, Member, IEEE

Abstract—In this paper, we investigate the end-to-end per-
formance of dual-hop proactive decode-and-forward relaying
networks with N th best relay selection in the presence of two
practical deleterious effects: i) hardware impairment and ii) co-
channel interference. In particular, we derive new exact and
asymptotic closed-form expressions for the outage probability and
average channel capacity of N th best partial and opportunistic
relay selection schemes over Rayleigh fading channels. Insightful
discussions are provided. It is shown that, when the system cannot
select the best relay for cooperation, the partial relay selection
scheme outperforms the opportunistic method under the impact
of the same co-channel interference (CCI). In addition, without
CCI but under the effect of hardware impairment, it is shown
that both selection strategies have the same asymptotic channel
capacity. Monte Carlo simulations are presented to corroborate
our analysis.

Index Terms—Hardware impairment, decode-and-forward re-
laying, partial relay selection, opportunistic relay selection, out-
age probability, channel capacity.

I. INTRODUCTION

Along the last decade, the concept of cooperative diversity

[1] has been well exploited as an efficient means to enhance

the performance of wireless communications. The basic idea

is to allow single-antenna terminals to share their antennas

in order to mimic a physical multiple-antenna array so that

spatial diversity can be explored. However, the use of multiple

relays may invoke a spectral efficiency loss and relay selection

schemes arise as a promising solution for alleviating this

problem. Two proactive relay selection strategies1 that have

been widely investigated in the literature are opportunistic

relay selection (ORS) [2]–[11] and partial relay selection

(PRS) [12]–[19]. In ORS the best relay is chosen relying

on the channel state information (CSI) of both source-relay

and relay-destination links. The pioneering idea of ORS was

proposed in [2], while [3] presented an asymptotic analysis of

the symbol error rate (SER) of a selection amplify-and-forward
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1In proactive relay selection, the relay is chosen before the source trans-
mission.

(AF) network. In [4], it was shown that optimal transmission of

a single relay among a set of multiple AF relays minimize the

outage probability (OP) and outperform any other strategies

that involve simultaneous transmissions from more than one

AF relay under an aggregate power constraint. In [5], the OP

of a cooperative network with multiple potential decode-and-

forward (DF) relays and multiple simultaneous transmissions

was investigated, in which a selection cooperation scheme was

proposed. In [6], closed-form expressions for the OP and the

bit error rate (BER) of uncoded threshold-based ORS were

derived assuming arbitrary signal-to-noise ratio (SNR) levels,

arbitrary number of available DF relays, and arbitrary source-

destination channel conditions. In [7], with independent non-

identically distributed (i.n.i.d.) Rician fading channels, approx-

imate formulas for the SER of ORS were derived. Considering

i.n.i.d. Nakagami-m fading and a selection combining (SC)

receiver at the destination, the outage performance of ORS was

examined in [8], while [9] derived closed-form expressions for

the SER. In [10], exact closed-form expressions for the OP

and ergodic capacity (EC) of selection cooperative relaying

were derived assuming a maximal-ratio combiner (MRC) at

the destination. In [11], an incremental DF ORS scheme was

proposed in which the selected relay chooses to cooperate only

if the source-destination channel is of an unacceptable quality.

A closed-form expression for the OP was derived.

A common feature of all the aforementioned papers is that

full diversity gain can be attained. On the other hand, in these

works there is the need for continuous channel feedback from

all the links, which results in a high power consumption and

large overhead, a non-desirable feature for ad-hoc and sensor

networks. To alleviate this problem, PRS was proposed in

[12], where only CSI of the source-relay link is used to select

the best relay. Thus, by monitoring the connectivity of only

one-hop rather than two-hop, the lifetime of the network can

be prolonged. In [13], tight closed-form approximations for

the EC of dual-hop AF relaying networks with PRS were

derived. Relying on the channel quality of the second-hop for

selecting the best relay, the work in [14] examined the outage

performance of DF relaying networks subject to Nakagami-

m and employing a MRC receiver at the destination. In [15],

a comprehensive performance analysis of dual-hop relaying

networks with fixed-gain semi-blind relays was carried out.

In particular, closed-form expressions for the OP, probability

density function (PDF), moment generating functions (MGFs),

and generalized moments of the end-to-end SNR were derived.

In addition, the second-order statistics of the end-to-end en-

velope was studied and the corresponding level crossing rate



and average fade duration were obtained in an exact manner. In

[16], assuming the presence of the direct link between source

and destination, an exact performance analysis of DF dual-hop

networks with relay selection and subject to i.n.i.d Nakagami-

m fading was presented. The diversity and coding gains of

PRS schemes subject to Nakagami-m fading were attained in

[17], while the impact of feedback delay was analyzed in [18].

Finally, in [19], three novel PRS schemes were proposed.

Common to all these works dealing with ORS and PRS is

the assumption of perfect transceiver hardware (i.e., ideal hard-

ware) of the terminals. However, in practice, the transceiver

hardware is imperfect due to phase noise, I/Q imbalance

and amplifier nonlinearities [20]–[22]. Very few works have

investigated the effect of hardware impairments in dual-hop

cooperative networks and they are briefly discussed next. In

[23], the authors quantified the impact of hardware impair-

ments on dual-hop AF and DF relaying networks subject

to Nakagami-m fading. Expressing the OP as a function

of the effective end-to-end signal-to-noise-and-distortion ratio

(SNDR), exact closed-form and asymptotic formulas for the

OP were derived considering hardware impairments at the

source, relay, and destination. Upper bounds for the EC were

derived as well. In that work, fundamental design guidelines

for selecting hardware that satisfies the requirements of a

practical relaying system were pointed out. In [24], the authors

analyzed the impact of hardware impairments at the relay on

the OP and the SER in two-way AF relaying.

Another channel impairment that may be taken into ac-

count in practical systems is co-channel interference (CCI).

Differently from hardware impairments, the study of CCI in

cooperative networks has already been extensively investigated

along the last years. In the sequel, three representative works

will be discussed. In [25], the outage behavior of dual-hop

DF ORS schemes was investigated with CCI at both the

relays and the destination. It was shown that the co-channel

interferers do not affect the diversity gain. However, such

interferers degrade the outage performance by affecting the

coding gain of the system. In [26], assuming a multiuser relay

network composed by a single source, a single AF relay, and

multiple destinations, the outage performance of opportunistic

scheduling was examined in which the relay and the multiple

destinations undergo CCI. Exact expressions and closed-form

lower bounds for the OP were derived. In addition, the impact

of CSI feedback delay when CCI is considered only at the

relay was studied. Finally, in [27], the impact of CCI in two-

way AF relaying systems was analyzed.

