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Abstract. In this paper, we propose a simple but robust scheme to 

detect denial of service attacks (including distributed denial of service 

attacks) by monitaring the increase of new IP addresses. Unlike previ

ous proposals for bandwidth attack detection schemes which are based 

on monitaring the traffic volume, our scheme is very effective for highly 

distributed denial of service attacks. Our scheme exploits an inherent 

feature of DDoS attacks, which makes it hard for the attacker to counter 

this detection scheme by changing their attack signature. Our scheme 

uses a sequential nonparametric change point detection method to im

prove the detection accuracy without requiring a detailed model of nor

mal and attack traffic. Furthermore, we show that with the combination 

of monitaring per flow speed, we can detect all types of DDoS attacks. 

We demonstrate that we can achieve high detection accuracy on a range 

of different network packet traces. 

1 Introduction 

A denial-of-service (DoS) attack is a malicious attempt by a single person or a 

group of people to cripple an online service. The impact of these attacks can 

vary from minor inconvenience to users of a website, to serious financial losses 

for companies that rely on their on-line availability to do business. Sophisticated 

tools to gain root access to other people's machines are freely available on the 

Internet. These tools are easy to use, even for unskilled users. Once a machine 

is cracked, it is turned into a "zombie" under the control of one "master". The 

master is operated by the attacker. The attacker can instruct all its zombies 

to send bogus data to one particular destination. Simultaneously, the resulting 

traffic can clog links, and cause routers near the victim or the victim itself to fail 

under the load. The type of DoS attack that causes problems by overloading the 

victim with useless traffic is known as a bandwidth attack. This paper focuses on 

curtailing bandwidth attacks. 

A key problern to tackle when solving bandwidth attacks is attack detection. 

However, there are two challenges for detecting bandwidth attacks. The first 
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challenge is how to detect malicious traffic close to its source. This is particularly 

difficult when the attack is highly distributed, since the attack traffic from each 

source may be small compared to the normal background traffic. The second 

challenge is to detect the bandwidth attack as soon as possible without raising a 

false alarm, so that the victim has more time to take action against the attacker. 

Previously proposed approaches rely on monitaring the volume of traffic that 

is received by the victim [10)[16)[2]. A major drawback of these approaches is 

that they do not provide a way to differentiate flash crowds from DDoS attacks. 

Due to the inherently bursty nature of Internet traffic, a sudden increase of in 

traffic may be mistaken as an attack. If we delay our response in order to ensure 

that the traffic increase is not just a transient hurst, then we risk allowing the 

victim to be overwhelmed by a real attack. Moreover, some persistent increases 

in traffic may not be attacks, but actually "flash crowd" events, where a large 

number of legitimate users access the same website simultaneously. Clearly, there 

is a need for a better approach to detecting bandwidth attacks. 

A better approach is to monitor the number of new source IP addresses, 

rather than the local traffic volume. Jung et al. [8] have observed that during 

bandwidth attacks, most source IP addresses are new to the victim, whereas most 

source IP addresses in a flash crowd appeared at the victim before. Previously, 

this observation has been used as the basis for a mechanism to filter out attack 

traffic at the victim [12]. In this paper, we propose to monitor the number of 

new IP addresses in a given time period in order to detect bandwidth attacks. 

We demonstrate that this is a more sensitive variable for detecting bandwidth 

attacks than monitaring the total volume of incoming traffic. In addition, we 

present a method for detecting changes in our monitaring variable, based on 

the non-parametric Cumulative Sum (CUSUM) algorithm [3][15]. The CUSUM 

algorithm reduces the false positive rate, and has been shown to optimal in terms 

of detection accuracy and computing overhead for parametric model and have 

good performance for non-parametric model [3] . 

Our main contribution in this paper is a novel approach to detecting band

width attacks by monitaring the arrival rate of new source IP addresses. We show 

that this approach is much more effective than earlier schemes, especially when 

there aremultiple attack sources and the attack traffic is highly distributed. We 

adapt the detection scheme proposed by Wang et al. [15], which is based on an 

advanced non-parametric change detection scheme, CUSUM, and demonstrate 

that this approach detects a wide range of simulated attacks quickly and with 

high accuracy. 

