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Abstract— Dealing with network failures effectively is a major
operational challenge for Internet Service Providers. Commonly
deployed link state routing protocols such as OSPF react to
link failures through global (i.e., network-wide) link state adver-
tisements and routing table recomputations, causing significant
forwarding discontinuity after a failure. The drawback with
these protocols is that they need to trade off routing stability
and forwarding continuity. To improve failure resiliency with-
out jeopardizing routing stability, we propose a proactive local
rerouting based approach called failure insensitive routing (FIR).
The proposed approach prepares for failures using interface-
specific forwarding, and upon a failure, suppresses the link
state advertisement and instead triggers local rerouting using
a backwarding table. In this paper, we prove that when no more
than one link failure notification is suppressed, FIR always finds
a loop-free path to a destination if one such path exists. We
also formally analyze routing stability and network availability
under both proactive and reactive approaches, and show that
FIR provides better stability and availability than OSPF.

I. INTRODUCTION

The Internet has seen tremendous growth in the past decade
and has now become the critical information infrastructure for
both personal and business applications. It is expected to be
always available as it is essential to our daily commercial, so-
cial and cultural activities. Service disruption for even a short
duration could be catastrophic in the world of e-commerce,
causing economic damage as well as tarnishing the reputation
of a network service provider. In addition, many emerging
services such as Voice over IP and VPNs (virtual private
networks) for finance and other real-time business applica-
tions require stringent service availability and reliability [1].
Unfortunately, failures occur frequently in today’s Internet due
to various reasons: ranging from the most common short-term
transient router interface faults, to occasional medium-term
router crashes and reboots, to the rare long-term catastrophic
fiber cuts. Apart from hardware problems, software bugs and
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human errors also play a major role in contributing to these
failures.

Traditional routing protocols such as OSPF [2] and ISIS
[3] deal with failures in a reactive manner: they rely on
network-wide link state advertisements to discover network
topology changes and reroute around failures, taking seconds
to resume forwarding [4]–[6]. Approaches [7]–[9] based on
MPLS (multi-protocol label switching) [10] handle failures by
preconfiguring “backup” paths. However, these approaches are
generally centralized, and require many configurations, which
is a source of human errors. More importantly, they require
a shift to a new forwarding paradigm (“label swapping”)
and still need to rely on link state advertisements for failure
notification.

As an alternative, we proposed [11] a novel proactive
intra-domain routing approach – Failure Insensitive Routing
(FIR) – for ensuring high service availability and reliability
without changing the conventional destination-based forward-
ing paradigm. There are two key ideas that underpin our
proposed approach: interface-specific forwarding and local
rerouting. These ideas enable us to infer link failures based
on packets’ flight (the interfaces they are coming from),
precompute interface-specific forwarding tables (“alternative”
paths) in a distributed manner and trigger local rerouting
without relying on network-wide link-state advertisements.
The proposed approach can effectively handle transient link
failures that are most frequent in today’s networks [6], [12]. It
enhances failure resiliency and routing stability by suppressing
the advertisement of transient failures and locally rerouting
packets during the suppression period.

In this paper, we formally analyze the performance of the
proactive FIR approach and contrast it with that of OSPF/ISIS,
reactive approaches to failure resiliency. The formal analysis
of performance and proof of correctness of FIR are the main
contributions of this paper. The organization of the paper is
as follows. Section II discusses the results of a study which
indicate that majority of the failures are transient and points
out the limitations of reactive approaches like OSPF/ISIS in
handling such transient link failures. We then describe our
proactive FIR approach in Section III and prove its correctness
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in ensuring forwarding continuity while suppressing single
link failures. In Section IV, we present a formal model for
analyzing the routing stability and network availability under
both proactive and reactive approaches, and show that FIR
provides better stability and availability than OSPF/ISIS. Sim-
ulation results presented in Section V validate the analytical
model. Section VI concludes the paper.

II. LINK FAILURES AND THEIR IMPACT

To illustrate the characteristics of failures and their impact
on network performance, we quote some results from [6]. It
was observed that failures are fairly well spread out across
weeks, days, and even over the course of a single day. Clearly,
they need to be taken into account as part of every day
operations. The failure duration, i.e., the time a failure lasts
before the link reverts to its original status is also measured
in the study. The cumulative distribution of the duration of
failures observed over a 5 month period (April-August 2002)
shows that most failures are transient (i.e., short-lived): 50%
last less than a minute and 85% last less than ten minutes.
Hence effectively handling transient link failures is crucial in
the design of failure resilient routing protocols.

The link-state routing protocols such as OSPF and ISIS,
which are commonly deployed in today’s networks, react to
link failures by having routers detect adjacent link failures,
disseminate link state changes, and then recompute their
routing tables using the updated topology information. Recent
studies [4]–[6] have reported that the resumption of forwarding
after a link failure typically takes several seconds. During
this period, some destinations could not be reached and the
packets to those destinations would be dropped. In today’s
high speed networks, even a short recovery time can cause
huge packet losses. For example, if an OC-48 link is down for
ten seconds, close to 3 million packets (assuming an average
packet size of 1KB) could be lost! Such discontinuity in packet
forwarding has an adverse effect on the performance of TCP,
in particular when delay-bandwidth product is large. Further-
more, such service disruption, albeit relatively short, is deemed
unacceptable [1] in many continuous media applications such
as carrier-grade Voice over IP.

Solutions to accelerate the convergence of link state routing
protocols have been proposed [4], [5], [13]. The general recipe
calls for fine-tuning of several parameters associated with
link failure detection, link state dissemination and routing
table re-computation. Although these solutions can improve
the convergence time of routing protocols, they also run the
risk of introducing instability in the network, in particular in
the face of frequent transient link failures. Faster convergence
requires earlier advertisements of many transient link failure
events that may last only a few seconds; just as the new routing
tables are computed, they need to be recomputed again due to
new link state updates. On the other hand, suppression of a
link failure notification by the adjacent node would increase
forwarding discontinuity. Other nodes that are not aware of the
failure continue to route packets to some destinations through
the failed link which get dropped at the adjacent node. The

fundamental problem with these schemes is that they react
after the failure of a link and forwarding is disrupted till the
optimal routes are globally recomputed.