In this paper, we investigate the end-to-end performance of

dual-hop DF relaying networks in the presence of two practical

deleterious effects: i) hardware impairment and ii) CCI. Both

ORS and PRS schemes are considered. To the best of the

authors’ knowledge, this is the first attempt to analyze the joint

impact of hardware impairment and CCI in a dual-hop relaying

network. Assuming Rayleigh fading, new exact and asymptotic

closed-form expressions for the OP and the average channel

capacity are derived. Insightful discussions are provided. It

is shown that, when the system cannot select the best relay

for cooperation, PRS scheme outperforms the opportunistic

method under the impact of the same CCI. In addition, without
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Fig. 1. Dual-hop relay networks in presence of hardware impairments and
co-channel interference.

CCI but under the effect of hardware impairment, it is shown

that both selection strategies have the same asymptotic channel

capacity. Monte Carlo simulations are presented to corroborate

our analysis.

The rest of this paper is organized as follows. The system

model is described in Section II. In Section III, closed-form

expressions for the OP and average channel capacity are

derived. Simulation results are presented in Section IV along

with representative numerical results. Finally, this paper is

concluded in Section V. Appendices A-F present the proofs

of the Lemmas and the Theorems.

II. SYSTEM/CHANNEL MODELS AND PRELIMINARY

RESULTS

A. System and Channel Models

Consider a dual-hop proactive relay network in which a

source S attempts to transmit its data to the destination D

through the help of M available relays Rm, m = 1, 2, · · · ,M ,

as shown in Fig. 1. Each terminal is equipped with a single

antenna and operates in a half-duplex mode. Assuming that the

direct link between S and D experiences deep shadowing, the

communication is realized into two time-slots. In our analysis,

depending on the available CSI, we consider two well-known

proactive relay selection methods: partial relay selection [12]

and opportunistic relay selection [28]. In this case, only one

relay Rb satisfying a predefined criterion is selected for helping

to forward the source message.

In the first time slot, the source transmits its signal s to

the chosen relay Rb. Assume that there are K1 interference

sources I1v , v = 1, 2, . . . ,K1, which are currently using the

same channel, and hence creating interferences to the relay Rb.

In the second time slot, the relay Rb forwards the source signal

to the destination by using a DF protocol. Also, we assume

that there are K2 interference sources I2t, t = 1, 2, . . . ,K2.

In the presence of the hardware impairments and co-channel

interference, the received signal at Rb and D can be expressed,



respectively, as

yRb
= h1b (s+ η1) +

K1
∑

v=1

gv (sv + η1v) + µ1 + nRb
, (1)

yD = h2b (s+ η2) +

K2
∑

t=1

lt (st + η2t) + µ2 + nD, (2)

where nRb
and nD are, respectively, the additive white Gaus-

sian noise (AWGN) terms at R and D, with zero mean and

variance N0, sv and st are the signals transmitted by the

interference sources I1v and I2t, respectively, h1b, h2b, gv , and

lt are the channel coefficients of the links S → Rb, Rb → D,

I1v → Rb, and Rb → D, respectively. In addition, η1, η1v , η2
and η2t denote the noises caused by the hardware impairments

at the transmitters S, I1v, Rb, and I2t, respectively, while µ1

and µ2 are the noises generated by the hardware impairments

at the receivers Rb and D, respectively.

Assume that all the channels follow a Rayleigh distribution.

Thus, the corresponding channel gains ϕSRm
= |h1m|2,

ϕRmD = |h2m|2 for m = 1, 2, . . . ,M , |gv|
2, and |lt|

2 are

exponential random variables (RVs) with parameters λSRm
,

λRmD, λRI1v , and λDI2t , respectively.

Remark 1: Similar to [23], [24], we can model the dis-

tortion noises η1, η1v , η2, η2t, µ1 and µ2 as circularly-

symmetric complex Gaussian distribution with zero-mean and

variance σ2
1PS, σ2

3vPI, σ
2
2PS, σ2

4tPI, σ
2
3

(

|h1b|
2PS + |gv|

2PI

)

,

and σ2
4

(

|h2b|
2PS + |lt|

2PI

)

, respectively. In this case, PS and

PI denote the transmit powers of the source (and relays) and

the interference sources, respectively, while σ1, σ3v , σ2, σ4t,
σ3 and σ4 present the level of the hardware impairments at

the corresponding transmitters and receivers. Without loss of

generality, it is also assumed that all of the nodes have the

same structure so that the impairment levels are the same, i.e.,

σ1 = σ3v = σ4t = σa, and σ3 = σ4 = σb [23], [24]. 2

From (1) and (2), the received signal-to-interference-plus-

noise ratio (SINR) at Rb and D can be written, respectively,

as

ψSRb
=

PSϕSRb

(σ2
1 + σ2

3)PSϕSRb
+

K1
∑

v=1
(1 + σ2

1v + σ2
3)PI|gv|2 +N0

=
γSRb

κγSRb
+ Z1 + 1

, (3)

ψRbD =
PSϕRbD

(σ2
2 + σ2

4)PSϕRbD +
K2
∑

t=1
(1 + σ2

2t + σ2
4)PI|lt|2 +N0

=
γRbD

κγRbD + Z2 + 1
, (4)

2In case of different levels of hardware impairment, our results can be
applied to derive the upper-bound and/or lower-bound of the outage probabil-
ity and average channel capacity. Moreover, in practice, with knowledge of
impairment transceiver levels, we should select the transceivers with similar
impairment levels, in order to optimize the system performance (see [23,
Corollary 3].

where

γSRb
=

PSϕSRb

N0
, γRbD =

PSϕRbD

N0
, Z1 =

K1
∑

v=1

(1 + κ)
PI|gv|

2

N0
,

Z2 =

K2
∑

t=1

(1 + κ)
PI|lt|

2

N0
, κ = σ2

a + σ2
b .

B. Preliminary Results

In partial relay selection method, the N th best relay Rb is

selected by the following strategy:

Rb = N th argmax
m=1,2,...,M

(ϕSRm
) . (5)

On the other hand, in the opportunistic relay selection strategy,

the N th best relay Rb is chosen according to

Rb = N th argmax
m=1,2,...M

min (ϕSRm
, ϕRmD) . (6)

We can observe from (5) and (6) that the relay selection

process in the ORS protocol requires each relay to obtain the

channel state information (CSI) of the S → R and R → D
links, while that in the PRS only needs the CSI of the first

link. Hence, the implementation of the ORS protocol is more

complex than that of the PRS protocol. Moreover, we note

that the relay selection operation in the ORS protocol can be

realized by a distributed manner as presented in [2].

