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Abstract. We consider the problem of waking upn processors in a completely broadcast system.
We analyze this problem in both globally and locally synchronous models, with or withoutn
being known to processors and with or without labeling of processors. The main question we
answer is: how fast we can wake all the processors up with probability 1� ε in each of these eight
models. In [12] a logarithmic waking algorithm for the strongest set of assumptions is described,
while for weaker models only linear and quadratic algorithms were obtained. We prove that in
the weakest model (local synchronization, no knowledge ofn or labeling) the best waking time is
O�n� logn�. We also show logarithmic or polylogarithmic probabilistic waking algorithms for all
stronger models, which in some cases gives an exponential improvement over previous results.

1 Introduction

We concentrate on the effects of synchronization level in broadcast systems such
as the Ethernet or radio networks (RN). The system is assumedto be synchronous,
i.e., processors send messages in rounds. It is assumed thatthe processors succeed
in hearing a message in a given round if and only if exactly oneprocessor sends a
message in that round. (The situations in which more than oneprocessor or none
of the processors send a message are indistinguishable.) Hence the communication
model is equivalent to the radio model [1, 3, 4, 7, 16, 18], in acomplete graph. This
case in which every processor is directly accessible by all the other ones is called a
single-hopradio network. (Generalmulti-hopnetworks are defined by graphs, where
stations denote nodes and a node�u�v� denotes that the stationv is reachable from
the stationu.) More precisely, the model considered here is called single-hop radio
networks without collision detection (no-CD RN), as opposed to the model in which
processors can distinguish between the situations when more than one processor or
none of the processors sends a message (CD RN). Because existing technologies have
different technical capabilities, both models (noCD RN andCD RN) are investigated
in the literature. However, noCD RN is more general. All positive results obtained
for this model are also applicable in CD RN (see e.g., [18, 7, 2, 3]).
�
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A central problem in such systems is to establish the patternof access to the
shared communication media that allows messages to go through with a small de-
lay, i.e., avoid or efficiently resolve message collisions.Another important problem
considered is to design algorithms working without complete information about the
network (for example, topology, size) and/or an information which makes it possi-
ble to distinguish its elements (e.g., different labels) [7, 18, 10, 3, 6]. This direction is
motivated by the mobility of radio networks, changes of the topology and the set of
participants.

As shown in [2], algorithms designed for single-hop RN can beefficiently em-
ulated on multi-hop RN. Thus, algorithmic results concerning single-hop RN have
also some significance for the multi-hop model.

2 Problem statement

In this paper, we consider the fundamental problem of wakingup all of n proces-
sors (or “radio stations”) in a completely-connected broadcast system or a single-
hop radio network [12] (see [12] for motivations). Following [12], we distinguish the
cases when processors are labeled by the numbers 1� � � � �n or unlabeled. (One can
also consider a relaxed assumption that processors have unique labels from the set�
1� � � � �nd�, whered is a constant, [11].) Some processors wake up spontaneously,

in different rounds, while others have to be woken up. Only awake processors can
send messages. All sleeping processors wake up non-spontaneously upon hearing a
message. This happens in the first round when exactly one processor sends a mes-
sage. The time complexity of an algorithm in a radio network is the number of rounds
executed. We consider here the worst case time complexity ofthe wakeup problem,
measured by the number of rounds elapsing from the time the first processor wakes
up (spontaneously) to the time when all processors are wokenup (i.e., up to the first
round in which exactly one processor sends a message). The notion “worst case com-
plexity” means here that an adversary controls which processors wake up and when
they wake up spontaneously, but does not know in advance the values of random
choices made by processors.

Following [12], we consider two modes of synchronization. In globally syn-
chronoussystems, all processors have access to a global clock showing the current
round number. Inlocally synchronoussystems, all clocks tick at the same rate, one
tick per round. However, no global counter is available, thelocal clock of each pro-
cessor starts counting rounds from zero when it wakes up. In both models, we dis-
tinguish the following assumptions concerning the knowledge of processors (see e.g.
[18, 12, 20] for motivations):

– the size of the system,n, is known or unknown to processors,
– processors are labeled by different numbers from the set

�
1� � � � �n� or they are

unlabeled,
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– the acceptable probability of error for randomized algorithms,ε, is given explic-
itly as a constant parameter, or only as a function ofn.

The first two distinctions were considered in many aspects inresearch on algo-
rithms for radio networks (e.g., [18, 12, 20]). Let us explain the motivation for the
last distinction. (Observe that it makes sense only whenn is unknown to processors.)
In designing Monte Carlo algorithms, the consideration of time complexity is often
made with the requirement that the error probability shouldgo to zero (polynomially
or exponentially) whenn is growing. It seems to be reasonable to take such assump-
tions into account also in the case of distributed algorithms. (Note that the crash of
“large” distributed environment affects the work of “large” number of its “clients”.)
So, we also consider the case ofε being given as a function ofn, which in case of “n
unknown” is an additional difficulty for an algorithm’s designer.

In [6], authors pointed out that algorithms for RN should be as simple as possible
(because “processors” are very often small hand-held devices with limited resources).
Therefore they defined a notion ofuniformalgorithms in the model of radio networks.
A randomized algorithm for a model with global clock is called uniform if in every
round all awake processors send a message with the same probability (independently
on the history of communication). Generalizing this notionto the model with the
local clock, we say that an algorithm is uniform if broadcastprobabilities depend
only on the value of the clock (and do not depend on the historyof computation nor
on labels). Our goal is also to construct efficient uniform algorithms for the wakeup
problem, if possible.

Efficient solutions of the wake up problem may be also used as atool to improve
algorithms for more sophisticated communication tasks inunknownmulti-hop radio
networks (i.e., where none of processors knows a graph that defines reachability in
the network). For example, the arrival of the message to someparticular station may
be seen as a time needed for the wake-up problem executed on the set of all its
in-neighbors, starting from the round when at least one in-neighbor of this station
receives the message.

