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Abstract. We consider the problem of waking aprocessors in a completely broadcast system.
We analyze this problem in both globally and locally synetmaes models, with or without
being known to processors and with or without labeling ofcessors. The main question we
answer is: how fast we can wake all the processors up withghitity 1 — € in each of these eight
models. In [12] a logarithmic waking algorithm for the stgast set of assumptions is described,
while for weaker models only linear and quadratic algorihwere obtained. We prove that in
the weakest model (local synchronization, no knowledgeaflabeling) the best waking time is
O(n/logn). We also show logarithmic or polylogarithmic probabilistiaking algorithms for all
stronger models, which in some cases gives an exponengiabirement over previous results.

1 Introduction

We concentrate on the effects of synchronization level maticast systems such
as the Ethernet or radio networks (RN). The system is asstioneel synchronous,
i.e., processors send messages in rounds. It is assumetighaicessors succeed
in hearing a message in a given round if and only if exactly preessor sends a
message in that round. (The situations in which more thanpooeessor or none
of the processors send a message are indistinguishablecghklee communication
model is equivalent to the radio model [1, 3, 4, 7, 16, 18], toeplete graph. This
case in which every processor is directly accessible byhalbther ones is called a
single-hopradio network. (Generahulti-hopnetworks are defined by graphs, where
stations denote nodes and a nddgv) denotes that the statianis reachable from
the stationu.) More precisely, the model considered here is called sthglp radio
networks without collision detection (no-CD RN), as opgbgethe model in which
processors can distinguish between the situations whea than one processor or
none of the processors sends a message (CD RN). Becausegaeishnologies have
different technical capabilities, both models (hoCD RN @iiRN) are investigated
in the literature. However, noCD RN is more general. All pigsiresults obtained
for this model are also applicable in CD RN (see e.qg., [18,3])2
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A central problem in such systems is to establish the pati€rccess to the
shared communication media that allows messages to gogihnith a small de-
lay, i.e., avoid or efficiently resolve message collisiolsother important problem
considered is to design algorithms working without compiatormation about the
network (for example, topology, size) and/or an informatwhich makes it possi-
ble to distinguish its elements (e.qg., different labels)lg, 10, 3, 6]. This direction is
motivated by the mobility of radio networks, changes of thealogy and the set of
participants.

As shown in [2], algorithms designed for single-hop RN careffigiently em-
ulated on multi-hop RN. Thus, algorithmic results concegnsingle-hop RN have
also some significance for the multi-hop model.

2 Problem statement

In this paper, we consider the fundamental problem of wakipall of n proces-
sors (or “radio stations”) in a completely-connected boaest system or a single-
hop radio network [12] (see [12] for motivations). Followi[12], we distinguish the
cases when processors are labeled by the numbersi or unlabeled. (One can
also consider a relaxed assumption that processors hageeulaibels from the set
{1,...,n9}, whered is a constant, [11].) Some processors wake up spontaneously
in different rounds, while others have to be woken up. Onlakevprocessors can
send messages. All sleeping processors wake up non-sponty upon hearing a
message. This happens in the first round when exactly onegsocsends a mes-
sage. The time complexity of an algorithm in a radio netwsrhie number of rounds
executed. We consider here the worst case time complexityeoivakeup problem,
measured by the number of rounds elapsing from the time ttepfiocessor wakes
up (spontaneously) to the time when all processors are wogéne., up to the first
round in which exactly one processor sends a message). Tibe heorst case com-
plexity” means here that an adversary controls which psmssyvake up and when
they wake up spontaneously, but does not know in advancedlues of random
choices made by processors.

Following [12], we consider two modes of synchronization.globally syn-
chronoussystems, all processors have access to a global clock shpaaencurrent
round number. Idocally synchronousystems, all clocks tick at the same rate, one
tick per round. However, no global counter is available,ltdoal clock of each pro-
cessor starts counting rounds from zero when it wakes upotin imodels, we dis-
tinguish the following assumptions concerning the knowkedf processors (see e.g.
[18, 12, 20] for motivations):

— the size of the system, is known or unknown to processors,
— processors are labeled by different numbers from thg ket.,n} or they are
unlabeled,



— the acceptable probability of error for randomized aldoms, €, is given explic-
itly as a constant parameter, or only as a function.of

The first two distinctions were considered in many aspectgsearch on algo-
rithms for radio networks (e.g., [18, 12, 20]). Let us expl&ie motivation for the
last distinction. (Observe that it makes sense only whisrunknown to processors.)
In designing Monte Carlo algorithms, the considerationmitcomplexity is often
made with the requirement that the error probability shgaldo zero (polynomially
or exponentially) whem is growing. It seems to be reasonable to take such assump-
tions into account also in the case of distributed algorgh(ote that the crash of
“large” distributed environment affects the work of “lafgaumber of its “clients”.)
So, we also consider the caseedfeing given as a function af, which in case offi
unknown” is an additional difficulty for an algorithm’s dgsier.

In [6], authors pointed out that algorithms for RN should beimnple as possible
(because “processors” are very often small hand-held dswiith limited resources).
Therefore they defined a notionwhiformalgorithms in the model of radio networks.
A randomized algorithm for a model with global clock is cdlleniformif in every
round all awake processors send a message with the saméititplfmdependently
on the history of communication). Generalizing this nottorthe model with the
local clock, we say that an algorithm is uniform if broadcpsibabilities depend
only on the value of the clock (and do not depend on the hisibopmputation nor
on labels). Our goal is also to construct efficient uniforgoaithms for the wakeup
problem, if possible.