It is clear that the existing routing protocols need to tradeoff
between forwarding continuity and routing stability. But it
is desirable to enhance failure resiliency without jeopardiz-
ing routing stability. Therefore, the key question is how to
suppress transient failures without causing packet loss. We
propose a proactive FIR approach that addresses this issue
by preparing for failures using interface-specific forwarding,
and by performing local rerouting using a backwarding table
upon a failure while suppressing the failure notification. We
describe our approach in the following section.

III. FAILURE INSENSITIVE ROUTING

In this section, we discuss the key ideas behind the FIR
approach, present an algorithm to compute interface-specific
forwarding and backwarding tables for handling single sup-
pressed link failures, and prove its correctness in ensuring that
packets reach their destinations while suppressing single link
failures.

A. Basic Ideas

Under FIR, when a link fails, adjacent node suppresses
global advertisement and instead initiates local rerouting of
packets, using the backwarding table, that were to be for-
warded through the failed link. Though other nodes are not
explicitly notified of the failure, they infer it from packet’s
flight1. When a packet arrives at a node through an unusual
interface (through which it would never arrive had there been
no failure), the potentially failed links, referred to as key links,
can be inferred and an appropriate next hop is used to avoid
those key links. These interface specific forwarding tables can
be precomputed since inferences about key links can be made
in advance. Thus under FIR, when a link fails, only nodes ad-
jacent to it locally reroute packets to the affected destinations
and all other nodes simply forward packets according to their
precomputed interface specific forwarding tables without being
explicitly aware of the failure. Once the failed link comes up
again, forwarding resumes over the recovered link as if nothing
ever happened. This approach decouples forwarding continuity
and routing stability by handling transient failures locally and
notifying only persistent failures globally. In essence, with
FIR, packets get locally rerouted along (possibly suboptimal)2

1Instead of suppressing a failure notification, we can alternatively limit the
scope of a link state advertisement to local neighborhood [14]. However such
an approach introduces a new problem of determining the right scope for
a notification, necessitating changes to the existing link state protocols. FIR
with local inferencing of failures performs rerouting without requiring any
changes to link state propagation mechanisms. Deflection routing proposed in
[15] allows suppression of failure notification by rerouting along an alternate
next hop based on strictly decreasing cost criterion. While deflection routing
guarantees loop-free paths, it may not always find such a path even if one
exists. It requires that weights of links satisfy a certain condition. FIR imposes
no such restrictions on weight assignment and assures loop-free forwarding
to any reachable destinations in case of single link failures.

2It was shown [11] that the path length elongation due to local rerouting
under FIR is insignificant.
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routing table
dest 2 3 4 5 6

next hop 2 3 4 2 2

forwarding tables
2→1 - 3 4 3 4
3→1 2 - 4 2 2
4→1 2 3 - 2 2

Fig. 1. Sample topology, routing and forwarding tables at node 1

alternative paths without getting caught in a loop or dropped
till the new shortest paths are globally recomputed.

We use an example to illustrate how packets get locally
rerouted under FIR in the event of failures. Consider the
topology shown in Fig. 1 where each link is labeled with its
weight. The corresponding routing table at node 1 is shown
in Fig. 1. First, we point out the problem with conventional
routing in case of a link failure. Suppose link 2−5 is down.
Before node 2 recomputes its routing table, packets from node
1 to node 6 will be dropped at node 2. Even after node 2
finishes recomputing its routing table, which will have node 1
as the next hop to reach node 6, but while other nodes are still
in the process of recomputing their entries, packets from node
1 to node 6 will get forwarded back and forth between nodes
2 and 1, causing a forwarding loop [16], and may eventually
be dropped.

In contrast, under FIR, forwarding loops are avoided by
inferring link failures from packet’s incoming interface. When
2−5 is down, node 2 locally reroutes packets from node 1 to
node 6 back to 1 instead of dropping them. When a packet
destined to node 6 arrives at node 1 from node 2, node 1 can
infer that some link along its shortest path to node 6 must
have failed, as otherwise node 2 should never forward packets
destined to node 6 to node 1. Node 2 would forward packets
destined to node 6 to node 1 only if the link 2−5 or 5−6 is
down, i.e., the key links associated with the interface 2 → 1
and destination 6 are {2−5, 5−6}. So when a packet for node 6
arrives at node 1 from node 2, node 1 can infer that one or both
of these links are down, in spite that node 1 is not explicitly
notified of the failures. To ensure that the packet reaches node
6, node 1 will forward it to node 4 instead, avoiding the
corresponding key links, i.e., both the potentially failed links
2−5 and 5−6. That is why in Fig. 1, a packet arriving at node
1 with destination 6 through neighbor node 2 is forwarded to
node 4 while it is forwarded to node 2 if it arrives through the
other two neighbors. Such interface specific forwarding makes
it possible to perform local rerouting without explicit failure
notification.

It should be noted that these inferences about potential link
failures are made not on the fly but in advance and interface-
specific forwarding tables are precomputed according to these
inferences. The forwarding process under FIR is essentially the
same as it is under the conventional routing — when a packet
arrives at an incoming interface, the corresponding forwarding
table is looked up to determine the next hop and the outgoing

TABLE I

NOTATION

V set of all vertices
E set of all edges
G graph (V ,E)
We weight of edge e

Rd
i set of next hops from i to d

Fd
j→i set of next hops from j→i to d.

Bd
j→i set of back hops from i→j to d.

Kd
j→i key links from j→i to d.

Ti shortest path tree rooted at i
T e

i SPT of i without edge e
P (k, T ) parents of node k in tree T
N(k, T ) next hops to k from root of T
S(k, T ) subtree below k in tree T
V (T ) set of all vertices in tree T

Rd
i (X ) next hops from i to d with edges X

Pd
i (X ) shortest path from i to d with edges X .

Pd
i (x, y,X ) subpath from x to y of Pd

i (X ).
C(P) cost of the path P

interface. The only deviation is that unlike in current routers
which have the same forwarding table at each interface, under
the FIR approach these tables are different.

The above example demonstrates several attractive features
of FIR as we detail below:

• FIR provides near-continuous forwarding of packets de-
spite failures. With FIR, reachability of destinations does
not depend on fine tuning of various parameters asso-
ciated with link failure propagation and routing table
recomputation.

