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Probabilistic Algebraic Analysis of Fault Trees With

Priority Dynamic Gates and Repeated Events
Guillaume Merle, Student Member, IEEE, Jean-Marc Roussel, Jean-Jacques Lesage, Member, IEEE,

and Andrea Bobbio, Senior Member, IEEE

Abstract—This paper focuses on a sub-class of Dynamic Fault
Trees (DFTs), called Priority Dynamic Fault Trees (PDFTs), con-
taining only static gates, and Priority Dynamic Gates (Priority-
AND, and Functional Dependency) for which a priority relation
among the input nodes completely determines the output behav-
ior. We define events as temporal variables, and we show that, by
adding to the usual Boolean operators new temporal operators
denoted BEFORE and SIMULTANEOUS, it is possible to derive
the structure function of the Top Event with any cascade of
Priority Dynamic Gates, and repetition of basic events. A set
of theorems are provided to express the structure function in a
sum-of-product canonical form, where each product represents a
set of cut sequences for the system. We finally show through
some examples that the canonical form can be exploited to
determine directly and algebraically the failure probability of the
Top Event of the PDFT without resorting to the corresponding
Markov model. The advantage of the approach is that it provides
a complete qualitative description of the system, and that any
failure distribution can be accommodated.

Index Terms—Algebraic approach, cut sequence sets, dynamic
fault tree, qualitative analysis.

ACRONYM

BF non-inclusive BEFORE operator

DFT dynamic fault tree

FDEP functional dependency gate

FTA fault tree analysis

IBF inclusive BEFORE operator

PAND Priority-AND gate

PDFT priority dynamic fault tree

SEQ sequence enforcing gate

SFT static fault tree

SM SIMULTANEOUS operator

WSP warm spare gate

NOTATION

Enr set of temporal non-repairable events
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Orientale, Alessandria, 15100, Italy (email: bobbio@mfn.unipmn.it).

Digital Object Identifier 10.1109/TR.2009.2035793

✁ non-inclusive BEFORE (BF) operator

△ SIMULTANEOUS (SM) operator

✂ inclusive BEFORE (IBF) operator

⊥ identity element of operator OR in Enr

⊤ identity element of operator AND in Enr

CSS cut sequence set

S union of cut sequence sets

\ set difference

I. INTRODUCTION

FAULT TREE ANALYSIS (FTA) is one of the oldest,

most diffused techniques in industrial applications, for

the dependability analysis of large safety-critical systems [13],

[14], [19]. FTA is usually carried out at two levels: a qualitative

level in which the list of all the possible combinations of events

that lead to the Top Event (TE) is determined (the minimal

cut sets); and a quantitative level in which the probability

of the occurrence of the TE, and of the other nodes of the

tree, is calculated. The quantitative level requires the additional

knowledge of the time-to-failure probability distributions of all

the basic events. One of the main restrictive assumptions in

FTA is that basic events must be assumed to be s-independent,

and their interaction is described by means of Boolean

OR/AND gates, so that only the combination of events is

relevant, and not their sequence. We refer to this model as

Static Fault Tree (SFT). Several attempts have been reported

in the literature to remove these constraints, and include

various kinds of temporal and s-dependencies in the model.

A Priority-AND (PAND) gate has been introduced in [11] to

model situations in which the failure of the gate occurs if the

inputs fail in a preassigned order. However, the model that

has received the greatest attention is the Dynamic Fault Tree

(DFT), proposed by Dugan et al. [8], [9]. The DFT is based on

the definition of new gates that induce temporal, as well as s-

dependencies: Priority-AND (PAND), Functional Dependency

(FDEP), Warm Spare (WSP), and Sequence enforcing (SEQ).

Some compositional techniques have been later envisaged

to build DFTs, either in terms of Stochastic Petri Nets [2],

[6], or in terms of Input/Output Interactive Markov Chains

[3], [4], to include chains of dynamic gates. The quantitative

analysis of the DFT consists in exploding minimal modules

[10] of dynamic gates into their state-space representation, and

computing numerically the related occurrence probability by

means of a Continuous Time Markov Chain [8], [12], thus

assuming exponential time-to-failure distributions. In a recent

paper [22], authors propose the exact computation of the TE

of a FT with PAND gates and repeated events. However, the
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approach requires that the list of the minimal cut sequences is

known, and is limited to exponential distributions only.

A new approach, able to include any probability distribution,

has been presented in [1], where closed form expressions

are determined as a function of the generic probability dis-

tributions of the basic events, and a numerical integration is

proposed to solve them. In any case, the solution of a DFT

forces a quantitative analysis. A common obstacle in any

quantitative technique is the lack of accurate, reliable data

on the failure distribution of the components. To overcome

this well-known deficiency, the qualitative analysis is often

the only valuable information on the system dependability.

Nevertheless, the qualitative analysis of DFTs has never been

fully considered in the literature, and the concept of minimal

cut set needs to be revisited to account for the possible order

of the failure events. Paper [20] proposes to decompose the

qualitative analysis into a logical (Boolean) part, and into a

timing part, but the procedure is not completely developed.

In the present paper, we restrict the consideration of classi-

cal dynamic gates to priority gates PAND and FDEP only, for

which a temporal relation completely defines the output; and

we refer to this restriction as Priority DFT (PDFT). Priority

relations among events impose that events are not repairable.