Efficient solutions of the wake up problem may be also usedtasldo improve
algorithms for more sophisticated communication tasksiknownmulti-hop radio
networks (i.e., where none of processors knows a graph #iated reachability in
the network). For example, the arrival of the message to smartecular station may
be seen as a time needed for the wake-up problem executece aettof all its
in-neighbors, starting from the round when at least oneeiligimbor of this station
receives the message.

3 Previous and related work

The wakeup problem has been studied in other contexts afldisdd computing
[8,9, 17]. Collision detection and resolution, and acceagagement algorithms for
the model considered here were studied mainly assuming poobability distribu-
tion on the arrival rate of messages at the different praressf. [14, 13]. Unlike
in these papers we consider worst-case analysis of the ndCB&el, introduced
in [12]. Both randomized and deterministic algorithms fake-up problems were
considered. All deterministic algorithms require labglof processors. It was proved
([12]) that deterministic algorithms for the wake-up pratol require time@2(n). For
the globally synchronized model, the upper bound matchiaddwer bound was ob-
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tained. For local synchronization, it was shown that therste a deterministic algo-
rithm achieving timeO(nIog2 n). A constructive version of this result (with slightly
worse time performance) was presented by Indyk [15]. Re¢iutim [12]) concern-
ing probabilistic algorithms are summarized and comparid eur work in the next
section.

Recently many other problems nulti-hopandsingle-hopradio networks (such
as broadcasting, gossiping, initialization i.e. labelilgder election) were consid-
ered[7,6, 3,1, 18]. (One can find more pointers to previoukwa this topic in [5].)
In most cases, this research concentrated on the model lolthlgynchronization.
As pointed out in [5], exploration of differences in comptgof problems in glob-
ally and locally synchronized networks is an interesting promising direction of
research. (See also [19].)

4 Our results

In this paper, we concentrate on probabilistic algorithPievious authors ([12])
consider the model with an allowed error probabibtgiven as a constant parame-
ter. They obtained an algorithm waking up all processorénire O(lognlog(1/¢))
with probability 1— € in this model, but only in case of global synchronizationd an
n known for all the processors. When a global clock or the keolge ofn is miss-
ing, their algorithms require at least linear time. We pnesdgorithms waking up
all processors in tim®(lognlog(1/¢)) with probability 1— € even for the weakest
assumptions considered in [12] (i.e., with local synchzation, unknowm, but la-
beled processors). These algorithms show that also in éisis andomization gives
almost exponential improvement in time complexity in conmgan to determinism.
Moreover, we obtain a polylogarithmic algorithm in the mbaéh global synchro-
nization, unknowmn and no processor labeling. This result establishes an almos
exponential gap between global and local synchronizabenause a lower bound
Q(n/logn) holds in the weakest model (with local synchronizationhwitt labels,
and with unknowm). Further, the lower boun@(n/logn) compared with our upper
bounds shows that, in locally synchronous environmentktiosvledge of the size of
the network (or at least its approximation given by labedgyrucial for the complex-
ity of the problem. In the tables presented below, we makeerdetailed comparison
with previous results. It is assumed here tha given explicitly as a parameter.

Previous results
nknownLabels Global clock | Local clock
Yes | Yes |O(lognlog(1/¢))| O(nlog(1/¢))
Yes | No |O(lognlog(1/g))| O(nlog(1/¢))
No | Yes - O(n?log(1/¢))
No No | not considered O(n?log(1/¢))




Our results

n known Labels Global clock Local clock
Yes | Yes O(lognlog(1/¢)) O(lognlog(1/¢))
Yes No O(lognlog(1/¢)) O(lognlog(1/¢))
No Yes O(lognlog(1/¢)) O(lognlog(1/¢))
No | No |O(log?n(loglogn)®log(1/g(n))) O(”—"’,%)

* — matches the lower bound

We also show a lower bourd (|og|g)ggnn+k|)gé|lc<;()1/s)> for uniform algorithms work-
ing with knownn and a global clock. This bound almost matches our upper bound
for these assumption®(lognlog(1/¢)).

Further on we consider the case wlgesnot given as a constant, but as a function
of n only. Note that this assumption makes a difference only whenunknown to
processors. If there is a global clock, polylogarithmicaithm mentioned earlier for
unlabeled networks can work with unknownwhen the global clock and the value
of n are not available, we can wake up all processors with prdéibabi— € in time
O(nlog(1/¢)), even without labels (but without labels the functeshould be poly-
nomially decreasing). Thus, for the weakest scenariq (ighout labels and without
knowledge ofe) our solution significantly improves the bou@in?log(1/¢)) from
[12] (where constard given explicitly was needed).

Our upper bounds are obtained by a sequence of algorithrasemted in the
order of decreasing amount of knowledge and synchronizaté®ded. A following
table summarizes time bounds and minimal requirementsesgthlgorithms. Let us
observe here that only one of these algorithms is non-unifor

Algorithm’s name Uniform Minimal requirements Time
n known Global Labelse explicit

Repeated Prob. Decreasg Yes Yes | Yes | No No O(lognlog(1/¢))
Probability Increase Yes Yes No No No O(lognlog(1/¢))
Increase from Square No No No | Yes Yes | O(lognlog(1/g))

Use Factorial RepresentationYes No Yes | No No O(f(n,g))
Decrease From Half Yes No No No Yes |O(nlog(1/€)/logn)
Decrease Slowly Yes No No No No O(nlog(1/¢))

wheref (n,£) = log? n(loglogn)log(1/%)

Aside from the fact that our results establish exponentpbgetween global and
local synchronization, known and unknown (approximatifjmas well as determin-
ism and randomization, they may be helpful in constructibefficient probabilistic
algorithms for more general problems on multi-hop netwoskihout global syn-
chronization. This is because of the large time efficiencpresented solutions for
the wake-up problem, which may be used as a tool in more glesettangs. From
a technical point of view, maybe the most interesting reisuttbtained in Section 9
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where some interesting properties of a so catberorial representatiorof natural
numbers are shown and used for the construction of a verysibup efficient algo-
rithm. The additional advantage of this algorithm is thdias also small expected
waking time (opposite to some other algorithms presenteg) he

In the next section we present some basic mathematicaldacts very useful
Sums Lemma. Sections 6—-10 are devoted to our randomizedthige and cor-
responding lower bounds. We present them in the order ofedsorg amount of
resources needed. In some cases, our algorithms need aritdamwledge of the
allowed error probabilitye. Then, we present also other solutions that work i
given as a function af only.