• FIR improves service availability without jeopardizing
routing stability. It handles transient failures locally and
notifies only persistent failures globally.

• FIR requires minimal changes to conventional routing
and forwarding planes. The change needed to the existing
routing framework for deploying FIR is that traditional
Dijkstra’s Shortest Path First algorithm for computing in-
terface independent routing table has to be replaced by an
algorithm for computing interface dependent forwarding
tables.

B. Algorithm

We now present an algorithm for computing the interface-
specific forwarding tables at a given node assuming at most
a single link failure is suppressed in the network. We assume
that all the links are point to point, and bidirectional with
equal weight in both directions, which is generally true for
the backbone networks. We also assume that whole network
forms a single OSPF area and hence each node has complete
link state information3.

The computation of the forwarding table entries of an
interface involves identifying the corresponding key links. We
denote by Kd

j→i the set of links which when down cause

3We are exploring ways to extend the FIR approach to networks with
asymetric links and multiple areas.

0-7803-8356-7/04/$20.00 (C) 2004 IEEE IEEE INFOCOM 2004



packets with destination d to arrive at node i from node j.
When dealing with single suppressed link failures, the set Kd

j→i

can be defined as follows: an edge u−v is included in Kd
j→i

only if both of the following conditions are satisfied:

• with u−v, j is a next hop from i to d.
• without u−v, directed edge j→i is along a shortest path

from u to d or v to d.

Algorithm 1 : KEYLINKS(j→i)
1: for all d ∈ V do
2: Kd

j→i ⇐ ∅
3: Ti ⇐ SPF(i,V, E)
4: if j /∈ N(j, Ti) then
5: return Kj→i

6: V ′ ⇐ V (S(j, Ti))
7: for all u−v ∈ E \ {i−j} do
8: for all w ∈ {u, v} do
9: T u−v

w ⇐ SPF(w,V, E \ {u−v})
10: if j ∈ P (i, T u−v

w ) then
11: for all d ∈ V ′ ∧ V (S(i, T u−v

w )) do
12: Kd

j→i ⇐ Kd
j→i ∪ {u−v}

13: return Kj→i

The KEYLINKS procedure for computation of key links of
the incoming interface of i from j is shown in Algorithm 1.
The notation used here and the rest of the paper is listed in
Table I. The SPF procedure (not shown here) used by the
KEYLINKS procedure returns a shortest path tree (SPT) rooted
at the requested node i given the set of vertices V and edges
E . The KEYLINKS procedure initially sets Kd

j→i to ∅ for each
destination d. The set Kd

j→i remains ∅, if j is not a next hop
from i to d without any failures. The condition in line 4 checks
if j is a next hop from i to any destination. The set of nodes for
which j is a next hop from i is empty when j itself is reached
through some other neighbor. Essentially after line 6, the set
V ′ contains all the nodes for which j is a usual next hop from
i. The set of key links may be non empty only for the nodes
in V ′. An edge u−v is added to set Kd

j→i if shortest paths from
u or v to d passes through j→ i link when u−v is down. To
check this, the following is done for both u and v (line 8). Let
w be the node (either u or v) being considered. The shortest
path tree T u−v

w rooted at node w without the edge u−v is built
using SPF procedure (line 9). If j → i link is part of T u−v

w ,
then j would be a parent of i in T u−v

w . So the condition in
line 10 tests to see if packets to any destination arrive at i from
j when link u−v is down. The set of destinations for which i
is not a usual next hop from j but becomes a next hop without
u−v is given by V ′ ∧V (S(i, T u−v

w )). For all such destinations,
u−v is included in their set of key links (lines 11−12).

Once the key links are determined, it is straightforward to
compute the interface specific forwarding tables. Let E be the
set of all links in the network. Suppose Rd

i (X ) represents the
set of next hops from i to d given the set of links X . Let Fd

j→i

denote the forwarding table entry, i.e., the set of next hops to d
for packets arriving at i through the interface associated with
neighbor j. This entry can be computed using SPF algorithm
after excluding the links in the set Kd

j→i from the set of all

links E . Thus,
Fd

j→i = Rd
i (E \ Kd

j→i)

When an interface is down, its backwarding table is used
to locally reroute packets that were to be forwarded through
that interface. The entries in this table, denoted by Bd

i→j , give
the set of alternate next hops, referred to as back hops, from
node i for forwarding a packet with destination d when the
interface or the link to the usual next hop node j is down. The
backwarding table entries can also be precomputed similar to
forwarding table entries once the key links are identified as
follows:

Bd
i→j ⇐ Rd

i (E \ Kd
i→j \ i−j)

Essentially we exclude all the links that would cause the packet
to exit from the interface of i to j and also the link i−j itself in
computing the back hops. When preparing for at most single
suppressed link failures, this amounts to

Bd
i→j ⇐ Rd

i (E \ i−j)

C. Overhead

Let us now consider the overhead associated with FIR.
Though FIR requires interface-specific forwarding, it does not
cause any additional memory burden on the current routers
since they anyway maintain a forwarding table at each line
card of an interface for lookup efficiency. Another requirement
of FIR is the maintenance of a backwarding table for local
rerouting. Note that a backwarding table associated with an
interface i→ j has to have back hop entries only for those
destinations for which j is the usual next hop. Therefore the
total space required for all back hop entries at a router is only
O(|V|), which we believe is quite feasible. Finally, the main
overhead due to FIR is the computation of interface-specific
forwarding tables. A straightforward algorithm presented in
the previous section would need O(|E|) invocations of SPF.
However, by using incremental algorithms that take advatange
of previous computations, interface-specific forwarding tables
can be computed in time comparable to a single invocation of
SPF. For a detailed discussion on the efficient FIR algorithms,
please refer to [11], [17].

D. Correctness

We now prove that with key links and forwarding tables
computed as described above, when no more than one link
failure is suppressed, with local rerouting FIR always finds a
loop-free path to a destination if one exists. Suppose a packet
with destination d arrives at node i through the interface asso-
ciated with the neighbor node j. We first show in Theorem 1
that the forwarding path under FIR is identical to that under
OSPF when there is no failed link. In Theorem 2, we show
that the destination d is still reachable from node i even if we
remove all the key links Kj→i associated with the incoming
interface j from the topology. Finally Theorem 3 shows that
all the nodes along the path to the destination d choose the
next hop consistently so that no loop occurs. The proof of
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Theorem 3 is given here but the proofs of other theorems and
lemmas are given in the appendix.