To build an algebraic framework for PDFTs, we define events

as temporal binary variables; and we introduce, beside Boolean

operators OR and AND, temporal operators BEFORE (BF),

and SIMULTANEOUS (SM) [16]. We include the possibility

that basic events are repeated without restriction, and we allow

any cascade of Priority Dynamic Gates. We show that it is

possible to provide a complete qualitative description of the

PDFT through an algebraic expression of the structure function

that can be reduced to a sum-of-product canonical form. Each

product term of the canonical form contains basic events

connected by Boolean and temporal operators, and defines a

cut sequence set (CSS), i.e. a set of sequences of (possibly

ordered) basic events whose occurrence entails the TE. We

give an algorithm to minimize the canonical form.

Finally, we show how to compute the probability of occur-

rence of the TE from the canonical form, by assigning to basic

events any failure time distribution.

Hence, in synthesis, the main hypotheses, and the new

achievements of the paper, can be condensed into the following

points.

i - We introduce a new algebraic framework with temporal

operators defined on a set of temporal variables.

ii - The PDFT may contain any cascade of Priority Dynamic

Gates PAND, and FDEP; and basic events can be repeated

without restriction.

iii - Combining Boolean operators (OR, AND) with temporal

operators BF and SM, the algebraic expression of the TE

can always be minimized to a sum-of-product canonical

form.

iv - The canonical form provides a systematic way to generate

a list of non-redundant CSSs whose occurrence leads to

the TE.

v - The probability of occurrence of the TE can be expressed

in closed form with any failure distribution.

The PDFT model with repeated events is formalized in

TABLE I: Definitions of Priority Dynamic Gates

Symbol Definition

PAND

from [19]

FDEP
Asserts a functional dependency – that the failure of

the trigger event causes the immediate and simulta-

-neous failure of the dependent basic events.

from [7]

Section II, and the new temporal variables and operators are

introduced in Section III. Section IV shows how to derive

the canonical form of the structure function; whereas the

probabilistic analysis, with completely developed examples,

is reported in Section V.

II. PRIORITY DYNAMIC FAULT TREES WITH REPEATED

EVENTS

According to [9], DFTs comprise basic events, static gates

(OR, AND, and K-out-of-N), and dynamic gates (PAND,

FDEP, WSP, and SEQ). Dynamic gates can be divided into two

categories according to their temporal, and statistical behavior:

• gates PAND, and FDEP have sequential or preemption-

based behaviors, and can be modeled by means of discrete

mathematics, as presented in Section III-C; and

• Warm Spare (WSP), and Sequence enforcing (SEQ) gates

are s-dependent on event duration, and their probability of

occurrence is not completely defined by an order relation.

We have retained the term of Priority Dynamic Gates for

gates PAND and FDEP because both gates express a semantics

of ”priority”:

• a priority between input events for gate PAND; and

• a preemption priority for gate FDEP.

FTs containing Priority Dynamic Gates are denoted as Priority

DFTs (PDFTs), and constitute a sub-class of DFTs. The formal

definition of gates PAND, and FDEP [7], [19] is reminded in

Table I.

A. Simultaneity

In a FT, simultaneity among events may arise in two

ways. Independent basic events can occur simultaneously if

they have a discrete probability distribution with a non-null

probability mass exactly at the same time. Because the failure

probability distributions are usually considered as continuous

functions with infinite support, the simultaneous occurrence

has null probability, and can be neglected. A second case of

simultaneity may arise at any level of a FT when there are

repeated basic events. FTs with repeated events represent the
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Fig. 1: An example of PDFT with one repeated basic event.

most powerful combinatorial model in dependability [15], and

require ad hoc analysis techniques.

Nevertheless, the presence of repeated events across mod-

ules of dynamic gates has not yet been explored in its full

generality. In [22], repeated events are allowed, but the paper

does not provide any algorithm to derive the list of the cut

sequences.

Let us consider the PDFT in Fig. 1, in which event A

is a repeated basic event. If basic events A, B, C, and D

occur according to sequences [B, C, A], [C, B, A], or [D, A],
intermediate events G and H occur simultaneously at the same

time as A occurs. This example shows that intermediate nodes

of a FT can occur simultaneously because of the presence

of repeated basic events. The simultaneity problem has been

briefly addressed in [3], and has been solved by resorting to

the concept of ”non-determinism”, a concept that is not easy to

accept in engineering practice because many engineers believe

that the behavior of technical systems, and in particular control

systems, must necessarily be deterministic. We assert that a

choice must be made regarding the semantics of simultaneous

events, and Priority Dynamic Gates. For instance, in the case

of simultaneous events in input to a PAND gate, two choices

are possible (Fig. 1):

• if the order relation is considered strictly, when interme-

diate events G and H occur simultaneously, TE1 does not

occur, and gate PAND would then be considered as being

”non-inclusive”; and

• if the order relation is not considered strictly, when

intermediate events G and H occur simultaneously, TE1

occurs at the same time as G or H, and gate PAND would

then be considered as being ”inclusive”.

Both interpretations of the order relation can be taken into

account, and algebraically modeled.

III. ALGEBRAIC FORMALIZATION OF PRIORITY DFTS

A. Temporal Events

In SFTs, basic events are considered as Boolean. However,

the Boolean model cannot render the order of occurrence of

events as previously defined for Priority Dynamic Gates. To

take into account this temporal aspect, we consider the TE, the

intermediate events, and the basic events as temporal functions,

which are piecewise right-continuous on R
+ ∪ {+∞}, and

whose range is B = {0,1}. Because we consider non-

repairable events only, a generic timing diagram of an event a

✻
✲0

1

t
✄
✂

✄
✂

a

d(a)
Fig. 2: A non-repairable event.

is given in Fig. 2, where d(a) is the unique date of occurrence

of a. We denote by Enr the set of non-repairable events.

