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PROBABILISTIC ANALYSIS OF A MOTIF DISCOVERY
ALGORITHM FOR MULTIPLE SEQUENCES∗

BIN FU† , MING-YANG KAO‡ , AND LUSHENG WANG§

Abstract. We study a natural probabilistic model for motif discovery that has been used to
experimentally test the quality of motif discovery programs. In this model, there are k background
sequences, and each character in a background sequence is a random character from an alphabet Σ.
A motif G = g1g2 · · · gm is a string of m characters. Each background sequence is implanted into a
probabilistically generated approximate copy of G. For an approximate copy b1b2 · · · bm of G, every
character bi is probabilistically generated such that the probability for bi �= gi is at most α. In this
paper, we give the first analytical proof that multiple background sequences do help with finding
subtle and faint motifs. This work is a theoretical approach with a rigorous probabilistic analysis.
We develop an algorithm that under the probabilistic model can find the implanted motif with high
probability when the number of background sequences is reasonably large. Specifically, we prove that
for α < 0.1771 and any constant x ≥ 8, there exist constants t0, δ0, δ1 > 0 such that if the length of
the motif is at least δ0 logn, the alphabet has at least t0 characters, and there are at least δ1 logn0

input sequences, then in O(n3) time our algorithm finds the motif with probability at least 1− 1
2x

,
where n is the longest length of any input sequence and n0 ≤ n is an upper bound for the length of
the motif.

Key words. motif, probabilistic analysis, multiple sequences

AMS subject classification. 68W01

DOI. 10.1137/080720401

1. Introduction. Motif discovery is an important problem in computational
biology and computer science. For instance, it has applications to coding theory [3, 5],
locating binding sites and conserved regions in unaligned sequences [7, 11, 18, 19],
genetic drug target identification [10], designing genetic probes [10], and universal
polymerase chain reaction (PCR) primer design [2, 10, 14, 17].

This paper focuses on the application of motif discovery to finding conserved
regions in a set of DNA, RNA, or protein sequences. Such conserved regions may
represent common biological functions or structures. Many performance measures
have been proposed for motif discovery. Let C be a set of 0-1 sequences of length
n. The covering radius of C is the smallest integer r such that each vector in {0, 1}n
is at a Hamming distance at most r from a string in C. The decision problem as-
sociated with the covering radius for a set of binary sequences is NP-complete [3].
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Efficient algorithms for model-based motif discovery from multiple sequences, in Proceedings of the
Fifth Annual Conference on Theory and Applications of Models of Computation, 2008, pp. 234–245.
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1716 BIN FU, MING-YANG KAO, AND LUSHENG WANG

The similar closest string and substring problems were proved to be NP-hard [3, 10].
Some approximation algorithms have been proposed. Li, Ma, and Wang [13] gave
an approximation scheme for the closest string and substring problems. The related
consensus patterns problem is as follows: given n sequences s1, · · · , sn, find a region
of length L in each si and a string s of length L so that the total Hamming distance
from s to these regions is minimized. Approximation algorithms for the consensus
patterns problem were reported in [12]. Furthermore, a number of heuristics and
programs have been developed [1, 8, 9, 16, 20].

In many applications, motifs are faint and may not be apparent when only two
sequences are compared but may become clearer when more sequences are compared
at the same time [6]. For this reason, it has been conjectured that comparing more
sequences at the same time can help with identifying faint motifs. In this work, we
give the first analytical proof for this conjecture. This is a theoretical approach with
a rigorous probabilistic analysis.

We study a natural probabilistic model for motif discovery. In this model, there
are k background sequences, and each character in the background sequence is a
random character from an alphabet Σ. A motif G = g1g2 · · · gm is a string of m
characters. Each background sequence is implanted into a probabilistically generated
approximate copy of G. For an approximate copy b1b2 · · · bm of G, every character bi
is probabilistically generated such that the probability for bi �= gi, which is called a
mutation, is at most α. This model was first proposed in [16] and has been widely
used to experimentally test motif discovery programs [1, 8, 9, 20]. We note that a
mutation in our model converts a character gi in the motif into a different character
bi with no further probability restriction than the upper bound of α. In particular,
a character gi in the motif may become any character bi in Σ − {gi} with unequal
probabilities.

We design an algorithm that for a reasonably large k can discover the implanted
motif with high probability. Specifically, we prove that for α < 0.1771 and any
constant x ≥ 8, there exist constants t0, δ0, δ1 > 0 such that if the length of the
motif is at least δ0 logn, the alphabet has at least t0 characters, and there are at
least δ1 logn0 input sequences, then in O(n3) time the algorithm finds the motif with
success probability at least 1− 1

2x , where n is the longest length of any input sequence
and n0 ≤ n is an upper bound for the length of the motif. When x is considered
as a parameter of order O(log n), the parameters t0, δ0, δ1 do not depend on x. We
also show some lower bounds that imply that our conditions for the length of the
motif and the number of input sequences are tight to within a constant multiplicative
factor. This algorithm’s time complexity depends on the length of input sequences
but is independent of the number of the input sequences. This is because for a fixed
x, Θ(logn) sequences are sufficient to guarantee the probability of at least 1− 1

2x to
discover the motif. In contrast to the NP-hardness of other variants of the common
substring problem, motif discovery is solvable in O(n3) time in this probabilistic
model.

Our algorithm is a deterministic algorithm that has provable high probability
to return the exact motif. The only source of randomness for the algorithm is the
randomness in the input sequences. The algorithm extracts similar consecutive regions
among multiple sequences while tolerating noises. The algorithm needs the motif to
be long enough, but does not need to have the length of the motif as an input.

In section 2, we elaborate on our model of sequence generation and discuss some
basics. We give a brief description of our main algorithm, Find-Noisy-Motif, in sec-
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MOTIF DISCOVERY ALGORITHM 1717

tion 3. We set up some parameters and constants for the algorithm in section 4.1.
The entire Find-Noisy-Motif is described in section 4.2. We analyze Algorithm Find-
Noisy-Motif in section 5. Two lower bounds are presented in section 6. We conclude
the paper with an open problem in section 7.

2. Notation and the model of sequence generation. For a set A, |A| de-
notes the number of elements in A. Σ is an alphabet with |Σ| = t ≥ 2. For an integer
n ≥ 0, Σn is the set of sequences of length n with characters from Σ. For a sequence
S = a1a2 · · · an, S[i] denotes the character ai, and S[i, j] denotes the substring ai · · · aj
for 1 ≤ i ≤ j ≤ n. |S| denotes the length of the sequence S. We use ∅ to represent
the empty sequence, which has length 0.

Let G = g1g2 · · · gm be a fixed sequence of m characters. G is the motif to
be discovered by our algorithm. A Θα(n,G)-sequence is defined to be a sequence
S of the form S = a1 · · · an1b1 · · · bman1+1 · · ·an2 , where n2 + m ≤ n, each ai has
probability 1

t to be π for each π ∈ Σ, and bi has probability at most α not equal
to gi for 1 ≤ i ≤ m, where m = |G|. ℵ(S) denotes the motif region b1 · · · bm of S.
The motif region of S may start at a probabilistic, arbitrary, or worst-case position
in S. Also, a mutation may convert a character gi in the motif into an arbitrary or
worst-case different character bi subject only to the restriction that gi will mutate
with probability at most α.