Theorem 1: If there is no failure, the forwarding path from
i to d under FIR is identical to that under OSPF.

It is easy to see that a link included in key links Kd
j→i should

be on a shortest path from i to d because otherwise that link’s
failure would not cause the packet for d to arrive at i from
j. The following lemma shows a stronger necessary condition
for a link to be a key link.

Lemma 1: If u−v ∈ Kd
j→i, u−v is common to all the shortest

paths from j to d4.

The forwarding table entry Fd
j→i under FIR is computed

excluding all the key links. There is always a path from i to
d without one key link by the definition of key links. But it
is not intuitive whether there is still a path from i to d when
all the key links Kd

j→i are removed. Theorem 2 shows that d
is still reachable from i even when all the key links Kd

j→i are
removed from the network topology.

Theorem 2: Given Kd
j→i �= ∅, there exists a path from i to

d in G \ Kd
j→i.

The following lemma shows that the path from i to d
computed without one special key link is the same as the path
computed without all the key links. This property can reduce
the complexity of the next hop computation.

Lemma 2: If Kd
j→i �= ∅ and u−v is the closest link to d

among the links in Kd
j→i and v ∈ Rd

u(E), then Pd
i (E \Kd

j→i) =
Pd

i (E \ {u−v}).
Since all the nodes compute their forwarding tables inde-

pendently, even though there exists a path from i to d without
the key links Kd

j→i as given by Theorem 2, other nodes might
choose a different path, which might lead to a loop. Theorem 3
shows that all the nodes along the path from i to d choose the
same path. Before we prove Theorem 3, we need the following
two lemmas.

Lemma 3: If Kd
j→i �= ∅ and u−v ∈ Kd

j→i and v ∈ Rd
u(E),

then Pd
i (E \ {u−v}) = Pd

u(i, d, E \ {u−v}).
Lemma 4: Let the link u−v be the closest link to the

destination d among the links in Kd
f→k. For any link j−i on

Pd
k (E \ Kd

f→k), if Kd
j→i �= ∅, the link u−v is also the closest

link to d among the links in Kd
j→i.

Theorem 3: If there exists a path from a source s to a
destination d without a link f−g, suppression of its failure
notification under FIR does not cause a forwarding loop.

Proof: If the shortest path from s to d does not contain
the failed link f−g, the forwarding path under FIR is identical
to that under OSPF according to Theorem 1. So we only need
to prove that there is no loop to d from the nodes f and g
that are adjacent to the failed link f−g.

4Note that FIR does not assume single path routing and it works correctly
even with Equal Cost Multipath (ECMP) routing.

g
u

v
d

j

...

...

...
...i

s

f...

k

Fig. 2. A link failure scenario

Let the failure scenario be as shown in Fig. 2. If f �∈ Rd
g(E)

and g �∈ Rd
f (E), i.e., f is not a next hop from g to d and g

is not a next hop from f to d, then there is no loop to d
because any packet with the destination d arriving at f or g
will not traverse the failed link. So without loss of generality,
we need to prove that there is no loop from f to d in the graph
G \ {f−g}, where g ∈ Rd

f{E}, because any packet arriving at
g will be forwarded to d without causing any loop.

Let k ∈ Rd
f (E \{f−g}). If Kd

f→k = ∅, then the shortest path
Pd

k (E) from k to d does not contain the link f−g. We prove
this by contradiction. Suppose Pd

k{E} contains the link f−g.
By the definition of key links, Kd

f→k = ∅ implies f �∈ Rd
k(E).

So there must be a shorter path Pf
k {E} from k to f than the

link k−f itself. Since Pf
k (E) does not contain f−g link, k

cannot be in Rd
f (E \ {f−g}) because the shortest path from f

to k, Pk
f (E \{f−g}) would not be f−k. This is a contradiction.

Since the shortest path from k to d does not contain the link
f−g and Kd

f→k is empty, there is no loop along the path from
f to d.

Now consider the case where Kd
f→k �= ∅. Let the link u−v be

the closest link to the destination d among the links in Kd
f→k.

Without loss of generality, assume v ∈ Rd
u. All we need to

show is that Pd
k (i, d, E \ Kd

f→k) = Pd
i (E \ Kd

j→i), for all j−i

along the path Pd
k (E \Kd

f→k) because Pd
k (E \Kd

f→k) exists as
per Theorem 2. It should be noted that Pd

k (E \ Kd
f→k) does

not contain f−g because f−g ∈ Kd
f→k by the definition of

key links. We now consider the two scenarios j ∈ Rd
i (G) and

j /∈ Rd
i (G).

Assume j ∈ Rd
i (G). Pd

k (E \ Kd
f→k) = Pd

u(k, d, E \ {u−v})
by Lemma 2 and 3, so Pd

u(E \{u−v}) contains the link j−i. By
Lemma 4, the link u−v should be the closest link to d among
the links in Kd

j→i. So Pd
k (i, d, E\Kd

f→k) = Pd
k (i, d, E\{u−v}) =

Pd
u(i, d, E \ {u−v}) = Pd

i (E \ Kd
j→i) by Lemma 2, Lemma 3,

and the Optimal substructure of a shortest path. 5

When j �∈ Rd
i (G), Kd

j→i = ∅ by the definition of key links,
so Pd

i (E \ Kd
j→i) = Pd

i (E). Suppose that Pd
i (E) contains the

link u−v. Let P be the subpath (i, · · · , u) of Pd
i (E). P is a

shortest path from i to u on the graph G. Let Q be the subpath
(i, j, · · · , u) of Pd

u(E \ {u−v}). Note that Q is a shortest path
from i to u on the graph G \ {u−v}. If the length of P is
the same as that of Q, then j is also a next hop of i on the
graph G. This contradicts that j �∈ Rd

i (G). So P is shorter
than Q. Since P does not contain the link u−v, P is also
a shortest path from i to u on the graph G \ {u−v}. This
contradicts that Q is a shortest path from i to u on the graph

5Subpaths of shortest paths are shortest paths [18].
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TABLE II

NOTATION OF MODEL

τ1 time to fail of link
τ2 time to repair of link
λ link failure rate
µ link recovery rate
b scale parameter of heavy-tail distribution
m number of links in the network
S(t) state of network at t
α network convergence delay
δ suppression interval
Pδ success rate of suppression trial
N # of trials for 1st unsuccessful suppression
T length of cycle (w/ or w/o suppression)
Ttrans1 transient period after a down event
Ttrans2 transient period after a up event
Tsup suppression period in a cycle

G \ {u−v}. So Pd
i (E) does not contain the link u−v. Since

v ∈ Rd
u, v→u is not in Pd

i (E). Since Pd
i (E) does not contain

the link u−v, Pd
i (E \ Kd

j→i) = Pd
i (E) = Pd

i (E \ {u−v}) =
Pd

k (i, d, E \ {u−v}) = Pd
k (i, d, E \ Kd

f→k).

