
■ This article describes a methodology for program-

ming robots known as probabilistic robotics. The

probabilistic paradigm pays tribute to the inherent

uncertainty in robot perception, relying on explic-

it representations of uncertainty when determin-

ing what to do. This article surveys some of the

progress in the field, using in-depth examples to

illustrate some of the nuts and bolts of the basic

approach. My central conjecture is that the proba-

bilistic approach to robotics scales better to com-

plex real-world applications than approaches that

ignore a robot’s uncertainty.

B
uilding autonomous robots is a central
objective of research in AI. Over the past
decades, researchers in AI have developed

a range of methodologies for developing robot-
ic software, ranging from model-based to pure-
ly reactive paradigms. More than once, the dis-
cussion on what the right way to program
robots has been accompanied with specula-
tions concerning the very nature of intelli-
gence as such in animals and people.

One of these approaches, probabilistic
robotics, has led to fielded systems with
unprecedented levels of autonomy and robust-
ness. Although the roots of this approach can
be traced to the early 1960s, in recent years, the
probabilistic approach has become the domi-
nant paradigm in a wide array of robotic prob-
lems. Probabilistic algorithms have been at the
core of a series of fielded autonomous robots,
exhibiting an unprecedented level of perfor-
mance and robustness in the real world. These
recent successes can be attributed to at least
two developments: (1) the availability of
immense computational resources even on
low-end PCs and, more importantly, (2) funda-
mental progress on the basic algorithmic and
theoretical levels.

What exactly is the probabilistic approach to
robotics? At its core is the idea of representing
information through probability densities. In
particular, probabilistic ideas can be found in

perception, that is, the way sensor data are
processed, and action, that is, the way decisions
are made.

Probabilistic perception: Robots are inherently
uncertain about the state of their environ-
ments. Uncertainty arises from sensor limita-
tions, noise, and the fact that most interesting
environments are—to a certain degree—unpre-
dictable. When “guessing” a quantity from
sensor data, the probabilistic approach com-
putes a probability distribution over what
might be the case in the world, instead of gen-
erating a single best guess only. As a result, a
probabilistic robot can gracefully recover from
errors, handle ambiguities, and integrate sen-
sor data in a consistent way. Moreover, a prob-
abilistic robot knows about its own igno-
rance—a key prerequisite of truly autonomous
robots.

Probabilistic control: Autonomous robots
must act in the face of uncertainty, a direct
consequence of their inability to know what is
the case. When making decisions, probabilistic
approaches take the robot’s uncertainty into
account. Some approaches consider only the
robot’s current uncertainty; others anticipate
future uncertainty. Instead of considering the
most likely situations only (current or project-
ed), many probabilistic approaches strive to
compute a decision-theoretic optimum, in
which decisions are based on all possible con-
tingencies.

These two items are the basic characteriza-
tion of the probabilistic approach to robotics. 

What is the benefit of programming robots
probabilistically? My central conjecture is
nothing less than the following: A robot that
carries a notion of its own uncertainty and that
acts accordingly will do better than one that
does not. In particular, probabilistic approach-
es are typically more robust in the face of sen-
sor limitations, sensor noise, and environment
dynamics. They often scale much better to
complex environments, where the ability to

Articles

WINTER 2000    93

Probabilistic Algorithms in
Robotics

Sebastian Thrun

Copyright © 2000, American Association for Artificial Intelligence. All rights reserved. 0738-4602-2000 / $2.00

AI Magazine Volume 21 N umber 4 (2000) (© AAAI)



that of localization. Localization is the problem
of finding out a robot’s coordinates relative to
its environment, assuming that one is provided
with a map of the environment. Localization is
a key component in various successful mobile
robot systems (see, for example, Kortenkamp,
Bonasso, and Murphy [1998] and Borenstein,
Everett, and Feng [1996]). Occasionally, it has
been referred to as “the most fundamental
problem to providing a mobile robot with
autonomous capabilities” (Cox 1991, p. 193).
Particularly challenging is the global localiza-
tion problem, where the robot does not know its
initial position and therefore has to globally
localize itself.

Approached probabilistically, the localiza-
tion problem is a density estimation problem,
where a robot seeks to estimate a posterior dis-
tribution over the space of its poses condi-
tioned on the available data. The term pose, in
this article, refers to a robot’s x-y coordinates
together with its heading direction �. Denoting
the robot’s pose at time t by st and the data
leading to time t by d0…t, the posterior is conve-
niently written as

(1)

Here, m is the model of the world (for example,
a map). For brevity, I denote this posterior bt(st)
and refer to it as the robot’s belief state at time t.

Sensor data typically come in two flavors:
First are data that characterize the momentary
situation (for example, camera images, laser
range scans), and second are data relating to a
change in the situation (for example, motor
controls or odometer readings). Referring to
the first form as observations and the second
form as action data, let us without loss of gen-
erality assume that both types of data arrive in
an alternating sequence:

(2)

Here ot denotes the observation, and at denotes
the action data item collected at time t.

To estimate the desired posterior p(st |do…t,
m), probabilistic approaches frequently resort
to a Markov assumption, which states that the
past is independent of the future given knowl-
edge of the current state. The Markov assump-
tion is often referred to as the static world
assumption because it assumes the robot’s pose
is the only state in the world that would
impact more than just one isolated sensor
reading. Practical experience suggests, howev-
er, that probabilistic algorithms are robust to
mild violations of the Markov assumption, and
extensions exist that go beyond this assump-
tion (for example, Fox et al. [1998]).