5 Basic Lemmata

We say that a round of computatiorsigccessfuf and only if exactly one processor
is broadcasting in this round. Leticcess probabilitin a round be a probability that
the round is successful. Tiheoadcast probabilityf a processarin its roundr is the
probability thati broadcasts a message in the roun@ihebroadcast sunof a round
is a sum of broadcast probabilities (in this round) of allqgassors that are awake in
that round.

Let us recall some basic mathematical facts.

Lemma 1.

(1—p)Y/P>1/4forevery p0< p< 1/2.
. (1—p)Y/P< 1/eforevery p0< p< 1.
log(n!) = ©(nlogn).
Z.°°:11/i2 =1%/6.

11/i < Iog(2n)
Iogn <3il,7 <lognand pylL
power of two and. < p < n'/4,

.@sn.b.wwzﬂ

Iogn
1 2p+| > for every n> 16 that is a natural

Now, we present a simple but useful observation.

Lemma 2 (Sums Lemma).Assume that there are k awake processors in a round,
Wlth broadcast probabilities p.. ., pkx such that p< 1/2fori € {1,.. k} Lety=
yK . pi. Then, the probability that the round is successful is a$1|®aé4) :

Proof. The probability that exactly one processor is broadcassing

k k k k k
i;(Ioi :|'| .(1—pj))Zi;(pilljl(l—pj)):(i;p. D (1-pj)
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Observe that, by Lemma 1.1 — pj) = <(1— pj)l/pi) i > (1/4)Pi. Thus,

k

K k
I_l 1 pj I_l (1 pJ 1/pJ I_l 1/4 p] 1/4)2'1-‘=1pj.

=1
So, the success probability is at least

(32) "= ()"

As we use the bound from Lemma 2 several times, we presentaetorollary
that examines the success probability for most frequersiéiyguanges of = z!‘zl pi-

O

Corollary 1. Assume that there are k awake processors in a round, withdoaost
probabilities R,--.,pksuchthat p<1/2fori=1,...,k.

CIf1/2< zl 1 Pi <z and z> 1then the success probablllty is at least 74)%.
2 If z< TK., pi < 1/2 then the success probability is at leagpz

Proof. Using standard methods of mathematical analysis, one ¢y theat a func-
tion f(x) = x(1/4)* is increasing in a range-«,1/In4) and decreasing in a range
(1/In4, ). Further,f(1/2) = f(1) = 1/4. By combining this observation with Lem-
ma 2, we obtain item 1.

In order to show the second property, notice that the suquedmbility is (by

Lemma 2) at least
k ZE(=1 pi 1/2
1 1 z
p- ' <_) 2 Z. <_> T2
(i; I) 4 4 2

6 The globally synchronous model with knowmn

In this section we consider the globally synchronous modsre the number of
processorsp, is known to all of them. Gasieniec et al. [12] presentedaljm
Repeated-Decay (based on the algorithm Decay from [3]hismhodel. It achieves
time complexityO(lognlog(1/¢€)) with probability 1— €. Their algorithm is not uni-
form, because each processor that wakes up spontaneoosingesilent until the
nearest time step divisible by a parameétend it broadcasts with probabilities that
depend on its previous probabilistic choices afterwardspvésent a modification of
this algorithm that isiniformand achieves the same asymptotic time complexity.

Algorithm Repeated Probability Decrease (RPD)
Letl =2[logn]|. Each processor which wakes up spontaneously broadcasteaip
message in the rours{for everys) with probability 2-1-(s med 1),
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Theorem 1. The algorithm Repeated Probability Decrease succeeds kingaup
the system in time @gnlog(1/¢)) with probabilityl — &.

Proof. Consider rounds,s+ 1,...,s+1 — 1 for anys such thasmod|l = 0 and at
least one processor is awake in the rosn&o, at least one processor is awake in
the rounds and at mosn are awake in the rounsi+1 — 1. This means that there
existsi such that I< i <1 and the number of awake processors in rogad + 1 is
greater or equal to'2! and smaller or equal td 2For any woken up processor the
probability of broadcasting in roursH-i + 1 is equal to 12i, so the broadcast sum
is atleast 21+ 2 = 3 and at most 2} = 1. By Corollary 1.1, the success probability
in this round is at least/4. Let aphasebe a part of the computation which consists
of roundss,s+1,...,s+1 — 1 for anys such that(smodl = 0) and at least one
processor is awake in the rousdThus, the probability of success in one phase is at
least /4. Hence, the probability that none of the first(tge(n))/log(4/3) phases
succeeds is at mogB/4)!09(1/€)/109(4/3) — ¢ O

Kushilevitz and Mansour showed ([16], Lemma 3) that labeled processors
are woken up spontaneously in the same roundl (@£20,21, .. ., 2[1°9"11) then the
expected number of rounds until the successful rourilegn) (the expectation is
taken ovel and probabilistic choices), even in case of a nonuniforroraigm, with
knownn and global clock. Thus, our algorithms that work with probigbl — € in
time O(lognlog(1/¢)) are optimal for constarg and their time bound differs only
by a factor log1/¢) from this lower bound in the general case.