IV. PROACTIVE AND REACTIVE APPROACHES: MODELING

& ANALYSIS

Under reactive approaches such as OSPF, link state changes
need to be propagated quickly to reduce the service disruption.
However, triggering a link state advertisement (LSA) imme-
diately after each link failure may create routing instability
and overburden the routers. Current implementations of OSPF
use a small suppression period (called carrier delay in Cisco
routers) to filter out short-lived link failures. Recent research
[6] aimed at reducing the service disruption suggested short-
ening the carrier delay from its default value of two seconds
to the order of milliseconds. However, this raises the concern
over the potential instability in the network. The proposed
proactive FIR approach, on the other hand, is designed to
minimize the forwarding discontinuity while ensuring routing
stability through suppression of failure notifications. In this
section, we try to understand the tradeoffs involved in the
choice of whether or not to suppress link failures and how long
to suppress. Our aim is to understand the limitations of the
existing routing protocols and to evaluate the potential benefits
of the FIR approach. Towards this goal, we build a formal
model to analyze the network stability and availability under
both proactive and reactive approaches to failure resiliency.
We then compare the performance of these approaches under
various settings and show that FIR provides better stability
and availability than OSPF.

A. Network Stability

We first model the network stability as a function of the
suppression interval δ. The status of a link l in the network
can be viewed as a two-state random process. The link l is
in either up or down state, and we denote the transition rates
between the two states by λl and µl respectively. We model
the time to fail of a link l (i.e., the time between a link
down event and its immediately precedent link up event) as

Up
LSA#2 Propogated

Suppression
Succeed

Suppression
Start

Suppression
Start

Suppression
Start

Suppression
Succeed

Supression Expire
(LSA#1 Propogated)

Suppression Period

t0
t1 t3t2

Fig. 3. Link events and effects with suppression

a random variable τ l
1, and the corresponding time to repair

as τ l
2. The notations used in this section are summarized in

Table II. As we have mentioned, recent studies [6], [12] show
that the majority of link failures in a network are short-lived
failures. Therefore, we will model the time-to-repair τ l

2 with a
heavy tailed distribution with the following probability density
function,

fτ l
2
(x) =

(bµl + 1)bbµl+1

(x + b)bµl+2
.

We obtain the above function by adapting the generalized
Pareto density function f(x) = abax−(a+1); shifting it by b
to the left, and setting its mean b

a−1 to 1
µl . In this way, τ l

2 is
defined on (0,+∞), E(τ l

2) = 1
µl , and b is a scale parameter

of the heavy-tail distribution. When b is small, the distribution
of τ l

2 has a heavy tail; when b is very large, the probability
distribution function of τ l

2 resembles that of an exponential
random variable. For this reason, we do not explicitly derive
another model based on exponentially distributed τ l

2. For τ l
1,

as we shall see later, only the mean 1
λl and not the exact

distribution matters in our derivation of network stability and
availability.

Now consider the failure events of link l. When a link
failure is detected, the adjacent routers will suppress it for
a suppression interval δ. If the link recovers before the
suppression interval expires, the suppression is “successful”,
and no LSA is propagated for this failure; otherwise, an
LSA is propagated at the end of the suppression interval,
announcing the failure of the link. Once an announced down
link come up again, it will be announced immediately with
a new LSA. Fig. 3 illustrates a sequence of link events and
their consequences. It shows three link failure events followed
by their corresponding link recovery events. The first two
link failures are successfully suppressed, while the last failure
generates two LSAs – announcing link down at time t2 and
link up at t3 respectively.

When an LSA is announced, it propagates across the
network, and each router will recompute its own routing
information base (RIB) and update the forwarding information
bases (FIBs). We say the network is in transient state for
the window of time between announcement of the LSA and
the updation of its FIBs by the last router in the network;
otherwise, the network is in stable state (i.e., when only link
l is considered). We regard this period as the convergence
delay and denote it by α. Let gl[k] be the time when the kth

LSA for link l is announced, then the network state can be
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characterized by the following indicator function.

Sl(t) =
{

0, if ∃k, gl[k] < t < gl[k] + α;
1, otherwise.

Sl(t) = 1 indicates that the network is in stable state at time
t. For ease of exposition, hereafter we drop the superscript l.

We now derive the fraction of time the network is in stable
state, i.e., P{S(t) = 1}. We first define the time between two
consecutive (propagated) link up events as a cycle, denoted
by T (e.g., between t0 and t3 in Fig. 3). The period T can
be viewed as several successful suppressions followed by an
unsuccessful suppression. Given the suppression interval δ, the
success rate of suppression is

Pδ = P{τ2 < δ}

=
∫ δ

0

(bµ + 1)bbµ+1

(x + b)bµ+2
dx

= 1 −
(

δ + b

b

)−(bµ+1)

.

Let the random variable N represent the number of trials for an
“unsuccessful” suppression to occur, then E(N) = 1

1−Pδ
. A

cycle is composed of N number of time-to-fail intervals, N−1
number of time-to-repair intervals with the condition that each
of them being less than δ (we denote these conditional random
variables by τ ′

2), and one time-to-repair with the condition
that it being larger than δ (we denote this conditional random
variable by τ ′′

2 ). Therefore, we have6

E(T ) = E(Nτ1 + (N − 1)τ ′
2 + τ ′′

2 )
= E(N)E(τ1)+(E(N) − 1)E(τ2|τ2 <δ)+E(τ2|τ2 >δ)

=
(

1
λ

+
1
µ

)(
δ + b

b

)bµ+1

.