The desired posterior is now computed using
a recursive formula, which is obtained by

d o a o a a ot t t0 0 0 1 1 1K

K= −, , , , , ,

p s d mt t0K

,( )

handle uncertainty is of even greater impor-
tance. In fact, certain probabilistic algorithms
are currently the only known working solu-
tions to hard robotic estimation problems,
such as the kidnapped robot problem (Engelson
and McDermott 1992) in which a mobile robot
must recover from localization failure, or the
problem of building accurate maps of very
large environments in the absence of a global
positioning device such as GPS. Additionally,
probabilistic algorithms make much weaker
requirements on the accuracy of models than
many classical planning algorithms, thereby
relieving the programmer from the (insur-
mountable) burden of coming up with accu-
rate models. Viewed probabilistically, the robot
learning problem is a long-term estimation prob-
lem. Thus, probabilistic algorithms provide a
sound methodology for many flavors of robot
learning. Finally, probabilistic algorithms are
broadly applicable to virtually every problem
involving perception and action in the real
world.

However, these advantages come at a price.
Traditionally, the two most frequently cited
limitations of probabilistic algorithms are (1)
computational inefficiency and (2) a need to
approximate. Certainly, there is some truth to
these criticisms. Probabilistic algorithms are
inherently less efficient than nonprobabilistic
ones because they consider entire probability
densities. However, they carry the benefit of
increased robustness. The need to approximate
arises from the fact that most robot worlds are
continuous. Computing exact posterior distri-
butions is typically infeasible because distribu-
tions over the continuum possess infinitely
many dimensions. Sometimes, one is fortunate
in that the uncertainty can be approximated
tightly with a compact parametric model (for
example, discrete distributions or Gaussians);
in other cases, such approximations are too
crude, and more complex representations most
be used.

None of these limitations, however, pose
serious obstacles. Recent research has led to a
range of algorithms that are computationally
efficient and also highly accurate. To illustrate
probabilistic algorithms in practice, this article
describes three such algorithms in detail. I
argue that the probabilistic paradigm is unique
in its ability to solve certain hard robotics prob-
lems in uncertain and complex worlds.

Mobile Robot Localization

Let us first take a deeper look into a specific
probabilistic algorithm, which solves an
important problem in mobile robotics, namely,

Approached
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cally, the
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applying Bayes’s rule and the theorem of total
probability to the original expression, exploit-
ing the Markov assumption twice. See figure 1.
Here, �t is a constant normalizer that ensures
that the result sums up to 1. Within the con-
text of mobile robot localization, the result of
this transformation

(3)

is often referred to as Markov localization (Fox,
Burgard, and Thrun 1999; Burgard et al. 1996;
Kaelbling, Cassandra, and Kurien 1996; Koenig
and Simmons 1996; Simmons and Koenig
1995), but it equally represents the basic updat-
ed equation in Kalman (1960) filters, Hidden
Markov models (Rabiner and Juang 1986), and
dynamic belief networks (Russell and Norvig
1995; Dean and Kanazawa 1989). The Kalman
(1960) filter, which is historically the most
popular approach for position tracking, repre-
sents beliefs by Gaussians. The vanilla Kalman
filter also assumes Gaussian noise and linear
motion equations; however, extensions exist
that relax some of these assumptions (Maybeck
1990; Jazwindsky 1970). Kalman filters have
been applied with great success to a range of
tracking and mapping problems in robotics
(Leonard, Durrant-Whyte, and Cox 1992;
Smith, Self, and Cheeseman 1990), although
they tend to not work well for global localiza-
tion or the kidnapped robot problem. Markov
localization using discrete, topological repre-
sentations for b were pioneered (among others)
by Simmons and Koenig (1995), whose mobile
robot XAVIER traveled more than 230 kilometers
through Carnegie Mellon University’s (CMU)
hallways over a period of several years (Sim-
mons et al. 1997).

To implement equation 3, one needs to spec-
ify p(st|at–1, st–1, m) and p(ot| st, m). Both densi-
ties are usually time invariant; that is, they do
not depend on t, so the time index can be
omitted. The first density characterizes the
effect of the robot’s actions a on its pose and
can therefore be viewed as a probabilistic gen-
eralization of mobile robot kinematics; see fig-
ure 2 for examples. The other density, p(o | s,
m), is a probabilistic model of perception. Fig-
ure 3 illustrates a sensor model for range find-
ers, which uses ray tracing and a mixture of
four parametric densities to calculate p(o | s,
m). In most implementations, both of these
probabilistic models are quite crude, using
uncertainty to account for model limitations.

Figure 4 illustrates global mobile robot local-
ization based on sonar measurements in an
office environment. The robot’s path is out-
lined in the first diagram along with four refer-

b s p o s m p s a s m b s dst t t t t t t t t t t( ) = ( ) ( )∫η ( , ) , ,– – – – –1 1 1 1 1
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Figure 1. Derivation of Bayes’s Filters.

Figure 2. Probabilistic Generalization of Mobile Robot Kinematics.