In the uniform case, Algorithm RPD almost matches the following lower bun
that for 1/€ growing withn is tighter than the boun@(logn) from [16].

Theorem 2. Any uniform probabilistic algorithm (for globally synchrous model
and known system size) requi@s( lognlog(1/e) ) rounds to succeed in waking

loglogn+loglog(1/g)
up the system with probability at leakt- €.

Proof. Assume that = €(n) < 1/2— c for anyn large enough and some constant
(otherwise, we can apply Lemma 3 from [16] which says thaeipected number of
rounds isQ(logn)). We analyze only scenarios in whian> 10 processors are wo-
ken up spontaneously in the first round and no processor iemvog spontaneously
later. (All considerations below concern this scenari@g&use of uniformity, in ev-
ery round of the computation, the broadcast probabilitfedl@wake processors are
equal. Letm be the number of woken-up processors ange the broadcast proba-
bility in a round. Then, the success probability in that ismp(1— p)™ ! < 3/4.
We show this fact by considering two cases:

Caselp<1/2.

We havemp(1— p)™ 1 < (1/(1— p))mp(1/e)™P < 2-mp(1/€)™P, where the first
inequality follows from Lemma 1.2. For a functidr{x) = x(1/e)* we havef’(x) =
(1/e)*(1—x). So, the only local extremum df(x) is obtained forx = 1. Thus, by
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simple calculations one can see that the maximal value afubeess probability is
smaller than 21- (1/e)! < 3/4.

Case2p>1/2.
We havemp(1— p)™ ! < mp(1/2)™ 1 < m(1/2)™ 1 < 1/2 for m > 10.

We say that a given round Isestif the success probability in this round is smaller
than 1/(lognlog(1/¢)). Observe that the probability of unsuccessful work in
(1/2)lognlog(1/¢) lost rounds is (by Lemma 1.1) at least

1 (1/2)lognlog(1/¢) 1 1/2 1
1- —————— > = =_.
lognlog(1/e) —\4 2

Note that random choices in different rounds are indepentdenause of uniformity.
So, the probability that no round is successful is equalégtiobability that none of
lost rounds is successful multiplied by the probabilitytthane of non-lost rounds
is successful. Thus, in order to wake up all processors withability 1— €, the
probability of unsuccessful work in rounds that are not &fgiuld be at moste2(as
the success probability in lost rounds is at mo&2)1 In consequence, we need at
least log,4(2¢€) = ©(log(1/¢)) rounds that are not lost in order to get the probability
of unsuccessful work smaller than

A following claim states that each round is not lost only ia tiase that the actual
number of awake processors belongs to a particular smafivit
Claim. Let x = [2(loglogn + loglog(1/€))], let p be a broadcast probability in a
round, letm be the number of awake processorgldigm—log(1/p)| > x andm >
max{10,x} then the round is lost.

Proof: Let ps be a success probability in a considered round. First, asshatp >
1/2. Then

. 1 m-1 1 m/2 1
— _ m— < = < — < —
ps=mp(l—p)™"<m (2) S (2) ~ lognlog(1/¢)’

for everym > max{10,x}, i.e. the round is lost.
Now, consider the cage< 1/2. Then,
1

1\ mp
(o) oy
Ps=mp: g7 < mp-<6> .

Note thatmp= 2/09m+10gp — plogm-log(1/p) |f |ogm—log(1/p) > x thenmp> 2% >
(lognlog(1/€))?, so

1 mp 1 mp-In(mp)
< = —2.1 =
s (o) =2 ()

1\ MP/2 1
<2.(1Z < - -
s2 (2) ~ lognlog(1/¢)
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for nlarge enough. If logl/p) —logm > x thenmp< 27* < 5. Thus,

1
(lognlog(1/¢))

<2m 1 mID< 2mp< 2 < !
Ps=eMP\e) =“MP= {iogniog(1/e))2 = logniog(1/e)’

O Claim

Letm =ixfori=1,2,..., |logn/x|,x= [2(loglogn+loglog(1/¢))|. As shown
in the above claim, there is no roundh the uniform computation such thats not
the lost round when™ processors are woken-up ands not the lost round when
2™ processors are awake fog j. Thus, for every = 1,2,...,|(logn)/x| we need
O©(log(1/¢)) rounds that are not lost. On the other hand, each round isoebtdr
at most one value af So, the time needed in order to obtain the success protyabili

l—c¢is
lognlog(1/e)\ lognlog(1/¢)
Q ( X ) =0 (Ioglogn+|og|og(1/s)> '

7 Only the number of processors is known

In this section we consider the case when the number of psocgg, is known but

processors are unlabeled and no global clock is availaBkecdll that there is no
difference between given as a constant parameter and as a known functionrof
this model.) As shown in a following algorithm, one can obtgificient solutions for
these conditions, despite of lack of the global synchrditna

Algorithm Probability I ncrease

Letk = [log(1/¢(n))/log(16/13)], | = [logn] + 1. After waking up spontaneously,
every processor works inphases numbered in decreasing oider 1,...,1. Each
phase lastk rounds. In each of these rounds the processor broadcast&eapva
message with probability/2!, wherej is the number of the phase.

Theorem 3. Algorithm Probability Increase succeeds in waking up thsteay in
time Qlognlog(1/¢)) with probability at leastlL — €.