3 Previous and related work

The wakeup problem has been studied in other contexts of distributed computing
[8, 9, 17]. Collision detection and resolution, and access management algorithms for
the model considered here were studied mainly assuming someprobability distribu-
tion on the arrival rate of messages at the different processors, cf. [14, 13]. Unlike
in these papers we consider worst-case analysis of the noCD RN model, introduced
in [12]. Both randomized and deterministic algorithms for wake-up problems were
considered. All deterministic algorithms require labeling of processors. It was proved
([12]) that deterministic algorithms for the wake-up problem require timeΩ�n�. For
the globally synchronized model, the upper bound matching the lower bound was ob-

3



tained. For local synchronization, it was shown that there exists a deterministic algo-
rithm achieving timeO�nlog2n�. A constructive version of this result (with slightly
worse time performance) was presented by Indyk [15]. Results (from [12]) concern-
ing probabilistic algorithms are summarized and compared with our work in the next
section.

Recently many other problems inmulti-hopandsingle-hopradio networks (such
as broadcasting, gossiping, initialization i.e. labeling, leader election) were consid-
ered [7, 6, 3, 1, 18]. (One can find more pointers to previous work on this topic in [5].)
In most cases, this research concentrated on the model with global synchronization.
As pointed out in [5], exploration of differences in complexity of problems in glob-
ally and locally synchronized networks is an interesting and promising direction of
research. (See also [19].)

4 Our results

In this paper, we concentrate on probabilistic algorithms.Previous authors ([12])
consider the model with an allowed error probabilityε given as a constant parame-
ter. They obtained an algorithm waking up all processors in time O�lognlog�1�ε��
with probability 1� ε in this model, but only in case of global synchronization, and
n known for all the processors. When a global clock or the knowledge ofn is miss-
ing, their algorithms require at least linear time. We present algorithms waking up
all processors in timeO�lognlog�1�ε�� with probability 1� ε even for the weakest
assumptions considered in [12] (i.e., with local synchronization, unknownn, but la-
beled processors). These algorithms show that also in this case randomization gives
almost exponential improvement in time complexity in comparison to determinism.
Moreover, we obtain a polylogarithmic algorithm in the model with global synchro-
nization, unknownn and no processor labeling. This result establishes an almost
exponential gap between global and local synchronization,because a lower bound
Ω �n� logn� holds in the weakest model (with local synchronization, without labels,
and with unknownn). Further, the lower boundΩ�n� logn� compared with our upper
bounds shows that, in locally synchronous environment, theknowledge of the size of
the network (or at least its approximation given by labels) is crucial for the complex-
ity of the problem. In the tables presented below, we make more detailed comparison
with previous results. It is assumed here thatε is given explicitly as a parameter.

Previous results
n known Labels Global clock Local clock

Yes Yes O�lognlog�1�ε�� O�nlog�1�ε��
Yes No O�lognlog�1�ε�� O�nlog�1�ε��
No Yes – O�n2 log�1�ε��
No No not considered O�n2 log�1�ε��
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Our results
n known Labels Global clock Local clock

Yes Yes O�lognlog�1�ε�� O�lognlog�1�ε��
Yes No O�lognlog�1�ε�� O�lognlog�1�ε��
No Yes O�lognlog�1�ε�� O�lognlog�1�ε��
No No O�log2n�log logn�3 log�1�ε�n��� O �nlog�1�ε��

logn ��� – matches the lower bound

We also show a lower boundΩ � lognlog�1�ε�
log logn� log log�1�ε� � for uniform algorithms work-

ing with knownn and a global clock. This bound almost matches our upper bound
for these assumptions:O�lognlog�1�ε��.

Further on we consider the case whenε is not given as a constant, but as a function
of n only. Note that this assumption makes a difference only whenn is unknown to
processors. If there is a global clock, polylogarithmic algorithm mentioned earlier for
unlabeled networks can work with unknownε. When the global clock and the value
of n are not available, we can wake up all processors with probability 1 � ε in time
O�nlog�1�ε��, even without labels (but without labels the functionε should be poly-
nomially decreasing). Thus, for the weakest scenario (i.e., without labels and without
knowledge ofε) our solution significantly improves the boundO�n2 log�1�ε�� from
[12] (where constantε given explicitly was needed).

Our upper bounds are obtained by a sequence of algorithms, presented in the
order of decreasing amount of knowledge and synchronization needed. A following
table summarizes time bounds and minimal requirements of these algorithms. Let us
observe here that only one of these algorithms is non-uniform.

Algorithm’s name Uniform Minimal requirements Time
n known Global Labelsε explicit

Repeated Prob. Decrease Yes Yes Yes No No O�lognlog�1�ε��
Probability Increase Yes Yes No No No O�lognlog�1�ε��
Increase from Square No No No Yes Yes O�lognlog�1�ε��

Use Factorial RepresentationYes No Yes No No O� f �n	ε��
Decrease From Half Yes No No No Yes O�nlog�1�ε�� logn�

Decrease Slowly Yes No No No No O�nlog�1�ε��
where f �n	ε� 
 log2n�log logn�3 log�1�ε�

Aside from the fact that our results establish exponential gaps between global and
local synchronization, known and unknown (approximation of) nas well as determin-
ism and randomization, they may be helpful in construction of efficient probabilistic
algorithms for more general problems on multi-hop networkswithout global syn-
chronization. This is because of the large time efficiency ofpresented solutions for
the wake-up problem, which may be used as a tool in more general settings. From
a technical point of view, maybe the most interesting resultis obtained in Section 9
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where some interesting properties of a so calledfactorial representationof natural
numbers are shown and used for the construction of a very simple but efficient algo-
rithm. The additional advantage of this algorithm is that ithas also small expected
waking time (opposite to some other algorithms presented here).

In the next section we present some basic mathematical factsand a very useful
Sums Lemma. Sections 6–10 are devoted to our randomized algorithms and cor-
responding lower bounds. We present them in the order of decreasing amount of
resources needed. In some cases, our algorithms need an explicit knowledge of the
allowed error probability,ε. Then, we present also other solutions that work ifε is
given as a function ofn only.