Each dark line illustrates a commanded robot path, and the shaded area shows

the posterior distribution of the robot’s pose; the darker an area, the more likely

it is the corresponding pose. A. This path is 40 meters long. B. This path is 80

meters long.
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of probabilistic algorithms is the choice of the
representation. One of the most powerful
approximations is known as particle filters
(Doucet, Gordon, and deFreitas 2000; Pitt and
Shepherd 1999; Doucet 1998; Liu and Chen
1998), condensation algorithm (Isard and Blake
1998, 1997), and Monte Carlo localization
(Dellaert et al. 1999; Fox et al. 1999); here, I
refer to it as Monte Carlo localization (MCL).
The basic idea of MCL is to approximate with a
weighted set of samples (particles) so that the
discrete distribution defined by the samples
approximates the desired one. The weighting
factors are called importance factors (Rubin
1998). The initial belief is represented by a uni-
form sample of size m, that is, a set of m sam-
ples drawn uniformly from the space of all pos-
es, annotated by the constant importance
factor m–1. MCL implements the update equa-
tion (3) by constructing a new sample set from
the current one in response to an action item
at–1 and an observation ot:

First, draw a random sample from the cur-
rent belief bt–1(st–1) with probability given by
the importance factors of the belief bt–1(st–1).

Second, for this st–1, randomly draw a succes-
sor pose st according to the distribution p(st |
at–1, st–1, m).

Third, assign the (unnormalized) impor-
tance factor p(ot | st, m) to this sample and add
it to the new sample set representing bt(st).

Repeat steps 1 through 3 m times. Finally,
normalize the importance factors in the new
sample set so that they add to 1.

Figure 5 shows MCL in action. Shown in the
figure 5a is a belief distribution (sample set) at
the beginning of the experiment when the
robot does not (yet) know its position. Each
dot is a three-dimensional sample of the
robot’s x-y location along with its heading

ence locations. Also shown is the initial belief,

which is uniform, because the robot does not

know where it is. The posterior belief after

moving from the first to the second reference

location is shown in figure 4b. At this point,

most of the probability mass is located in the

corridor, but the robot still does not know

where it is. This diagram nicely illustrates one

of the features of the probabilistic approach,

namely, its ability to pursue multiple hypothe-

ses, weighted by sensor evidence. After moving

to the third reference position, the belief is cen-

tered around two discrete locations, as shown

in figure 4c. Finally, after moving into one of

the rooms, the symmetry is broken, and the

robot is highly certain about where it is (figure

4d).

Of fundamental importance for the design
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Figure 3. Probabilistic Sensor Model for Laser Range Finders.

A. The density p(o | s, m) relates the actual, measured distance of a sensor beam

to its expected distance computed by ray tracing, under the assumption that the

robot’s pose is s. A comparison of actual data and our (learned) mixture model

shows good correspondence. B. This diagram shows a specific laser range scan o.

C. This diagram plots the density p(o | s, m) for different locations in the map.
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direction �. Figure 5b shows the belief after a

short motion segment, incorporating several

sonar readings. At this point, most samples

concentrate on two locations; however, the

symmetry of the corridor makes it impossible

to disambiguate them. Finally, figure 5c shows

the belief after the robot moves into one of the

rooms, enabling it to disambiguate its location

with high confidence.

The MCL algorithm is, in fact, quite effi-

cient; slight modifications of the basic algo-

rithms (Lenser and Veloso 2000; Thrun, Fox,

and Burgard 2000) require as few as 100 sam-

ples for reliable localization, consuming only a

small fraction of time available on a low-end

PC. It can also be implemented as an any-time

algorithm (Zilberstein and Russell 1995; Dean

and Boddy 1988), meaning that it can adapt to

the available computational resources by

dynamically adjusting the number of samples

m. With slight modifications, such as sampling

from the observation (Thrun, Fox, and Burgard

2000), MCL has been shown to recover grace-

fully from global localization failures, such as

manifested in the kidnapped robot problem

(Engelson 1994), where a well-localized robot is

teleported to some random location without

being told. For these reasons, probabilistic

algorithms such as MCL are currently the best-

known methods for such hard localization

problems.

Another feature of MCL is that its models, in

particular p(s′| a, s, m), p(o | s, m) and the map,

can be extremely crude and simplistic because

probabilistic models carry their own notion of

uncertainty, thus making them relatively easy

to code. In comparison, traditional robotics

algorithms that rely on deterministic models

make much stronger demands on the accuracy

of the underlying models.

Mapping

A second area of robotics where probabilistic

algorithms have proven remarkably successful

is mapping. Mapping is the problem of generat-

ing maps from sensor measurements. This esti-

mation problem is much higher dimensionally

than the robot localization problem; in fact, in

its pure form, one could argue the problem pos-

sesses infinitely many dimensions. What makes

this problem particularly difficult is its chicken-

and-egg nature, which arises from the fact that

position errors accrued during mapping are dif-

ficult to compensate (Rencken 1993). Put differ-

ently, localization with a map is relatively easy,

as is mapping with known locations. In combi-

nation, however, this problem is hard.

In this section, I review three major para-

digms in mobile robot mapping, all of which

are probabilistic and follow from the same

mathematical framework. Let us begin with the

most obvious idea, which is using the same

approach for mapping as for localization. If we

augment the state s that is being estimated by

the map—the subscript t indicates that we

allow the map to change over time—equation

3 becomes equation 4 (see above).If the map is

assumed to be static, which is common in the

literature, the maps at times t and t–1 will be

equivalent, implying that p(st, mt | at–1, st–1,

mt–1) is zero if mt ≠ mt–1 and p(st | at–1, st–1, mt–1)

if mt = mt–1. The integration over maps in equa-

tion 4 is therefore eliminated, yielding equa-

tion 5 (see above). The major problem with
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Figure 4. Grid-Based Markov Localization.
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equation 5 is complexity. The belief bt(st, m) is

a density function in an (N + 3)-dimensional

space, where N is the number of free parame-

ters that constitute a map (for example, a con-

stant times the number of landmarks), and the

additional three parameters specify the robot’s
pose. N can be very large (for example, 1000),

which makes the posterior-estimation problem

hard. To make matters worse, the belief bt(st, m)

cannot easily be factorized because the uncer-

tainty of map items and robot poses are often

highly correlated (Smith, Self, and Cheeseman

1990).