The definition of Boolean operators OR and AND can be

extended to Enr. The identity elements of these operators in

Enr, equivalent to 0, and 1, are denoted by ⊥, and ⊤ to which

these dates can be assigned:

d(⊥) = +∞, d(⊤) = 0.

(Enr,+, ·,⊥,⊤) is an Abelian dioid, like ({0, 1} ,+, ·, 0, 1),

so that the properties of Boolean algebra that are commonly

used for the simplification of SFTs can still be applied with

our model, and their structure functions can be determined

as usual. A complete description of the algebraic framework

developed for temporal events can be found in [17]. Because

of the notation difference between the identity elements of

Enr, and the identity elements of {0, 1} for operators + and ·,
the rewriting of four common theorems of Boolean algebra is

necessary:
a+⊥ = a a · ⊤ = a
a+⊤ = ⊤ a · ⊥ = ⊥

B. Temporal Operators

To model priority relations among temporal events, we

introduce a temporal operator non-inclusive BEFORE (BF,

with symbol ✁), and a temporal operator SIMULTANEOUS

(SM, with symbol △), whose formal definitions, based on the

dates of occurrence of a and b, are

a✁ b =











a if d(a) < d(b)

⊥ if d(a) > d(b)

⊥ if d(a) = d(b)

a△ b =











⊥ if d(a) < d(b)

⊥ if d(a) > d(b)

a if d(a) = d(b)

Based on the previous two operators, we can introduce a non-

strict or INCLUSIVE BEFORE (IBF, with symbol ✂) operator

a✂ b = a✁ b+ a△ b (1)

whose definition, based on the dates of occurrence of a and

b, is

a✂ b =











a if d(a) < d(b)

⊥ if d(a) > d(b)

a if d(a) = d(b)

The expected behavior of the composition of two events a
and b by operator IBF is illustrated by the timing diagrams

in Fig. 3 in three cases: Case 1: d(a) < d(b), Case 2:

d(a) = d(b), Case 3: d(a) > d(b). According to these timing

diagrams, and to (1), a✂b occurs in two cases: when a occurs

strictly before b, Case 1 (which corresponds to a✁b); and when



4

a occurs at the same time as b, Case 2 (which corresponds to

a△ b).

Fig. 3: Expected behavior for operator INCLUSIVE BEFORE

(IBF).

Operator △ is commutative, while ✁ and ✂ are not. These

three operators satisfy the following theorems, which will be

used later in the paper (a more complete set of theorems, and

their proofs, can be found in [17]), for any non-repairable

events a, b, and c.

a✂ a= a (2)

a+ (a✂ b) = a (3)

(a✂ b) + b= a+ b (4)

a · (a✂ b) = a✂ b (5)

a✂ (b+ c) = (a✂ b) · (a✂ c) (6)

a✂ (b · c) = (a✂ b) + (a✂ c) (7)

a✂ (b✂ c) = (a✁ b) + (a · b · (c✁ b))

+(a△ b) · (b✂ c) (8)

(a+ b)✂ c= (a✂ c) + (b✂ c) (9)

(a · b)✂ c= (a✂ c) · (b✂ c) (10)

(a✂ b)✂ c= (a✂ b) · (a✂ c) (11)

(a✂ b) · (b✂ c) · (a✂ c) = (a✂ b) · (b✂ c) (12)

a✁ a=⊥ (13)

a · (a✁ b) = a✁ b (14)

a✁ (b+ c) = (a✁ b) · (a✁ c) (15)

(a · b)✁ c= (a✁ c) · (b✁ c) (16)

(a✁ b) · (b✁ a) =⊥ (17)

(a✂ b) · (b✁ a) =⊥ (18)

(a✁ b) · (b✁ c) · (a✁ c) = (a✁ b) · (b✁ c) (19)

C. Algebraic Model of Priority Dynamic Gates

In Section II, we have shown how both a strict, and

a non-strict order relation can be taken into account, and

algebraically modeled. However, a non-strict inclusive inter-

pretation of Priority Dynamic Gates seems more coherent with

the designers’ expectations. For this reason, in the remainder

of this paper, we define an algebraic model of gates PAND

and FDEP by means of operator IBF (✂), only.

The algebraic expression of gate PAND is in Fig. 4, whereas

the expression for gate FDEP is in Fig. 5. Regarding gate

FDEP, basic events A and B can fail by themselves, or are

Q = (A ·B) · (A✂B)
(5)
= B · (A✂B)

Fig. 4: Algebraic model of gate PAND.

AT = (A✂ T ) + T
(4)
= A+ T

BT = (B ✂ T ) + T
(4)
= B + T

Fig. 5: Algebraic model of gate FDEP.

Fig. 6: A basic PDFT made of a cascade of PAND gates.

forced to fail by the trigger event T . We choose to denote the

global behavior of basic events A, and B by the substituted

variables AT , and BT to explicitly indicate the effect of trigger

T . As already noticed in [19], the algebraic formalization

proves that gate FDEP can be represented by Boolean OR

gates only.

Furthermore, we assume that basic events are s-independent,

and have a continuous failure time distribution, so that they

cannot occur simultaneously. Hence, for any two basic events

a and b with the above characteristics, the following relation

holds.

a△ b = ⊥ (20)

To arrive to the determination of the structure function of

any PDFT, special attention should be paid to the cascades of

PAND gates.

D. Cascading PAND Gates

Two elementary combinations of cascading PAND gates are

possible, as represented in Figs. 6, and 7.