5 Basic Lemmata

We say that a round of computation issuccessfulif and only if exactly one processor
is broadcasting in this round. Letsuccess probabilityin a round be a probability that
the round is successful. Thebroadcast probabilityof a processori in its roundr is the
probability thati broadcasts a message in the roundr. Thebroadcast sumof a round
is a sum of broadcast probabilities (in this round) of all processors that are awake in
that round.

Let us recall some basic mathematical facts.

Lemma 1.

1. �1� p�1�p � 1�4 for every p�0 � p � 1�2.
2. �1� p�1�p � 1�e for every p�0 � p � 1.
3. log�n!� � Θ�nlogn�.
4. ∑∞

i
11�i2 � π2�6.
5. ∑n

i
11�i � log�2n�.
6. logn

2 � ∑n
i
2

1
i � logn and p∑n

i
1
1

2p� i
� logn

4 for every n� 16 that is a natural

power of two and1 � p � n1�4.

Now, we present a simple but useful observation.

Lemma 2 (Sums Lemma).Assume that there are k awake processors in a round,
with broadcast probabilities p1 � � � � � pk such that pi � 1�2 for i � �

1� � � � �k�. Let y�
∑k

i
1 pi . Then, the probability that the round is successful is at least y�1
4�y

.

Proof. The probability that exactly one processor is broadcastingis

k

∑
i
1

�pi

k

∏
j
1; j �
 i

�1� p j �� �
k

∑
i
1

�pi

k

∏
j
1

�1� p j �� � �
k

∑
i
1

pi � �
k

∏
j
1

�1� p j �� �
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Observe that, by Lemma 1.1,�1� p j � � ��1� p j �1�p j � p j � �1�4�p j � Thus,

k

∏
j
1

�1� p j � �
k

∏
j
1

��1� p j �1�p j �p j � k

∏
j
1

�1�4�p j � �1�4�∑k
j�1 p j �

So, the success probability is at least�
k

∑
i
1

pi� � �1
4�∑k

j�1 p j � y � �1
4�y

� ��
As we use the bound from Lemma 2 several times, we present below a corollary

that examines the success probability for most frequently used ranges ofy � ∑k
i
1 pi .

Corollary 1. Assume that there are k awake processors in a round, with broadcast
probabilities p1� � � � � pk such that pi � 1�2 for i � 1� � � � �k.

1. If 1�2 � ∑k
i
1 pi � z and z� 1 then the success probability is at least z�1�4�z.

2. If z� ∑k
i
1 pi � 1�2 then the success probability is at least z�2.

Proof. Using standard methods of mathematical analysis, one can verify that a func-
tion f �x� � x�1�4�x is increasing in a range��∞ �1� ln4� and decreasing in a range	
1� ln4�∞�. Further,f �1�2� � f �1� � 1�4. By combining this observation with Lem-

ma 2, we obtain item 1.
In order to show the second property, notice that the successprobability is (by

Lemma 2) at least �
k

∑
i
1

pi� � �1
4�∑k

i�1 pi � z � �1
4�1�2 � z

2
� ��

6 The globally synchronous model with knownn

In this section we consider the globally synchronous model where the number of
processors,n, is known to all of them. Gąsieniec et al. [12] presented algorithm
Repeated-Decay (based on the algorithm Decay from [3]) for this model. It achieves
time complexityO�lognlog�1�ε�� with probability 1� ε. Their algorithm is not uni-
form, because each processor that wakes up spontaneously remains silent until the
nearest time step divisible by a parameterk and it broadcasts with probabilities that
depend on its previous probabilistic choices afterwards. We present a modification of
this algorithm that isuniformand achieves the same asymptotic time complexity.

Algorithm Repeated Probability Decrease (RPD)
Let l � 2 
logn�. Each processor which wakes up spontaneously broadcasts a wakeup
message in the rounds (for everys) with probability 2�1��s mod l �.
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Theorem 1. The algorithm Repeated Probability Decrease succeeds in waking up
the system in time O�lognlog�1�ε�� with probability1� ε.

Proof. Consider roundss�s� 1� � � � �s� l � 1 for anys such thatsmod l � 0 and at
least one processor is awake in the rounds. So, at least one processor is awake in
the rounds and at mostn are awake in the rounds� l � 1. This means that there
existsi such that 1� i � l and the number of awake processors in rounds� i � 1 is
greater or equal to 2i�1 and smaller or equal to 2i . For any woken up processor the
probability of broadcasting in rounds� i � 1 is equal to 1�2i, so the broadcast sum
is at least 2i�1 � 1

2i � 1
2 and at most 2i 1

2i � 1. By Corollary 1.1, the success probability
in this round is at least 1�4. Let aphasebe a part of the computation which consists
of roundss�s� 1� � � � �s� l � 1 for any s such that�smod l � 0� and at least one
processor is awake in the rounds. Thus, the probability of success in one phase is at
least 1�4. Hence, the probability that none of the first log�1�ε �n��� log�4�3� phases
succeeds is at most�3�4�log�1�ε�� log�4�3� � ε.

��
Kushilevitz and Mansour showed ([16], Lemma 3) that ifl labeled processors

are woken up spontaneously in the same round (forl � �
20�21� � � � �2

�
logn� �) then the

expected number of rounds until the successful round isΩ�logn� (the expectation is
taken overl and probabilistic choices), even in case of a nonuniform algorithm, with
knownn and global clock. Thus, our algorithms that work with probability 1 � ε in
time O�lognlog�1�ε�� are optimal for constantε and their time bound differs only
by a factor log�1�ε� from this lower bound in the general case.

In theuniformcase, Algorithm RPD almost matches the following lower bound
that for 1�ε growing withn is tighter than the boundΩ�logn� from [16].

Theorem 2. Any uniform probabilistic algorithm (for globally synchronous model

and known system size) requiresΩ � lognlog�1�ε�
log logn� log log�1�ε� � rounds to succeed in waking

up the system with probability at least1� ε.