Remark 2: Throughout this paper, we assume clustering relay

networks where data links are independent and identically dis-

tributed (i.i.d.), i.e., λSRm
= λSR and λRmD = λRD for all m.

In addition, since the interferers can originate from different

cells, the interference links are presumed to be independent

non-identically distributed (i.n.i.d.), i.e., λRI1m 6= λRI1n if

m 6= n, and λDI2m 6= λDI2n if m 6= n.3

The PDF of Za, a ∈ {1, 2}, can be expressed as

fZa
(za) =

Ka
∑

u=1

αXIau
exp (−ΩXIau

), (7)

where X ≡ R if a = 1, X ≡ D if a = 2,

ΩXIau =
Ω̃XIau

γ̄
, Ω̃XIau =

λXIau

(1 + κ) rP
,

γ̄ =
PI

N0
=

PS

N0
=

P

N0
, αXIau =

α̃XIau

γ̄ rP
,

α̃XIau = Ω̃XIau

Ka
∏

w=1,w 6=u

Ω̃XIaw

Ω̃XIaw − Ω̃XIau

.

Since the DF relaying protocol is employed, the end-to-end

SINR is given by

ψY
e2e = min (ψSRb

, ψRbD) , (8)

where Y ∈ (ORS,PRS).

3Our derivation can be easily extended to i.n.i.d. data links and/or i.i.d.
interference links.



III. PERFORMANCE ANALYSIS

A. Outage Probability

In this subsection, exact closed-form expressions for the OP

of both PRS and ORS schemes will be derived. By definition,

the OP is the probability that the end-to-end received SINR is

lower than a pre-determined threshold γth.

1) Partial Relay Selection (PRS): The outage probability

of the PRS protocol can be formulated as

P outPRS = Pr
(

ψPRS
e2e < γth

)

= FψPRS
e2e

(γth) , (9)

where FψPRS
e2e

(.) denotes the CDF of ψPRS
e2e .

Theorem 1: If x ≥ κ−1, then FψPRS
e2e

(x) = 1, and if x <

κ−1, it follows that

FψPRS
e2e

(x) = 1−

N
∑

m=1

M−m+1
∑

n=0,m+n>1

K1
∑

v=1

K2
∑

t=1

(−1)
n+1

∆1∆2

×
(1− κx)

2

(Φ1 + x) (Φ2 + x)
exp

(

−
(Θ1 +Ω2)x

1− κx

)

,

(10)

where Ω1 = N0λSR/P , Cab = b!
a!(b−a)! , Θ1 =

(n+m− 1)Ω1, ∆1 = Cm−1
M CnM−m+1αRI1v/(Θ1−κΩRI1v),

Φ1 = ΩRI1v/ (Θ1 − κΩRI1v), Ω2 = λRDN0/P , ∆2 =
αDI2t/ (Ω2 − ΩDI2tκ) and Φ2 = ΩDI2t/ (Ω2 − κΩDI2t).

Proof 1: The proof is presented in Appendix A.

Lemma 1: Without interference sources, i.e., by setting

PI → 0 or rP → 0, and x < κ−1, the CDF FψPRS
e2e

(·) can

be expressed as

FψPRS
e2e

(x) = 1−

N
∑

m=1

M−m+1
∑

n=0,m+n 6=1

(−1)
n+1

Cm−1
M CnM−m+1

× exp

(

−
(Θ1 +Ω2)x

1− κx

)

. (11)

Proof 2: The proof is given in Appendix B.

Theorem 2: At high transmit SNR and assuming x < κ−1,

the CDF FψPRS
e2e

(·) can be approximated by

FψPRS
e2e

(x)
γ→+∞
≈ 1−

N
∑

m=1

M−m+1
∑

n=0,m+n>1

K1
∑

v=1

K2
∑

t=1

(−1)
n+1

×∆1∆2
(1− κx)

2

(Φ1 + x) (Φ2 + x)
. (12)

Proof 3: For high values of γ, (3) and (4) can be approxi-

mated by

ψSRb

γ→+∞
≈

γSRb

κγSRb
+ Z1

,

ψRbD

γ→+∞
≈

γRbD

κγRbD + Z2
. (13)

From (13), with the same manner with Appendix A, we can

obtain

FψSRb
(x)

γ→+∞
≈ 1−

N
∑

m=1

M−m+1
∑

n=0,m+n>1

K1
∑

v=1

(−1)
n+1

∆1
1− κx

Φ1 + x
,

FψRbD
(x)

γ→+∞
≈ 1−

K2
∑

t=1

∆2
1− κx

Φ2 + x
.

By substituting the results above into (A.1), (12) can be

attained.

Then, similar to Appendix A, (12) can be attained.

Lemma 2: Without interference sources, i.e., by setting

PI → 0 or rP → 0, and x < κ−1, the CDF FψPRS
e2e

(·) at

high transmit SNR can be expressed as

FψPRS
e2e

(x)
γ→+∞
≈

{

Ω2x/ (1− κx) ; if N < M
(MΩ1 +Ω2)x/ (1− κx) ; if N =M

. (14)

Proof 4: The proof is given in Appendix C.

From Lemma 2, one can observe that when x < κ−1, the

diversity order equals 1.
2) Opportunistic Relay Selection (ORS): The OP of the

ORS scheme can be formulated as

P outORS = Pr
(

ψORS
e2e < γth

)

= FψORS
e2e

(γth) , (15)

Theorem 3: If x ≥ κ−1, then FψORS
e2e

(x) = 1, and if x <

κ−1, it follows that

FψORS
e2e

(x) = 1−

N
∑

m=1

M−m+1
∑

n=0,m+n>1

K1
∑

v=1

K2
∑

t=1

(−1)
n+1

×

[

∆3

Φ3 + x
+

∆4

Φ4 + x
+

∆5

Φ6 + x
+

∆6

Φ7 + x

]

×
(1− κx)

2

(Φ5 + x)
exp

(

−
Θ2x

1− κx

)

, (16)

where Ω = Ω1 + Ω2, Θ2 = (n+m− 1)Ω,

Φ3 = ΩRI1v/ (Ω1 − κΩRI1v), Φ4 = ΩRI1v/ (Θ2 − κΩRI1v),
Φ5 = (ΩRI1v +ΩDI2t) / (Θ2 − κ (ΩRI1v +ΩDI2t)),
Φ6 = ΩDI2t/ (Ω2 − κΩDI2t), Φ7 = ΩDI2t/ (Θ2 − κΩDI2t),

∆3 = (n+m− 1)Cm−1
M CnM−m+1

Ω2αRI1vαDI2t

Ω2 + (n+m− 2)Ω

×
1

(Θ2 − κ (ΩRI1v +ΩDI2t)) (Ω1 − κΩRI1v)
,

∆4 = (n+m− 2)Cm−1
M CnM−m+1

Ω1αRI1vαDI2t

Ω2 + (n+m− 2)Ω

×
1

(Θ2 − κΩRI1v) (Θ2 − κ (ΩRI1v +ΩDI2t))
,

∆5 = (n+m− 1)Cm−1
M CnM−m+1

Ω1αRI1vαDI2t

Ω1 + (n+m− 2)Ω

×
1

(Θ2 − κ (ΩRI1v +ΩDI2t)) (Ω2 − κΩDI2t)
,

∆6 = (n+m− 2)Cm−1
M CnM−m+1

Ω2αRI1vαDI2t

Ω1 + (n+m− 2)Ω

×
1

(Θ2 − κΩDI2t) (Θ2 − κ (ΩRI1v +ΩDI2t))
.