The structure function of the PDFT in Fig. 6 can be written
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Fig. 7: Another basic PDFT made of a cascade of PAND gates.

as

TE2 = C · (F ✂ C)

= C · ((B · (A✂B))✂ C)
(10)
= C · (B ✂ C) · ((A✂B)✂ C)
(11)
= C · (B ✂ C) · (A✂B) · (A✂ C)

= C · (A✂B) · (B ✂ C) · (A✂ C)
(12)
= C · (A✂B) · (B ✂ C). (21)

Note that the last expression (21) contains the cut sequences

of the PDFT in Fig. 6, i.e. indicates the order in which the

failures of the basic components should appear to lead to the

TE.

The second possible combination of cascading PAND gates

is given in Fig. 7, and its structure function can be developed

thanks to the theorems of Section III-B. Note, in particular, that

theorem (8) is somewhat counterintuitive, but simply states

that a✂ (b✂ c) is true iff (a✁ b), or if (b✂ c) = ⊥ is true.

TE3 = J · (A✂ J)

= C · (B ✂ C) · (A✂ (C · (B ✂ C)))
(7)
= C · (B ✂ C) · ((A✂ C) + (A✂ (B ✂ C)))

= C · (B ✂ C) · (A✂ C)

+C · (B ✂ C) · (A✂ (B ✂ C))
(8)
= C · (A✂ C) · (B ✂ C) + C · (B ✂ C) · (A✁B)

+C · (B ✂ C) · (A ·B · (C ✁B))

+C · (B ✂ C) · (A△B) · (B ✂ C)
(20)
= C · (A✂ C) · (B ✂ C) + C · (A✁B) · (B ✂ C)

+A ·B · C · (B ✂ C) · (C ✁B)
(18)
= C · (A✂ C) · (B ✂ C) + C · (A✁B) · (B ✂ C)

(22)

The two product terms in the last expression (22) contain

the cut sequences (ordered sequences of failures) that verify

the TE of the PDFT in Fig. 7.

IV. STRUCTURE FUNCTION, AND MINIMAL CANONICAL

FORM

A. Canonical Form of the Structure Function

The algebraic models of Priority Dynamic Gates (Figs. 4

and 5), and of the cascades of PAND gates (Section III-D),

allow us to determine the structure function of any PDFT

as a function of basic events that can be repeated without

restrictions.

Given a PDFT with n basic events {bi, i ∈ (1, ..., n)}, the

structure function for the TE becomes an expression containing

at most the n basic events, and operators +, ·, ✁, △, and ✂.

The structure function can then be developed and simplified,

thanks to the theorems presented in Section III-B, to arrive

to a standardized sum-of-product canonical form where each

product term contains operator ·, and ordered pairs of variables

linked by operator ✁ only. The steps to be followed to arrive

to the canonical form are:

1) Starting from the TE, in a top down fashion, replace each

FDEP gate by its algebraic expression in Fig. 5, and each

PAND gate by its algebraic expression in Fig. 4.

2) In the case of cascading PAND gates, apply theorems

(8), and (11).

3) Eliminate the parenthesis by applying distributivity the-

orems, such as theorems (6) to (11), and (15) to (16).

4) The structure function is then expressed in a sum of

product terms as in (23):

TE =
∑

(

∏

bi ·
∏

(bj ✂ bk) ·
∏

(bl ✁ bm) ·
∏

(bo △ bp)
)

.

(23)

5) Because bo and bp are basic events, in virtue of theorem

(20), (23) can always be simplified to the form

TE =
∑

(

∏

bi ·
∏

(bj ✂ bk) ·
∏

(bl ✁ bm)
)

. (24)

6) Taking into account theorems (1) and (20), we can write

bj✂bk = bj✁bk. Hence, the expression in (24) becomes

TE =
∑

(

∏

bi ·
∏

(bj ✁ bk)
)

.

7) According to theorem (13), j = k ⇒ bj ✁ bk = ⊥, then

the structure function can be simplified to

TE =
∑

(

∏

bi ·
∏

(bj ✁ bk)
)

, j 6= k.

8) Finally, according to theorem (14),

i = j ⇒ bi · (bj ✁ bk) = bj ✁ bk, so we get the

structure function in canonical form

TE =
∑

(

∏

bi ·
∏

(bj ✁ bk)
)

, j /∈ {i, k} . (25)
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B. Minimization of the Canonical Form of the Structure Func-

tion

In the case of SFTs, a minimal form of the structure function

can be determined easily thanks to the theorems of Boolean

algebra, or by resorting to BDDs [18], [19]. Such minimal

form provides the minimal cut sets of the SFT. In the case of

DFTs, the concept of minimal cut must be refined to minimal

cut sequence [20], representing the minimal (ordered) failure

sequence of events that causes the occurrence of the TE. The

exhaustive search of the minimal cut sequences of a DFT is an

open problem, in the general case. The algebraic approach for

PDFTs provides a sound theoretical basis for the determination

of the CSSs.

In the canonical form of the structure function given in

(25), each product term
∏

bi ·
∏

(bj ✁ bk) is not a single cut

sequence, but an algebraic expression providing a sufficient

condition on the order of basic event failures that leads to

the TE which may contain more than one cut sequence, and

actually is a cut sequence set (CSS). In the remainder of this

paper, CSSi will represent both a set of cut sequences (like

in (27)), and the algebraic expression that characterizes this

set of cut sequences (like in (26)).

Given that there are n product terms in (25), the canonical

form can be rewritten in the compact form

TE =
n
∑

i=1

CSSi. (26)

The set S of all the cut sequences of the PDFT is the union

of all the CSSs previously defined:

S =

n
⋃

i=1

CSSi. (27)

Nevertheless, a CSS may be included in one or more CSSs.