The rest of the paper is organized as follows. Section 2 gives a detailed expla

nation of our solution to this problem. Section 3 explains CUSUM algorithm and 

the model we proposed for the bandwidth attack detection. Section 4 presents 

the Simulation results of our detection mechanism. Section 5 analyzes possible 

attacks against our detection mechanism. 
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2 Our Solution: Source IP Address Monitoring 

We propose a scheme called Source lP address Monitaring (SlM) to detect the 

Highly Distributed Denial of Service (HDDoS) attacks. This detection scheme 

uses an intrinsic feature of HDDoS attacks, namely the huge number of new 

lP addresses in the attack traffic to the victim. This novel approach has the 

advantage that it can detect attacks close to their sources in the early stages of 

the attack. 

2.1 Overview of Source IP Address Monitoring 

SlM contains two parts: off-line training, and detection and learning. The first 

part is the off-line training, where a learning engine adds legitimate lP addresses 

into an lP Address Database (lAD) and keeps the lAD updated by adding 

new legitimate lP addresses and deleting expired lP addresses. This is clone 

off-line to make sure the traffic data used for training does not contain any 

bandwidth attacks. A simple rule can be used to decide whether a new lP address 

is legitimate or not. For example, a TCP connection with less than 3 packets is 

considered tobe an abnormal lP ftow. How to build an efficient lAD is discussed 

in detail in [12). 

The second part is detection and learning. During this period, we collect sev

eral statistics of incoming traffic for the current time interval Lln. By comparing 

the IP addresses during Lln with the IAD, we can calculate how many new IP 

addresses have appeared in this time slot. If the rate per IP address is larger 

than a certain threshold, an alarm is set to indicate a bandwidth attack. This is 

used to detect some unsophisticated attacks that use a small number of source 

IP addresses. More importantly, by analyzing the number of new IP addresses, 

we can detect whether a HDDoS attack is occurring. If an attack is detected, the 

on-line-learning is suspended. Otherwise, on-line-learning proceeds in the same 

matter as off-line training. 

2.2 The Choice of a Detection Feature 

The key aspect of our detection scheme is that we choose a completely new 

detection feature compared to earlier detection proposals. We collect the IP ad

dresses during each time slot Lln (n=l, 2, 3, ... ) , which determines the detection 

resolution. We assume .11 = Llz = ... = Lln, which means the time slots are of 

equal length. The choice of Lln is a compromise between making Lln small so 

that the detection engine can quickly detect an attack, and making Lln large so 

that the detection engine has less computation load because it checks the traffic 

less often. 

Let Tn represent the set of unique IP addresses and Dn represent the items of 

lP Address Database (lAD) at the end of the time interval Lln (n = 1, 2, 3, ... ). 

As we discussed before, I'Tn - 'Tn n Dnl ,which represents the number of new lP 

addresses in Lln, can be used to detect the DDoS attack. However, I'Tn - 'Tn nDnl 
varies according to the position of the network traffic monitaring point (NTMP) 
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and different L1n. We can normalize this value by defining Xn = ITn-i,:nDnl, 

which will not be affected by the NTMP and L1n. Consequently, we use Xn for 

our detection mechanism. 
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Fig. 1. DDoS attack detection and history-based IP source address filtering 

2.3 lmplementation of Our Source IP Address Monitaring (SIM) 

Scheme 

Figure 1 provides an overview of our SIM scheme. The SIM scheme consists of 

three parts: detection engine, decision engine, and fittering engine. The detec

tion engine analyzes the incoming traffic pattern to detect any abnormalities. 
The decision engine summarizes the results from the detection engine and de

cides whether an attack is occurring. The fittering engine filters the attack traffic 

according to the identified attack traffic pattern. Note that there are two detec

tion engines. The first detection engine is used to detect non-distributed attacks 

from a single source, while the second detection engine is used to detect highly 

distributed denial of service attacks. 