Proof. Assume thatε � ε �n� � 1�2� c for anyn large enough and some constantc
(otherwise, we can apply Lemma 3 from [16] which says that theexpected number of
rounds isΩ�logn�). We analyze only scenarios in whichm � 10 processors are wo-
ken up spontaneously in the first round and no processor is woken up spontaneously
later. (All considerations below concern this scenario.) Because of uniformity, in ev-
ery round of the computation, the broadcast probabilities of all awake processors are
equal. Letm be the number of woken-up processors andp be the broadcast proba-
bility in a round. Then, the success probability in that round ismp�1� p�m�1 � 3�4.
We show this fact by considering two cases:

Case 1: p � 1�2.
We havemp�1� p�m�1 � �1� �1� p��mp�1�e�mp � 2 �mp�1�e�mp� where the first
inequality follows from Lemma 1.2. For a functionf �x� � x�1�e�x we havef � �x� �
�1�e�x�1� x�. So, the only local extremum off �x� is obtained forx � 1. Thus, by
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simple calculations one can see that the maximal value of thesuccess probability is
smaller than 2�1 � �1�e�1 � 3�4.

Case 2: p � 1�2.
We havemp�1� p�m�1 � mp�1�2�m�1 � m�1�2�m�1 � 1�2 for m� 10.

We say that a given round islost if the success probability in this round is smaller
than 1� �lognlog�1�ε��. Observe that the probability of unsuccessful work in
�1�2� lognlog�1�ε� lost rounds is (by Lemma 1.1) at least�1� 1

lognlog�1�ε�� �1�2� lognlog�1�ε� � �1
4�1�2 � 1

2
�

Note that random choices in different rounds are independent, because of uniformity.
So, the probability that no round is successful is equal to the probability that none of
lost rounds is successful multiplied by the probability that none of non-lost rounds
is successful. Thus, in order to wake up all processors with probability 1� ε, the
probability of unsuccessful work in rounds that are not lostshould be at most 2ε (as
the success probability in lost rounds is at most 1�2). In consequence, we need at
least log3�4�2ε� � Θ�log�1�ε�� rounds that are not lost in order to get the probability
of unsuccessful work smaller thanε.

A following claim states that each round is not lost only in the case that the actual
number of awake processors belongs to a particular small interval.
Claim. Let x � 
2�loglogn � loglog�1�ε���, let p be a broadcast probability in a
round, letm be the number of awake processors. If�logm� log�1�p� � � x andm �
max

�
10�x� then the round is lost.

Proof: Let ps be a success probability in a considered round. First, assume thatp �
1�2. Then

ps � mp�1� p�m�1 � m � �1
2�m�1 � �1

2�m�2 � 1
lognlog�1�ε� �

for everym� max
�
10�x�, i.e. the round is lost.

Now, consider the casep � 1�2. Then,

ps � mp� ��1� p� 1
p �mp

1� p
� 2mp� �1

e�mp

�

Note thatmp� 2logm� log p � 2logm�log�1�p�. If logm� log�1�p� � x thenmp� 2x �
�lognlog�1�ε��2, so

ps � 2mp� �1
e�mp� 2 � �1

e�mp�ln�mp�

� 2 � �1
2�mp�2 � 1

lognlog�1�ε�
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for n large enough. If log�1�p� � logm� x thenmp� 2�x � 1�lognlog�1�ε��2 . Thus,

ps � 2mp�1
e�mp � 2mp� 2

�lognlog�1�ε��2 � 1
lognlog�1�ε� �

�
Claim

Let mi � ix for i � 1�2� � � � � �
logn�x�, x� 
2�loglogn� loglog�1�ε���. As shown

in the above claim, there is no roundr in the uniform computation such thatr is not
the lost round when 2mi processors are woken-up andr is not the lost round when
2mj processors are awake fori �� j. Thus, for everyi � 1�2� � � � � ��logn��x� we need
Θ�log�1�ε�� rounds that are not lost. On the other hand, each round is not lost for
at most one value ofi. So, the time needed in order to obtain the success probability
1� ε is

Ω �lognlog�1�ε�
x � � Ω � lognlog�1�ε�

loglogn� loglog�1�ε�� � ��
7 Only the number of processors is known

In this section we consider the case when the number of processors,n, is known but
processors are unlabeled and no global clock is available. (Recall that there is no
difference betweenε given as a constant parameter and as a known function ofn in
this model.) As shown in a following algorithm, one can obtain efficient solutions for
these conditions, despite of lack of the global synchronization.

Algorithm Probability Increase
Let k � 
log�1�ε�n��� log�16�13��, l � 
logn� � 1. After waking up spontaneously,
every processor works inl phases numbered in decreasing orderl � l � 1� � � � �1. Each
phase lastsk rounds. In each of these rounds the processor broadcasts a wakeup
message with probability 1�2 j , where j is the number of the phase.

Theorem 3. Algorithm Probability Increase succeeds in waking up the system in
time O�lognlog�1�ε�� with probability at least1� ε.

Proof. Consider the first round in which at least one processor is woken up. The sum
of broadcast probabilities of all woken up processors is at most n � 1

2�logn��1 � 1
2 in

this round. Starting from this round, the sum of broadcast probabilities of all woken
up processors is growing. And, after at mostk 
logn� rounds, it is at least 1�2. Let
r be the last round in which this sum is smaller than 1�2. Note that the sum of
broadcast probabilities of all processors woken up in rounds r � 1�r � 2� � � � �r � k is
not greater than 1�2 in each of these rounds. The sum of broadcast probabilitiesof
all processors woken up tillr is not bigger than 1 and not smaller than 1�2 in each of
these rounds. So, in each of these rounds, the broadcast sum belongs to the interval

10



	
1�2;3�2�. By Corollary 1.1, the success probability in each of these rounds is at

least 3�2 � �1�4�3�2 what is equal to 3�16. Thus, the probability that every round in
the sequencer�r � 1� � � � �r � k is unsuccessful is not bigger than�1� 3�16�k � ε.

��
8 Only labels are available

In this section we consider the model with labeled processors, without a global clock,
where the number of processorsn is unknown to them. We present an efficient algo-
rithm that requires direct access to the parameterε. The main observation that enables
us to achieve efficient solution in this model is that one can use labels of processors
as “local approximations” of the size of the network.