For two sequences S1 = a1 · · · am and S2 = b1 · · · bm of the same length, let

diff(S1, S2) = |{i | ai �=bi for i=1,...,m}|
m , i.e., the ratio of difference between the two

sequences.
Definition 2.1. For two intervals [i1, j1] and [i2, j2], define shift([i1, j1], [i2, j2]) =

min(|i1 − i2|, |j1 − j2|).
The analysis of our algorithm employs the Chernoff bound [15] and Corollary 2.3

below, which can be derived from that bound (see [13]).
Theorem 2.2 (see [15]). Let X1, · · · , Xn be n independent random 0-1 variables,

where Xi takes 1 with probability pi. Let X =
∑n

i=1 Xi, and let μ = E[X ]. Then for
any δ > 0,

(i) Pr(X < (1 − δ)μ) < e−
1
2μδ

2

, and

(ii) Pr(X > (1 + δ)μ) < [ eδ

(1+δ)(1+δ) ]
μ.

Corollary 2.3 (see [13]). Let X1, · · · , Xn be n independent random 0-1 vari-
ables and X =

∑n
i=1 Xi.

(i) If Xi takes 1 with probability at most p, then for any 1
3 > ε > 0, Pr(X >

pn+ εn) < e−
1
3nε

2

.
(ii) If Xi takes 1 with probability at least p, then for any 1

3 > ε > 0, Pr(X <

pn− εn) < e−
1
2nε

2

.

3. A sketch of Algorithm Find-Noisy-Motif. Our Algorithm Find-Noisy-
Motif has two phases. The first phase exploits the fact that with high probability, the
motif areas in some sequences conserve the first and last characters. Furthermore,
the middle areas of the motif change with a small ratio. We will select enough pairs
of Θα(n,G)-sequences S′ and S′′ and find their substrings G′ and G′′, respectively,
such that G′ and G′′ match at their left- and rightmost characters. Furthermore, G′

and G′′ have only a relatively small difference in the middle areas. For each such pair
S′ and S′′, the substring G′′ of S′′ is extracted.

During the second phase, a new set of Θα(n,G)-sequences S1, S2, · · · , Sk2 will be
used. For each G′′ extracted from a pair of sequences in the first phase, it is used to
match a substring Gi of Si for i = 1, 2, . . . , k2. Assume that G1, · · · , Gk2 are derived
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S1
ℵ(S1)� �

S2

ℵ(S2)� �

ℵ(S3)
S3

� �

Fig. 1. The motif regions of S1, S2, and S3 are not aligned.

S1
ℵ(S1)� �

S2

ℵ(S2)� �

ℵ(S3)
S3

� �

Fig. 2. S1, S2, and S3 have their motif in the same column region.

from matching G′′ to all sequences S1, S2, · · · , Sk2 . Some Gi may be the empty se-
quence if G′′ cannot match well to any substring of Si. If G′′ has the same length
as that of motif G and is very similar to G, then the number of nonempty sequences
among G1, · · · , Gk2 is much larger than k2

2 and the ith character G[i] of G can be
recovered by voting on G1[i], · · · , Gk2 [i]. In other words, G[i] is the character that
appears more than k2

2 times in G1[i], · · · , Gk2 [i]. We prove that with high probabil-
ity such a G′′ exists. The rearrangement of S1, · · · , Sk2 from Figure 1 to Figure 2
illustrates how we recover the motif via voting.

On the other hand, if |G′′| > |G| or G′′ does not match G well, then we can
prove that the number of nonempty sequences among G1, · · · , Gk2 is less than k2

2 .
Furthermore, if |G′′| < |G|, G′′ will be dropped since with high probability there
exists a candidate G0 with a good voting performance and the algorithm returns the
result from the longest one. Our algorithm’s time complexity depends on the length
of the input sequences but is independent of the number of the input sequences.
This is because for a fixed x, Θ(logn) sequences are sufficient to guarantee that with
probability at least 1 − 1

2x the motif will be discovered. Additional sequences can
improve the success probability but are not needed for the high probability guarantee.

4. Algorithm Find-Noisy-Motif. In this section, we detail Algorithm Find-
Noisy-Motif. The algorithm can find any hidden motif G in O(n3) time and with
high success probability. It requires that the size of the alphabet is larger than a
fixed constant. The performance of the algorithm is stated in the main theorem,
Theorem 4.1. The proof of Theorem 4.1 is given in section 5.4.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 
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Theorem 4.1. Assume that the mutation probability upper bound α is less than
0.1771. Then there exist constants t0, δ0, and δ1 such that if the size t of the alphabet Σ
is at least t0 and the length of the motif G is at least δ0 logn, then, given k independent
Θα(n,G)-sequences with k ≥ δ1 logn0, Algorithm Find-Noisy-Motif outputs G with
probability at least 1 − 1

2x and runs in O(n3) time, where n is the longest length of
any input sequences and n0 ≤ n is a given upper bound for the length of G.

Some parameters and constants will be used in Algorithm Find-Noisy-Motif . In
section 4.1, we give a list of assignments for some such parameters and constants.
The description of Algorithm Find-Noisy-Motif is given in section 4.2. The analysis
of the algorithm is given in sections 5.2–5.4.

4.1. Parameters. Multiple parameters affect the performance of the main al-
gorithm, Find-Noisy-Motif; we list them below and discuss some useful inequalities.

• Let x be any constant at least 8. The parameter x controls the failure proba-
bility of Find-Noisy-Motif to be at most 1

2x . We will prove that Find-Noisy-
Motif has probability at least 1− 1

2x to output the exact correct motif G.
• Let α be any constant with 0 ≤ α < 0.1771. Note that

(1 − α)2 − α >
1

2
.(1)

The parameter α is the upper bound for the mutation probability of each
character in the motif region.

• Let η = 1
6 . The algorithm has five cases in which it may fail. In order to

keep the total failure probability at most 1
2x , we ensure that each such case

has failure probability at most η
2x . As at most five cases can fail, the total

failure probability is bounded by 5 · η
2x < 1

2x .• Let ρ0 = 1
24 . We will design a function Extract(S1, S2) to output ℵ(S2)

with probability greater than a fixed constant. This parameter controls the
probability that Extract(S1, S2) derives a substring of S2 without overlap
with the motif region ℵ(S2) in S2. It also affects the selection of d, a lower
bound of the motif length.

• Let ε > 0 be any constant such that

(1− α)2 − α− 3ε >
1

2
.(2)

In order to find the motif, we often extract one of two similar substrings from
two input sequences. The parameter ε controls the similarity of two substrings
(see diff(S1, S2) in section 2) and appears in the probability that is derived
from the Chernoff bound (see Corollary 2.3). The existence of ε follows from
inequality (1). It also affects the selection of some other parameters.

• Let n be the largest length of an input sequence with n ≥ 3. Let parameter
n0 ∈ [d, n] be a given upper bound on the length of the motif G that will
be discovered by Algorithm Find-Noisy-Motif. If n0 is unknown, we just let
n0 = n.

• Select a constant δ0 > 0, and let d = δ0 logn such that

(3) n2e−d ≤ η

2x

and

(4) n2e−
ε2

3 d ≤ ρ0.
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To satisfy inequalities (3) and (4) above, select

δ0 = max

{(
2
(
1 + ln

( η

2x

)))
/ ln 2,

(
6

ε2
(1 + ln ρ0)

)
/ ln 2

}
.

