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Abstract. Blood flow and tissue velocity can be measured using phase-
contrast MRI. In this work, the statistical properties of 4D phase-contrast
images are derived, and a novel probabilistic blood flow mapping method
based on sequential Monte Carlo sampling is presented. The resulting
flow maps visualize and quantify the uncertainty in conventional flow
visualization techniques such as streamlines and particle traces.

1 Introduction

Phase-contrast (PC) MRI utilizes residual phase shifts of spins to quantify tissue
motion and blood flow [1,2]. In cardiovascular PC MRI applications, visualiza-
tion techniques, such as vector glyphs, streamlines, pathlines and particle traces,
are employed for visualizing blood flow [3,4]. A 3D streamline illustrates the tra-
jectory a zero-mass particle takes through a static vector field �(x) : R

3 → R
3,

e.g., an instantaneous flow field, see Fig. 4a. Pathlines and particle traces show
the particle trajectory in a vector field �(x, t) that changes over time, e.g., in a
4D pulsative blood flow. Clinical applications that benefit from such flow pattern
information include the assessment of stenoses, aneurysms, and heart valve func-
tion, the development of vessel plaque, and surgical planning and follow-up in
congenital heart disease. While a visualization of the flow pattern using stream-
lines or particle traces indeed provide useful information, noise and uncertainty
in the PC MRI measurements is not accounted for and the visualized traces may
even give a false sense of precision. In this work, the uncertainty associated with
a flow streamline or particle trace is addressed and visualized using the distri-
bution of possible flow trajectories. To this end, the statistical properties of PC
MRI images are first derived. The distribution of a streamline or a particle trace
is then sampled and characterized using a sequential Monte Carlo approach.

2 Statistical Properties of Flow MRI Images

The statistical properties of PC MRI images in the presence of Gaussian mea-
surement noise, particularly the statistical distribution of the estimated flow
vectors in the estimated 4D flow vector field �(x, t), are derived in this sec-
tion. The derivation includes the use phased array MRI coils, which consist of
a number of coils K (typically 4-16) arranged in an array. Such arrays permit
fast parallel imaging and/or a better Signal-to-Noise ratio (SNR) over large spa-
tial extents [5]. The derivation below focusses on non-parallel imaging, which
provides the highest image SNR.
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Fig. 1. Magnitude image I(x) (left) and estimated velocity components ṽx, ṽy , and ṽz

in the zoomed area around the aorta

2.1 MRI Image Magnitude and Phase Modeling

In general, a complex MRI image in the spatial domain acquired with coil k in
the phased array may be modeled as

Sk(x) = Ak(x) eiθk(x) + nr
k(x) + i ni

k(x), (1)

where x ∈ R
3 is a spatial voxel location, Ak(x) represents the image mag-

nitude weighted with the sensitivity profile of coil k, θk(x) is a coil-specific
spatially varying phase, and nr

k(x) and ni
k(x) represent independent Gaussian

noise N
(
0, σ2

)
in two quadrature channels [6]. From a statistical perspective,

the magnitude image |Sk(x)| follows a Rician probability distribution, which
at high SNR (Ak/σ > 5) can be approximated by a Gaussian distribution [7]
|Sk(x)| ∈ N

(
Ak(x), σ2

)
for all practical purposes. This high-SNR assumption is

generally true for voxels containing tissue or blood, which is shown in the Result
section. A near-optimal-SNR magnitude image I(x) can be reconstructed from
all coils using the sum-of-squares method [5] (Fig. 1):

I(x) =

√√
√√

K∑

k=1

|Sk(x)|2. (2)

The statistical properties of expressions such as the one in Eq. 2 have been
studied in [8], and again, for high SNR voxels, a Gaussian approximation applies:

I(x) ∈ N
(
A(x), σ2

)
, where A(x) =

√√
√
√

K∑

k=1

Ak(x)2. (3)

Note that A(x) and σ2 are unknown, but with the knowledge of the statistical
distribution in Eq. 3, they can be estimated from the known I(x). This estima-
tion is described in Section 2.3.
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The phase θk(x) in Eq. 1 is estimated with the argument operator arg (Sk(x)),
and the exact probability distribution of this estimator is given in [7]. For high
SNR, however, one may again use a simpler Gaussian approximation

arg (Sk(x)) ∈ Nw

(
θk(x),

σ2

Ak(x)2

)
, (4)

where Nw denotes the wrapped Normal distribution, i.e., θk is calculated modulo
2π so that θk ∈ (−π, π].