Proof 5: The proof is presented in Appendix D.

Lemma 3: Without interference sources, i.e., by setting

PI → 0 or rP → 0, and x < κ−1, the CDF FψORS
e2e

(·) can be

expressed as

FψORS
e2e

(x) = 1−
N
∑

m=1

M−m+1
∑

n=0,n+m>1

(−1)
n+1

Cm−1
M CnM−m+1

× exp

(

− (n+m− 1)
Ωx

1− κx

)

. (17)



Proof 6: From (D.3), (17) can be obtained.

Theorem 4: At high transmit SNR and assuming x < κ−1,

the CDF FψPRS
e2e

(·) can be approximated by

FψORS
e2e

(x)
γ→+∞
≈ 1−

N
∑

m=1

M−m+1
∑

n=0,m+n>1

K1
∑

v=1

K2
∑

t=1

(−1)
n+1

×

[

∆3

Φ3 + x
+

∆4

Φ4 + x
+

∆5

Φ6 + x
+

∆6

Φ7 + x

]

×
(1− κx)

2

Φ5 + x
. (18)

Proof 7: Note that, for high γ values, (3) and (4) can be

approximated by (13). Hence, similar as obtained (13) from

(12), (18) can be attained by omitting the term exp
(

− Θ2x
1−κx

)

from (16).

Lemma 4: Without interference sources and considering x <
κ−1, the CDF FψORS

e2e
(·) at high transmit SNR can be written

as

Fγ1b (x)
γ→+∞
≈ CN−1

M

(

Ωx

1− κx

)M−N+1

. (19)

Proof 8: The proof is similar to that of Lemma 2.

From (19), one can attest that the diversity order of the ORS

strategy equals to M −N + 1.

B. Average Channel Capacity

The average channel capacity can be mathematically defined

as

CY
avg =

1

2
E
{

log2
(

1 + ψY
e2e

)}

=
1

2 ln 2

∫ κ−1

0

ln (1 + x) fψY
e2e

(x) dx, (20)

where Y ∈ {PRS,ORS}, E {.} symbolizes expectation, and

fψY
e2e

(·) denotes the PDF of ψY
e2e.

From (10) and (16), (20) can be rewritten as

CY
avg =

1

2 ln 2

∫ κ−1

0

1− FψY
e2e

(x)

1 + x
dx. (21)

Proposition 1: In the presence of hardware impairments,

i.e., κ > 0, the average channel capacity of both PRS and

ORS methods is bounded by

CA
avg ≤

1

2 ln 2
ln

(

1 +
1

κ

)

. (22)

Proof 9: From (3) and (4), it is easy to see that ψ1b ≤
κ−1 and ψ2b ≤ κ−1, which implies in ψY

e2e ≤ κ−1. Thus,

combining with (20), (22) can be readily obtained.

Before calculating the average capacity of the PRS and ORS

strategies, the following integral will be introduced.

J (κ,Ω,Φ) =

∫ κ−1

0

1

Φ + x
exp

(

−
Ωx

1− κx

)

dx

= exp

(

ΩΦ

Φκ+ 1

)

E1

(

ΩΦ

Φκ+ 1

)

− exp

(

Ω

κ

)

E1

(

Ω

κ

)

, (23)

where E1(.) denotes the exponential integral function [29].

Proof 10: By interchanging the variable t = 1/(1 − κx),
J (κ,Ω,Φ) can be rewritten as

J (κ,Ω,Φ) =
exp (Ω/κ)

κΦ+ 1

∫ +∞

1

exp (−tΩ/κ)

t (t− 1/ (κΦ+ 1))
dt

= exp

(

ΩΦ

κΦ+ 1

)
∫ +∞

κΦ
κΦ+1

exp (−tΩ/κ)

t
dt

− exp

(

Ω

κ

)
∫ +∞

1

exp (−tΩ/κ)

t
dt.

Then, by using the definition of the exponential integral

function E1 (x) =
∫ +∞

x

exp(−t)
t

dt, we can easily obtain (23).

1) Partial Relay Selection (PRS):

Theorem 5: The average channel capacity of the PRS

method can be expressed as (24), shown at the top of

next page, with δ1 = (1 + κΦ1)
2
/ (Φ2 − Φ1) and δ2 =

(1 + κΦ2)
2
/ (Φ1 − Φ2).

Proof 11: The proof is presented in Appendix E.

Lemma 5: Without interference sources, the average channel

capacity of the PRS method is given by

CPRS
avg =

1

2 ln 2

N
∑

m=1

M−m+1
∑

n=0,m+n>1

K1
∑

v=1

K2
∑

t=1

(−1)
n+1

×∆1∆2J (κ,Θ1 +Ω2, 1) . (25)

Proof 12: Relying on (1), (21), and (23), Lemma 5 can be

easily proved.

Theorem 6: At high transmit SNR γ, the asymptotic average

channel capacity of the PRS method can be derived as (26),

shown at the top of next page.

Proof 13: (26) can be attained from (24) by performing

the appropriate substitutions, i.e., replacing J (κ,Θ1 +Ω2, 1),
J (κ,Θ1 +Ω2,Φ1), and J (κ,Θ1 +Ω2,Φ2) by J (κ, 0, 1),
J (κ, 0,Φ1) and J (κ, 0,Φ1), respectively. In addition, note

that J (κ, 0,Ω) = ln ((1 + κΦ) /κΦ).
Finally, one can see that without interference sources, the

asymptotic average capacity of the PRS method is given as

in (22), i.e.,

CPRS
avg

γ→+∞
≈

1

2 ln 2
ln

(

1 +
1

κ

)

. (27)

2) Opportunistic Relay Selection (ORS):

Theorem 7: The average channel capacity of the ORS

method can be given as (28), shown at the top of

next page, with δ3 = (1 + κΦ3)
2
/ (Φ5 − Φ3), δ4 =

(1 + κΦ5)
2
/ (Φ3 − Φ5), δ5 = (1 + κΦ4)

2
/ (Φ5 − Φ4), δ6 =

(1 + κΦ5)
2
/ (Φ4 − Φ5), δ7 = (1 + κΦ6)

2
/ (Φ5 − Φ6), δ8 =

(1 + κΦ5)
2
/ (Φ6 − Φ5), δ9 = (1 + κΦ7)

2
/ (Φ5 − Φ7), and

δ10 = (1 + κΦ5)
2
/ (Φ7 − Φ5).