Algorithm Increase From Square (IFS)
Let k � 
log�1�ε�� log�16�13��, let y � π2�6. Upon waking up spontaneously, the
processori performs the following:

1. p � 1
2�log�2y�i�1�2��

2. if p � 1�2 then ink consecutive rounds the processor works as follows: randomly
set a bitb with probabilitiesP

�
b � 1� � p, P

�
b � 0� � 1� p; if b � 1, broadcast

a wakeup message.
3. p � 2p
4. Goto 2.

Theorem 4. The algorithm Increase From Square succeeds in waking up allproces-
sors in time O�lognlog�1�ε�� with probability at least1� ε.

Proof. Consider the first round in which at least one processor is awake. The broad-
cast sum is not bigger than

∞

∑
i
1

1

2
�
log�2yi2�� �

∞

∑
i
1

1
2yi2

� 1
2y

∞

∑
i
1

1
i2
� 1

2

in this round (where the last equality follows from Lemma 1.4). Starting from this
round, the broadcast sum is growing. Letr be the last round in which this sum is
smaller than 1�2. Let s � 1�2 be the value of this sum in the roundr. Observe
that the sum of probabilities of all processors that were woken up in the round
r is not greater than 2s � 1 and not smaller than 1�2 in every round in the se-
quencer � 1�r � 2� � � � �r � k. Moreover, the sum of broadcast probabilities of all
processors woken up spontaneously in roundsr � 1�r � 2� � � � �r � k is not greater
than∑∞

i
11� �2
�
log�2yi2�� � � 1�2 in all these rounds. So, the broadcast sum in rounds

r � 1�r � 2� � � � �r � k is not smaller than 1�2 and not bigger than 3�2. By Corol-
lary 1.1, the probability of success in each of these rounds is at least 3�2 � �1�4�3�2 �
3�16. So, the probability that every round in this sequence wasunsuccessful is at
most �13�16�k � ε.
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Finally, observe that the largest possible distance between the first round in which
at least one processor is woken up (spontaneously) and the last round in which the
broadcast sum is smaller than 1�2, isO�k log�2

�
log�2y�n�1�2�� �� � O�lognlog�1�ε��.

��
Remark Algorithm IFS is the only one presented in this paper that makes use of
labels of processors. Observe that the asymptotic behaviorof the algorithm does not
change in the case that labels are unique numbers in the set

�
1� � � � �nd�, whered is

a fixed constant. Indeed, the proof of Theorem 4 works also when labels are distinct
natural numbers bounded by a polynomial.

9 Only a global clock is available

Now, we consider the model with a global clock, unlabeled processors, where the
number of processors,n, is unknown to them. We present a fast algorithm for this
scenario that does not require an explicit information about ε. Our algorithm assigns
broadcast probabilities only on base of the value of the global clock. In order to
achieve good performance, we would like to ensure that the broadcast probability is
frequently close to 1�m, for each possible number of awake processorsm. (This gives
the highest success probability.) Fortunately, using properties of so-called factorial
representations of natural numbers, we are able to design such a strategy. It uses
broadcast probabilities 1�2y for y � � , and it has a property that two consecutive
occurrences of the probability 1�2y are in distanceO�ylogy�, for each naturaly.
Consequently, this gives an efficient wake up algorithm.

Definition 1 (Factorial representation). Let t � 0 be a natural number. The facto-
rial representation of t is equal to the sequence t1 �t2� � � � such that t� ∑∞

i
1 ti � i! and
0 � ti � i for every i� � (and only finite number of ti ’s are not equal to0).

Lemma 3. For every natural number t there exists exactly one factorial representa-
tion of t.

��
Definition 2. Let t be a natural number,

�
ti �i�� be a factorial representation of t.

Let j�t � � min
�
i � ti � 0�, and:

– y�t � � 1 for t � �
0�1�,

– y�t � � y �� j �t � � 1�! � 1� � 1� ∑ j �t ��1
l
2 �tl � 1� �l � 1�! for t � 1.

Now, we show some useful properties of factorial representations.

Lemma 4. The functions y and j satisfy following conditions:

1. y�� j �t � � 1�! � 1� � y�t � � y� j �t �! � 1� for every natural number t� 1,
2. y�k! � 1� � 1! � 2! � � � �� �k� 1�! for every k� 1.
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Proof. 1. Let
�
ti �i�� be a factorial representation oft. The inequalityy�� j �t � � 1�! �

1� � y�t � follows directly from the definition. So, we concentrate on the second in-
equality. Let j �t � � k. Observe that the factorial representation ofk! � 1 is equal to
1�2�3� � � � � �k� 1� �0�0�0 � � � Thus, j �t � � j �k! � 1� � k and further

y�k! � 1� � y��k� 1�! � 1� � 1�
k�1

∑
l
2

�l � 1� �l � 1�!

� y��k� 1�! � 1� � 1�
k�1

∑
l
2

�tl � 1� �l � 1�!

� y�t � �

becausetl � l for everyl .
2. We prove this property by induction. For the base step, observe thaty�2! � 1� �
1 � 1! Now, assume that the property is true fork� 1. Recall thatj �k! � 1� � k and
the factorial representation ofk! � 1 is equal to 1�2�3� � � � � �k � 1� �0�0�0� � � � Then,
y�k! �1� � y��k�1�! �1�� 1� ∑k�1

l
2 �l �1� �l �1�! Thus, using inductive hypothesis,

y�k! � 1� � �1! � 2! � � � �� �k� 2�!� � 1�
k�1

∑
l
2

�l � 1� �l � 1�!

� k�1

∑
l
2

�l � 1�! � 1�
k�1

∑
l
2

�l � 1� �l � 1�!

� 1! � 2! � � � �� �k� 2�! � �k� 1�! ��
Lemma 5. For any y� � , there exists a natural number t such that y�t � � y. More-
over, the smallest t such that y�t � � y is not greater than c1ylogy for some constant
c1.