Note that δ0 is a constant since both η and x are fixed. We require that the
length of the motif G is at least d as stated in Theorem 4.1.

The motif G is a pattern unknown to Algorithm Find-Noisy-Motif. Find-Noisy-
Motif will attempt to recover G from a series of Θα(n,G)-sequences generated by
the probabilistic model in section 2, which is controlled by the parameters α, n, and
G. The source of randomness for Find-Noisy-Motif comes entirely from the input
sequences.

Recall that a sequence S is generated as follows: (1) Generate a sequence S′ with
n− |G| characters, in which each character is a random character in Σ. (2) Generate
G′ such that with probability at most α, G′[i] �= G[i]. G′[i] �= G[i] represents a
mutation. A mutation may create an arbitrary or worst-caseG′[i], with no probability
restriction except that the mutation occurs with probability at most α. (3) Insert G′,
which serves as the motif region ℵ(S) of S, into any arbitrary or worst-case position
of S′.

Let Z0 be a set of k1 pairs of random Θα(n,G)-sequences (S′
1, S

′′
1 ), · · · , (S′

k1
, S′′

k1
).

Let Z1 be the set of Θα(n,G)-sequences {S′
1, S

′′
1 , · · · , S′

k1
, S′′

k1
} in the k1 pairs of

sequences in Z0. Let Z2 be a set of k2 sequences that will be used in the second phase
of Algorithm Find-Noisy-Motif. Let k = 2k1 + k2 be the total number of Θα(n,G)-
sequences that are used as the input to Find-Noisy-Motif. Both parameters k1 and
k2 are determined later (see Definition 4.2).

4.2. Description of Algorithm Find-Noisy-Motif. The algorithm is de-
tailed in this section. Before presenting the algorithm, we define some constants
and notions.

Definition 4.2.

1. Select any constant r0 > 0 such that

(1− α)2 − α− 3ε− 2r0 >
1

2
.(5)

The constant r0 will be used to select the constants v (which is defined below)
and t0 (which is the lower bound of the size of the alphabet and is defined in
Definition 5.1). The existence of r0 follows from inequality (2).

2. Let v be the least integer that satisfies the following inequalities:

1 ≤ v,(6)

(1− α)2 − 2cv

1− c
− α− 3ε− 2r0 >

1

2
,(7)

2c2v
3cv

1− c
< ρ0,(8)

2cv

1− c
<

r0
2
,(9)

2cv

1− c
< ρ0,(10)

where c = e−
ε2

3 . Note that the existence of v for inequality (7) follows from
inequality (5).



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

MOTIF DISCOVERY ALGORITHM 1721

The function Extract(S1, S2) tries to find ℵ(S2) by matching ℵ(S1) and ℵ(S2)
without shifting (ℵ(S1)[i] is aligned to ℵ(S2)[i]). The parameter v is a thresh-
old for the number of characters shifted when matching two motifs from two
input sequences (there is one shift if ℵ(S1)[i] is aligned to ℵ(S2)[i + 1]). For
the case where the number of shifts is more than v, the Chernoff bound is used
to show that the probability is small enough. For the case where the number
of shifts is less than v but at least 1, the probability is still small due to the
assumption that the size of the alphabet is large enough.

3. The number k1 is selected such that

(
1− 1

12

)k1

≤ η

2x
.(11)

Note that k1 = O(1) is a constant independent of the length of the input
sequences since both η and x are constants.
The parameter k1 is the number of pairs of input sequences (S1, S

′
1), · · · , (S′

k1
, S′′

k1
)

used to extract the motif candidates in the subroutine Phase-One of Find-
Noisy-Motif.

4. Select a constant δ1 > 0, and let k2 = δ1 logn0 − 2k1 so that

(12) n0k2e
− ε2

3 k2 ≤ η

2x

and

(13) k1e
− ε2

3 k2 ≤ η

2x
.

The parameter k2 is the number of input sequences used in the subroutine
Phase-Two of Find-Noisy-Motif. The candidates for the motif from Phase-
One are used to match the motif regions of the k2 sequences in Phase-Two.
The original motif G is recovered via voting on the k2 substrings.

Definition 4.3.

1. Let β = 2α + 2ε. The parameter β controls the similarity between ℵ(S) and
the original motif G (see Lemma 5.8).

2. Two sequences X1 and X2 are left matched if (1) |X1| = |X2|, (2) X1[1] =
X2[1], and (3) diff(X1[1, i], X2[1, i]) ≤ β for all integers i, v ≤ i ≤ |X1|.

3. Two sequences X1 and X2 are right matched if XR
1 and XR

2 are left matched,
where XR = an · · · a1 is the inverse sequence of X = a1 · · ·an.

4. Two sequences X1 and X2 are matched if X1 and X2 are both left and right
matched.

Algorithm Find-Noisy-Motif has two phases. The two phases are organized as
subroutines Phase-One and Phase-Two, respectively. The input to Phase-One is k1
pairs of Θα(n,G)-sequences collected in the set Z0. The input to Phase-Two consists
of k2 Θα(n,G)-sequences collected in the set Z2 and the output from Phase-One.
All the Θα(n,G)-sequences are independent Θα(n,G)-sequences. Recall that k1 is
constant, k2 = O(log n0), and n0 (≤ n) is an upper bound for the length of the
motif G as discussed in Definition 4.2 and section 4.1. Algorithm Find-Noisy-Motif is
deterministic, and its probabilistic performance is based on the randomness of those
sequences in both Z0 and Z2 and the independence in generating them.

The subroutine LoadInputSequences() below generates the input sequences for
Find-Noisy-Motif using the probabilistic model in section 2.
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LoadInputSequences()
Steps:

Independently generate 2k1 Θα(n,G)-sequences S′
1, S

′′
1 , · · · , S′

k1
, S′′

k1
, and

let Z0 = {(S′
1, S

′′
1 ), (S

′
2, S

′′
2 ), · · · , (S′

k1
, S′′

k1
)}.

Independently generate k2 Θα(n,G)-sequences S1, · · · , Sk2 , and
let Z2 = {S1, · · · , Sk2}.

Return (Z0, Z2);
End of LoadInputSequences
The function Extract(S1, S2) below extracts the longest similar region between

two sequences S1 and S2.
Function Extract(S1, S2)
Input: a pair of Θα(n,G)-sequences S1 and S2.
Output: a substring of S2 which is similar to a substring of S1.
Steps:

for h = min(|S1|, |S2|) to d (recall from section 4.1 that |G| ≥ d)
for i = 1 to |S1|

for j = 1 to |S2|
let i′ = i+ h− 1 and j′ = j + h− 1;
if S1[i, i

′] and S2[j, j
′] are matched (see Definition 4.3),

then return S2[j, j
′] and end this function;

return ∅ (output the empty sequence when there is no match found);
End of Extract
The following function is Phase-One of Algorithm Find-Noisy-Motif.
Phase-One(Z0)
Input: Z0 = {(S′

1, S
′′
1 ), (S

′
2, S

′′
2 ), · · · , (S′

k1
, S′′

k1
)}, a set of pairs of sequences gen-

erated at step 1 of Find-Noisy-Motif.
Output: a set W that contains a similar region of each pair in Z0.
Steps:

let W = ∅ (empty set);
for each pair of sequences (S′, S′′) ∈ Z0

let G′′ = Extract(S′, S′′) and put G′′ into W ;
return W , which will be used in Phase-Two;

End of Phase-One
After a set W of motif candidates is produced from Phase-One of Find-Noisy-

Motif, we use this function Match(G′′, Si) below to match this set with the set Z2 of
input sequences to recover the hidden motif by voting.