Proof. Consider the first round in which at least one processor iewaip. The sum
of broadcast probabilities of all woken up processors is astm- zﬂTlnHl < % in
this round. Starting from this round, the sum of broadcasbabilities of all woken
up processors is growing. And, after at mkRbgn| rounds, it is at least /2. Let

r be the last round in which this sum is smaller that2.1Note that the sum of
broadcast probabilities of all processors woken up in reurdl,r +2,...,r +kis
not greater than /2 in each of these rounds. The sum of broadcast probabitifies
all processors woken up tillis not bigger than 1 and not smaller thaf2in each of

these rounds. So, in each of these rounds, the broadcastedangb to the interval
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(1/2;3/2). By Corollary 1.1, the success probability in each of thesends is at
least 32- (1/4)%? what is equal to 316. Thus, the probability that every round in
the sequencer +1,...,r +kis unsuccessful is not bigger théh— 3/16)k =& 0O

8 Only labels are available

In this section we consider the model with labeled processathout a global clock,
where the number of processarss unknown to them. We present an efficient algo-
rithm that requires direct access to the parametéhe main observation that enables
us to achieve efficient solution in this model is that one cemlabels of processors
as “local approximations” of the size of the network.

Algorithm Increase From Square (IFS)
Let k = [log(1/¢)/log(16/13)], lety = 12/6. Upon waking up spontaneously, the
processor performs the following:

N S
L P s

2. if p<1/2then ink consecutive rounds the processor works as follows: rangoml
set a bitb with probabilitiesP[b = 1] = p, P[b= 0] = 1— p; if b= 1, broadcast
a wakeup message.

3. p+2p

4. Goto 2.

Theorem 4. The algorithm Increase From Square succeeds in waking ypredles-
sors in time @lognlog(1/¢€)) with probability at leastlL — €.

Proof. Consider the first round in which at least one processor ikewkhe broad-
cast sum is not bigger than

© 1 °© 1 121 1
< = — — = —
2 Jloa@m = 2 22 2y 2,2 2

in this round (where the last equality follows from Lemma)l3tarting from this
round, the broadcast sum is growing. lrebe the last round in which this sum is
smaller than 2. Lets < 1/2 be the value of this sum in the roumd Observe
that the sum of probabilities of all processors that were emokp in the round

r is not greater than<2< 1 and not smaller than/2 in every round in the se-
quencer + 1,r + 2,...,r + k. Moreover, the sum of broadcast probabilities of all
processors woken up spontaneously in roundsl,r +2,...,r + Kk is not greater
thany ™, 1/(2/1°09")1y < 1/2 in all these rounds. So, the broadcast sum in rounds
r+1r+2,...,r+kis not smaller than 22 and not bigger than/2. By Corol-
lary 1.1, the probability of success in each of these roundsleast 32- (1/4)%/2 =
3/16. So, the probability that every round in this sequence wvesiccessful is at
most(13/16) < «.
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Finally, observe that the largest possible distance betweefirst round in which
at least one processor is woken up (spontaneously) andgheoland in which the
broadcast sum is smaller thai2l, is O(klog(2/°09((+1*)1)) = O(lognlog(1/€)).

0

Remark Algorithm IFS is the only one presented in this paper that esakse of
labels of processors. Observe that the asymptotic behaftbe algorithm does not
change in the case that labels are unique numbers in tHd set,n9}, whered is
a fixed constant. Indeed, the proof of Theorem 4 works alsadigels are distinct
natural numbers bounded by a polynomial.

9 Only a global clock is available

Now, we consider the model with a global clock, unlabeledcpssors, where the
number of processors, is unknown to them. We present a fast algorithm for this
scenario that does not require an explicit information alsoQ@ur algorithm assigns
broadcast probabilities only on base of the value of the ajlabock. In order to
achieve good performance, we would like to ensure that thadwast probability is
frequently close to Am, for each possible number of awake processord his gives
the highest success probability.) Fortunately, using @igs of so-called factorial
representations of natural numbers, we are able to design &strategy. It uses
broadcast probabilities/2Y for y € N, and it has a property that two consecutive
occurrences of the probability/2¥ are in distanceO(ylogy), for each naturay.
Consequently, this gives an efficient wake up algorithm.

Definition 1 (Factorial representation).Let t > 0 be a natural number. The facto-
rial representation of t is equal to the sequengéyt ... such thatt= 5>t -i! and
0 <tj <iforeveryie N (and only finite number of't are not equal t®).

Lemma 3. For every natural number t there exists exactly one factogpresenta-
tion of t. 0

Definition 2. Lett be a natural numbeft; }icn be a factorial representation of t.
Let j(t) = min{i | t; = 0}, and:

—y(t)=1 for t € {0,1}, _
-y =y(i) - D! = 1)+ 1+ 5/ 4 —1)(1 - 1)! for t>1.

Now, we show some useful properties of factorial represemts.
Lemma 4. The functions y and j satisfy following conditions:
1oy((j(t) =1 —=1) <y(t) <y(j(t)! — 1) for every natural number® 1,
2. (k' =1) =114+2!4... 4+ (k—1)! forevery k> 1.

12



Proof. 1. Let{t; }icn be a factorial representationfThe inequalityy((j(t) —1)! —
1) < y(t) follows directly from the definition. So, we concentrate be second in-
equality. Letj(t) = k. Observe that the factorial representatiorklof- 1 is equal to
1,2,3,...,(k—=1),0,0,0... Thus,j(t) = j(k' — 1) = kand further

y(kl — 1) = y((k—1)! —1)+1+ki(| —1)(1 - 1)
|=
k—1

> y((k—1)! — 1) +1+z t—1)(1—1)!

=y(t),

becauséy < | for everyl.

2. We prove this property by induction. For the base stepemesthaty(2! — 1) =
1= 1! Now, assume that the property is true kor 1. Recall thatj (k! — 1) = k and
the factorial representation &f — 1 is equal to 12,3,...,(k—1),0,0,0,... Then,
y(k! —1) = y((k—1)! = 1)+ 1+ ¥1<2(1 = 1)(1 — 1)! Thus, using inductive hypothesis,

y(k —1) = (1!+2!+...+(k—2)!)+1+kzi(| —1)(1 - 1)
I=

k— k—1
:Z +1+Z|— (I -1)!
|=2 =
=14+20+.. . 4 (k— 2) + (k—1)!
O

Lemma 5. For any y€ N, there exists a natural number t such thét)y=y. More-
over, the smallest t such thafty =y is not greater than g/logy for some constant
C1.