The most successful attempt to implement

equation 5 uses Kalman filters (Castellanos and

Tardós 2000; Castellanos et al. 1999; Moutarlier

and Chatila 1989a, 1989b; Leonard and Durrant-

Whyte 1992; Leonard, Durrant-Whyte, and Cox

1992), which goes back to a seminal paper by

Smith, Self, and Cheeseman (1990). Recall that

Kalman filters represent beliefs by Gaussians;

thus, they require O(N2) parameters to represent

the posterior over an N-dimensional space. Cal-

culating equation 5 involves matrix multiplica-

tion, which can be done in O(N2) time (Maybeck

1990). Thus, the number of features that can be

mapped are critically limited (see Leonard and

Feder [1999] for a recent attempt to escape this

limitation using hierarchies of maps). In prac-

tice, this approach has been applied to mapping

several hundreds of free parameters (Leonard

and Durrant-Whyte 1992).

The basic Kalman filtering approach to map-

ping is also limited in a second, more impor-

tant way. In particular, it requires that features

in the environment can uniquely be identified,

which is a consequence of the Gaussian noise

assumption. For example, it does not suffice to

know that the robot faces a door; instead, it

must know which door it faces to establish cor-

respondence to previous sightings of the same

door. This limitation is of great practical impor-

tance. It is common practice to extract a small

number of identifiable features from the sensor

data at the risk of discarding all other informa-

tion. Some recent approaches overcome this

assumption by “guessing” the correspondence

between measurements at different points in

time, but they tend to be brittle if these guesses

are wrong (Gutmann and Nebel 1997; Lu and

Milios 1997). However, if the assumptions are

met, Kalman filters generate optimal estimates,

and in particular, they outperform any non-

probabilistic approach.

An alternative approach, proposed in Thrun,

Fox, and Burgard (1998), seeks to estimate the

mode of the posterior, argmaxm b(m), instead

of the full posterior b(m). This goal might

appear quite modest compared to the full pos-
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Figure 5. Global Localization of a Mobile Robot Using MCL.
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terior estimation. However, if the correspon-

dence is unknown (and noise is non-Gaussian),

this problem in itself is challenging. To see,

note that the posterior over maps can be

obtained in closed form (see equation 6) where

the initial pose is, somewhat arbitrarily, set to

S0 = �0, 0, 0�. This expression is obtained from

equation 5 by integrating over st, followed by

recursively substituting the belief from time t–1

to time 0, and resorting of the resulting terms

and integrals. For convenience, we assume a

uniform prior p(m), transforming the problem

into a maximum-likelihood estimation prob-

lem. Notice that equation 6 integrates over all

possible paths, a rather complex integration.

Unfortunately, I know of no way to calculate

argmaxm bt(m) analytically for data sets of rea-

sonable size.

To find a solution, we notice that the robot’s
path can be considered “missing variables” in

the optimization problem; knowing them

indeed greatly simplifies the problem. The sta-

tistical literature shows a range of algorithms

for such problems, one of which is the EM

algorithm (McLachlan and Krishnan 1997;

Dempster, Laird, and Rubin 1977). In the con-

text of mapping, this algorithm computes a

sequence of maps, denoted m[0], m[1], …, with

successively increasing likelihood. The super-

script [k] is not to be confused with the time

index t or the index of a particle i; all it refers

to is the iteration of the optimization algo-

rithm.

EM calculates a new map by iterating two

steps: (1) an expectation step, or E-step, and (2)

a maximization step, or M-step:

In the E-step, EM calculates an expectation

of a joint log-likelihood function of the data

and the poses, conditioned on the k-th map

m[k] (and conditioned on the data) (see equa-

tion 7 above). This might appear a bit cryptic,

but the key thing here is that computing Q

involves calculating the posterior distribution

over poses so, …, st conditioned on the k-th

model m[k]. We have already seen how to esti-

mate the posterior over poses given a map.

Technically, calculating equation 7 involves

two localization runs through the data, a for-

ward run and a backward run, because all the

data have to be taken into account when com-

puting the posterior p(st | d0…t) (the earlier algo-

rithm only considers data to time t). Also note

that in the first iteration, we do not have a

map. Thus, Q[m | m[k]] calculates the posterior

for a blind robot, that is, a robot that ignores its

measurements o1, …, ot.

In the M-step, the most likely map is com-

puted given the pose estimates obtained in the

E-step, which is formally written as

(8)

Technically, this problem is still very difficult

because it involves finding the optimum in a

high-dimensional space. However, it is com-

mon practice to decompose the problem into a

collection of one-dimensional maximization

problems by stipulating a grid over the map

and solving equation 8 independently for each

grid cell. The maximum-likelihood estimation

for the resulting single-cell random variables is

mathematically straightforward.

Iterations of both steps tend to increase the

log-likelihood (currently, a proof of conver-

gence is lacking because of the decomposition

in the M-step). However, this approach works

very well in practice (Thrun, Fox, and Burgard

2000), solving hard mapping problems that

were previously unsolved (see also Shatkay

[1998] and Shatkay and Kaelbling [1997]).