Proof 14: The proof is presented in Appendix F .

Lemma 6: Without interference sources, the average channel

capacity can be rewritten as

CORS
avg =

N
∑

m=1

M−m+1
∑

n=0, n+m>1

(−1)
n
Cm−1
M CnM−m+1

× J (κ, (n+m− 1)Ωx, 1) . (29)



CPRS
avg =

1

2 ln 2

N
∑

m=1

M−m+1
∑

n=0,m+n>1

K1
∑

v=1

K2
∑

t=1

(−1)
n+1

∆1∆2

×

[(

δ1
Φ1 − 1

+
δ2

Φ2 − 1
+ κ2

)

J (κ,Θ1 +Ω2, 1)−
δ1

Φ1 − 1
J (κ,Θ1 +Ω2,Φ1)−

δ2
Φ2 − 1

J (κ,Θ1 +Ω2,Φ2)

]

. (24)

CPRS
avg

γ→+∞
≈

1

2 ln 2

N
∑

m=1

M−m+1
∑

n=0,m+n>1

K1
∑

v=1

K2
∑

t=1

(−1)
n+1

∆1∆2

×

[(

δ1
Φ1 − 1

+
δ2

Φ2 − 1
+ κ2

)

ln

(

1 + κ

κ

)

−
δ1

Φ1 − 1
ln

(

1 + κΦ1

κΦ1

)

−
δ2

Φ2 − 1
ln

(

1 + κΦ2

κΦ2

)]

. (26)

CORS
avg =

1

2 ln 2

N
∑

m=1

M−m+1
∑

n=0,m+n>1

K1
∑

v=1

K2
∑

t=1

(−1)
n+1

×

(

∆3δ3
Φ3 − 1

+
∆4δ5
Φ4 − 1

+
∆5δ7
Φ6 − 1

+
∆6δ9
Φ7 − 1

+
∆3δ4 +∆4δ6 +∆5δ8 +∆6δ10

Φ5 − 1
+ (∆3 +∆4)κ

2

)

J (κ,Θ2, 1)

−
∆3δ3
Φ3 − 1

J (κ,Θ2,Φ3)−
∆4δ5
Φ4 − 1

J (κ,Θ2,Φ4)−
∆5δ7
Φ6 − 1

J (κ,Θ2,Φ6)−
∆6δ9
Φ7 − 1

J (κ,Θ2,Φ7)

−

(

∆3δ4 +∆4δ6 +∆5δ8 +∆6δ10
Φ5 − 1

)

J (κ,Θ2,Φ5) . (28)

CORS
avg

γ→+∞
≈

1

2 ln 2

N
∑

m=1

M−m+1
∑

n=0,m+n>1

K1
∑

v=1

K2
∑

t=1

(−1)
n+1

×

(

∆3δ3
Φ3 − 1

+
∆4δ5
Φ4 − 1

+
∆5δ7
Φ6 − 1

+
∆6δ9
Φ7 − 1

+
∆3δ4 +∆4δ6 +∆5δ8 +∆6δ10

Φ5 − 1
+ (∆3 +∆4)κ

2

)

ln

(

1 + κ

κ

)

−
∆3δ3
Φ3 − 1

ln

(

1 + κΦ3

κΦ3

)

−
∆4δ5
Φ4 − 1

ln

(

1 + κΦ4

κΦ4

)

−
∆5δ7
Φ6 − 1

ln

(

1 + κΦ6

κΦ6

)

−
∆6δ9
Φ7 − 1

ln

(

1 + κΦ7

κΦ7

)

−

(

∆3δ4 +∆4δ6 +∆5δ8 +∆6δ10
Φ5 − 1

)

ln

(

1 + κΦ5

κΦ5

)

. (30)

Proof 15: Based on (17), (21), and (23), Lemma 6 can be

readily proved.

Theorem 8: At high transmit SNR γ, the asymptotic average

channel capacity of the PRS method can be derived as (30),

shown at the top of next page.

Proof 16: The proof of Theorem 8 is similar to that of

Theorem 6.

One can easily prove that the asymptotic average capacity of

the PRS method at high γ is given as in (27), i.e.,

CORS
avg

γ→+∞
≈

1

2 ln 2
ln

(

1 +
1

κ

)

. (31)

From (27) and (31), note that under the impact of hardware

impairment and without co-channel interference, the PRS and

ORS schemes have the same average channel capacity at high

transmit SNR.

IV. NUMERICAL RESULTS AND SIMULATIONS

In this Section, representative numerical results are pre-

sented to illustrate the performance of the two proposed relay

selection schemes in the presence of hardware impairment

and CCI. Monte Carlo simulation results are also shown

to corroborate the proposed analysis. Without any loss of

generality, we set γth < κ−1.

In Fig. 2, the outage probability is plotted as a function

of transmit SNR γ. The following parameters are employed:

M = 4, K1 = K2 = 2, rP = 1, γth = 1, κ = 0.075, λSR =
0.3, λRD = 0.5, λRI1v ∈ {1, 2}, and λDI2t ∈ {1.5, 2.5}. It

can be observed that the outage performance of the ORS and

PRS schemes is better if the system can select the best relay

for the cooperation (N = 1). In addition, when N = 1, the

outage probability of the ORS scheme is lower than that of

the PRS one. However, such a metric of the PRS is higher

than that of the ORS when N = 2. It is because that when

the best relay cannot be selected, the end-to-end SINR of the
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Fig. 2. Outage probability as a function of the transmit SNR γ when M = 4,
K1 = K2 = 2, rP = 1, γth = 1, κ = 0.075, λSR = 0.3, λRD = 0.5,
λRI1v

∈ {1, 2}, and λDI2t
∈ {1.5, 2.5}.
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Fig. 3. Outage probability as a function of the transmit SNR γ when M = 3,
rP = 0, γth = 1.5, κ = 0.08, λSR = 1.1, and λRD = 1.1.

ORS protocol is no longer maximum. Hence, PRS can provide

a higher end-to-end SINR than ORS. Finally, it can be seen

that the outage probability decreases when the transmit SNR

increases. However, the outage performance of both protocols

converges to positive constant at high SNR regime. Therefore,

we can conclude that the system obtains the zero-diversity

order when there are the interference sources in the network.