CSSi is included in one of the CSSj if it satisfies the criterion

[18]

CSSi ·
∑

j 6=i

CSSj = CSSi. (28)

If CSSi is included in one of the CSSj , it is redundant,

and can be removed from the structure function (26). Iterative

application of the criterion (28), according to Algorithm 1,

removes all the redundant CSSs, and returns the minimal set

Smin of non-redundant CSSs.

Algorithm 1 Algorithm for the minimization of the canonical

form of the structure function of a PDFT

Require: S

Smin ← S

for i = 1 to n do

CSS ←
∑

j 6=i CSSj

if CSSi · CSS = CSSi then

Smin ← Smin \ {CSSi}
end if

end for

return Smin

Given that Smin contains (m ≤ n) cut sequence sets,

the minimal canonical form of the structure function can be

expressed as

TE =
m
∑

i=1

CSSi. (29)

C. Examples

1) Determination of the Canonical Form of the Structure

Function of the PDFT in Fig. 1: Let us consider the PDFT

shown in Fig. 1. The derivation of the canonical form of its

structure function proceeds along the following steps, where

BD and CD include the effect of trigger D (Fig. 5).

TE1 = H · (G✂H)

= (A · CD) · ((A ·BD)✂ (A · CD))

= (A · (C +D))

·((A · (B +D))✂ (A · (C +D)))
(10)
= A · (C +D) · (A✂ (A · (C +D)))

·((B +D)✂ (A · (C +D)))
(7)
= A · (C +D) · ((A✂A) + (A✂ (C +D)))

·((B +D)✂ (A · (C +D)))
(2),(3)
= A · (C +D) ·A · ((B +D)✂ (A · (C +D)))
(7)
= A · (C +D) · (((B +D)✂A)

+((B +D)✂ (C +D)))
(9)
= A · (C +D) · ((B ✂A) + (D ✂A)

+(B ✂ (C +D)) + (D ✂ (C +D)))
(6)
= A · (C +D) · ((B ✂A) + (D ✂A)

+(B ✂ C) · (B ✂D) + (D ✂ C) · (D ✂D))
(2),(5)
= A · (C +D) · ((B ✂A) + (D ✂A)

+(B ✂ C) · (B ✂D) + (D ✂ C))

= A · C · (B ✂A) +A · C · (D ✂A)

+A · C · (B ✂ C) · (B ✂D) +A · C · (D ✂ C)

+A ·D · (B ✂A) +A ·D · (D ✂A)

+A ·D · (B ✂ C) · (B ✂D) +A ·D · (D ✂ C)
(5)
= A · C · (B ✂A) +A · C · (D ✂A)

+A · C · (B ✂ C) · (B ✂D) +A · C · (D ✂ C)

+A ·D · (B ✂A) +A · (D ✂A)

+A ·D · (B ✂ C) · (B ✂D) +A · (D ✂ C)
(1),(20)
= A · (D ✁A) +A · (D ✁ C) +A · C · (B ✁A)

+A ·D · (B ✁A) +A · C · (B ✁ C) · (B ✁D)

+A ·D · (B ✁ C) · (B ✁D) (30)

The last expression (30) is the canonical form of the structure

function of the PDFT in Fig. 1.

2) Determination of the Cut Sequences of the PDFT in

Fig. 7: Let us consider the PDFT shown in Fig. 7. The

canonical form of its structure function can be determined
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easily starting from (22):

TE3 = C · (A✂ C) · (B ✂ C)

+C · (A✁B) · (B ✂ C)
(1),(20)
= C · (A✁ C) · (B ✁ C)

+C · (A✁B) · (B ✁ C). (31)

This structure function is composed by two cut sequence

sets CSS1 = C · (A✁ C) · (B ✁ C), and CSS2 = C · (A✁

B) · (B✁C). Algorithm 1 allows us to check whether one of

these CSSs is included in the other one, according to criterion

(28), and to remove it from the structure function.

We start Algorithm 1 with S = CSS1

⋃

CSS2:

For i = 1, CSS = CSS2. Consequently,

CSS1 · CSS = CSS1 · CSS2

= C · (A✁ C) · (B ✁ C)

·C · (A✁B) · (B ✁ C)

= C · (A✁B) · (B ✁ C) · (A✁ C)
(19)
= C · (A✁B) · (B ✁ C).

Because CSS1·CSS 6= CSS1, CSS1 is not included in CSS.

For i = 2, CSS = CSS1. Consequently,

CSS2 · CSS = CSS2 · CSS1

= C · (A✁B) · (B ✁ C)

·C · (A✁ C) · (B ✁ C)

= C · (A✁B) · (B ✁ C) · (A✁ C)
(19)
= C · (A✁B) · (B ✁ C).

Because CSS2 · CSS = CSS2, CSS2 is included in CSS,

and can be removed. As a result of the minimization algorithm,

Smin contains a single element

Smin = {CSS1} = {C · (A✁ C) · (B ✁ C)} .

The minimal canonical form of the structure function of the

PDFT finally is

TE3 = C · (A✁ C) · (B ✁ C). (32)

The PDFT shown in Fig. 7 contains 3 basic events: A,

B, and C. Neither single occurrences of these basic events,

nor sequences of 2 of them, can engender the TE, but the

occurrence of the 3 basic events is needed. They can occur in 6
different sequences: [A,B,C], [A,C,B], [B,A,C], [B,C,A],
[C,A,B], and [C,B,A]. The cut sequences of the PDFT are

the sequences of basic events A, B, and C which verify (32),

and hence engender the TE. There are only 2 such sequences

among the 6 possible:

[A,B,C] , and [B,A,C] . (33)

It is easy to check that the only sequence that satisfies

CSS2 is [A,B,C], which is included in (33), making CSS2

a redundant term.