The decomposition in the M-step is quite

common for mapping algorithms that assume

knowledge of the robot’s pose. It goes back to

the seminal work by Elfes and Moravec on

occupancy grid mapping (Elfes 1989; Moravec

1988), a probabilistic algorithm that is similar,

though not identical, to the M-step, which

brings us to the third mapping algorithm.

Occupancy grid mapping is currently the most

widely used mapping algorithm for mobile

robots (Thrun 1998; Guzzoni et al. 1997;

Yamauchi and Langley 1997; Borenstein 1987;

Elfes 1987), often augmented by ad hoc meth-

ods for localization during mapping. It is

another prime example of the success of prob-

abilistic algorithms in robotics.

Occupancy grid mapping addresses a much

simpler problem than the previous one, name-

ly, estimating a map from a set of sensor mea-

surements given that one already knows the

corresponding poses. Let <x, y> denote a spe-

cific grid cell and 

be the random variable that models its occu-

mt

xy

m Q m mk

m

k[ ]+ [ ]= [ ]1 argmax
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ments are among the most difficult ones to

map because the odometry error can be very

large when closing the cycle. These results illus-

trate that EM and occupancy grid mapping

yield excellent results in practice. Although the

maps shown here are two dimensional, proba-

bilistic algorithms have also successfully been

applied to build three-dimensional maps

(Thrun, Burgard, and Fox 2000).

These results illustrate that probabilistic

algorithms are well suited for high-dimension-

al estimation and learning problems; in fact, I

know of no comparable algorithm that can

solve problems of equal hardness that does not

explicitly address the inherent uncertainty in

perception. To date, the best mapping algo-

rithms are probabilistic, and most of them are

versions of the three algorithms described here.

My analysis also suggests that probabilistic

algorithms are somewhat of a natural fit for

problems such as those studied here. Past

research has shown that many estimation and

learning problems in robotics have straightfor-

ward solutions when expressed using the lan-

guage of probability theory, with mapping

being just one example.

Robot Control

Finally, let us turn our attention to the issue of

robot control. The ultimate goal of robotics is

to build robots that do the right thing. As stat-

ed in the introduction, I conjecture that a

robot that takes its own uncertainty into

account when selecting actions will be superior

to one that does not.

Unfortunately, the field of probabilistic

pancy at time t. Occupancy is a binary concept;
thus, we write

if a cell is occupied, and 

if it is not. Substituting 

into equation 3 under the consideration that
occupancy is a binary random variable yields
equation 9 (see above) which in static worlds
can be simplified to equation 10 (see above)
The second transformation pays tribute to the
fact that in occupancy grid mapping, one often
is given p(m<xy> | ot) instead of p(ot | m<xy>).
One could certainly leave it at this and calcu-
late the normalization factor �t at run time.
However, for a binary random variable, the
normalizer can be eliminated by noticing the
so-called odds, which are the quotient in equa-
tion 11 (see above): As is easily shown, this
expression has the closed-form solution shown
in equation 12 above.

All three of these algorithms have shown to
be highly robust and accurate in practice, and
they are among the best algorithms in exis-
tence. For example, figure 6a shows a raw data
set of a large hall (approximately 50 meters
wide) as well as the result of first applying the
EM algorithm and then occupancy grid map-
ping using the poses estimated with EM (figure
6b). The map in figure 6c has been generated
using a similar probabilistic algorithm that
runs online (unlike EM) (see also Gutman and
Konolige [2000]); figure 6d shows an architec-
tural blueprint for comparison. Cyclic environ-

mt
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robot control is much poorer developed than

probabilistic perception because of the enor-

mous computational complexity of decision

making. However, within AI, this issue has

recently received considerable attention. Even

in robotics, some noticeable successes have

been achieved, where probabilistic algorithms

outperformed conventional, nonprobabilistic

algorithms (Kaelbling, Cassandra, and Kurien

1996; Simmons and Koenig 1995).

One such algorithm is the coastal navigation

algorithm (Roy et al. [1999]), a motion planning

algorithm for mobile robots that takes uncer-

tainty into account. The algorithm was origi-

nally motivated by the observation that ships

that navigate through open water without a

global positioning system (GPS) often stay in

close proximity to the coast to reduce the dan-

ger of getting lost. The same applies to mobile

robots: The choice of control can have a pro-

found impact on the likelihood of localization

errors. The coastal navigation algorithm selects

paths accordingly, explicitly considering uncer-

tainty.

To study this algorithm, let us step back a lit-

tle and consider the mathematical framework

Articles

WINTER 2000   101

Figure 6. Raw Data, Maps, and a Computer-Aided Design Model.

A. Raw data of a large open hall (the Dinosaur Hall in the Carnegie Museum of Natural History, Pittsburgh, Pennsylvania). B. Map con-

structed using EM and occupancy grid mapping. C. Occupancy grid map of another museum (the Tech Museum in San Jose, California). D.

Architectural blueprint for comparison.