In Fig. 3, the outage performance is depicted as a function

of transmit SNR γ when there is no interference source and

by setting M = 3, rP = 0, γth = 1.5, κ = 0.08 and λSR =
λRD = 1.1. Note that the ORS scheme outperforms the PRS

one for both N = 1, 2, with the performance gap being higher
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Fig. 4. Outage probability as a function of the ratio rP when γ = 10dB,
M = 6, N = 2, K1 = K2 = 1, γth = 0.5, κ = 0.08, λSR = 1,
λRD = 0.5, λRI11

= 1.5, and λDI21
= 2.
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Fig. 5. Average channel capacity as a function of the transmit SNR γ when
M = 2, K1 = K2 = 1, rP = 1, κ = 0.075, λSR = 1.1, λRD = 1.3, and
λRI11

= λDI21
= 0.7.

for the case N = 1. The reason is that the diversity order4 of

the ORS scheme equals to 3 for N = 1, while it is 2 for

N = 2. Indeed, for N = 2, the performance of both schemes

is almost the same at low and medium SNRs, and only at

high SNR region a practical difference in performance can be

detected.

In Fig. 4, we investigate the impact of the ratio rP (PI/PS)
on the outage performance of the proposed protocols. For

the illustrative purpose, we fix the parameters γ, M , N , K1,

K2, γth, κ, λSR, λRD, λRI11 and λDI21 by 10 dB, 6, 2, 1,

4The diversity order of the PRS scheme is always 1, regardless of the value
of N .
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Fig. 6. Average channel capacity as a function of the transmit SNR γ when
M = 4, N = 1, rP = 0, and λSR = λRD = 0.1.

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10
0.1

0.2

0.3

0.4

0.5

κ

 PRS-Sim (N=1)
 ORS-Sim (N=1)
 PRS-Sim (N=3)
 ORS-Sim (N=3)
 Theory-Exact

 

 

A
ve

ra
ge

 C
ha

nn
el

 C
ap

ac
ity

Fig. 7. Average channel capacity as a function of κ when γ = 10dB,
M = 5, K1 = K2 = 1, rP = 1, λSR = λRD = 1, λRI11

= 0.5, and
lambdaRI11

= 0.75.

1, 0.5, 0.08, 1, 0.5, 1.5 and 2, respectively. It can be seen

from this figure that the outage performance of both protocols

decreases when the ratio rP increases. Different with the

results presented in Fig. 2, although the system can only select

the second-best relay for the cooperation, the ORS protocol

obtains better performance as compared with the PRS protocol.

Fig. 5 presents the average channel capacity of the PRS

and ORS protocols as a function of the transmit SNR γ.

In this figure, we fix the parameters as follows: M = 2,

K1 = K2 = 1, rP = 1, κ = 0.075 and λSR = 1.1,

λRD = 1.3, and λRI11 = λDI21 = 0.7. Similar to Fig. 2,

the ORS scheme achieves higher channel capacity than PRS

one when the system can select the best relay (i.e., N = 1) for

cooperation. Otherwise, for N = 2, i.e., the system selects one

the second best relay for cooperation, the PRS strategy attains

better performance. Finally, note that the channel capacity of

both schemes converges to the asymptotic values at high SNR

region.

In Fig. 6, the effect of the hardware impairment level κ on

the average channel capacity is investigated. It is assumed that

there is no CCI, i.e., rP = 0. The remaining parameters are

designed as follows: M = 4, N = 1, and λSR = λRD =
0.1. One can notice that the PRS and ORS schemes have the

same asymptotic channel capacity. In addition, it is shown that

both strategies obtain better performance as the value of κ
decreases, with ORS presenting better performance than PRS.

Fig. 7 presents the average channel capacity as a function

of κ when γ = 10dB, M = 5, K1 = K2 = 1, rP = 1,

λSR = λRD = 1, λRI11 = 0.5, and λRI11 = 0.75. It can be

observed from this figure that the channel capacity of the PRS

and ORS protocols decreases with the increasing of κ. Again,

we can obverse that the performance of the ORS scheme is

better than that of the PRS scheme when the best relay can

be selected for the cooperation.

V. CONCLUSIONS

In this paper, analyzing the impact of hardware impairment

and CCI, the end-to-end performance of dual-hop proactive

DF relaying networks with N th PRS and N th ORS is inves-

tigated. Exact and asymptotic closed-form expressions for the

outage probability and average channel capacity of both relay

selection schemes were derived. Insightful discussions were

provided. For instance, it was shown that, when the system

cannot select the best relay for cooperation, the partial relay

selection scheme outperforms the opportunistic method under

the impact of the same co-channel interference.
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APPENDIX A: PROOF OF THEOREM 1

Firstly, we rewrite FψPRS
e2e

(x) as follows

FψPRS
e2e

(x) = 1−
(

1− FψSRb
(x)

)(

1− FψRbD
(x)

)

. (A.1)

Thus, in order to attain (A.1), the CDFs FψSRb
(·) and FψRbD

(·)
are required. Considering first the CDF of ψSRb

, we have that

FψSRb
(x) = Pr (ψSRb

< x)

=

{

1; if x ≥ κ−1

γSRb
< x+xZ1

1−κx ; if x < κ−1 (A.2)

For x < κ−1, (A.2) can be formulated as

FψSRb
(x) =

∫ +∞

0

FγSRb

(

x+ xz1
1− κx

)

fZ1
(z1) dz1. (A.3)



Now, using the N -best order statistics [30], the CDF of γSRb

can be written as

FγSRb
(y) =

N
∑

m=1

Cm−1
M (1− exp (−Ω1y))

M−m+1

× exp (− (m− 1)Ω1y)

= 1−

N
∑

m=1

M−m+1
∑

n=0,n+m>1

(−1)
n+1

Cm−1
M CnM−m+1

× exp (− (n+m− 1)Ω1y) , (A.4)

where Ω1 = N0λSR/P and Cab = b!
a!(b−a)! , with a and b being

integers and b > a.

Combining (7), (A.3) and (A.4), and after some algebraic

manipulation, it follows that

FψSRb
(x) = 1−

N
∑

m=1

M−m+1
∑

n=0,m+n>1

K1
∑

v=1

(−1)
n+1

∆1

×
1− κx

Φ1 + x
exp

(

−
Θ1x

1− κx

)

, (A.5)

where Θ1 = (n+m− 1)Ω1, ∆1 =
Cm−1
M CnM−m+1αRI1v/(Θ1 − κΩRI1v), and Φ1 =

ΩRI1v/ (Θ1 − κΩRI1v). For simplicity, we assume that

Θ1 − κΩRI1v 6= 0.