3) Cascading PAND Gates With Repeated Events: Fig. 8

shows a PDFT example taken from [5] with cascading PAND

gates. The procedure to arrive to the canonical form of the

structure function is developed step by step. To make the

analysis more straightforward, we arrest the development at

intermediate events Q, S, and T , because they do not have

basic events in common, and are thus s-independent.

Fig. 8: An example of PDFT from [5].

TE4 = R · (Q✂R)

= T · (S ✂ T ) · (Q✂ (T · (S ✂ T )))
(7)
= T · (S ✂ T ) · (Q✂ T )

+T · (S ✂ T ) · (Q✂ (S ✂ T ))

Because we can write

Q✂ (S✂T )
(8)
= Q✁S+Q ·S · (T ✁S)+ (Q△S) · (S✂T ),

the derivation of the canonical form may proceed in the

following way.

TE4 = T · (S ✂ T ) · (Q✂ T ) + T · (S ✂ T ) · (Q✁ S)

+T · (S ✂ T ) ·Q · S · (T ✁ S)

+T · (S ✂ T ) · (Q△ S) · (S ✂ T )
(18)
= T · (S ✂ T ) · (Q✂ T ) + T · (S ✂ T ) · (Q✁ S)

+T · (S ✂ T ) · (Q△ S)

Simultaneity between Q, S, and T is excluded because they

do not have basic events in common. Hence, Q △ S = ⊥,

S ✂ T = S ✁ T , and Q✂ T = Q✁ T .

TE4 = T · (S ✁ T ) · (Q✁ T ) + T · (S ✁ T ) · (Q✁ S) (34)
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The result in (34) is the same as in (31) with

(Q,S, T ) ≡ (A,B,C), so the structure function can be sim-

plified to the form (32) that provides the minimal canonical

form of the structure function of the system (35):

TE4 = T · (S ✁ T ) · (Q✁ T ). (35)

Let us now consider a case, not considered in [5], in which

event A in Fig. 8 is a repeated basic event. In particular,

we assume that M ≡ A, so that Q, and S are no longer

s-independent because they share a common basic event. In

this case, the structure function can be derived through the

steps in this next equation set.

TE4M≡A = T · (S ✂ T ) · (Q✂ T )

+T · (S ✂ T ) · (Q✁ S)

+T · (S ✂ T ) · (Q△ S)

= T · ((A · V )✂ T ) · ((A+ U)✂ T )

+T · ((A · V )✂ T ) · ((A+ U)✁ (A · V ))

+T · ((A · V )✂ T ) · ((A+ U)△ (A · V ))
(10)
= T · (A✂ T ) · (V ✂ T ) · ((A+ U)✂ T )

+T · (A✂ T ) · (V ✂ T )

·((A+ U)✁ (A · V )) + T · (A✂ T )

·(V ✂ T ) · ((A+ U)△ (A · V ))
(9)
= T · (A✂ T ) · (V ✂ T ) · (A✂ T )

+T · (A✂ T ) · (V ✂ T ) · (U ✂ T )

+T · (A✂ T ) · (V ✂ T )

·((A+ U)✁ (A · V )) + T · (A✂ T )

·(V ✂ T ) · ((A+ U)△ (A · V ))

= T · (A✂ T ) · (V ✂ T )

+T · (A✂ T ) · (V ✂ T ) · (U ✂ T )

+T · (A✂ T ) · (V ✂ T )

·((A+ U)✁ (A · V )) + T · (A✂ T )

·(V ✂ T ) · ((A+ U)△ (A · V ))

= T · (A✂ T ) · (V ✂ T )
(1),(20)
= T · (A✁ T ) · (V ✁ T ) (36)

Note that, in the final expression (36), intermediate event

U does no longer appear because it is absorbed due to the

repetition of event A. This result, which is not evident from

the inspection of Fig. 8, can be obtained thanks to the algebraic

treatment.

V. PROBABILISTIC ANALYSIS OF PDFTS

In the case of DFTs, the determination of the failure

probability of the TE from the failure probabilities of the

basic events is determined numerically by developing dynamic

modules into the corresponding Markov chain [12]. Close

form expressions for the dynamic gates with any distribution

function are given in [1]. In this section, we show that the TE

probability of any PDFT can be evaluated in a purely algebraic

way from the minimal canonical form, for any possible time-

to-failure distribution of basic events.

Given that the minimal canonical form (29) has m CSSs,

we can compute the probability of the TE by resorting to the

standard inclusion–exclusion formula [21]:

Pr {TE}= Pr {CSS1 + CSS2 + . . .+ CSSm}

=
∑

1≤i≤m

Pr {CSSi}

−
∑

1≤i<j≤m

Pr {CSSi · CSSj}

+
∑

1≤i<j<k≤m

Pr {CSSi · CSSj · CSSk}+ . . .

+(−1)m−1Pr {CSS1 · CSS2 · . . . · CSSm}

(37)

with ∀i ∈ {1, . . . ,m} , CSSi ∈ Smin.

Each term of these sums contains the product of the

algebraic expressions verified by the CSSs that can share the

same basic events, and thus are not s-independent. However,

in these product terms, some simplifications might be possible

in two cases:

• if a basic component bi or a term (bi✁ bj) appear in two

or more CSSs, we can apply the idempotence theorem

bi · bi = bi or (bi ✁ bj) · (bi ✁ bj) = (bi ✁ bj); and

• if CSSℓ contains the term bi, and CSS′
ℓ the term (bi✁bj),

by virtue of (14), bi · (bi ✁ bj) = (bi ✁ bj).