Function Match(G′′, Si)
Input: a motif candidate G′′, which is returned from the function Extract(), and

a sequence Si from the group Z2.
Output: either a substring Gi of Si of the same length as G′′ or an empty

sequence, where Gi will be considered as the motif region ℵ(Si) of Si if it is not
empty and the empty sequence means the failure in extracting the motif region ℵ(Si)
of Si.

Steps:
find a substring Gi of Si with |G′′| = |Gi| such that

G′′ and Gi are matched (see Definition 4.3);
if such a Gi does not exist, let Gi = ∅ (empty string);
Output Gi;

End of Match
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The function Vote(G1, G2, · · · , Gk′) below generates another sequence G′ by vot-
ing, where G′[i] is the most frequent character among G1[i], G2[i], · · · , Gk′ [i].

Function Vote(G1, G2, · · · , Gk′ )
Input: sequences G1, G2, · · · , Gk′ of the same length with k′ ≤ k2.
Output: a sequence G′, which is derived by voting on every position of the input

sequences.
Steps:

let m = |G1|;
for each j = 1, . . . ,m

if strictly more than k2

2 characters from G1[j], · · · , Gk′ [j] are the
same character a,
then let aj = a
else return “failure” and end this function;

return G′ = a1 · · · am;
End of Vote
The following function performs Phase-Two of Algorithm Find-Noisy-Motif. It

uses the motif candidates for the motif derived in Phase-One to extract the motif
regions of the set Z2 of input sequences and recovers the motif by voting.

Phase-Two(Z2,W )
Input: Z2 = {S1, · · · , Sk2} as defined before and W from Phase-One.
Output: G′, which is a recovery of motif G.
Steps:

for each G′′ ∈ W , let Gi = Match(G′′, Si) for i = 1, . . . , k2.
If the number of nonempty sequences in G1, · · · , Gk2 is at least
(Q0 − 2R− 2ε)k2,
then output G′ = Vote(G1, G2, · · · , Gk2) (which will be proved to be
identical to G with probability at least 1− 1

2x ) and end Phase-Two.
return “failure”.

End of Phase-Two
The entire main algorithm is described as follows:
Algorithm Find-Noisy-Motif
Steps:

(Z0, Z2) = LoadInputSequences();
W = Phase-One(Z0);
Phase-Two(Z2,W );

End of Algorithm Find-Noisy-Motif

5. Analysis of Algorithm Find-Noisy-Motif. Section 5.1 gives an overview
of the analysis of Find-Noisy-Motif. Section 5.2 analyzes Phase-One. Section 5.3
analyzes Phase-Two. Section 5.4 gives an overall analysis of Algorithm Find-Noisy-
Motif and proves the main theorem, Theorem 4.1.

5.1. Overview of the algorithm analysis. Phase-One derives k1 motif candi-
dates via G′′

1 = Extract(S′
1, S

′′
1 ), · · · , G′′

k1
= Extract(S′

k1
, S′′

k1
). Lemmas 5.2, 5.3, 5.5,

and 5.6 show that the probability is small for Phase-One returning a substring not
from the motif region of an input sequence in Phase-One. Lemma 5.8 shows that each
Θα(n,G)-sequence S has its motif region ℵ(S) similar to the motif with high proba-
bility. In expecting Extract(S′

i, S
′′
i ) to return the motif region ℵ(S′′

i ), we compare the
similarity between S′

i and S′′
i in order to detect the location of ℵ(S′′

i ) in S′′
i . If the two

substrings are ℵ(S′
i) and ℵ(S′′

i ), there is much similarity between them, and ℵ(S′′
i )
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is found in S′′
i . Otherwise, they have high similarity only with a small probability

according to Lemmas 5.2, 5.3, 5.5, and 5.6.
After showing that the probability is small for Phase-One returning a nonmotif

region, we prove Lemma 5.9 to give an Ω(1) probability lower bound that a motif
region ℵ(S′′

i ) of S′′
i is returned via Extract(S′

i, S
′′
i ). Finally, the analysis of Phase-

One will show that one of those G′′
1 , · · · , G′′

k1
has the same length as G and is very

similar to the true motif G with high probability. The number k1 of pairs amplifies
the success probability exponentially, as shown in Lemma 5.10. Now assume that G0

is a relatively accurate motif produced by Phase-One.
Phase-Two uses such G0 to detect the motif region ℵ(Si) for each Si of the k2

input sequences S1, · · · , Sk2 via pattern matching between G0 and a substring in
Si. This generates G1, · · · , Gk2 . Lemma 5.13 shows that Gi is ℵ(Si) for most of
i = 1, . . . , k2. Therefore, G[i] can be recovered via voting on G1[i], · · · , Gk2 [i], as
shown in Lemma 5.14.

Our main theorem about the correctness and complexity of the algorithm is The-
orem 4.1. It combines the analyses for Phase-One and Phase-Two. If a G′′

i produced
by Phase-One is longer than G, it will be dropped during the voting. If G′′

i is shorter
than G, it will be also dropped since there G0 is longer and has a better voting
consensus than G′′

i .

5.2. Analysis of Phase-One of Find-Noisy-Motif. Lemma 5.2 shows that
with only a small probability, a sequence can match a random sequence. It will be used
to prove that when two substrings in two Θα(n,G)-sequences are similar, they are
likely to coincide with the motif regions in the two Θα(n,G)-sequences, respectively.

Definition 5.1. Let t0 be any positive constant such that

2(v − 1)

t0
≤ r0

2
,(14)

c2v
3

t0
≤ ρ0,(15)

and

(16)
t0 − 1

t0
− β > ε.

The parameter t0 is used as a required lower bound of alphabet size. In the
remainder of this paper, we always assume the alphabet size t is at least t0.

Lemma 5.2. Assume that X1 and X2 are two independent sequences of the
same length and that every character of X2 is a random character from Σ. Then the
following hold:

(i) If 1 ≤ |X1| = |X2| < v, then the probability that X1 and X2 are matched is
≤ 1

t , where t = |Σ|.
(ii) If v ≤ |X1| = |X2|, then the probability for diff(X1, X2) ≤ β is at most

e−
ε2|X1|

3 .
Proof. The two statements are proved as follows.
Statement (i). For every character X2[j] with 1 ≤ j < v, the probability is 1

t that
X2[j] = X1[j].

Statement (ii). For every character X2[j] with 1 ≤ j ≤ |X2|, the probability is 1
t

for X2[j] = X1[j]. The expected number of positions where the two sequences X1 and
X2 differ is t−1

t |X1|. Since β = t−1
t − ( t−1

t − β), the probability for diff(X1, X2) ≤ β
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is at most e−
(
t−1
t

−β)2

3 |X1| ≤ e−
ε2

3 |X1| by inequality (16), Corollary 2.3, and the fact
that t ≥ t0 (see Definition 5.1).