Proof. Let y be a natural number,�yi �i�� be a sequence denoting the factorial repre-
sentation ofy�1,k be the largest index such thatyk �� 0. First, we show that there ex-
ists amodified factorialrepresentation�y�1 � � � � �y�k� � of y�1 such thaty�1� ∑k�

l
1y�l l !,
where 0� y�i � i � 1 for eachi � �

1� � � � �k��, andk� � k. If yi � 0 for eachi � 1� � � � �k
then the sequencey1 � � � � �yk satisfies conditions of “modified” representation. Other-
wise, we can transform the sequencey1 � � � � �yk in order to obtain appropriate modified
factorial representation. To this aim we can use the following algorithm that given a
factorial representationy1 � � � �yk (whereyi � 0 for i � k), generates a modified facto-
rial representationy�1 � � � � �y�k� .
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y0
� 1

sub� false;

For l 
 1	2	 � � � 	k do

if �yl
� 0� and (notsub� theny�l

� yl

else ifyl 
 0 then begin

sub� true;

if yl�1
� 0 theny�l

� l � 1 elsey�l
� l

end

else begin{i.e., whenyl
� 0 andsub
true}

if �yl
� 1� or �l 
 k� then

(y�l
� yl � 1; sub� false)

else (y�l
� l � 1; yl

� 0; sub� true)

end

In other words, every subsequence of zeroes, sayya � � � � �yb (such thatya�1 �� 0
andyb�1 �� 0) is replaced into a sequencey�a � � � � �y�b such thaty�a � a� 1 andy�c � c
for c � a� 1� � � � �b. This is done by “borrowing” one occurrence of

�b� 1�! � a! �
b

∑
i
a

i! � i
from yb�1, so theny�b�1 � yb�1 � 1 (and possibly consecutive “borrowing” is needed
if yb�1 � 1 andb� 1 � k).

Using Lemma 4, we show thaty � y�t � for t � 1� ∑k�
l
1y�l �l � 1�!. The factorial

representation oft is equal to 1�y�1 �y�2 � � � � �y�k� �0�0� � � � Thus, j �t � � k� � 2 and

y�t � � y��k� � 1�! � 1� � 1�
k�

∑
l
1

�y�l � 1�l !

� 1�
k�

∑
l
1

l ! �
k�

∑
l
1

�y�l � 1�l !

� 1�
k�

∑
l
1

y�l l !

� 1� �y� 1�
� y�

For the second part of the lemma, observe that

t � 1�
k�

∑
l
1

y�l �l � 1�! � 1� �k� � 1�
k�

∑
l
1

y�l l !

� 1� �k� � 1� � �y� 1� � �k� � 1�y�
(1)
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andy � �k��! Thus,k� � d logy (for some constantd, see Lemma 1.3), sot � �k� �
1�y � 2dylogy.

��
Lemma 6. For each y, the difference t2 � t1 between every two consecutive numbers
t1 � t2 such that y�t1� � y�t2� � y is not bigger than c2ylog3y (for a constant c2).

Proof. Let y be a natural number, lett be any number that satisfiesy�t � � y, let
j � j �t �. First, observe thaty�t � � y�t � � j � 1�!�. Indeed, first j numbers in the
factorial representation oft � � t � � j � 1�! are equal to the firstj numbers in the
factorial representation oft. So, j �t �� � j �t � � j andy�t �� � y�t �. Now, we must only
show that� j � 1�! � O�ylog3y�. By Lemma 4.1,y�� j �1�! �1� � y � y� j! �1�. Thus
(by Lemma 4.2),

1! � 2! � � � �� � j � 2�! � y � 1! � 2! � � � �� � j � 1�!
It means thaty � � j � 2�! and logy � g� j � 2� log� j � 2� for some constantg � 0 (see
Lemma 1.3). In consequence,j � 1 � f logy (for a constantf ). Finally, � j � 1�! �
� j � 2�! � j � 1�3 � f 3ylog3y.

��
We propose a very simple but efficient algorithm based on properties of factorial

representations:

Algorithm Use Factorial Representations (UFR)
Each woken processor performs the following in roundt (for every t): Randomly
set a bitb with probabilitiesP

�
b � 1� � 1�2y�t �, P

�
b � 0� � 1 � 1�2y�t �. If b � 1,

broadcast a wakeup message.
Note that Algorithm UFR is uniform. The following theorem establishes its com-

plexity.

Theorem 5. Algorithm UFR succeeds in waking up a globally synchronous system
with probability1� ε in time O�log2n�loglogn�3 log�1�ε��, even if the number n and
the parameterε are unknown and processors are unlabeled.

Proof. Observe that in every round all awake processors have the same broadcast
probability. If this probability is 1�2y and the number of awake processors is in the
range

	
2y�1�2y�1� then the broadcast sum is not smaller than 2y�1 � 1

2y � 1
2 and not

bigger than 2y�1 � 1
2y � 2. Thus, the probability that the round is successful is not

smaller than 2� �1�4�2 � 1�8, by Corollary 1.1. AfterΘ�log�1�ε �n�� such rounds we
obtain appropriate probability of success. Lety � 
logn�, let c2 be the constant from
Lemma 6. For anym� 1�2� � � � � 
logn� and for everyc2ylog3y� O�logn�loglogn�3�
consecutive rounds there is a round in which each (awake) processor has broadcast
probability 1�2m (by Lemma 5 and Lemma 6). Let us split the computation into
blocks of lengthc2ylog3y. (Starting from the first round in which at least one pro-
cessor is woken up.) In each block, at least one of the following two conditions is
satisfied:
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(1) There is at least one roundt in the block such thaty�t � � x and the number of
awake processors int is in the range

	
2x�1 �2x�1�.

(2) The number of awake processors at the end of the block is atleast twice larger
than the number of awake processors at the beginning of the block.

There are at most
logn� blocks of type (2). Moreover, the probability that none
of b blocks of type (1) is successful is at most�1� 1�8�b. So, we get the required
probability of success after logn� log8�7�1�ε�n�� � O�logn� log�1�ε�n�� blocks.
The time consumed by these blocks is

O �logn�loglogn�3�logn� log�1�ε�n���� � O �log2n�loglogn�3 log�1�ε�n��� � ��
10 The weakest model

In this section we consider the weakest model, without global clock, with unlabeled
processors, where the number of processors,n, is unknown to them. First, we show
an almost linear lower bound which contrasts to polylogarithmic algorithms obtained
for stronger models.