As soon as the simplification of the different terms has

been performed, their failure probabilities can be calculated.

Given an event x with Cdf Fx(t), and pdf fx(t), the following

expressions hold under the hypothesis of s-independence [1],

[11].

Pr {a · b} (t) = Fa(t)× Fb(t)

Pr {a+ b} (t) = Fa(t) + Fb(t) − Fa(t)× Fb(t)

Pr {a✁ b} (t) =

∫ t

0

fa(u)(1− Fb(u)) du

Pr {b · (a✁ b)} (t) =

∫ t

0

fb(u)Fa(u) du (38)

Of course, expression (37) may contain much more complex

terms. To give a flavor of the way to arrive to a close

form expression with any distribution, consider a term like

S′ = (A✁B) ·(B✁C) that contains 3 basic events A, B, and

C that are s-dependent through a chain of BF operators. The

cut sequences that verify this expression can be determined.

Single occurrences of A, B, and C cannot engender S′. Recall

the 6 sequences of 2 basic events [A,B], [A,C], [B,A],
[B,C], [C,A], and [C,B]. Among them, [A,B] is the only

sequence that leads to the occurrence of S′. Finally, recall the

6 sequences of 3 basic events [A,B,C], [A,C,B], [B,A,C],
[B,C,A], [C,A,B], and [C,B,A]. Among them, [A,B,C] is

the only sequence that leads to the occurrence of S′. S′ has

only 2 cut sequences:

[A,B] , and [A,B,C] .
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(39)

Given both sequences are mutually exclusive 1,

Pr{S′}= Pr {[A,B]}+ Pr {[A,B,C]} .

The algebraic expression of the probability of each mutually

exclusive sequence can be computed for any sequence of

states. In the present case,

Pr {[A,B]} (t) = (1− FC(t))

∫ t

0

fB(u)FA(u)du

Pr {[A,B,C]} (t) =

∫ t

0

fC(u) Cdf {B · (A✁B)} du

=

∫ t

0

fC(u)

(
∫ u

0

fB(v)FA(v)dv

)

du.

(40)

The probability expression (40) is obtained by a nested appli-

cation of (38). The sketched method can provide the algebraic

expression of any term of (37).

A. Example 1 From [11]

The quantitative analysis of PDFTs is illustrated by means

of an example taken from Fussel et al. in [11]. First, the

traditional approach consisting in the generation and solution

of the Markov chain is applied. Then the algebraic solution

with exponential distributions is proposed starting from the

canonical form, showing that the same procedure can be ex-

tended to any probability distribution (the Erlang distribution

is considered as an example).

Fig. 9 shows the PDFT of a non-repairable electrical supply

system that has a principal power supply (P), a parallel spare

(S), and a switch (C) that commutes on S when P fails [11].

We assume that the principal power supply, and the parallel

spare fail with failure rates λp, and λs, respectively; and that

the switch fails with failure rate λc.

1) Calculation of the Failure Probability with Markov

Chains: The state transition diagram of the corresponding

Markov chain is shown in Fig. 10, where state 8 is the only

failure state, and represents the TE. The state probabilities

of the Markov chain are obtained by solving the system of

differential equations

dP (t)

dt
= P (t) ·Q (41)

1Note that the sequence [A,B] is a shortened notation for a more correct

expression [A,B,C].

Fig. 9: Example of sample logic model from [11].

Fig. 10: State transition diagram of the Markov chain for the

PDFT shown in Fig. 9.

where P (t) is the state probability vector, and Q the transition

rate matrix given by (39) shown at the top of the page. Solving

(41) with transition rate matrix (39) provides the close form

expression for the probability of state 8:

Pr {TE5} (t) = Pr {8} (t)

=
λp

λc + λp

e−(λc+λp+λs)t − e−λpt

−
λp

λc + λp

e−λst + 1. (42)

2) Calculation of the Failure Probability With the Algebraic

Approach: To apply the algebraic approach, we first determine

the minimal canonical form of the structure function of the

PDFT in Fig. 9.

TE5 = (P · S) + (P · (C ✂ P ))
(1),(20)
= (P · S) + (P · (C ✁ P )) (43)
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We then calculate Pr {TE5} as

Pr {TE5}= Pr {(P · S) + (P · (C ✁ P ))}

Pr {TE5}= Pr {P · S}+ Pr {P · (C ✁ P )}

−Pr {(P · S) · (P · (C ✁ P ))}

Pr {TE5}= Pr {P · S}+ Pr {P · (C ✁ P )}

−Pr {S · (P · (C ✁ P ))}

Pr {TE5}= Pr {P} × Pr {S}+ Pr {P · (C ✁ P )}

−Pr {S} × Pr {P · (C ✁ P )}

Pr {TE5}= Pr {P} × Pr {S}+ (1− Pr {S})

×Pr {P · (C ✁ P )} . (44)

In the case of exponential distributions, we obtain from (38)

that

Pr {P} (t) = 1− e−λpt Pr {S} (t) = 1− e−λst

Pr {P · (C ✁ P )} (t) =

∫ t

0

λpe
−λpu(1− e−λcu) du

=
λp

λc + λp

e−(λc+λp)t

−e−λpt +
λc

λc + λp

.

Hence,

Pr {TE5} (t) =
λp

λc + λp

e−(λc+λp+λs)t

−e−λpt −
λp

λc + λp

e−λst + 1. (45)

The result in (45) coincides with the one in (42). However,

minimal canonical form (43) is suited to evaluate the TE

probability with any distribution.

3) Case of Non-Exponential Distributions: If the compo-

nents of the studied systems do not exhibit an exponen-

tial behavior, application of the Markov chain procedure is

unfeasible, whereas algebraic manipulation remains a viable

solution.