Function Extract(S1, S2) returns a substring of S2. We expect that Extract(S1, S2)
is the motif region ℵ(S2) in S2. Lemma 5.3 shows that with a small probability, the
region for Extract(S1, S2) in S2 does not overlap the motif region ℵ(S2) of S2.

Lemma 5.3. With probability at most ρ0, Extract(S1, S2) and ℵ(S2) are not
overlapping substrings of S2. In other words, with probability at most ρ0, [j, j′] ∩
[f, f ′] = ∅, where Extract(S1, S2) = S2[j, j

′] and ℵ(S2) = S2[f, f
′].

Proof. Assume that Extract(S1, S2) returns M = S2[j, j
′] = Extract(S1, S2)

such that S2[j, j
′] matches S1[i, i

′]. Assume that ℵ(S2) = S2[f, f
′]. Further, assume

that M and ℵ(S2) have no overlap in S2; i.e., [j, j
′] ∩ [f, f ′] = ∅. For the condition

diff(S1[i, i
′], S2[j, j

′]) ≤ β, the probability is at most e−
ε2d
3 by Lemma 5.2 (notice that

the length of M is at least d according to Extract()). The probability of M and ℵ(S2)

not overlapping for all possible [j, j′] is at most n2 ·e− ε2d
3 ≤ ρ0 by inequality (4).

In order to show that Extract(S1, S2) can be used to effectively find a motif
region in S2, we give Lemma 5.5 to show that with only small probability, the region
of Extract(S1, S2) in S2 may shift far from the motif region ℵ(S2).

Definition 5.4. The constant z is selected so that

(17) z ≥ v

and

(18)
4e−

ε2

3 z

1− e−
ε2

3

≤ ρ0.

The parameter z is a threshold for controlling the shift in the analysis of Phase-
One of Find-Noisy-Motif. See Lemma 5.5 and Definition 2.1.

Lemma 5.5. The probability is at most H1 = 2ρ0 that for a pair of sequences
(S1, S2) from Z0, shift([i2, j2], [i

′
2, j

′
2]) ≥ z and |S2[i2, j2]| ≥ |G|, where S2[i2, j2] =

Extract(S1, S2), ℵ[S2] = S2[i
′
2, j

′
2], and z is as defined in Definition 5.4.

Proof. Assume that M = S2[i2, j2] = Extract(S1, S2) is the matched sequence.
By Lemma 5.3, the probability is at most ρ0 that M does not intersect ℵ(S2).

Notice thatM = S2[i2, j2] is a substring of S2 according to the function Extract().
Assume thatM ′ = S1[i1, j1] is the substring of S1 such thatM ′ and M are matched in
the function Extract(S1, S2). If shift([i2, j2], [i

′
2, j

′
2]) = w ≥ v and |M | ≥ |G| = |ℵ(S2)|,

then M contains a substring N of length w outside ℵ(S2) and N is either a prefix or
a suffix of M . Every character of N is outside ℵ(S2) and is a random character that
has the probability 1

t to be equal to any character in Σ. By symmetry, we assume
without loss of generality that N is a prefix of M . Then M = NN1 and M ′ = N ′N ′

1,
where N ′ and N have the same length and have a difference ratio at most β according

to the conditions in Definition 4.3. By Lemma 5.2, the probability is at most e−
ε2

3 w

that N ′ and N have the same length and have a difference of ratio at most β.

Therefore, the probability is at most 4e−
ε2

3 w that shift([i2, j2], [i
′
2, j

′
2]) = w. The

probability for shift([i2, j2], [i
′
2, j

′
2]) ≥ z is at most

4

∞∑
w=z

e−
ε2

3 w =
4e−

ε2

3 z

1− e−
ε2

3

=
4cz

1− c
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(recall c = e−
ε2

3 from Definition 4.2). Therefore, the total probability that shift([i2, j2],
[i′2, j

′
2]) ≥ z is at most H1 = ρ0 +

cz

1−c ≤ 2ρ0 by inequality (18).
Lemma 5.6 will be used to give an upper bound in probability analysis. It is

derived by standard methods in calculus.
Lemma 5.6. Assume that 0 < a < 1 and j is a positive integer.

(i)
∑∞

i=j ia
i = jaj−(j−1)aj+1

(1−a)2 < jaj

(1−a)2 .

(ii)
∑∞

i=j i
2ai = aj( (j

2−(j−1)(j+1)a)(1−a)−(j−(j−1)a)2(−a)
(1−a)3 ) < 2j2aj

(1−a)3 .

Proof. Let θ be a negative parameter.
Statement (i). Let f(y) =

∑∞
i=j e

θiy. Therefore, we have the derivative f ′(y) =

θ
∑∞

i=j ie
θiy. Alternatively, using the closed form f(y) = eθjy

1−eθy
, we have

f ′(y) =
θjeθjy(1− eθy)− eθjy(−θeθy)

(1− eθy)2
(19)

=
θjeθjy − θ(j − 1)eθ(j+1)y

(1− eθy)2
.(20)

Let θ = ln a and y = 1. We have
∑∞

i=j ia
i = jaj−(j−1)aj+1

(1−a)2 < jaj

(1−a)2 .

Statement (ii). By equality (20),

f ′′(y) =
(

θjeθjy−θ(j−1)eθ(j+1)y

(1−eθy)2

)′

= (θ2j2eθjy−θ2(j−1)(j+1)eθ(j+1)y )(1−eθy)2−(θjeθjy−θ(j−1)eθ(j+1)y)2(−θeθy)(1−eθy)
(1−eθy)4

= θ2
(

(j2eθjy−(j−1)(j+1)eθ(j+1)y )(1−eθy)−(jeθjy−(j−1)eθ(j+1)y )2(−eθy)
(1−eθy)3

)

= θ2eθjy
(

(j2−(j−1)(j+1)eθy )(1−eθy)−(j−(j−1)eθy)2(−eθy)
(1−eθy)3

)
.

We also have f ′′(y) = θ2
∑∞

i=j i
2eθiy. Let θ = ln a and y = 1. We have

∞∑
i=j

i2ai = aj
(
(j2 − (j − 1)(j + 1)a)(1− a)− (j − (j − 1)a)2(−a)

(1− a)3

)

<
(j2(1− a) + 2ja)aj

(1− a)3

<
2j2aj

(1− a)3
.

Lemma 5.8 below shows that with high probability, many prefixes and suffixes of
the motif region in a Θα(n,G)-sequence do not change much. We define

Q0 = (1 − α)2 − 2cv

1− c
.(21)

The parameter Q0 is used in Lemma 5.8 to give a lower bound on the probability
that for a Θα(n,G)-sequence S, its ℵ(S) will be similar enough to the original motif
G according to the conditions in Lemma 5.8.

Definition 5.7. We say that a Θα(n,G)-sequence S contains a stable motif
region ℵ(S) if the following conditions hold: (1) G′[1] = G[1]; (2) G′[m] = G[m];
(3) diff(G′[1, h], G[1, h]) ≤ β

2 for all h = v, v+1, . . . ,m; and (4) diff(G′[m−h,m], G[m−
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h,m]) ≤ β
2 for h = v − 1, v + 1, . . . ,m− 1, where G′ = ℵ(S), c = e−

ε2

3 , and m = |G|
as defined in Definition 4.2 and section 2.