Theorem 6. If a global clock is not available, the size n of the system is not known to
processors and processors are not labeled then every probabilistic algorithm needs
at leastΩ�n� logn� rounds in order to wake up the system of n processors with prob-
ability 1� ε.

Proof. In this model, the algorithms of all processors are identical and may be de-
scribed by a (infinite) sequencep1 � p2� p3 � � � � such thatpi is the broadcast probability
in the ith round after spontaneous wake-up of the processor. Ifpi � 0 for everyi � �
then the algorithm is incorrect (an adversary may never wake-up all processors). Let
j � min

�
i � pi � 0�, let p j � 1�p (n is unknown, thus we can assume thatp is con-

stant with respect ton). For a natural numbern, let rn � �
n� � 
4plogn� ��. We take any

(large enough)n that satisfies inequalities�1�n�4 � 1� �2n�, 8 logn�n2 � 1� �2n� and
rn � nlog�1�ε��2. Let us call the round in which the first processor is woken upspon-
taneously, round 1. Assume that the adversary wakes up spontaneouslyx� 
4plogn�
processors in each round in the sequence 1�2� � � � � �n�x� � Θ�n� logn�. The probabil-
ity of success in rounds 1� � � � � j � 1 is equal to zero. LetUk be a set of processors
woken up in the roundk. We show that for anyk � �

j � j � 1� � � � � �n�x��, the proba-
bility that at least two processors fromUk� j�1 send broadcast message in the roundk
is at least 1� 1�n. First, observe that the probability that none of the processors from
Uk� j�1 broadcasts is�1� 1

p�x � �1� 1
p�4plogn � �1

e�4logn � �1
2�4logn � �1

n�4 � 1
2n

�
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where the second inequality follows from Lemma 1.2. Moreover, the probability that
exactly one element ofUk� j�1 broadcasts is

x
p �1� 1

p�x�1 � 8plogn
p � �1� 1

p�2plogn � 8logn
n2 � 1

2n
�

Concluding, the probability that more than one processor fromUk� j�1 is broadcast-
ing in the roundk is at least 1� 1� �2n� � 1� �2n� � 1� 1�n.

Thus, the probability of success in each round from the sequence j � j � 1� � � � � �n�x�
is smaller than 1�n. The probability of unsuccessful work in rounds 1� � � � � �n�x� is at
least �1� 1

n� �
n�x� � �1� 1

n� rn � �1� 1
n�nlog�1�ε��2 � �1

4� log�1�ε��2 � ε �

where the last inequality follows from Lemma 1.1.

��
Now, we present an algorithm working in the model with known and constantε

that matches the above lower bound. Broadcast probabilities assigned to processors
by this algorithm start from 1�2 at the moment of spontaneous wake up and are
divided by 2 in eachk steps, wherek is a fixed parameter. A similar strategy is applied
in exponential backoff protocols [13, 14], extensively used in practice (for example,
in order to resolve conflicts in Ethernet networks). However, up to our knowledge,
no analysis for the assumptions and the problem considered in this paper has been
presented before.

Algorithm Decrease From Half
Let k � 
log�1�ε�� log�4�3��. Upon waking up spontaneously, each processor per-
forms the following (until all processors are woken up):

1. p � 1�2
2. In k consecutive rounds: randomly set a bitb with probabilitiesP

�
b � 1� � p,

P
�
b � 0� � 1� p; if b � 1, broadcast a wakeup message.

3. p � p�2
4. Goto 2.

Theorem 7. The algorithm Decrease From Half succeeds in waking up all proces-

sors in time O�nlog�1�ε�
logn � with probability1� ε.

Proof. Note that for each processor the sum of broadcast probabilities in all phases
during the work of the algorithm is not larger thank � ∑∞

i
1k � 1
2i . Thus, the sum

of broadcast probabilities of all processors during the work of the algorithm is not
bigger thankn. Let us concentrate on the work of the protocol in first�4kn�� log4n
rounds, starting in the round in which the first processor is woken up spontaneously.
It follows from the above discussion that in at least half of these rounds, i.e. in
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�2kn�� log4n, the sum of broadcast probabilities of awake processors is not bigger
than

2 � kn
4kn� log4n

� 1
2

log4n�

We call rounds that satisfy this conditionlight . Consider two cases:

Case 1.There exists a light roundj such that the sum of broadcast probabilities of
processors that are awake in this round is smaller than 1�2. Then, for each ofk rounds
that directly precede the first round with the broadcast sum smaller 1�2, the sum of
broadcast probabilities is not smaller than 1�2 and not bigger than 1 (because the
sum of broadcast probabilities can become smaller at most twice in k rounds). By
Corollary 1.1, success probability in each of these rounds is at least 1�4. Thus, error
probability is not bigger than�1� 1�4�k � ε.

Case 2.In each of light rounds the sum of broadcast probabilities ofawake processors
is bigger or equal to 1�2. Recall that in each of light rounds the sum of broadcast
probabilities is smaller or equal toz� 1

2 log4n. Thus, by Corollary 1.1, the probability
of success in a light round is at least

z � �1
4�z � �1

4� 1
2 log4n � 1�

n

for n � 16. So, the probability of unsuccessful work in2kn
log4 n light rounds is not bigger

than �1� 1�
n� 2kn

log4n � �1� 1�
n�k�n � ε �

Although some of the above bounds are not satisfied for small values ofn, one may
guarantee desired error probability for these values ofn by increasing the value of
k.

��
Finally, we present an algorithm for the weakest scenario, whenε is given as a

function of n, not as a constant parameter. This algorithm works for anyε�n� that
polynomially goes to zero asn is growing.