Proof. Lety be a natural numbety;);cn be a sequence denoting the factorial repre-
sentation of/— 1, k be the largest index such that~ 0. First, we show that there ex-
ists amodified factoriatepresentatiofy, ..., Y,) of y—1suchthay— 1= ziilw l
where O< ¥/ <i+1foreach € {1,...,K'}, andk’ <k.If y; >0 foreach =1,...,k
then the sequenag, . .., Yk satisfies conditions of “modified” representation. Other-
wise, we can transform the sequemge . ., yk in order to obtain appropriate modified
factorial representation. To this aim we can use the folhgualgorithm that given a
factorial representatioyn, .. .yx (wherey; = 0 for i > k), generates a modified facto-
rial representatiog;, ..., Y.

13



Yo+ 1
sub« false;
Forl =1,2,...,kdo
if (yy > 0) and (notsub) theny] +y;
else ify; = 0 then begin
sub« true;
if yi_1 > Otheny| < I +1elsey| « |
end
else begin{i.e., whes; > 0 andsub=true}
if (y >1) or (I =k) then
(V] < ¥ —1; sub« false)
else §f < I +1;y, « O; sub< true)
end

In other words, every subsequence of zeroesygay.,Yp (such thaty,_1 # 0
andyp1 # 0) is replaced into a sequengg...,Y; such that, = a+1 andy, = c
forc=a+1,...,b. This is done by “borrowing” one occurrence of

(b+1)!:a!+_§i!-i

fromypy1, SO thery’bJrl = Yp+1— 1 (and possibly consecutive “borrowing” is needed
if Ypr1 =21 andb+1 < K).

Using Lemma 4, we show thgt=y(t) fort =1+ z}"zly{(l +1)!. The factorial
representation dfis equal to 1y}, Y5, . ..,¥,,0,0,... Thus, j(t) = k'+2 and

K
WO=VKW+EP—D+1+;K%—E“
=1

K K
:1ﬂ;”ﬂ;M_””

K
=1+ S yl!
=1

=1+(y—1)
=Y.

For the second part of the lemma, observe that
K
t=1+5yl+1)! <1+(K+1)
I=1

§1+@+D(wﬂhﬂw+nml

M=

! )
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andy > (k')! Thus,k’ < dlogy (for some constand, see Lemma 1.3), so< (K' +
1)y < 2dylogy. O

Lemma 6. For each y, the difference tt; between every two consecutive numbers
t1 < to such that yt1) = y(t2) =y is not bigger than gylog®y (for a constant ).

Proof. Let y be a natural number, létbe any number that satisfiggt) =y, let

j = j(t). First, observe thay(t) = y(t+ (j + 1)!). Indeed, firstj numbers in the
factorial representation df =t + (j + 1)! are equal to the firsf numbers in the
factorial representation of So, j(t') = j(t) = j andy(t’) = y(t). Now, we must only
show thatj +1)! = O(ylog®y). By Lemma4.1y((j—1)! —1) <y <y(j! —1). Thus

(by Lemma 4.2),

V+21+ .+ (-2 <y< U421+ +(j—1)!

It means thay > (j —2)! and logy > g(j — 2) log(j — 2) for some constarg > 0 (see
Lemma 1.3). In consequencgs+ 1 < flogy (for a constantf). Finally, (j 4+ 1)! <
(1—2)!(j+1)3 < f3ylog?y. 0

We propose a very simple but efficient algorithm based ongntags of factorial
representations:

Algorithm Use Factorial Representations (UFR)
Each woken processor performs the following in roundor everyt): Randomly
set a bitb with probabilitiesP[b=1] = 1/20, Plb=0] =1-1/2U_If b=1,
broadcast a wakeup message.

Note that Algorithm UFR is uniform. The following theorenta&slishes its com-
plexity.

Theorem 5. Algorithm UFR succeeds in waking up a globally synchrongssesn
with probabilityl— ¢ in time Q(log?n(loglogn)3log(1/¢)), even if the number n and
the parameteke are unknown and processors are unlabeled.

Proof. Observe that in every round all awake processors have the bamadcast
probability. If this probability is ¥2Y¥ and the number of awake processors is in the
range(2/~1,2*1) then the broadcast sum is not smaller th¥nt2 ., = 3 and not
bigger than 2+1. % = 2. Thus, the probability that the round is successful is not
smaller than 2(1/4)? = 1/8, by Corollary 1.1. Afte©(log(1/€(n)) such rounds we
obtain appropriate probability of success. ket [logn|, let c; be the constant from
Lemma 6. For anyn=1,2,..., [logn] and for evencyylog®y = O(logn(loglogn)®)
consecutive rounds there is a round in which each (awakeepsor has broadcast
probability /2™ (by Lemma 5 and Lemma 6). Let us split the computation into
blocks of lengthcoylog®y. (Starting from the first round in which at least one pro-
cessor is woken up.) In each block, at least one of the foligvivo conditions is
satisfied:

15



(1) There is at least one roundn the block such thag(t) = x and the number of
awake processors iris in the rangg2x—1, 2x+1),

(2) The number of awake processors at the end of the blocklesast twice larger
than the number of awake processors at the beginning of tioi bl

There are at mosflogn| blocks of type (2). Moreover, the probability that none
of b blocks of type (1) is successful is at md@dt— 1/8)°. So, we get the required
probability of success after logtlogg,7(1/€(n)) = O(logn+log(1/e(n)) blocks.
The time consumed by these blocks is

O (logn(loglogn)3(logn +log(1/€(n)))) = O (log?n(loglogn)®log(1/e(n))).