Lemma 5.8. With probability at least Q0, a Θα(n,G)-sequence S contains a stable
motif region.

Proof. The probability is (1−α)2 to satisfy conditions (1) and (2) in Definition 5.7.
Consider condition (3). Since every character of ℵ(S)[1,m] (notice that m = |G|)
has probability at most α to mutate, by Corollary 2.3 the probability is at most

e−
1
3 ε

2r that diff(G[1, h], G′[1, h]) > β
2 = α + ε. Let V3 =

∑∞
r=v e

− 1
3 ε

2r = cv

1−c , where

c = e−
1
3 ε

2

as defined in Definition 4.2. Therefore, the probability is at most V3 that
diff(G[1, h], G′[1, h]) > β

2 = α+ ε for some h ∈ {v, v + 1, · · · ,m}. Similarly we define

V4 =
∑∞

r=v e
− 1

3 ε
2r ≤ cv

1−c . The probability is at most V4 that diff(G[m−h,m], G′[m−
h,m]) > β

2 = α + ε for some h ∈ {v, v + 1, · · · ,m}. In sum, the probability that S

contains a stable motif region is at least (1−α)2−V3−V4 = (1−α)2− 2cv

1−c = Q0.
Lemma 5.9 below gives a lower bound for the probability that Extract(S1, S2)

returns the motif region ℵ(S2) of S2, and that the motif region ℵ(S2) of S2 does not
differ much from the original motif G.

Define constants

(22) c1 =
2

(1− c)4

and

(23) c2 = 20c1.

Lemma 5.9. Given two independently generated Θα(n,G)-sequences S1 and S2,
the probability is at least Q1 = Q2

0−H2 −H1 ≥ Q2
0 − 4ρ0 that Extract(S1, S2) returns

ℵ(S2), and ℵ(S2) contains a stable motif region, where H1 is defined in Lemma 5.5,
H2 = c2v

3(1t + cv), and c2 is a constant defined in (23).
Proof. Let M1 be the substring of S1 that matches the substring of M2 of S2,

let M2 = Extract(S1, S2), and let h = |M1| = |M2|. Assume M1 = S1[i1, j1] and
M2 = S2[i2, j2]. For two random Θα(n,G)-sequences S1 and S2, their motif regions
ℵ(S1) and ℵ(S2) can match well with probability at least Q2

0 by Lemma 5.8. We
can assume that in the function Extract(S1, S2), we consider only the variable h ≥
|ℵ(S1)| = |ℵ(S2)|. If h < |ℵ(S1)| = |ℵ(S2)| happens, then ℵ(S1) and ℵ(S2) cannot
match well.

Define PL,R(w1, w2, s) to be the probability that the following three conditions
are satisfied.

Condition (1). There are w1 characters outside ℵ(S1) on the left side of M1.
In other words, S1[i1 + w1] is the first character of ℵ(S1), and the w1 characters
S1[i1, i1 + w1 − 1] are outside the region ℵ(S1).

Condition (2). There are w2 characters outside ℵ(S2) in the right region of M2.
In other words, M2 = S2[i2, j2], S1[j2 −w2] is the last character of ℵ(S2), and the w2

characters S2[j2 − w2 + 1, j2] are outside the region ℵ(S2).
Condition (3). The position of the first character of ℵ(S1) in M1 and the position

of the first character of ℵ(S2) in M2 have shift s. In other words, if S1[t1] is the
first character of ℵ(S1) in S1 and S2[t2] is the first character of ℵ(S2) in S2, then
s = |(t1 − i1)− (t2 − i2)|. See Figure 3 for an illustration.

In a similar way, we define the probabilities PL,L(w1, w2, s), PR,L(w1, w2, s), and
PR,R(w1, w2, s). In other words, for PA,B(w1, w2, s) with A,B ∈ {L,R}, A = L (or
A = R) represents the case that there are w1 characters outside ℵ(S1) on the left
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M1

ℵ(S1)� �

ℵ(S2)
� � w2

w1

M2

Fig. 3. M1 and M2 for Case 1 of the proof of Lemma 5.9.

(respectively, right) side of M1, and B = L (or B = R) represents the case that
there are w2 characters outside ℵ(S2) on the left (respectively, right) side of M2.
Furthermore, the parameter s indicates the shift defined in Condition (3) above.

By Lemma 5.5, with probability at most H1, shift([i2, j2], [i
′
2, j

′
2]) ≥ z, where

M = S2[i2, j2] and ℵ(S2) = S2[i
′
2, j

′
2]. Therefore, the probability is at least 1−H1 that

if |M2| ≥ |G|, then most parts of M2 are in the region ℵ(S2) (recall that z = O(1)).
The probabilistic analysis below has 10 cases. Case a.b is the bth subcase of Case

a. Case a.b.c is the cth subcase of Case a.b. We use Pa, Pa.b, and Pa.b.c to denote the
probabilities of Cases a, a.b, and a.b.c, respectively.

Case 1. 0 ≤ w2 < w1, M1 has w1 characters outside ℵ(S1) on the left side of M1,
the last character of ℵ(S2) is in M2, and M2 has w2 characters outside ℵ(S2) on the
right side outside M2. See Figure 3.

We consider only the cases where s = 1, 2, . . . , w1 + w2 and M2 has fewer than
w1 characters outside ℵ(S2) on the left side. The cases where M2 has at least w1

characters outside ℵ(S2) are covered by Cases 5 and 9.
If s > w1 +w2, the matched region will be shorter than that of ℵ(S2). If s ≤ w1,

the first character of ℵ(S2) is in M2, and this case is included in Case 4. Therefore, we
consider only the range w1+1 ≤ s ≤ w1+w2. For an upper bound for the probability
of Case 1, we compute P1 =

∑∞
w2=0

∑∞
w1=w2+1

∑w1+w2

s=w1+1 PL,R(w1, w2, s). There are
some subcases.

• Case 1.1. 0 ≤ w2 < v.
Case 1.1.1. 0 ≤ w2 < w1 < v.
By Lemma 5.2, PL,R(w1, w2, s) ≤ 1

t for fixed w1, w2, and s.
∑w1+w2

s=1 PL,R(w1,
w2, s) ≤ 2v

t for a fixed w1 and all s = w1 + 1, . . . , w1 + w2. Then

v−1∑
w1=w2+1

w1+w2∑
s=w1+1

PL,R(w1, w2, s) ≤ 2v2

t
.

Case 1.1.2. v ≤ w1.

By Lemma 5.2, PL,R(w1, w2, s) ≤ e−
ε2

3 w1 for a fixed w1 and a fixed s.∑w1+w2

s=w1+1 PL,R(w1, w2, s) ≤ w2e
− ε2

3 w1 .
∑∞

w1=v

∑w1+w2

s=w1+1 PL,R(w1, w2, s) ≤∑∞
w1=v w2e

− ε2

3 w1 = w2
cv

1−c .
Combining Cases 1.1.1 and 1.1.2, we have

P1.1 =

v−1∑
w2=0

∞∑
w1=w2+1

w1+w2∑
s=w1+1

PL,R(w1, w2, s)

≤
v−1∑
w2=0

(
2v2

t
+

cvw2

1− c

)
<

2v3

t
+

v2cv

2(1− c)
≤ c1 · v3

(
1

t
+ cv

)
.
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M1

ℵ(S1)� �

ℵ(S2)� �
w2

w1

M2

Fig. 4. M1 and M2 for Case 2 of the proof of Lemma 5.9.