Similarly, one can see that, if x ≥ κ−1, FψRbD
(x) = 1,

while if x < κ−1, then

FψRbD
(x) = 1−

K2
∑

t=1

∆2
1− κx

Φ2 + x
exp

(

−
Ω2x

1− κx

)

, (A.6)

where Ω2 = λRDN0/P , ∆2 = αDI2t/ (Ω2 − ΩDI2tκ), Φ2 =
ΩDI2t/ (Ω2 − κΩDI2t), and Ω2 − κΩDI2t 6= 0.

Finally, by substituting (A.5) and (A.6) into (A.1), (10) is

attained, which completes the proof.

APPENDIX B: PROOF OF LEMMA 1

Without interference sources, (3) and (4) can be rewritten

as

ψSRb
=

γSRb

κγSRb
+ 1

,

ψRbD =
γRbD

κγRbD + 1
. (B.1)

Similar to (A.2)-(A.5), the CDFs FψSRb
(·) and FψRbD

(·) can

be obtained as

FψSRb
(x) = 1−

N
∑

m=1

M−m+1
∑

n=0,m+n 6=1

(−1)
n+1

× Cm−1
M CnM−m+1 exp

(

−
Θ1x

1− κx

)

,

FψRbD
(x) = 1− exp

(

−
Ω2x

1− κx

)

. (B.2)

Then, combining the above results with (A.1), the proof of

Lemma 1 is concluded.

APPENDIX C: PROOF OF LEMMA 2

From (A.1) in Appendix A, we can approximate F
ψPRS

e2e

(x)

at high SNR region by

F
ψPRS

e2e

(x)
γ→+∞
≈ FψSRb

(x) + FψRbD
(x) , (C.1)

where ψSRb
and ψRbD are given as (B.1) in Appendix B.

In addition, since 1 − exp (−t)
t→0
≈ t and exp (−t)

t→0
≈ 1,

asymptotic expressions for (B.2) can be written as

Fγ1b (x)
γ→+∞
≈

N
∑

m=1

Cm−1
M

(

Ω1x

1− κx

)M−m+1

γ→+∞
≈ CN−1

M

(

Ω1x

1− κx

)M−N+1

,

Fγ2b (x)
γ→+∞
≈

Ω2x

1− κx
. (C.2)

Combining (C.1) and (C.2), (14) is attained, which completes

the proof.

APPENDIX D: PROOF OF THEOREM 3

Firstly, it is easy to see that FψORS
e2e (x) = 1 when x ≥ κ−1.

Thus, considering the case when x < κ−1, (16) can be

rewritten as

FψORS
e2e

(x) = 1− Pr (ψSRb
≥ x, ψRbD ≥ x)

= 1− Pr

(

γSRb
≥
x+ xZ1

1− κx
, γRbD ≥

x+ xZ2

1− κx

)

. (D.1)

Since γSRb
and γRbD are not independent, the method pro-

posed in [11] will be employed to calculate (D.1). Initially,

we will derive the probability Pr (γSRb
≥ u1, γRbD ≥ u2). To

this end, similar to [11], this probability can be formulated as

Pr (γSRb
≥ u1, γRbD ≥ u2) =

∫ +∞

0

∂G (z)

∂z

fTmax
(z)

fTi
(z)

dz.

(D.2)

In (D.2), Tmax = Nth max
m=1,2,...,M

min (γSRm
, γRmD), in

which its CDF can be expressed similarly to (A.4) as

FTmax
(z) = 1−

N
∑

m=1

M−m+1
∑

n=0,n+m>1

(−1)
n+1

Cm−1
M CnM−m+1

× exp (− (n+m− 1)Ωz) , (D.3)

where Ω = Ω1 + Ω2. Thus, the PDF of Tmax can be derived

as

fTmax
(z) =

N
∑

m=1

M−m+1
∑

n=0,m+n>1

(−1)
n
Cm−1
M CnM−m+1

× (m+ n− 1)Ω exp (− (n+m− 1)Ωz) . (D.4)

By its turn, in (D.2), Ti = min (γSRi
, γRiD) , i = 1, 2, . . . ,M ,

such that its PDF can be expressed as

fTi
(z) = Ω exp (−Ωz) . (D.5)

Finally, the term G(z) in (D.2) can be formulated as

G (z) = Pr (γSRi
≥ u1, γRiD ≥ u2,min (γSRi

, γRiD) < z) .
(D.6)



In order to calculate G(z), two cases will be considered:

• Case 1: u1 ≥ u2
In this case, G(z) can be obtained as

G (z) =























0; if z ≤ u2
exp (−Ω1u1 − Ω2u2)
− exp (−Ω1u1 − Ω2z) ; if u2 ≤ z < u1
exp (−Ω1u1 − Ω2u2)
− exp (−Ωz) ; if z ≥ u1

(D.7)

• Case 2: u1 < u2
In this case, it follows that

G (z) =























0; if z ≤ u1
exp (−Ω1u1 − Ω2u2)
− exp (−Ω2u2 − Ω1z) ; if u2 ≤ z < u1
exp (−Ω1u1 − Ω2u2)
− exp (−Ωz) ; if z ≥ u1

(D.8)

Combining (D.4), (D.5), (D.7) and (D.8), and after some al-

gebraic manipulations, Pr (γSRb
≥ u1, γRbD ≥ u2) is derived

for Case 1 and Case 2 in (D.9) and (D.10), respectively, shown

at the top of next page.

Now, replacing u1 = (x+ xZ1) / (1− κx) and u2 =
(x+ xZ2) / (1− κx) in (D.9) and (D.10), the outage prob-

ability FψORS
e2e

(x) can be calculated as5

FψORS
e2e

(x) = 1− S1 − S2, (D.11)

where

S1 =

∫ +∞

0

∫ z1

0

Pr

(

γSRb
≥
x+ xz1
1− κx

, γRbD ≥
x+ xz2
1− κx

)

fZ1
(z1) fZ2

(z2) dz2dz1, (D.12)

S2 =

∫ +∞

0

∫ z2

0

Pr

(

γSRb
≥
x+ xz1
1− κx

, γRbD ≥
x+ xz2
1− κx

)

fZ1
(z1) fZ2

(z2) dz1dz2. (D.13)

By substituting (7) and (D.9) into (D.12), and after some

algebraic manipulations, it follows that

S1 =

N
∑

m=1

M−m+1
∑

n=0,m+n>1

K1
∑

v=1

K2
∑

t=1

(−1)
n+1

×

[

∆3 (1− κx)
2

(Φ3 + x) (Φ5 + x)
+

∆4 (1− κx)
2

(Φ4 + x) (Φ5 + x)