There are two steps in the detection engines. First, the detection engine sorts 

the incoming IP fl.ows according to source IP addresses, and identifies whether 

there is an IP fl.ow with an unusually large nurober of packets. If there is, we 

activate the fittering engine to block this abnormal IP fl.ow. This step is very 

effective for defending against some naive DoS attacks launched from a single 

or small nurober of sources. The second step is the core technology of our SIM 

scheme, which is shown in the shadow part of Figure 1. This step is designed 

to defend against sophisticated DDoS attacks and is described in detail in the 

following sections. As we can see from Figure 1, the detection engine monitors 

the traffic through a passive (read-only) interface which is pre-configured with 
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a non-routable IP address. This implementation feature can make the detection 

engine immune to the attacks since it is invisible to the attacker. When no attack 

is detected in the detection engine, a control signal is sent to the edge router 1 

to stop the filtering engine. 

3 Abrupt Change Detection 

In order to detect a DDoS attack, we need to be able to detect changes in 

our detection feature over time. However, our detection feature is a random 

variable due to to the stochastic nature of Internet traffic. Consequently, before 

describing the proposed fl.ooding detection mechanism, we discuss the details of 

the theoretical background of our detection algorithm. 

3.1 Change Detection ModeHing 

Internet traffic can be viewed as a complex stochastic model and any traffic 

abnormalities, for example, a HDDoS attack, can lead the abrupt change of the 

model. Our goal is to detect the change in the number of new IP addresses. There 

are two approaches to detect this change. One is fixed-size batch detection, which 

monitors the change of mean value every fixed time period. Another is sequential 

change-point detection, which monitors the variables successively. The latter is 

designed to detect a change in the model as soon as possible after its occurrence, 

which meets the key design requirement for our detection engine. Thus, we can 

model our task as a sequential change point detection problem. Consider the 

illustrative example in Figure 3. Fortherandom sequence {Xn}, there is a step 

change of the mean value at m from a to a + h. We require an algorithm to 

detect changes of at least step size h and estimate m in a sequential manner so 

that the detection delay and false positive rate are both minimized. The random 

sequence {Xn} can be formalized as follows: 

Xn = a + ~nl(n < m) + (h + rJn)I(n 2:: m), (1) 

where ~ = {~n}~=l• rJ = {rJn}~=l are random sequences such that E(~n) = 
E(ryn) = 0, h =f. 0. 1(1-l) is the indicator function, it equals "1" when the condition 

1i is satisfied and "0" otherwise. 

3.2 The CUSUM Algorithm 

The CUSUM (Cumulative Sum) algorithm is a commonly used algorithm in sta

tistical process control, which can detect the change of mean value of a statistical 

process. CUSUM relies on the fact that if a change occurs, the probability dis

tribution of the random sequence will also change. Generally, CUSUM requires 

a parametric model for the random sequence so that the probability density 

1 We use the term edge router to refer to the router that provides access to the Internet 

for the victim's subnetwork that we are defending. 
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function can be applied to monitor the sequence. Unfortunately, the Internet 

is a very dynamic and complicated entity, and the theoretical construction of 

Internet traffic models is a complex open problem, which is beyond the scope of 

this paper. Thus, a key challenge is how to model {Xn}· Since non-parametric 

methods are not model-specific, they are more suitable for analyzing the Inter

net. In our experiment, we applied the non-parametric CUSUM (Cumulative 

Sum) method [3] in our detection algorithm. This general approach is based on 

the model presented in Wang et al. [15] for attack detection using CUSUM. The 

main idea behind the non-parametric CUSUM algorithm isthat we accumulate 

values of Xn that are significantly higher than the mean level under normal op

eration. One of the advantages of this algorithm is that it monitors the input 

random variables in a sequential manner so that real-time detection is achieved. 