Algorithm Decrease Slowly
Assume thatε�n� � 1�nr for a constantr � 1. Letq � 16r ln2. Any processor, after
waking up spontaneously performs the following:

1. i � 0
2. p � q � 1

2q� i
3. In one round: randomly set a bitb with probabilitiesP

�
b � 1� � p, P

�
b � 0� �

1� p; if b � 1, broadcast a wakeup message.
4. i � i � 1
5. Goto 2.
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Theorem 8. Algorithm Decrease Slowly wakes up a system of n processors in time
O�nlog�1�ε �n��� with probability at least1� ε�n�.

Proof. Assume thatn is a natural power of two. Let us analyze the work of the
algorithm during the first 2m rounds (starting from the first round in which at least
one processor is woken up), for 16qn � m � n2�2. Note that the sum of broadcast
probabilities of one processor in all these 2m rounds is not bigger than

q
n2�1

∑
i
0

1
2q� i

� q
n2

∑
i
1

1
i
� qlog�2n2� � q�2logn� 1� � 4qlogn�

where the second inequality follows from Lemma 1.5. Thus thesum of broadcast
probabilities of all processors in first 2m rounds of the algorithm is not bigger than
4qnlogn. This implies that in at leastm of the first 2m rounds, the broadcast sum is
not bigger than4qnlogn

m � logn
4 . (Indeed, otherwise the sum over all 2m rounds would

be bigger than 4qnlogn.) Let rounds with broadcast sum smaller or equal to logn�4
be calledlight. Let us splitlight rounds in two categories:

Category 1:The rounds with broadcast sum bigger than 1�2. By Corollary 1.1, the
success probability in each such round is bigger than

logn
4 � �1

4� logn
4 � logn

4 � �1
2� logn

2 � logn
4 � 1�

n
� 1

n

for n � 4. If the number of rounds of category 1 is bigger thannln�1�ε�n�� then the
probability of unsuccessful work is smaller than�1�1�n�nln�1�ε�n�� � �1�e�ln�1�ε�n�� �
ε�n�.
Category 2:The light rounds with broadcast sum not bigger than 1�2. First we make
a following observation.
Claim 1

(a) Assume that the broadcast sum in the roundj is not smaller thanq� �2q� i�. Then
the broadcast sum in the roundj � 1 is not smaller thanq� �2q� i � 1�.

(b) The broadcast sum of the first light round of Category 2 is at leastq� �2q� 1�.
Proof: (a) LetU j be the set of processors that are awake in the roundj, let sj be
the broadcast sum in the roundj. Thensj � q∑l �U j

1� �2q� i l �, wherei l are natural
numbers. So,sj�1

� q∑l �U j
1� �2q� i l � 1�. If there existsk � U j such thatik � i

then

sj�1
� q

2q� ik � 1
� q

2q� i � 1
�
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Otherwise,

sj�1
� q ∑

l �U j

1
2q� i l

� 2q� i l
2q� i l � 1

� q ∑
l �U j

1
2q� i l

� 2q� i
2q� i � 1

� 2q� i
2q� i � 1 �sj

� 2q� i
2q� i � i � q

2q� i
� q

�2q� i � 1� �

(b) Note that the broadcast sum of the first round during the work of the algorithm is
at leastq � 1

2q. The rest follows from (a).
�

Claim 1

One can show by induction that the broadcast sum of theith light round of Cate-
gory 2 is at leastq� �2q� i �. By the above claim, it is true fori � 0. For the inductive
step, let us only comment the case when theith and the�i � 1�st light round of Cat-
egory 2 are not consecutive in the execution of the algorithm. Note that then the
broadcast sums of the rounds between them are bigger than thebroadcast sum in the
ith light round. So, our statement is satisfied by the application of Claim 1(a).

Thus by Corollary 1.2 the broadcast probability in theith light round of Category
2 is at least12 � q

2q� i . So the probability of unsuccessful work in firstx light rounds of
Category 2 is not bigger than

x

∏
i
1

�1� 1
2 � q

2q� i� � �1
e� q

2 ∑x
i�1

1
2q� i � �1

e� 1
2 �

qlogx
4 � x�2r

for n large enough. (The first two inequalities in the above calculation follow from
Lemma 1.2 and Lemma 1.6, respectively.) In order to bound this probability byε�n�,
x � �ε�n���1� �2r � � �

n light rounds of Category 2 are sufficient.
Finally, we get required success probability in

m� 2 �max�nln�1�ε�n�� �
�

n�16qn�

rounds.
Although some of our bounds do not hold for small values ofn, one can increase

success probability for these cases by executing step 3 of the algorithmk times (not
once) in the loop, for appropriate constantk.

��
11 Conclusions

We presented efficient probabilistic algorithms for wakingup all processors in poly-
logarithmic time with probability 1� ε if a global clock or knowledge ofn or a
labeling is accessible. These algorithms substantially improve previous results, and
show that efficient solutions are possible even without the knowledge of the basic
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parameters of the network. Further, we showed an almost linear lower bound for the
weakest model and we presented an algorithm that matches this bound. We think
that our results may be helpful in designing algorithms for other problems in (not
only single hop) radio networks working without global synchronization (or without
labels).

Some interesting problems remain open. First, there is a gapof size log�1�ε�
between lower bounds and our algorithms for the “standard” model with labels and
ε given as a parameter. Second, is it possible to construct polylogarithmic (or even
sublinear) randomized algorithm for the model with local clocks,n unknown, known
labels andε given as a function? The best solution known to us is a protocol in
which each processor broadcasts in each step with probability equal to 1�l , where
l is the label of the processor. However, this protocol requiresΘ�nlog�1�ε�� steps
for waking up all processors with probability 1� ε�n�. (Note that the broadcast sum
belongs in each round to the interval

	
1� �2n� � 
log�n� 1���.)

Finally, observe that some of our protocols (e.g., Algorithm Probability Increase,
Algorithm IFS) have a disadvantage that their expected timeis infinite, because they
do not wake-up all processors with some small probability. An interesting question
is whether good solutions with small expected time are possible in these cases. (Note
that, for globally synchronous environment, the algorithmUFR seems to be quite
efficient when expected time is considered.)
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