During the entire cycle T , there are two transient periods:
thick straight and dashed horizontal lines as shown in Fig. 3.
We denote the period following the first LSA by Ttrans1 and
the period following the second LSA by Ttrans2. The length
of Ttrans1 depends on the time between t2 and t3 (as shown
in Fig. 3). If t3 − t2 > α, then Ttrans1 equals α; otherwise,
Ttrans1 equals t3 − t2. Therefore, we have

E(Ttrans1) = αP (τ ′′
2 − δ>α)

+ E(τ ′′
2 − δ|τ ′′

2 − δ<α)P (τ ′′
2 − δ<α)

=
1
µ

(
δ + b

b

)[
1 −

(
δ + b

δ + α + b

)bµ
]

.

We assume that the time between t0 and t2 is always longer
than α (Note that this is always true as long as δ > α),
therefore Ttrans2 always equals α. Therefore, the fraction of
stable period of the network is

P{S(t) = 1} = 1 − E(Ttrans1) + E(Ttrans2)
E(T )

= 1 −
α + 1

µ

(
δ+b

b

)
[1 − ( δ+b

δ+α+b )
bµ]

( 1
λ + 1

µ )( δ+b
b )bµ+1

.

6The derivation utilizes Wald’s Equation [19].

So far, we have been focusing on the network stability when
only one link in the network is subject to failures. Assuming
that time-to-repair of different links in the network are inde-
pendent and identically distributed, the stability fraction of the
network is

P{S(t) = 1} =
∏

l

(1 − P l
trans) = (1 − P l

trans)
m,

where P l
trans = P{Sl(t) = 0} and m is the number of links

in the network.

B. Network Availability

We define network availability as the fraction of time
the network is able to forward packets between all source-
destination pairs. Since a forwarding loop is possible during
the network transient period, we consider all the network
transient periods as unavailable time for both OSPF and
FIR. Besides, under OSPF, when a router suppresses a failed
link, forwarding between some source-destination pairs could
be disrupted. We therefore count suppression periods too as
unavailable time under OSPF. On the other hand, we have
shown that FIR guarantees forwarding correctness when at
most one link failure is suppressed. Therefore, we will derive
a loose lower bound on network availability under FIR by
counting all the multiple suppressed link failure periods as
network unavailable time. Since only a specific scenario of
failures of links along the shortest path and the alternate path
can cause looping (also confirmed through simulation results),
we further develop a formula for availability under FIR by
considering the network as unavailable only when more than
two link failures are suppressed simultaneously.

1) Availability under OSPF: Consider service unavailable
time in each cycle under OSPF. We already have the unavail-
able time due to network transients. We denote the length of
the suppression periods in a cycle by Tsup. Tsup is the other
component of the network unavailable time. From Fig. 3 we
can see that Tsup consists of N−1 successfully suppressed link
down periods and one full suppression interval δ. Therefore,

E(Tsup) = E(N − 1)E(τ2|τ2 < δ) + δ

=
( δ+b

b )bµ+1 − δ+b
b

µ
.

We define the fraction of time a link l is suppressed in a cycle
as

P l
sup =

E(Tsup)
E(T )

.

Then, the availability of the network is

P l
ospfavail = 1 − P l

trans − P l
sup

= 1 −
α

(
b

δ+b

)bµ+1

+ 1
µ [1 − ( b

δ+α+b )
bµ]

1
λ + 1

µ

.

The OSPF availability considering all links in the network
is then:

Pospfavail = (1 − P l
trans − P l

sup)
m.
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Fig. 4. Impact of failure frequency on network stability and availability: (a) stability; (b) availability.
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Fig. 5. Network unavailability: (a) OSPF; (b) FIR-1; (c) FIR-2

2) Availability under FIR: We first derive a lower bound
on FIR availability, which contains the following two type
of periods in a cycle: when none of the links is causing
transient state or being suppressed; and when exactly one link
in the network is suppressed, and all other links are neither
suppressed nor causing transients. Therefore, the lower bound
can be represented in the following formula, which we will
refer to as “FIR-1”.

Pfiravail1=(1−P l
trans−P l

sup)
m+

(
m
1

)
P l

sup(1−P l
trans−P l

sup)
m−1

Next, we consider two simultaneously suppressed link fail-
ures also as network available time under FIR. We need to
add the following periods in a cycle to the available portion:
periods when exactly two links in the network are being
suppressed, and all other links are neither suppressed nor
causing transients. Therefore, our second formula (dubbed
“FIR-2”) for network availability under FIR is

Pfiravail2=(1−P l
trans−P l

sup)
m+

(
m
1

)
P l

sup(1−P l
trans−P l

sup)
m−1

+
(

m
2

)
(P l

sup)
2(1−P l

trans−P l
sup)

m−2.

We refer the readers to [17] for the exact analytic form of
Pfiravail1 and Pfiravail2 since they are rather tedious.

C. Performance Evaluation

We now compare the performance of OSPF and FIR under
various parameter settings. The parameters captured in our
model are: λ, µ, δ, α, m and b. These parameters are set
to the following default values unless otherwise mentioned:
1
λ = 86400(s) (1 day), 1

µ = 120(s), b = 208, α = 5(s), and
m = 200. The choice of these default settings is mainly based
on recent empirical measurement results of an operational
network [6]. To match the characterization that many failures
are short-lived, we choose µ and b such that 50% of the link
failure durations are less than 1 minute.

Fig. 4(a) shows the stability of the network as a function
of failure frequency, i.e., the mean number of failures per
day for each link. We vary the failure frequency from 0.5
to 3 failures per day, and plot the percentage of stability for
δ = 0, 60, 120, 300 secs. As expected, the network is more
stable when the failure frequency is low. More importantly
the stability can be improved significantly even when failure
frequency is high by choosing a large suppression interval.
However, this would have adverse impact on the availability
under OSPF while FIR achieves high availability by local
rerouting during the suppression period as shown below.

In Fig. 4(b), we plot the availability of the network with
the same set of parameters as in Fig. 4(a). As mentioned
before, unavailability of the network is due to either transient
or suppression periods. The transient component is shown in
Fig. 4(a). Under OSPF, since δ = 0, there is no suppression.
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Fig. 6. Network availability under various settings: (a) transient failures; (b) convergence delay (c) network size.