A

B

C D



(15)

which assigns V(b) to the expected value at the

next belief, b′. Here, the immediate cost of a

belief state b′ is obtained by integrating over all

states C(b′) = ∫C(s′)b′(s′)ds′. The conditional dis-

tribution p(b′ | a, b, m) is the belief space coun-

terpart to the next state distribution, which is

obtained as follows:

(16)

where p(b′ | o′, a, b, m) is a Dirac distribution

defined through equation 3, and

(17)

Once V has been computed, the optimal policy

is obtained by selecting actions that minimize

the expected V value over all available actions:

(18)

Although this approach defines a mathemat-

ically elegant and consistent way to compute

the optimal policy from the known densities

p(s′ | a, s, m) and p(o′ | s′, m), which are in fact

the exact same densities used in MCL, there are

two fundamental problems. First, in continu-

ous domains, the belief space is the space of all

distributions over the continuum, which is an

infinitely dimensional space. Consequently, no

exact method exists for calculating V in the

general case. Second, even if the state space is

discrete, which is commonly assumed in the

POMDP framework, the computational burden

can be enormous because for state spaces of

size n, the corresponding belief space is an

(n–1)-dimensional continuous space. The best

known solutions, such as the witness algo-

rithm (Kaelbling, Littman, and Cassandra

1998), can only handle problems of the

approximate size of 100 states and a planning

horizon of no more than T = 5 steps. In con-

trast, state spaces in robotics routinely possess

orders of magnitude more states even under

crude discretizations, which makes approxi-

mating imperative.

Coastal navigation is an extension of

POMDPs that relies on an approximate repre-

sentation for belief states b. The underlying

assumption is that the exact nature of the

uncertainty is irrelevant for action selection;

instead, it suffices to know the degree of uncer-

tainty as expressed by the entropy of a belief

state H[b]. Thus, coastal navigation represents

belief states by the following tuple:

(19)

Although this approximation is coarse, it caus-

b b s H b
s

= ( ) [ ]argmax ;

π b V b p b a b m db
a

( ) = ′( ) ′( ) ′∫argmin , ,

p o a b m p o s m p s a s m b s ds ds′( ) = ′ ′( ) ′( ) ( ) ′∫∫, , , , ,

p b a b m p b o a b m p o a b m do′( ) = ′ ′( ) ′( ) ′∫, , , , , , ,

V b V b C b p b a b m db
a

( ) min , ,← ′( ) + ′( )[ ] ′( ) ′∫that underlies this and many other probabilis-

tic control algorithms: partially observable

Markov decision processes (POMDPs). A POMDP

is a framework for acting optimally under

uncertainty in sequential decision tasks.

Although POMDPs can be traced back to the

1970s (Monahan 1982; Sondik 1978; Small-

wood and Sondik 1973), the AI community has

only recently begun to pay attention to this

framework, motivated by the important work

of Littman, Cassandra, and Kaelbling (Kael-

bling, Littman, and Cassandra 1998; Littman,

Cassandra, and Kaelbling 1995). POMDPs

address the problem of choosing actions to

minimize a scalar (immediate) cost function,

denoted C(s). For example, in robot motion

planning, one might set C(s) = 0 for goal loca-

tions and –1 elsewhere. Because reaching a goal

location typically requires a whole sequence of

actions, the control objective is to minimize

the expected cumulative cost:

(13)

Here the expectation is taken over all future

states. T may be �, in which case, cost is often

discounted over time by an exponential factor.

Many important POMDP algorithms (Kael-

bling, Littman, and Cassandra 1998; Littman,

Cassandra, and Kaelbling 1995) are offline algo-

rithms, in the sense that they calculate a policy

for action selection for arbitrary situations

(that is, belief states) in an explicit, offline

phase. The policy is denoted π and maps belief

states into actions. The most prominent

approach to calculating π is value iteration

(Howard 1960; Bellman 1957), a version of

dynamic programming for computing the

expected cumulative cost of belief states that

has become highly popular in the field of rein-

forcement learning (Sutton and Barto 1998;

Kaelbling, Littman, and Moore 1996). Value

iteration in belief space computes a value func-

tion, denoted by V, that in the ideal case mea-

sures the expected cumulative cost if one starts

in a state s drawn according to the belief distri-

bution b and acts optimally thereafter. Thus,

the value V(b) of the belief state is the best pos-

sible cumulative cost one can expect for being

in b. This is expressed as

(14)

Following Bellman (1957) and Sutton and Bar-

to (1998), the value function can be computed

by recursively adjusting the value of individual

belief states b according to

V b E C s s s b s dst
t

t T

( ) = ( ) =[ ] ( )
= +

+

∑∫ τ
τ 1
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es value iteration to scale exponentially better
to large state spaces than the full POMDP solu-
tion. Moreover, it still exhibits good perfor-
mance in practice.

Figure 7 shows an example trajectory calcu-
lated by the coastal navigation algorithm for a
large, featureless environment: a Smithsonian
museum in Washington, D.C. The goal of
motion is to reach a target location with high
probability. By considering uncertainty, the
coastal planner generates paths that actively
seek the proximity of known obstacles to min-
imize the localization error—at the expense of
an increased path length when compared to
the shortest path. Experimental results (Roy et
al. 1999) have shown that the success rate of
the coastal planner is superior to conventional
shortest path planners that ignore the inherent
uncertainty in robot motion.

Coastal navigation is only one out of many
examples. It highlights an important principle,
namely, that crude approximations can go a
long way when implementing probabilistic
control algorithms. Recent research led to a
range of other control algorithms that rely on
approximate probabilistic representations. Of
particular importance are algorithms for maxi-
mizing knowledge gain, which typically rely
on a single-step search horizon to generate
robot control. Examples include the rich work
on robot exploration in which robots (or
teams) select actions to maximally reduce their
uncertainty about their environments (Sim-
mons et al. 2000; Thrun 1998; Yamauchi et al.
1998; Koenig and Simmons 1993; Dudek et al.
1991; Kuipers and Byun 1991). They also
include work on active localization (Fox, Bur-
gard, and Thrun 1998a; Burgard, Fox, and
Thrun 1997), where a robot moves to places
that maximally disambiguate its pose. Another
class of approaches relies on tree search for
policy determination, such as the work on
active perception and sensor planning by Kris-
tensen (1997, 1996). His approach uses models
of uncertainty to select the appropriate sensors
in an indoor navigation task. All these
approaches have demonstrated that probabilis-
tic algorithms lead to more robust solutions to
important control problems in robotics.