In the case of mechanical systems, for instance, the expo-

nential distribution is not the most suitable one; and other dis-

tributions, such as the Erlang distribution, are more commonly

used. We show that the failure probability of such systems can

be determined algebraically by resorting to the expressions

(38). The Erlang distribution has the expression

F (t) = 1−

k−1
∑

n=0

(λt)
n

n!
e−λt

f(t) =
λktk−1e−λt

(k − 1)!
. (46)

Starting from the TE probability expression in (44), we

obtain

Pr {P} (t) = 1−

kp−1
∑

n=0

(λpt)
n

n!
e−λpt

Pr {S} (t) = 1−

ks−1
∑

n=0

(λst)
n

n!
e−λst

Pr {P · (C ✁ P )} (t)

=

∫ t

0

λ
kp
p ukp−1e−λpu

(kp − 1)!

(

1−

kc−1
∑

n=0

(λcu)
n

n!
e−λcu

)

du

= 1−

kp−1
∑

n=0

(λpt)
n

n!
e−λpt

−

kc−1
∑

n=0

(

n+ kp − 1

kp − 1

)

λn
c λ

kp
p

(λc + λp)
n+kp

−

kc−1
∑

n=0

n+kp−1
∑

q=0

(

n+ kp − 1

kp − 1

)

λn
c λ

kp
p tqe−(λc+λp)t

q! (λc + λp)
n+kp−q

.

Consequently,

Pr {TE} (t) = 1−

kp−1
∑

n=0

(λpt)
n

n!
e−λpt

−

ks−1
∑

n=0

kc−1
∑

q=0

(

q + kp − 1

kp − 1

)

×
λq
cλ

kp
p λn

s

n! (λc + λp)
q+kp

tne−λst

+

ks−1
∑

n=0

kc−1
∑

q=0

q+kp−1
∑

r=0

(

q + kp − 1

kp − 1

)

×
λq
cλ

kp
p λn

s t
n+re−(λc+λp+λs)t

n!r! (λc + λp)
q+kp−r

.

The calculation of the failure probability of the TE can be

performed with any other non-exponential distribution. If the

considered failure distribution is not analytically integrable (as

for instance the Weibull distribution), the probabilistic relation

deducted from the minimal canonical form of the structure

function can still be used by resorting to numerical integration.

B. Example 2 From Section IV-C3 [5]

The TE probability of the example in Fig. 8 can be com-

puted via the algebraic approach in both cases of different,

repeated components.

When there is no repetition, the canonical form for the TE

is given in (35), and thus its probability can be computed as

Pr {TE4} (t) = Pr {T · (S ✁ T ) · (Q✁ T )}
(16)
= Pr {T · ((S ·Q)✁ T )}

=

∫ t

0

fT (u)× FS·Q(u)du

=

∫ t

0

fT (u)× FS(u)× FQ(u)du.

To compare our results with those in [5], we assign to the

basic events an exponential distribution with the same failure

rates given in Table II. Hence,

FT (t) = 1− e−(λI+λJ+λK+λL)t

FS(t) =
∏

i∈{A,...,H}

(1− e−λit)

FQ(t) = 1− e−(λM+λN+λO+λP )t.
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TABLE II: Failure rates of the basic events of the PDFT shown

in Fig. 8, from [5]

Basic component Failure rate

A 0.11
B 0.12
C 0.13
D 0.14
E 0.15
F 0.16
G 0.17
H 0.18
I 0.011
J 0.012
K 0.013
L 0.014
M 0.11
N 0.12
O 0.13
P 0.14

With a mission time equal to T = 1, we find a system

unreliability of 2.01×10−10, which coincides with the one in

[5].

If event A is repeated, the canonical form has been obtained

in (36), and its probability is

Pr {TE4M≡A} (t) = Pr {T · (A✁ T ) · (V ✁ T )}
(16)
= Pr {T · ((A · V )✁ T )}

=

∫ t

0

fT (u)× FA·V (u)du

=

∫ t

0

fT (u)× FA(u)× FV (u)du.

With the exponential distributions, we have

FA(t) = 1− e−λAt

FT (t) = 1− e−(λI+λJ+λK+λL)t

FV (t) =
∏

i∈{B,...,H}

(1− e−λit).

With the failure rates of Table II, and a mission time equal to

T = 1, the system unreliability becomes 5.6× 10−10.

The probabilistic analysis of PDFTs can be performed by

using our algebraic approach, even in the case of repeated

events.

VI. CONCLUSION

In this paper, we have defined a sub-class of DFTs, called

Priority Dynamic Fault Trees (PDFTs), comprising Priority

Dynamic Gates, PAND and FDEP, only. We have modeled

both gates by means of new temporal operators called BF, SM,

and IBF defined on a set of temporal variables, and allowing

the simultaneity of intermediate events which can be caused by

the use of repeated basic events. The definition of an algebraic

model allows the determination of the structure function of any

PDFT in the case of non-repairable systems. Thanks to the

theorems that we presented, this structure function can always

be simplified to a sum-of-product canonical form, which can

then be minimized by removing redundant terms.

On the one hand, this minimal canonical form can be used

for the qualitative analysis of PDFTs because it contains all

the non-redundant CSSs whose occurrence leads to the TE. On

the other hand, we presented a quantitative approach allowing

the direct algebraic determination of the failure probability of

the TE from the minimal canonical form, whatever the failure

distributions.

Ongoing work is now addressed to the determination of an

algebraic model for WSP and SEQ gates to extend the work

presented in this paper to the whole DFT formalism.
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