Let us begin by defining our notation before we give a formal definition of 

our algorithm. As we mentioned in Sec 2.2, Xn represents the fraction of new 

IP addresses in the measurement interval Lln. The top graph in Figure 3 shows 

an illustrative example of {Xn}· In normal operation, this fraction will be close 

to 0, i.e. E(Xn) = a « 1, since there is only a small proportion of IP addresses 

that are new to the network under normal conditions [8] [12]. However, one 

of the assumptions for the nonparametric CUSUM algorithm [3] is that mean 

value of the random sequence is negative during normal conditions, and becomes 

positive when a change occurs. Thus, without lass of any statistical feature, { Xn} 
is transformed into another random sequence {Zn} with negative mean a, i.e. 

Zn = Xn- ß, where a =a-ß (See the middle graph of Figure 3). Parameter 

ß is a constant value for a given network condition, and it helps to produce a 

random sequence {Zn} with a negative mean so that all the negative values of 

{Zn} will not accumulate according to time. When an attack happens, Zn will 

suddenly become large and positive, i.e. h + a > 0, where h can be viewed as a 

lower bound of the increase in Zn during an attack. Hence, Zn with a positive 

value (h + a > 0) is accumulated to indicate whether an attack happens or not 

(See the bottarn graph of Figure 3). One thing worth noting isthat h is defined 

as the minimum increase of the mean value during an attack and it is not the 

threshold for the bandwidth attack detection. The attack detection threshold 

N is used for the Yn, accumulated positive values of Zn, which is illustrated in 

Figure 3. Our change detection is based on the observation of h » ß. Now our 

detection problern is to find the abrupt change in the random sequence {Zn} 

which is described as follows: 

Zn= a + ~nl(n < m) + (h + TJn)I(n 2: m), (2) 

where a < 0, -a < h < 1, and other conditions are the same as Eq. 1. 

The formal definition of the non-parametric CUSUM algorithm is illustrated 

as follows: 

(3) 

where Sk = I:~=l Zi, with So = 0 at the beginning, and Yn is our test statistic. 

In order to reduce the overhead for online implementation, we use the recur-
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Local Network 

Fig. 2. The trace-driven simulation experi

ment 

Fig. 3. The CUSUM algorithm 

sive version of non-parametric CUSUM algorithm (1] (3] (2] (15] which is shown as 

follows: 

Yn = (Yn-1 +Zn)+, 

Yo = 0, (4) 

where x+ is equal to x if x > 0 and 0 otherwise. A large Yn is a strong indication 

of an attack. 

As we see in the bottom graph of Figure 3, Yn represents the cumulative 

positive values of Zn· We consider the change to have occurred at time TN if 

YrN :2: N. The decision function can be described as follows: 

d ( ) = { 0 if Yn :S N; 
N Yn 1 if Yn > N. 

N is the threshold for attack detection and dN(Yn) represents the decision 

at time n: '1' if the test statistic Yn is larger than N , which indicates an attack, 

and '0' otherwise, which indicates the normal operation (no statistical feature 

change for the random sequence {Zn}). 

4 Performance Evaluation 

The CUSUM algorithm detects changes based on the cumulative effect of the 

changes made in the random sequence instead of using a single threshold to check 

every variable. Therefore, with the deployment of the CUSUM algorithm, the 

performance of our detection scheme will not be affected by whether the attack 

rate is bursty or constant. To evaluate the effi.cacy of our detection scheme SIM, 

we conducted the following simulation experiments. As shown in Figure 2, we 

created different types of DDoS attack traffic and merged them with the normal 

traffic. SIM was then applied to detect the attacks from the merged traffic. The 

normal traffi.c traces used in our study are collected at different times from two 

different sources. The first set was gathered at the University of Auckland (7] 
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Fig. 5. The DDoS attack detection sensitivity for the last-mile router using the Auck
IV-in trace 

with an OC3 (155.52 Mbps) Internet access link {6]. The second data trace was 
takenon a 9 MBit/sec Internet Connection in Bell Labs [13]. 