10 The weakest model

In this section we consider the weakest model, without dloloek, with unlabeled
processors, where the number of processuors, unknown to them. First, we show
an almost linear lower bound which contrasts to polyloganit algorithms obtained
for stronger models.

Theorem 6. If a global clock is not available, the size n of the systenoiknown to
processors and processors are not labeled then every pilidtabalgorithm needs

at leastQ(n/logn) rounds in order to wake up the system of n processors with-prob
ability 1 —e¢.

Proof. In this model, the algorithms of all processors are idehacal may be de-
scribed by a (infinite) sequenge, p2, p3, ... such thatp; is the broadcast probability
in theith round after spontaneous wake-up of the processpr =40 for everyi € N
then the algorithm is incorrect (an adversary may never vugkell processors). Let
j =min{i | pi > 0}, let p; = 1/p (nis unknown, thus we can assume tpas con-
stant with respect tn). For a natural number, letr, = |n/([4plogn]) |. We take any
(large enoughi that satisfies inequalitigd /n)* < 1/(2n), 8logn/n? < 1/(2n) and
rn <nlog(1/¢)/2. Letus call the round in which the first processor is wokespgmn-
taneously, round 1. Assume that the adversary wakes upapEousiyk = [4plogn]
processors in each round in the sequenée.1., |n/x| = ©(n/logn). The probabil-
ity of success in rounds, 1., —1 is equal to zero. Ldtlk be a set of processors
woken up in the roun#t. We show that for ank € {j,j+1,...,|n/x|}, the proba-
bility that at least two processors frddy_j 1 send broadcast message in the rokind
is at least - 1/n. First, observe that the probability that none of the precesfrom
Ux_j+1 broadcasts is

1 X 1 4plogn 1 4logn 1 4logn 1 4 1
1-2) <(1-= <3 <{5 <(Z) <5
p p e 2 n 2n
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where the second inequality follows from Lemma 1.2. Moregie probability that
exactly one element &f,_j, 1 broadcasts is

x—1 2plogn
X 1_} <8p|ogn‘ 1_} §8Iogn§i'
p p p p 2 ~2n

Concluding, the probability that more than one processomtd,_ ;.1 is broadcast-
ing in the roundkis at least - 1/(2n) —1/(2n) =1—1/n.

Thus, the probability of success in each round from the sezpjej+1,..., |n/X|
is smaller than An. The probability of unsuccessful work in rounds 1, |n/x| is at
least

1 [n/x| 1 n 1 nlog(1/e)/2 1 log(1/¢)/2
o A G A G B O I

where the last inequality follows from Lemma 1.1. O

Now, we present an algorithm working in the model with knowd @onstang
that matches the above lower bound. Broadcast probabilissigned to processors
by this algorithm start from A2 at the moment of spontaneous wake up and are
divided by 2 in eaclk steps, wherk& s a fixed parameter. A similar strategy is applied
in exponential backoff protocols [13, 14], extensivelydige practice (for example,
in order to resolve conflicts in Ethernet networks). Howeugrto our knowledge,
no analysis for the assumptions and the problem considardds paper has been
presented before.

Algorithm Decrease From Half

Let k= [log(1/€)/log(4/3)]. Upon waking up spontaneously, each processor per-

forms the following (until all processors are woken up):

1. p«1/2

2. In k consecutive rounds: randomly set a bitvith probabilitiesP[b= 1] = p,
P[b=0]=1-p; if b= 1, broadcast a wakeup message.

3. p+p/2

4. Goto 2.

Theorem 7. The algorithm Decrease From Half succeeds in waking up altes-
sors in time q%) with probability1 — ¢.

Proof. Note that for each processor the sum of broadcast prohasiiit all phases
during the work of the algorithm is not larger thar= 32, k- % Thus, the sum
of broadcast probabilities of all processors during thekwadrthe algorithm is not
bigger tharkn. Let us concentrate on the work of the protocol in f{#tn)/log, n
rounds, starting in the round in which the first processorakem up spontaneously.
It follows from the above discussion that in at least half lége rounds, i.e. in
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(2kn)/log, N, the sum of broadcast probabilities of awake processorstibigger

than
kn

R ———
4kn/logygn 2
We call rounds that satisfy this condititight . Consider two cases:

log, n.

Case 1.There exists a light roungl such that the sum of broadcast probabilities of
processors that are awake in this round is smaller ti@nThen, for each df rounds
that directly precede the first round with the broadcast somaller 1/2, the sum of
broadcast probabilities is not smaller thaf2land not bigger than 1 (because the
sum of broadcast probabilities can become smaller at mase tiw k rounds). By
Corollary 1.1, success probability in each of these rousds least 14. Thus, error
probability is not bigger thafil — 1/4)k = ¢.

Case 2In each of light rounds the sum of broadcast probabilitiesxdke processors

is bigger or equal to A2. Recall that in each of light rounds the sum of broadcast
probabilities is smaller or equal o= % logyn. Thus, by Corollary 1.1, the probability
of success in a light round is at least

1\ 2 1 $logyn 1
A2 > (= >
“(a) 2(3) =5
forn> 16. So, the probability of unsuccessful Worlq%“in light rounds is not bigger

than
2kn

) st e

Although some of the above bounds are not satisfied for srahleg ofn, one may
guarantee desired error probability for these values by increasing the value of
k. 0

Finally, we present an algorithm for the weakest scenarleene is given as a
function of n, not as a constant parameter. This algorithm works for&ny that
polynomially goes to zero asis growing.