A Case Study: 
Museum Tour-Guide Robots

Probabilistic algorithms have been at the core
of a number of state-of-the-art robot systems
(see, for example, Bennett and Leonard [2000]
and Dickmanns et al. [1994]), such as the
XAVIER robot mentioned earlier (Simmons et al.
1997). In fact, recently, the number of publica-
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Figure 7. Coastal Plans: The Robot Actively Seeks the Proximity of Obstacles
to Improve Its Localization.

The large open area in the center of this Smithsonian museum is approximately

20 meters wide and is usually crowded with people.



tions on statistically sound algorithms for per-

ception and control has increased dramatically

at leading robotics conferences.

In work at CMU and the University of Bonn,

we recently developed two autonomous muse-

um tour-guide robots (see also Horswill [1993]

and Nourbakhsh et al. [1999]), which perva-

sively used probabilistic algorithms for naviga-

tion and people interaction. Pictures of both

robots are shown in figure 8. The robot shown

on the left, RHINO, was the world’s first museum

tour-guide robot, which was deployed at the

Deutsches Museum in Bonn, Germany, in

1997. The other robot, MINERVA, led thousands

of people through a crowded Smithsonian

museum in Washington, D.C. Both robots were

developed to showcase probabilistic algorithms

in complex and highly dynamic environments.

They were unique in their ability to navigate

safely and reliably in the proximity of people.
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Figure 8. Probabilistic algorithms were used per-
vasively for the Musuem Tour Guide Robots 

RHINO (top left) and MINERVA

(top right and bottom  left images).



The task of these robots was simple: to

attract people, interact with them, and guide

them from exhibit to exhibit. Several factors

made this problem challenging: To find their

way around, the robots had to know where

they were. However, large crowds of people

almost permanently blocked the robots’ sen-

sors, making localization a difficult problem. In

fact, people frequently sought to confuse the

robot or force it close to hazards such as down-

ward staircases. To make matters worse, the

robots’ ability to sense such hazards was

extremely limited. For example, the sensors

consistently failed to sense glass cases put up

for the protection of certain exhibits, and nei-

ther robot possessed a sensor to detect staircas-

es. Thus, accurate localization played a prime

role in avoiding collisions with such “invisi-

ble” obstacles and hazards as staircases, whose

location was modeled in the map.

To challenge the autonomy of our robots, we

did not modify the environment in any way.

Even though the museums were crowded, the

robots had to navigate at approximate walking

speeds to sustain people’s interest while they

avoided collisions with people at all costs.

Detailed descriptions of the robots’ software

architecture and experimental findings are

beyond the scope of this article (see Burgard et

al. [1999] and Thrun et al. [1999]); I simply

note here that probabilistic algorithms were

used at virtually all levels of the software archi-

tecture. In total, both robots traversed a dis-

tance of more than 60 kilometers, with average

speeds between 30 centimeters a second and 80

centimeters a second and top speeds well above

160 centimeters a second. In RHINO’s case, every

failure was carefully evaluated; only one major

localization failure was observed over a period

of six days (Burgard 1999); however, this local-

ization failure coincided with a malfunction-

ing of the sonar sensors. RHINO used a proba-

bilistic collision-avoidance routine that

guaranteed, with high probability, that the

robot would not collide with “invisible” obsta-

cles even when the robot was highly uncertain

where it was (Fox, Burgard, and Thrun 1998b).

In addition, MINERVA utilized probabilistic algo-

rithms to learn occupancy grid maps of the

museums. In other experiments, a practical

probabilistic algorithm was devised for active

exploration, both in pursuit of finding out

where a robot was (Burgard, Fox, and Thrun

1997) and learning maps of unknown terrain

(Thrun 1998) with teams of collaborating

robots (Burgard et al. 2000).

In all these cases, the probabilistic nature of

the algorithms has been essential for achieving

robustness in the face of uncertain and dynam-

ic environments. In addition, all these algo-

rithms rely on sometimes remarkably simple

approximations and shortcuts that make hard

problems computationally tractable.

Discussion

The last few decades have seen a flurry of differ-

ent software design paradigms for autonomous

robots. Early work on model-based robotics

often assumed the availability of a complete

and accurate model of the robot and its envi-

ronment, relying on planners (or theorem

provers) to generate actions (Latombe 1991;

Canny 1987; Schwartz, Scharir, and Hopcroft

1987). Such approaches are often inapplicable

to robotics because of the difficulty of generat-

ing models that are sufficiently accurate and

complete. Recognizing this limitation, some

researchers have advocated model-free reactive

approaches. Instead of relying on planning,

these approaches require programmers to pro-

gram controllers directly. A popular example of

this approach is the subsumption architecture
(Brooks 1989), where controllers are composed

of small finite-state automata that map sensor

readings into control yet still retain a mini-

mum of internal state. Some advocates of this

approach went so far as to refuse the need for

internal models and internal state altogether

(Connell 1990; Brooks 1989). Observing that

“the world is its own best model,” behavior-

based approaches usually rely on immediate

sensor feedback for determining a robot’s
action. Obvious limits in perception (for exam-

ple, robots can’t see through walls) pose clear

boundaries on the type of task that can be tack-

led with this approach, leading to the conclu-

sion that although the world might well be its

most accurate model, it is not necessarily its

most accessible one. And accessibility matters!