The availability of the network therefore equals the network
stability shown in 4(a). The FIR-1 (with δ = 60) curve shows
that the availability under FIR is higher than that under OSPF
(with δ = 0) and all the three FIR-2 curves show significant
improvement over OSPF. FIR-2 with δ = 300 performs best
when failure frequency is low to medium, and δ = 120
performs best when failure frequency is high. The crossover of
the two curves for δ = 300 and δ = 120 is due to the increased
multiple suppressed link failures involving 3 or more links as
the link failure frequency becomes large. Since FIR can handle
some of such multiple suppressed failures, we believe our
simulation results with the same parameter settings (presented
in the next section) shed more light on the availability under
FIR when link failures are frequent.

We show the break down of total unavailability into un-
availability due to transients and due to suppressions in Fig.
5. Fig. 5(a) shows this break down for OSPF. We see that
as the δ value increases, the unavailability due to transients
decreases. However, the unavailability due to suppression
period increases much faster. Therefore, OSPF ends up best
with δ = 0. This behavior of OSPF exhibited in almost all
of our experiments demonstrates that under OSPF attempts to
increase stability with suppression would decrease availability.

Fig. 5(b) and 5(c) show the break down of unavailability
for FIR-1 and FIR-2 respectively. The unavailability due to
transients under FIR-1 and FIR-2 is the same while the
unavailability due to suppression is much lower in FIR-2 than
in FIR-1. Therefore, the optimal δ for FIR-2 is much larger
than for FIR-1. As we will show in the simulation results,
the behavior of FIR resembles FIR-2 much more closely.
Comparing FIR and OSPF using Fig. 5(a) and 5(c), we see
that FIR is able to eliminate almost 90% of the network
unavailability suffered by OSPF.

We now study the network availability under various pa-
rameter settings in Fig. 6. In Fig. 6(a), we vary the fraction
of transient failures (i.e., lasting less than 1 min) by fixing
1
µ = 120 and varying b. Fig. 6(a) shows that when larger
fraction of the failure durations are transient, FIR can achieve
higher availability, since suppression is more effective.

Fig. 6(b) shows the network availability over different
values of α, the convergence delay. It shows that as α

increases, availability decreases, for both FIR and OSPF. This
is because longer convergence delay means longer transient
periods, which hurts both OSPF and FIR. However, as the
figure shows, FIR is much less sensitive to α than OSPF.

Finally, we plot the network availability as a function of
the number of links in Fig. 6(c) to study the scalability
characteristics of FIR. These results demonstrate that FIR
scales well as the network size increases.

V. SIMULATION RESULTS

We now evaluate the network availability under OSPF
and FIR through simulations. We first discuss the simulation
methodology. The simulation was done on a random topology
generated by the BRITE topology generator tool [20], which
implements a variety of topology generation algorithms. The
number of nodes is 100 and the number of links is 197. The
weights of links are assigned randomly from 100 to 300. The
default values for various parameters of the simulation are set
to the same as those of the previous section.

In the previous section, FIR-2 treats the network as un-
available whenever more than two link failures are suppressed
simultaneously. Actually FIR can continue forwarding packets
in some cases of more than two suppressed link failures. So in
the simulation, for any duration when 2 or more link failures
are suppressed simultaneously, we checked the reachability of
all the source-destination pairs by traversing the network using
the interface-specific forwarding tables of FIR to see whether
there exists any forwarding loop or packet drop. If there is a
forwarding discontinuity, we count the duration as unavailable
time. By doing this, we can find the exact availability of FIR.
To evaluate how close FIR-1 and FIR-2 approximate the actual
unavailability due to the suppression period, we count the
durations when 2 or more link failures are suppressed (FIR-1)
and the durations when 3 or more links are suppressed (FIR-2).

In Fig. 7, the curves “suppress (FIR-1)” and “suppress
(FIR-2)” represent the unavailability due to the suppression
periods of FIR-1 and FIR-2 respectively. The curve “suppress”
represents the actual unavailability due to the suppression
period of the actual FIR. As we can see in Fig. 7, the curves
of FIR-2 and actual FIR are almost same, and as δ increases
the actual FIR shows better availability during the suppression
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period than FIR-2 does. This means that FIR can handle most
of the suppressed double link failures and even some of the
more than two suppressed failures. Since the unavailability
due to the transient period is the same for both FIR-2 and the
actual FIR, the total unavailability is almost the same. Even
though the model of FIR-2 is simple, it captures the behavior
of FIR very well.

We now show the effect of convergence delay α on the
availability in Fig. 8(a), which shows similar trends as in Fig.
6(b). Fig. 8(b) has the same parameter settings as in Fig. 4(b).
The simulation results for FIR are better than that of the model
in particular when δ = 300 which is expected.

The final simulation is about the effect of the fraction of
transient link failures on the availability. As the fraction of
transient link failures increases, FIR shows better availability
as in Fig. 8(c). When the fraction is 0.8, FIR can achieve
almost 100 % availability.

VI. CONCLUSIONS

We have presented a proactive failure insensitive routing
approach as an alternative to the reactive approach of the ex-
isting link state routing protocols such as OSPF/ISIS for failure
resiliency. We have described how FIR prepares for failures
by computing interface-specific forwarding and backwarding
tables, and proved that it ensures reachability of packets to
their destinations through local rerouting while suppressing
transient single link failures. We have developed a formal
model to analyze the routing stability and network availability
under both proactive and reactive approaches, and validated it

through simulations. We have shown that FIR provides better
stability and availability than OSPF across various failure
frequencies, convergence delays and network sizes. Our results
indicate that the improvement due to FIR is markedly better
when link failures are frequent and transient, and convergence
delay is large.
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APPENDIX

Proof of Theorem 1
If there is no failure, a node does not forward a packet to

a node which is not the normal next hop. So Kd
j→i = φ for

all (i − j) ∈ E that are used in the packet forwarding. So
Fd

j→i = Rd
i (E \ Kd

j→i) = Rd
i (E), which is the set of next

hops of the shortest path routing. So the path from the source
to the destination is same as the shortest path routing.

Proof of Lemma 1
If Kd

j→i is empty, we are done. Assume Kd
j→i is not empty.