]

× exp

(

−
Θ2x

1− κx

)

, (D.14)

where Θ2 = (n+m− 1)Ω, Φ3 =
ΩRI1v/ (Ω1 − κΩRI1v), Φ4 = ΩRI1v/ (Θ2 − κΩRI1v),
Φ5 = (ΩRI1v +ΩDI2t) / (Θ2 − κ (ΩRI1v +ΩDI2t)), and

∆3 = (n+m− 1)Cm−1
M CnM−m+1

Ω2αRI1vαDI2t

Ω2 + (n+m− 2)Ω

×
1

(Θ2 − κ (ΩRI1v +ΩDI2t)) (Ω1 − κΩRI1v)
,

∆4 = (n+m− 2)Cm−1
M CnM−m+1

Ω1αRI1vαDI2t

Ω2 + (n+m− 2)Ω

×
1

(Θ2 − κΩRI1v) (Θ2 − κ (ΩRI1v +ΩDI2t))
.

5u1 ≥ u2 is equivalent to Z1 ≥ Z2, and vice versa.

Similarly, from (7), (D.10) and (D.13), S2 can be obtained as

S2 =

N
∑

m=1

M−m+1
∑

n=0,m+n>1

K1
∑

v=1

K2
∑

t=1

(−1)
n+1

×

[

∆5 (1− κx)
2

(Φ6 + x) (Φ5 + x)
+

∆6 (1− κx)
2

(Φ7 + x) (Φ5 + x)

]

× exp

(

−
Θ2x

1− κx

)

, (D.15)

where Φ6 = ΩDI2t/ (Ω2 − κΩDI2t), Φ7 =
ΩDI2t/ (Θ2 − κΩDI2t), and

∆5 = (n+m− 1)Cm−1
M CnM−m+1

Ω1αRI1vαDI2t

Ω1 + (n+m− 2)Ω

×
1

(Θ2 − κ (ΩRI1v +ΩDI2t)) (Ω2 − κΩDI2t)
,

∆6 = (n+m− 2)Cm−1
M CnM−m+1

Ω2αRI1vαDI2t

Ω1 + (n+m− 2)Ω

×
1

(Θ2 − κΩDI2t) (Θ2 − κ (ΩRI1v +ΩDI2t))
.

Finally, combining (D.11), (D.14) and (D.15), the proof is

concluded.
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Firstly, we rewrite (10) as

FψPRS
e2e

(x) = 1−

N
∑

m=1

M−m+1
∑

n=0,m+n>1

K1
∑

v=1

K2
∑

t=1

(−1)
n+1

∆1∆2

×

(

δ1
Φ1 + x

+
δ2

Φ2 + x
+ κ2

)

× exp

(

−
(Θ1 +Ω2)x

1− κx

)

, (E.1)

where δ1 = (1 + κΦ1)
2
/ (Φ2 − Φ1) and δ2 =

(1 + κΦ2)
2
/ (Φ1 − Φ2). Now, by substituting (E.1) into

(21), we have

CPRS
avg =

1

2 ln 2

N
∑

m=1

M−m+1
∑

n=0,m+n>1

K1
∑

v=1

K2
∑

t=1

(−1)
n+1

∆1∆2

×

∫ κ−1

0

(

δ1
(1 + x) (Φ1 + x)

+
δ2

(1 + x) (Φ2 + x)
+

κ2

1 + x

)

× exp

(

−
(Θ1 +Ω2)x

1− κx

)

dx. (E.2)

Next, rewriting (E.2) as

CPRS
avg =

1

2 ln 2

N
∑

m=1

M−m+1
∑

n=0,m+n>1

K1
∑

v=1

K2
∑

t=1

(−1)
n+1

∆1∆2

×

∫ κ−1

0

L1 (x) exp

(

−
(Θ1 +Ω2)x

1− κx

)

dx, (E.3)

in which

L1 (x) =
δ1

Φ1 − 1

(

1

1 + x
−

1

Φ1 + x

)

+
δ2

Φ2 − 1

(

1

1 + x
−

1

Φ2 + x

)

+
κ2

1 + x
.



Pr (γSRb
≥ u1, γRbD ≥ u2)=

N
∑

m=1

M−m+1
∑

n=0,m+n>1

(−1)
n
Cm−1
M CnM−m+1

×

[

(n+m− 1)Ω2

Ω2 + (n+m− 2)Ω
exp (−Ω1u1 − (Ω2 + (n+m− 2)Ω)u2) +

(n+m− 2)Ω1

Ω2 + (n+m− 2)Ω
exp (− (n+m− 1)Ωu1)

]

(D.9)

Pr (γSRb
≥ u1, γRbD ≥ u2)=

N
∑

m=1

M−m+1
∑

n=0,m+n>1

(−1)
n
Cm−1
M CnM−m+1

×

[

(n+m− 1)Ω1

Ω1 + (n+m− 2)Ω
exp (−Ω2u2 − (Ω1 + (n+m− 2)Ω)u1)+

(n+m− 2)Ω2

Ω1 + (n+m− 2)Ω
exp (− (n+m− 1)Ωu2)

]

(D.10)

Finally, applying (23) for the corresponding integral in (E.3),

we finish the proof of Theorem 5.
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Firstly, we rewrite (16) as (F.1), shown at the top of

this page, where δ3 = (1 + κΦ3)
2
/ (Φ5 − Φ3), δ4 =

(1 + κΦ5)
2
/ (Φ3 − Φ5), δ5 = (1 + κΦ4)

2
/ (Φ5 − Φ4), δ6 =

(1 + κΦ5)
2
/ (Φ4 − Φ5), δ7 = (1 + κΦ6)

2
/ (Φ5 − Φ6), δ8 =

(1 + κΦ5)
2
/ (Φ6 − Φ5), δ9 = (1 + κΦ7)

2
/ (Φ5 − Φ7), and

δ10 = (1 + κΦ5)
2
/ (Φ7 − Φ5). Now, by substituting (F.1) into

(21), and after some algebraic manipulations, it follows that

CORS
avg =

1

2 ln 2

N
∑

m=1

M−m+1
∑

n=0,m+n>1

K1
∑

v=1

K2
∑

t=1

(−1)
n+1

×

∫ κ−1

0

L2 (x) exp

(

−
Θ2x

1− κx

)

dx, (F.2)

where L2(x) is a function of x, which is given in (F.3),

shown at the top of next page. Next, applying (23) for the

corresponding integral in (F.2), the proof is concluded.
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∑
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Φ6 + x

+
δ8

Φ5 + x
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Φ7 + x

+
δ10

Φ5 + x
+ κ2
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