The probabilistic approach is somewhere

between these two extremes. Probabilistic algo-

rithms rely on models, just like the classical

plan-based approach. For example, Markov

localization requires a perception model p(o | s,
m), a motion model p(s′ | a, s), and a map of the

environment. However, because these models

are probabilistic, they only need to be approx-

imate, making them much easier to implement

(and to learn!) than if we had to meet the accu-

racy requirements of traditional approaches.

Additionally, the ability to acknowledge exist-

ing uncertainty and even anticipate upcoming

uncertainty in planning leads to qualitatively

new solutions in a range of robotics problems,

as demonstrated in this article.

Probabilistic algorithms are similar to behav-

ior-based approaches in that they place a
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such as the particle representation in the exam-

ple described earlier. However, the development

of new representations is absolutely essential

for scaling up to more complex problems, such

as the control of highly articulated robots or

multirobot coordination. 

Learning: The probabilistic paradigm lends

itself naturally to learning, but little work has

been carried out on automatically learning

models (or behaviors) in real-world robotic

applications using probabilistic representa-

tions. Many of today’s best learning algorithms

are grounded in statistical theory similar to the

one underlying the current approach. I conjec-

ture that a better understanding of how to

automatically acquire probabilistic models and

behaviors over the lifetime of a robot has the

potential to lead to new, innovative solutions

to a range of hard open problems in robotics.

High-level reasoning and programming: Cur-

rent research on probabilistic robotics predom-

inately focuses on low-level perception and

control. However, the issues raised in this arti-

cle apply to all levels of reasoning and decision

making (Boutilier et al. 2000). The issue of

probabilistic high-level reasoning and pro-

gramming for robots remains poorly explored.

Research is needed on algorithms that integrate

probabilistic representations into high-level

robot control (see, for example, Glesner and

Koller [1995], Poole [1993], and Halpern

[1990]).

Theory: The groundedness in statistical theo-

ry makes probabilistic approaches to robotics

well suited for theoretical investigation. How-

ever, existing models are often too restrictive to

characterize robot interaction in complex envi-

ronments. For example, little is known about

the consequences of violating the Markov

assumption that underlies much of today’s
work on localization and mapping, even

though virtually all interesting environments

violate this assumption. Little is also known

about the effect of approximate representation

on the performance of robotic controllers. A

better theoretical understanding of probabilis-

tic robotic algorithms is clearly desirable and

would further our understanding of the bene-

fits and limitations of this approach.

Innovative applications: Finally, there is

tremendous opportunity in applying proba-

bilistic algorithms to a range of important

robotic problems, including multirobot coordi-

nation, sensor-based manipulation, and

human-robot interaction.

I hope that this article motivated the proba-

bilistic approach to robotics and stimulates

new thinking in this exciting area. Ultimately,

I believe that probabilistic algorithms are

strong emphasis on sensor feedback. Because

probabilistic models are insufficient to predict

the actual state, sensor measurements play a

vital role in state estimation and, thus, in the

determination of a robot’s actual behavior.

However, they differ from behavior-based

approaches in that they rely on planning and

that a robot’s behavior is not just a function of

a small number of recent sensor readings. To

illustrate the importance of the latter differ-

ence, imagine placing a mobile robot in a

crowded place full of invisible hazards! Surely,

the problem can be solved by adding more sen-

sors; however, such an approach is expensive at

best, but more often, it will be plainly infeasi-

ble because of the lack of appropriate sensors.

The robot RHINO, for example, was equipped

with five different sensor systems—(1) vision,

(2) laser, (3) sonar, (4) infrared, and (5) tac-

tile—yet it still could not perceive all the haz-

ards and obstacles in this fragile environment

with the necessary reliability (see Burgard et al.

[1999] for a discussion). Thus, it seems unlikely

that a reactive approach could have performed

anywhere near as reliably and robustly in this

task.

Probabilistic robotics is closely related to a

rich body of literature on uncertainty in AI

(UAI) (Heckerman [1995] and Pearl [1988] are

good starting points, as is any recent UAI pro-

ceedings). In fact, many of the basic algorithms

in robotics have counterparts in the UAI com-

munity, the major difference being that their

focus tends to be on discrete spaces, whereas

robots typically live in continuous spaces. Also,

building real robotic systems constrains the

assumptions under which one can operate.

Consequently, approximations and real-time

algorithms play a greater role in robotics than

they currently play in mainstream AI.

One of the most exciting aspects of the prob-

abilistic paradigm is that it allows for great new

opportunities in basic robotics and AI research,

with high potential for high impact in robotics

and beyond. Probabilistic algorithms are still

far from mainstream in robotics, and a range of

problems appear to be highly amenable to

probabilistic solutions. I conclude this article

by laying out five broad areas of research that I

deem to be highly important: (1) representa-

tions, (2) learning, (3) high-level reasoning and

programming, (4) theory, and (5) innovative

applications.

Representations: The choice of representation

is crucial in the design of any probabilistic algo-

rithm because it determines its robustness, effi-

ciency, and accuracy. Recent research has

already led to a range of representations for

probabilistic information in continuous spaces,
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essential for a much broader class of embedded

systems equipped with sensors and actuators.
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