• Case 1.2. v ≤ w2.

Assume that v ≤ w2 < w1. By Lemma 5.2, PL,R(w1, w2, s) ≤ e−
ε2

3 w1 for

fixed w1, w2, and s.
∑w1+w2

s=w1+1 PL,R(w1, w2, s) ≤ w2e
− ε2

3 w1 for fixed w1 and

w2.
∑∞

w1=w2+1

∑w1+w2

s=w1+1 PL,R(w1, w2, s) ≤
∑∞

w1=w2+1 w2e
− ε2

3 w1 = w2
cw2+1

1−c .

Therefore, by Lemma 5.6, P1.2 =
∑∞

w2=v

∑∞
w1=w2+1

∑w1+w2

s=w1+1 PL,R(w1, w2, s)

≤ ∑∞
w2=v w2

cw2+1

1−c ≤ vcv+1

(1−c)3 ≤ c1 · v3(1t + cv).

Therefore, we have derived a probability bound for Case 1: P1 = P1.1 + P1.2 ≤
2c1 · v3(1t + cv).

Case 2. 0 ≤ w2 < w1, the last character of ℵ(S2) is in M2, M2 has w2 characters
outside ℵ(S2) in the right side of the matched region, and M1 has w1 characters
outside ℵ(S1) in the right side of the matched region. See Figure 4.

For a probability upper bound of Case 2, we compute

P2 =

∞∑
w2=1

∞∑
w1=w2+1

PR,R(w1, w2, w1 − w2).

There are some subcases.
• Case 2.1. 0 ≤ w2 < v.
Case 2.1.1. 0 ≤ w2 < w1 < v.
By Lemma 5.2, PR,R(w1, w2, s) ≤ 1

t for fixed w1, w2 and s = w1 − w2. The
total probability of Case 2.1.1 for a fixed w2 and all w1 with w2 < w1 ≤ v is

at most (v−w2−1)
t .

Case 2.1.2. v ≤ w1.

By Lemma 5.2, PR,R(w1, w2, s) ≤ e−
ε2

3 w1 for a fixed w1 and a fixed s = w1 −
w2. We have

∑∞
w1=v PR,R(w1, w2, s) =

∑∞
w1=v e

− ε2

3 w1 = cv

1−c for all w1 ≥ v.

Therefore, P2.1 =
∑v−1

w2=0

∑∞
w1=w2+1 PR,R(w1, w2, w1−w2) ≤

∑v−1
w2=1(

(v−w2−1)
t

+ cv

1−c) <
v2

2t +
vcv

1−c ≤ c1 · v3(1t + cv).
• Case 2.2. v ≤ w2.
Assume v ≤ w2 < w1. By Lemma 5.2, for a fixed w1 and a fixed s = w1−w2,

the probability for Case 2.2 is at most PR,R(w1, w2, s) ≤ e−
ε2

3 w1 . The prob-

ability for Case 2.2 for all w1 > w2 is at most
∑∞

w1=w2+1 e
− ε2

3 w1 = cw2+1

1−c .

Therefore, P2.2 =
∑∞

w2=v

∑∞
w1=w2+1 PR,R(w1, w2, w1−w2) ≤

∑∞
w2=v(

cw2+1

1−c ) <
cv+1

(1−c)2 ≤ c1 · v3(1t + cv).

Therefore, the probability for Case 2 is upper bounded as P2 = P2.1 + P2.2 ≤
2c1 · v3(1t + cv).
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Case 3. 0 ≤ w2 < w1, M1 has w1 characters outside ℵ(S1) on the right side of
M1, the last character of ℵ(S2) is in M2, and M2 has w2 characters outside ℵ(S2) on
the left side of M2.

For a probability upper bound of Case 3, we compute

P3 =

∞∑
w2=0

∞∑
w1=w2+1

∞∑
s=1

PR,L(w1, w2, s).

This case has the same analysis and probability as Case 1. Therefore, we have P3 =
P1 ≤ 2c1 · v3(1t + cv).

Case 4. 0 ≤ w2 < w1, S1 has w1 characters outside ℵ(S1) on the left side of M1,
and S2 has w2 characters outside ℵ(S2) on the left side M2.

For a probability upper bound of Case 4, we compute

P4 =

∞∑
w2=1

∞∑
w1=w2+1

PL,L(w1, w2, w1 − w2).

This case has the same analysis and probability as Case 2. Therefore, we have P4 =
P2 ≤ 2c1 · v3(1t + cv).

Case 5. 1 ≤ w1 = w2, and the left sides of both M1 and M2 have the same
number w2 of characters outside ℵ(S1) and ℵ(S2), respectively.

For a probability upper bound of Case 5, we compute P5 =
∑∞

w2=1 PL,L(w2, w2, 0).
There are two subcases.

• Case 5.1. 1 ≤ w2 < v. By Lemma 5.2, the probability for this case is at
most 1

t for a fixed w2. The total probability for this case for 1 ≤ w2 < v is
P5.1 ≤ v

t .• Case 5.2. v ≤ w2. By Lemma 5.2, the probability for this case is at most

e−
ε2

3 w2 for a fixed w2. The total probability for this case for v ≤ w2 is

P5.2 ≤ ∑∞
w2=v e

− ε2

3 w2 = cv

1−c .
The total probability bound for Case 5 is upper bounded as P5 = P5.1 + P5.2 ≤

v
t +

cv

1−c ≤ c1 · v3(1t + cv).
Case 6. 1 ≤ w1 = w2, and the right sides of both M1 and M2 have the same

number w2 of characters outside ℵ(S1) and ℵ(S2), respectively.
For the probability upper bound of Case 6, we compute P6 =

∑∞
w2=1 PR,R(w2, w2, 0).

This case has the same analysis and probability as Case 5. Therefore, P6 = P5 ≤
c1 · v3(1t + cv).

Case 7. 0 ≤ w1 < w2, the first character of ℵ(S1) is in M1, M1 has w1 characters
outside ℵ(S1) on the left side of M1, and M2 has w2 characters outside ℵ(S2) on the
right side of M2.

We have only s = 1, 2, . . . , w1 +w2. For a probability upper bound of Case 7, we
compute

∑∞
w2=0

∑w2−1
w1=1

∑∞
s=1 PL,R(w1, w2, s).

• Case 7.1. 0 ≤ w2 < v.
By Lemma 5.2, PL,R(w1, w2, s) ≤ 1

t for fixed w1, w2, and s. The total prob-
ability for this case for all w1 with 0 ≤ w1 ≤ w2 is at most w1+w2

t . The

probability is at most
2w2

2

t for all w1 with 0 ≤ w1 < w2. Therefore, P7.1 ≤∑v−1
w2=0

∑w2−1
w1=0

∑w1+w2

s=1 PL,R(w1, w2, s) ≤
∑v−1

w2=0(
2w2

2

t ) < 2v3

t ≤ c1·v3(1t+cv).
• Case 7.2. v ≤ w2.