2.2 Flow Vector Modeling

Four separate 3D PC MRI images must be acquired to reconstruct a 3D flow
vector field �(x). A 4D flow field �(x, t) is obtained by repeated acquisitions
during the cardiac cycle synchronized with the RR-interval of the patient. The
goal in this section is to derive the statistical properties of an estimated flow
vector ṽ ∈ �(x, t). All expressions in this section are applied voxelwise, and the
spatial coordinate x is omitted for clarity. Typically, an encoding scheme is used
which is based on a baseline image S0

k and three images Sx
k , Sy

k , and Sz
k that

encode the flow velocity along the x, y, and z directions in the image phase,
cf. Eq. 1:

S0
k = Ak eiθk + noise, Sy

k = Ak ei(θk− π
venc

vy) + noise,

Sx
k = Ak ei(θk− π

venc
vx) + noise, Sz

k = Ak ei(θk− π
venc

vz) + noise. (5)

In Eq. 5, vx, vy, and vz are the true velocities along the orthogonal coordinate
axes, and the velocity encoding parameter venc is a sequence parameter that
controls the upper limit of the velocity that can be measured without artifacts.
A typical value is venc = 1.5 m/s. θk denotes an unknown and spatially varying
phase for coil k = 1 . . .K, which is assumed constant over time and acquisitions.
The flow velocity in the x-direction is found as the phase difference between
the Sx

k image and the baseline image S0
k, i.e., following the sum-of-squares re-

construction in Eq. 2, a velocity estimate based on all K coils is calculated as

ṽx =
venc

π
arg

(
K∑

k=1

S0
kSx∗

k

)

, (6)

where Sx∗
k denotes the complex conjugate of Sx

k . The estimates of ṽy and ṽz

are calculated analogously. Example velocity images for one slice are shown in
Fig. 1. Using Eq. 4, one can show that ṽx is distributed according to the following
Gaussian distribution:

ṽx ∈ N

(
vx,

v2
enc

π2

2σ2

A2

)
, (7)

where A is given in Eq. 3. It is assumed that the velocity is smaller than venc

so that no phase wrap occurs. In practise, a standard image preprocessing step
corrects such wraps.
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As each velocity component of the 3D flow vector ṽ = [ṽx, ṽy, ṽz]
T is Gaussian

distributed according to Eq. 7, the joint distribution is multivariate Gaussian
ṽ ∈ N(v,C). Furthermore, as the baseline images S0

k, k = 1 . . .K are involved
in the computation of all three velocity components ṽx, ṽy, and ṽz , the covariance
matrix C will not be diagonal. For example, with a derivation similar to the one
above, the covariance between ṽx and ṽy is

Cov (ṽx, ṽy) =
v2

enc

π2

σ2

A2
, giving the full covariance C =

v2
enc

π2

σ2

A2

⎛

⎝
2 1 1
1 2 1
1 1 2

⎞

⎠ . (8)

To summarize, the measured flow velocity vector in each voxel may be see as
drawn from a multivariate Gaussian distribution with mean v, i.e., the true
velocity, and covariance matrix as given by Eq. 8. To fully specify the covariance
matrix, estimates of the unknown parameters A and σ2 are required. This is
discussed in the next section.

2.3 Parameter Estimation

Methods for estimating the noise variance σ2 and signal strength Ak from mag-
nitude MRI images |Sk| have previously been proposed in the literature [9,7].
Most of the proposed methods require a homogenous image region. Typically an
air region is selected in which the SNR is low and the Gaussian approximation of
the Rician distribution is no longer valid. In contrast, here we propose using all 4
image volumes in the PC MRI acquisition (cf. Eq. 5) to perform a voxelwise pa-
rameter estimation: Let Ω denote a mask of high-SNR voxels in the four images
I0(x), Ix(x), Iy(x), and Iz(x), reconstructed from Eq. 5 with the sum-of-squares
method in Eq. 2. The high-SNR voxels are found using a straightforward image
thresholding, as these voxels correspond to voxels with high intensity, i.e., all
non-air voxels. For the voxels in Ω, the Gaussian approximation in Eq. 3 can be
applied, leading to an estimation procedure based on the well-known formulae
for the mean and variance of Gaussian variables. First, an estimator of the signal
strength A(x) is obtained as