Algorithm Decrease Slomy

Assume thag(n) > 1/n" for a constant > 1. Letq = 16rIn2. Any processor, after

waking up spontaneously performs the following:

1.i«+0

2. p—d-zg

3. In one round: randomly set a Ititwith probabilitiesP[b=1] = p, P[b=0] =
1— p; if b= 1, broadcast a wakeup message.

4. i+i+1

5. Goto 2.
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Theorem 8. Algorithm Decrease Slowly wakes up a system of n processoirs e
O(nlog(1/g(n))) with probability at leastL — g(n).

Proof. Assume thai is a natural power of two. Let us analyze the work of the
algorithm during the first @& rounds (starting from the first round in which at least
one processor is woken up), ford< m < n?/2. Note that the sum of broadcast
probabilities of one processor in all thesa eunds is not bigger than

n2—1 1 n?

1
< glo 2n?) < q(2logn 1) <4qlogn,
Q%Z(HI_QZl glog(2n“) < q(2logn+1) < 4qlog

where the second inequality follows from Lemma 1.5. Thussim of broadcast
probabilities of all processors in firstirounds of the algorithm is not bigger than
4gnlogn. This implies that in at leash of the first 2n rounds, the broadcast sum is
not bigger thanw < "’%. (Indeed, otherwise the sum over ath2ounds would
be bigger than qnlogn) Let rounds with broadcast sum smaller or equal taléy

be calledight. Let us splitlight rounds in two categories:

Category 1:The rounds with broadcast sum bigger th&i2.1By Corollary 1.1, the
success probability in each such round is bigger than

logn logn
logn <})4_Iogn (})Z_Iogn i>}
n

4 \4 4 \2 4 yn
for n > 4. If the number of rounds of category 1 is bigger tmﬁn( 1/e(n)) then the
probability of unsuccessful work is smaller th@n—1/n)"n(1/&(M) < (1/g)n(1/&n)

e(n).

Category 2:Thelight rounds with broadcast sum not bigger thai2 1First we make
a following observation.

Claim 1

(a) Assume that the broadcast sum in the ropischot smaller tha/(2g+i). Then
the broadcast sum in the roufé- 1 is not smaller than/(2q+1i+1).

(b) The broadcast sum of the first light round of Category 2 Isastq/(2q+ 1).

Proof: (a) LetU; be the set of processors that are awake in the rqgumhet s; be
the broadcast sum in the roundThens; = g3y, 1/(20+ 1), wherei; are natural
numbers. Sosj+1 > 43 cy; 1/(29+101 +1). If there existsk € Uj such thati, <i

then
q

q
Sjp1>— >
= 2g+i+1 T 29+i+1
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Otherwise,

1 20+ 1 20+1
Sj11 > — . > — .
‘“—qle 29+ 2q+||+1—qIE 20+i 2q+i+1
_oa+i S _2a+i ¢
_2q+iq+1 ) —2q+i+i 2q+i
T (2q+i+1)

(b) Note that the broadcast sum of the first round during thekwbthe algorithm is
at leasty- %1' The rest follows from (a). O Claim 1

One can show by induction that the broadcast sum oitthigght round of Cate-
gory 2 is at least|/(29+1i). By the above claim, it is true for= 0. For the inductive
step, let us only comment the case whenitheand the(i + 1)stlight round of Cat-
egory 2 are not consecutive in the execution of the algoritNote that then the
broadcast sums of the rounds between them are bigger thanahgcast sum in the
ith light round. So, our statement is satisfied by the apptinaif Claim 1(a).

Thus by Corollary 1.2 the broadcast probability in itieight round of Category
2is at Ieas% . %. So the probability of unsuccessful work in fisstight rounds of
Category 2 is not bigger than

qlogx

X 1 q 1\ 225 1\ 24
(3ot
15 2 2q+i e e

for n large enough. (The first two inequalities in the above cakioh follow from
Lemma 1.2 and Lemma 1.6, respectively.) In order to bourgdgiobability bye(n),
x = (g(n))~Y(&) < \/n light rounds of Category 2 are sufficient.

Finally, we get required success probability in

m= 2-max(nin(1/e(n)) +/n, 16gn)

rounds.

Although some of our bounds do not hold for small values,ane can increase
success probability for these cases by executing step 2d@lgorithmk times (not
once) in the loop, for appropriate constant O

11 Conclusions

We presented efficient probabilistic algorithms for wakinmall processors in poly-
logarithmic time with probability + ¢ if a global clock or knowledge oh or a

labeling is accessible. These algorithms substantialpyrave previous results, and
show that efficient solutions are possible even without thewkedge of the basic
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parameters of the network. Further, we showed an almosirlioever bound for the
weakest model and we presented an algorithm that matche®abind. We think
that our results may be helpful in designing algorithms fbreo problems in (not
only single hop) radio networks working without global siinenization (or without
labels).

Some interesting problems remain open. First, there is aofiaze log1/¢)
between lower bounds and our algorithms for the “standarddehwith labels and
€ given as a parameter. Second, is it possible to construgtggalrithmic (or even
sublinear) randomized algorithm for the model with localaéls,n unknown, known
labels ande given as a function? The best solution known to us is a prétioco
which each processor broadcasts in each step with protyabiual to Y1, where
| is the label of the processor. However, this protocol rexp@(nlog(1/¢€)) steps
for waking up all processors with probability-1£(n). (Note that the broadcast sum
belongs in each round to the interal/(2n), [log(n+1)]).)

Finally, observe that some of our protocols (e.g., AlgentRrobability Increase,
Algorithm IFS) have a disadvantage that their expected tinn#inite, because they
do not wake-up all processors with some small probability.idteresting question
is whether good solutions with small expected time are jpéessi these cases. (Note
that, for globally synchronous environment, the algoritbifR seems to be quite
efficient when expected time is considered.)
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