We use the first-mile SIM to monitor the traffic coming into the target net

work, and last-mile SIM to monitor the traffic going out from the target network. 

Hence, the outgoing traffic data traces of the University of Auckland can be used 

evaluate the performance of the first-mile SIM while the incoming traffic data 

traces can be used evaluate the performance of the last-mile SIM. For the sim

plicity of the experiment design, we assume the attack traffic rate to be constant. 

The attack period is set to be 5 minutes, which is a commonly observed attack 

period in the Internet [11]. The attack traffic rate for all the simulated DDoS 

attacks is set to be 1 Mbps. Since the network we are defending has the con

nection capacity of 155.2 Mbps and the average peak connection speed of about 

6 Mbps, we define 1 Mbps as the minimum traffic rate to disrupt the network 

services. We set this conservative attack traffic rate, and aim to test the detection 

sensitivity of the SIM. Attack traffic with higher traffic volume should be easier 

to detect, and hence is not covered by our performance evaluation. 

4.1 DDoS Detection Using Detection Engine Two 

In an attempt to avoid detection by our scheme, attackers may try to constrain 

the number of spoofed IP addresses that they use. Let W represent the number 

IP addresses in the attack traffic which are new to the network. We tested 
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Table 1. Detection Performance of the first-mile router and the last-mile router 

The first-mile router The last-mile router 

w Detection Accuracy Detection Time w Detection Accuracy Detection Time 

2 99% 69.7s 15 90% 127.3s 

4 100% 20.ls 18 100% 81.1s 

6 100% 18.9s 40 100% 18.9s 

8 100% lOs 60 100% lOs 

10 100% lOs 200 100% lOs 

different values of W in our simulation, and the detection performance for the 

first and last-mile routers are shown in Figure 4 and Figure 5 respectively. We 

repeated the attack detection under a variety of different network conditions, 

and listed both the average detection accuracy and detection time in Table 1. 

As we can see from the simulation results, our detection algorithm is very 

robust in both the first-mile and last-mile routers. For the last-mile router, we 

can detect the DDoS attack with W = 18 within 81.1 seconds with 100% ac

curacy, and detect the DDoS attack wit h W = 15 within 127.3 seconds with 

90% accuracy. Given the attack traffic length is no more than 5 minutes, only 

the attack traffic with W < 18 has the possibility of sometimes avoiding our 

detection. However, by forcing the attacker to use a small number of new IP 

addresses, we can detect the attack by observing the abrupt change of the num

ber of packets per IP source address using the first detection engine which is 

described in Sec. 2.3. 

For the first-mile router, we can achieve 99% detection accuracy even when 

there are only 2 new IP address in the attack traffic. The reason lies in the 

fact that the background traffic for the first-mile router is very clear. Generally, 

there will be very few IP addresses that are new to the network since all the 

valid IP packets originated from within the same network. Since the IP addresses 

in the IP Address Database (lAD) will expire and be removed after a certain 

time period, the IP addresses within the subnetworks which have not been used 

recently will be new to lAD. This is very similar to ingress filtering (5]. However, 

ingress filtering cannot detect the attack when the spoofed IP addresses are 

within the subnetworks. In contrast, our first-mile router detection algorithm 

can detect the spoofed IP addresses within the subnetworks if they are new to 

the lAD. 

It is worth noting that we choose our detection interval Lln = lOs in our 

experiment, which is a conservative choice for a real implementation. If we de

crease the detection interval by using more computing resources, we can reduce 

the detection time accordingly. 

4.2 False Positives and lmplementation Overhead 

We define a false positive as an attack that is reported by the SIM during normal 

network operation. We use the following method to evaluate the false positive 
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rate of the SIM. We use the data traces collected at the University of Auckland 
and Bell labs as the normal traffic input to the SIM. If any attack is detected, 

then a false positive is generated. We randomly choose 20 one-hour-worth normal 

traffic snapshots as inputs to the SIM. Each experiment runs independently and 

no false positive is found. 