Ã(x) =
1
4
[
I0(x) + Ix(x) + Iy(x) + Iz(x)

]
. (9)

According to Eq. 3, the noise variance σ2 is equal for all voxels in Ω, so that
a variance estimate can first be calculated for each voxel separately, and a final
estimate can then be found by pooling over all voxels:

σ̃2 =
1

|Ω| − 1

∑

xi∈Ω

⎡

⎣ 1
4 − 1

∑

k={0,x,y,z}

(
Ik(xi) − Ã(xi)

)2

⎤

⎦ . (10)

In this expression, |Ω| denotes the number of voxels with high SNR. With Ã(x)
and σ̃2, the covariance matrix for the flow vector in Eq. 8 is fully specified.
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3 Probabilistic Flow Mapping

In this section, the distribution of possible flow trajectories is addressed. Al-
though there is no closed form expression of this distribution, it is possible to
draw random samples using Monte Carlo methods and then reconstruct and
visualize the distribution using a histogram technique.

3.1 Probabilistic Streamlines and Particle Traces

A 3D streamline is a trajectory described by train of vectors {s0, s1, . . . , sk−1}
starting in a seed point x0 ∈ R

3, see Fig. 2. A 4D particle trace can be described
similarly, although with the additional temporal dimension. Each vector sk is

Fig. 2. A streamline

a function of the current trajectory position xk, the
flow vector field �, and a step length parameter T :

sk = f (xk,�; T ) . (11)

For example, an Euler sampling scheme uses
f (xk,�; T ) = Tv(xk), but more accurate multistage functions such as Heun’s or
4th-order Runge-Kutta schemes are generally used in practise [10]. The spatial
position of the streamline trajectory after k steps is

xk = x0 +
k−1∑

j=0

sj . (12)

In a conventional streamline algorithm, the vectors sk are treated as determin-
istic variables. However, in PC MRI, these vectors are based on the estimated
vector field �, which is contaminated with random noise. Consequently, the
vectors sk as well as the positions xk may be seen as random variables. The
key question addressed in this work is the form of the statistical distribution
p(xk) = p(s0, . . . , sk−1) of the streamline under the influence of noise in �. A
sample from p(s0, . . . , sn−1) is referred to here as a probabilistic streamline or a
probabilistic particle trace. A theoretical derivation of this distribution is com-
plicated by both the high dimensionality as well as the recursive nature of the
streamline, i.e., the vector sk depends on all previous vectors sk−1,. . . , s0, which
is clearly seen by combining Eq. 11 and Eq. 12. An alternative approach to
investigate the form of a mathematically intractable probability distribution is
to draw a large number of samples using computational Monte Carlo methods.
An important observation is that the distribution above can be factorized into
conditionally independent parts:

p (s0, . . . , sk−1) =
k−1∏

j=0

pj (sj|xj) . (13)

Samples from such a distribution can be generated using so-called sequential
Monte Carlo sampling [11]. In this sampling approach, a probabilistic stream-
line is generated iteratively by first drawing a sample s̃0 from p0 (s0|x0), which
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gives x̃1 = x0 + s̃0. Next, given x̃1, a sample s̃1 can be drawn from p1 (s1|x̃1),
which gives x̃2, and so on. pj (sj |xj) remains to be determined in Eq. 13. Sec-
tion 2.2 showed that the estimated flow vectors in � are Gaussian distributed
with covariance matrix C in Eq. 8. Therefore, pj (sj |xj) also has a Gaussian
form:

pj (sj |xj) = N
[
f (xj ,�; T ) , T 2C

]
. (14)

Expressed in words, the random vector sj has as mean the deterministic vector
described by Eq. 11 obtained using a regular streamline algorithm, e.g., an Euler,
Heun or Runge-Kutta scheme. This vector is perturbed with the covariance
matrix C in Eq. 8 scaled by the step length T .