By the definition of the key links, j ∈ Rd
i . Let u−v be a link

that is not common to all the shortest paths from j to d. Since
u−v is not common to all the shortest paths from j to d, j
has a shortest path to d without using u−v. So C(Pd

j (E)) =
C(Pd

j (E \{u−v})). It should be noted that Pd
j (E \{u−v}) does

not contain the link j−i. Since C(Pd
i (E\{u−v})) ≥ C(Pd

i (E)) >
C(Pd

j (E)) = C(Pd
j (E \{u−v})), the path (u, · · · , j, i, · · · , d) is

longer than the path (u, · · · , j, · · · , d) on the graph G \{u−v}.
Since the path (u, · · · , j, i, · · · , d) is the shortest path from u
to d containing the link j−i on the graph G\{u−v}, the shortest
path from u to d on the graph G \ {u−v} does not contain the
link j−i. So u−v cannot be in Kd

j→i.

Proof of Theorem 2
Let Kd

j→i = {l1, l2, · · · , lm}. We will prove by induction.
For each induction step (for 1 ≤ k ≤ m), we prove that there
is a path from i to d in G \ Ek, where Ek is any subset of
Kd

j→i with cardinality k.
Basis step: The case of k = 1 follows directly from the

definition of key links. We prove k = 2 as a basis step.
Without loss of generality, assume Ek = {l1, l2}. Since
Kd

j→i = {l1, · · · , lm} �= ∅, i is not the normal next hop
of the shortest path Pd

j (E). By Lemma 1, l1 ∈ Pd
j (E) and

l2 ∈ Pd
j (E). Without loss of generality, assume l1 is on the

upstream of l2 in Pd
j (E). We will denote ln = (vn, wn) for

n ∈ {1, 2}, and let vn be on the upstream of wn in Pd
j (E).

l2 ∈ Kd
j→i ⇒ ∃ path Pd

v2
(E \ {l2}) (containing j − i) in

G \ {l2}. If l1 �∈ Pd
v2

(i, d, E \ {l2}), we are done.
Suppose l1 ∈ Pd

v2
(i, d, E \ {l2}). Let z be an end node

of l1 closer to i along the path Pd
v2

(i, d, E \ {l2}). Since j
is the next hop of the shortest weighted path from i to d in
G, we have Wi−j + C(Pd

j (j, z, E)) ≤ C(Pd
v2

(i, z, E \ {l2}))
Similarly, since i is the next hop of j in Pd

v2
(j, z, E \ {l2}) in

G\{l2}, we have Wi−j+C(Pd
v2

(i, z, E\{l2})) ≤ C(Pd
j (j, z, E))

Combining the two inequalities we get Wi−j ≤ 0, which is
a contradiction. So we must have l1 �∈ Pd

v2
(i, d, E \ {l2}).

Therefore, we already found a path from i to d in G \{l1, l2},
which is Pd

v2
(i, z, E \ {l2}).

Induction step: Assume there is a path from i to d in
G \ Ek−1, we prove there is a path from i to d in G \ Ek.
Without loss of generality, assume Ek = {l1 · · · lk}. Using
similar arguments in the basis step, we can show l1, l2, · · · , lk
lies on the shortest path from j to d in G, from upstream to
downstream. From induction assumption, there exists a path
from i to d in G \{l2, l3, · · · , lk}, denoted as p1. Using almost
the exact arguments as in the basis step, we can show that l1 �∈
p1. Therefore, there exists a path from i to d in G\{l1, · · · , lk},
which is the subpath from i to d on p1.

Proof of Lemma 2
It should be noted that there is only one such u−v in

Kd
j→i by lemma 1. Let x−y ∈ Kd

j→i. Suppose x−y is in
Pd

i (E \{u−v}). Let z be either x or y whichever closer node to
d along the path Pd

i (E \{u−v}). Certainly Pd
i (z, d, E \{u−v})

does not contain u−v, and z is not i. Pd
i (z, d, E \ {u−v})

is shorter than Pd
i (E \ {u−v}) itself. Since u−v is on the

shortest path from j to d, the path (u, · · · , z) is shorter than
(u, · · · , z, · · · , j, i). So the path (u, · · · , z, · · · , d) is shorter
than the path (u, · · · , z, · · · , j, i, · · · , d) on a graph G \{u−v}.
Since the path (u, · · · , z, · · · , j, i, · · · , d) is the shortest path
from u to d containing the link j−i on the graph G \ {u−v},
the shortest path from u to d on the graph G \{u−v} does not
contain the link j−i. So u−v cannot be in Kd

j→i. This contradicts
that u−v is in Kd

j→i. So Pd
i (E \ {u−v}) does not contain any

link in Kd
j→i. So Pd

i (E \ {u−v}) = Pd
i (E \ {u−v} \ Kd

j→i) =
Pd

i (E \ Kd
j→i).

Proof of Lemma 3
Since Pd

u(E \{u−v}) contains the link j−i, the i to d path on
Pd

u(E \{u−v}) is the shortest path(s) from i to d on the graph
G \ {u−v} by the Optimal substructure of a shortest path. So
Pd

i (E \ {u−v}) = Pd
u(i, d, E \ {u−v}).

Proof of Lemma 4
Since Pd

k (E \ Kd
f→k) = Pd

u(k, d, E \ {u−v}) by lemma 2
and 3, Pd

u(E \{u−v}) contains the link j−i. So u−v ∈ Kd
j→i

by the definition of the key links.
Suppose a link w−x ∈ Kd

j→i is closer to d than the link u−v
is. By lemma 1, w−x and u−v are common to all the shortest
paths from j to d. It should be noted that for any y−z ∈ Kd

j→i,
Pd

y (E \ {y−z}) contains the shortest path from y to j on the
graph G because y−z is on a shortest path from j to d. Since
w−x is closer to d than u−v is, the shortest path j to w contains
u−v. So Pd

w(E \ {w−x}) contains the subpath from u to j on
Pd

u(E \ {u−v}), which means that Pd
w(E \ {w−x}) contains

f−k. So w−x ∈ Kd
f→k. This contradicts that u−v is the closest

link to the destination d among the links in Kd
f→k. So there

is no such link w−x ∈ Kd
j→i that is closer to d than the link

u−v is. So u−v is the closest link to the destination d among
the links in Kd

j→i.
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