Our trace-driven experiments were run on a Linux machine with dual 

900MHz Xeon and 512 MB RAM. We can achieve an average throughput of 

10 Gbps. Therefore, the SIM will not be a bottleneck for network implementa

tion. It is worth noting that we use a two-weeks of data traces to build the IAD 

due to the short of publicly available data traces. In practice, if we can build the 

IAD using traces of a Ionger period, we can expect better detection and reaction 

performances. 

5 Discussion 

5.1 Possible Attacks against the SIM 

If the attackers know that the SIM is based on previous network connections, 

they could mislead the server to be included in the IP address database. For 

example, they can first use a certain group of IP addresses to do some recon

naissance before the real attack. The attackers can control the reconnaissance 

traffic to be sufficiently low so as not to trigger the IP packet filtering process. 

If the server considers the reconnaissance traffic to be part of the normal traf

fic, it will add the attacker's reconnaissance IP addresses into the IP address 

database. Therefore, the attacker can use the IP addresses which they used 
before to launch the DDoS attack. Since these IP addresses appear in the IP 

address database, the attack traffic can pass the filter easily, which constitutes 

a successful denial-of-service attack. 

We can prevent this by increasing the period over which IP addresses must 

appear in order to be considered frequent. Moreover, we can randomize the 

learning time for the lAD and keep it secret to the att acker. Furthermore, we can 
ensure that we only include an IP address in our database if it has successfully 

completed a TCP connection. This prevents the attacker from using spoofed IP 

addresses for which no host exists. The attacker can only launch their attack 

using the real IP address of their computer, which makes it much easier to 

identify and block the source of the attack. We may also be able to use techniques 

from our previous work on scan detection (9] in order to identify IP addresses 

with unusual patterns of accesses. Moreover, we can combine additional rules for 

defining frequent IP addresses in order to improve the accuracy of the SIM. For 

example, the type of service accessed by the user and the length of each session 

may be useful measures for identifying frequent IP addresses. 

5.2 Other Related Issues 

With the deployment of Network Address Translation (NAT) , Dynamic Host 

Gonfiguration Protocol (DHCP) and proxy services, multiple users can share the 
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same source IP address. Moreover, the source IP address can still represent some 

level of identity, for example, a group of users with geographically proximity. 

Since the IP addresses in our experimental data traces have been sanitized using 

one-to-one hash mapping, the network information in the IP address is lost. In 

practice, we can use network addresses, for example, a dass C network address, 

to represent the user's identity. Moreover, the increasing implementation of IP. v6 

(4] will strengthen the correlation between source IP address and user identity. 

As high profile websites, such as Yahoo and CNN, will have visitors from all 

around the world, maintaining the lAD is a very challenging task. Fortunately, 

the deployment of Content Distribution Network (CDN) [14] has limited the 

users to their local CDN server. Hence, the users for each CDN serverwill keep 

consistent and we can build an lAD for each local CDN server separately. 

6 Conclusion and Future Work 

In this paper we proposed a scheme to detect distributed denial of service at

tacks by monitaring the increase of new IP addresses. We have also presented 

a sequential change point detection algorithm that can identify when an attack 

has occurred. We demonstrated the efficiency and robustness of this scheme by 

using trace-driven simulations. The experimental results in the Auckland traces 

show that we can detect DDoS attacks with 100% accuracy using as few as 18 

new IP addresses in the last-mile router and DDoS attacks using as few as 2 

new IP address in the first-mile router. Our online detection algorithm is fast 

and has a very low computing overhead. Our first-mile SIM has the advantage 

over ingress filtering (5] that it can detect attack traffic with spoofed source IP 

addresses within the subnetworks. Further, with the combination of two detec

tion engines, all the DDoS attacks can be detected. Our future work will include 

combining other network traffic statistics to detect bandwidth attacks and using 

distributed detection to detect DDoS attacks. 
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