3.2 Probabilistic Flow Map

Each probabilistic streamline or particle trace is a sample from the distribution
p(s0, . . . , sk−1) that describes the probability of all possible paths a virtual zero-
mass particle may take from the seed point x0. To facilitate the visualization of
this distribution, the probabilistic streamlines can be converted into a 3D spatial
map Ψ(x) or a 4D spatiotemporal map Ψ(x, t) for particle traces. To this end,
a large number N > 1000 of probabilistic streamlines must be generated. Let
μ(x, N) be the number of occasions that each voxel xk is passed by a streamline.
The flow map is then calculated as a histogram where each voxel is a bin:

Ψ(x) =
μ(x, N)

N
. (15)

A similar mapping technique has been used in Diffusion-Tensor MRI [12].

4 Image Data

Due to space limitations, a single 4D PC MRI data set of the blood flow in
the aorta is used to demonstrate the proposed probabilistic blood flow mapping
technique. The following acquisition parameters were used: TE = 3.67 ms, TR =
6.1 ms, flip angle 15, venc = 1.5 m/s, spatial resolution 1.7 × 1.7 × 3.5 mm3 and
temporal resolution 48.8 ms. A phased array coil with K = 12 coil elements was
used to obtain the necessary spatial coverage. The acquired 4D image volumes
were of size 120× 192× 24 voxels and 14 temporal frames covering a heart beat.

5 Results

To determine the covariance matrix of the flow vectors in Eq. 8, estimates of
A(x) and σ2 were first calculated using the procedure described in Section 2.3.
A voxelwise signal-to-noise image, where SNR = A(x)/σ, is shown in Fig. 3.
The average SNR in the aorta is about 10, resulting in a standard deviation of
68 mm/s in each velocity component when inserted into Eq. 7. As a reference,
the peak flow velocity in the aorta is approximately 1500 mm/s and significantly
lower in smaller vessels. Moreover, the SNR is high enough to approximate the
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Fig. 3. SNR for each voxel in a
slice estimated with the method
presented in Section 2.3. The
aorta is designated by the ar-
rows.

Fig. 4. a) A conventional 3D streamline visualiz-
ing the flow pattern from one point in the aorta. b)
Probabilistic streamlines. c) Flow map Ψ(x) calcu-
lated from 10,000 probabilistic streamlines.

Rician distribution with a Gaussian, as is done in Section 2. In Fig. 4a, a con-
ventional streamline is shown, visualizing the flow pattern from the aorta into
the left subclavian artery. In Fig. 4b, 50 probabilistic streamlines are shown,
which were generated according to Section 3.1 and initiated in the same point.
These probabilistic streamlines illustrate the uncertainty due to measurement
noise that is not evident from the conventional streamline, i.e., when the noise is
considered, the flow pattern may exit in any of the left carotid, right carotid, or
left subclavian arteries. The distribution of possible flow trajectories, calculated
as described in Section 3.2 using 10,000 probabilistic streamlines, is shown in
Fig. 4c. Figure 5 shows a 4D flow map generated from 10,000 probabilistic par-
ticle traces emitted from a region instead of from a single point. The color scale

Fig. 5. 4D spatiotemporal probabilistic flow map Ψ(x, t) illustrating the statistical dis-
tribution of particle traces during a heart beat. The map is based on 10,000 probabilistic
particle traces.
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represents the probability of finding a conventional particle trace in a specific
spatiotemporal box when the measurement noise is considered.

6 Discussion

In this work, the statistical properties of PC MRI velocity measurements have
been derived and used for mapping the uncertainty associated with blood flow
streamlines and particle traces. This is done by drawing samples from the distri-
bution of possible flow trajectories using a sequential Monte Carlo method. The
primary application demonstrated here is a visualization of the uncertainty, i.e.,
the flow distribution. The next step is to employ the method for flow pattern
quantification. For example, stroke embolization pathway probabilities can be
calculated with a probabilistic flow connection map from a plaque position to
critical vessels supplying the brain. Another concrete clinical application is con-
genital heart disease, where blood mixing ratios at positions where two vessels
merge are of interest.
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