By Lemma 5.2, PL,R(w1, w2, s) ≤ e−
ε2

3 w2 for a fixed w2 and a fixed s. The to-
tal probability for this case for fixed w1 and w2, and variable s = 1, . . . , w1+w2
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is
∑w1+w2

s=1 PL,R(w1, w2s) ≤ (w1 + w2)e
− ε2

3 w2 . The total probability for this

case for all w2 ≥ v is at most P7 =
∑w2−1

w1=0(w1+w2)e
− ε2

3 w2 =
2w2

2c
w2

1−c . There-

fore, P7.2 ≤ ∑∞
w2=v

∑w2−1
w1=0

∑w1+w2

s=1 PL,R(w1, w2, s) ≤ ∑∞
w2=v(

2w2
2c

w2

1−c ) <
2

(1−c)
2v2cv

(1−c)3 = 4v2cv

(1−c)4 ≤ c1 · v3(1t + cv) (by Lemma 5.6).

In summary, the probability for Case 7 is upper bounded as P7 = P7.1 + P7.2 ≤
2c1 · v3(1t + cv).

Case 8. 0 ≤ w1 < w2, the last character of ℵ(S1) is in M1, there are w1 characters
on the right side of M1 and outside its ℵ(S1), and M2 has w2 characters on the right
side of M2 and outside its ℵ(S2).

For a probability upper bound of Case 8, we compute

P8 =

∞∑
w2=1

w2−1∑
w1=0

PR,R(w1, w2, w2 − w1).

There are two subcases.
• Case 8.1. 0 < w2 < v.
By Lemma 5.2, the probability for this case for a fixed w1 and a fixed s =
w2 − w1 is at most 1

t . The total probability for this case for all w1 with 0 ≤
w1 ≤ w2−1 is at most w2

t . Therefore, P8.1 =
∑v−1

w2=1

∑w2−1
w1=0 PR,R(w1, w2, w2−

w1) ≤
∑v−1

w2=1
w2

t = v2

t ≤ c1 · v3(1t + cv).
• Case 8.2. v ≤ w2.

By Lemma 5.2, PL,R(w1, w2, s) ≤ e−
ε2

3 w2 for a fixed w2 and a fixed s =
w2−w1. The total probability for this case for all 0 ≤ w1 ≤ w2−1 is at most∑w2−1

w1=0 e
− ε2

3 w2 = w2c
w2

1−c . Therefore, P8.2 =
∑∞

w2=v

∑w2−1
w1=0 PR,R(w1, w2, w2 −

w1) ≤
∑∞

w2=v
w2c

w2

1−c ≤ vcv

(1−c)3 ≤ c1 · v3(1t + cv) by Lemma 5.6.

We have P8 = P8.1 + P8.2 = O(v2(1t + cv)) ≤ 2c1 · v3(1t + cv).
Case 9. 0 ≤ w1 < w2, the last character of ℵ(S1) is in M1, S1 has w1 characters

outside ℵ(S1) on the right side of M1, and S2 has w2 characters outside ℵ(S2) on the
left side outside M2.

For a probability upper bound of Case 9, we compute

P9 =

∞∑
w2=1

w2−1∑
w1=0

∞∑
s=1

PR,L(w1, w2, s).

This case has the same analysis and probability as Case 7. Therefore, we have P9 =
P7 ≤ 2c1 · v3(1t + cv).

Case 10. 0 ≤ w1 < w2, the first character of ℵ(S1) is in M1, M1 has w1 characters
on the left side of M1 outside ℵ(S1), and M2 has w2 characters on the left side of M2

outside ℵ(S2).
For a probability upper bound of Case 10, we compute

P10 =

∞∑
w2=1

w2−1∑
w1=0

PL,L(w1, w2, w2 − w1).

This case has the same analysis and probability as Case 8. Therefore, we have P10 =
P8 = O(v2(1t + cv)) ≤ 2c1 · v3(1t + cv).
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The total probability for w2 ≥ 1 is at most H2 =
∑10

i=1 Pi ≤ c2(v
3(1t + cv)).

Therefore, we have a constant c2 > 0 such that H2 ≤ c2(v
3(1t + cv)) ≤ 2ρ0 by

inequalities (8) and (15). Lemma 5.9 follows from the fact that S2 has probability
at least Q2

0 for ℵ(S2) to match ℵ(S1) well, and probability H2 +H1 ≤ 4ρ0 for a bad
match (i.e., M2 �= ℵ(S2)).

Lemma 5.10. With probability at most η
2x , the set W outputted by Phase-One

does not contain G0 such that G0 = Extract(S′
i, S

′′
i ) = ℵ(S′′

i ) and S′′
i contains a stable

motif region (see Definition 5.7).

Proof. By inequality (7) and equality (21), we have Q0 ≥ 1
2 . By Lemma 5.9 and

ρ0 = 1
24 defined in section 4.1, we have Q1 ≥ Q2

0 − 4ρ0 ≥ 1
12 . Since the number k1 is

selected to be large enough that (1−Q1)
k1 ≤ η

2x (see inequality (11)), the probability
is at most (1 − Q1)

k1 ≤ η
2x (by Lemma 5.9) such that there is no i with 1 ≤ i ≤

k1 such that both S′
i and S′′

i have stable motif regions and Extract(S′
i, S

′′
i ) returns

ℵ(S′′
i ).

Definition 5.11. Assume that ℵ(S′′
i ) is a stable motif region as described in

Lemma 5.10 and that Extract(S′
i, S

′′
i ) = ℵ(S′′

i ) for some 1 ≤ i ≤ k1. Define G0 =
Extract(S′

i, S
′′
i ) = ℵ(S′′

i ).

5.3. Analysis of Phase-Two of Algorithm Find-Noisy-Motif. Lemma 5.12
below shows that with small probability, the input Z1 (which is the set of sequences
used to form the sequence pairs of Z0 and is generated by LoadInputSequence) con-
tains a sequence whose motif region has many mutations.

Lemma 5.12. With probability at most 2k1e
− ε2

3 d, at least one sequence S in Z1

mutates at more than β
2 |G| characters in its motif region ℵ(S).

Proof. Every character in the ℵ(S) region has probability at most α to mutate.

Recall that |ℵ(S)| = |G| ≥ d. By Corollary 2.3, with probability at most e−
ε2

3 |G| ≤
e−

ε2

3 d, a sequence S in Z1 has more than (α+ε)|G| = β
2 |G|mutations (recall the setting

for β in Definition 4.3). Since there are 2k1 sequences in Z1, the total probability is

at most 2k1e
− ε2

3 d that at least one sequence S in Z1 mutates at more than β
2 |G|

characters in its motif region ℵ(S).
Lemma 5.13 below shows that with high probability, Phase-Two of Algorithm

Find-Noisy-Motif extracts the correct motif regions from the sequences in Z1.

Let R = 2(v−1
t + cv

1−c ) as defined in Lemma 5.13. Combining inequalities (7), (9),
(14), equation (21), and the definition of R, we have

Q0 − α− 3ε− 2R >
1

2
.(24)

Recall that Phase-One uses Extract(S′
i, S

′′
i ) to obtain a motif candidate G′′. Then

Phase-Two uses G′′ to match with ℵ(S) in another sequences S. The parameter R is
used as a small probability that the matched region between G′′ and S is not in ℵ(S).
See Lemma 5.13 for more details.

Lemma 5.13.

(i) Assume that G′′ = Extract(S′
i, S

′′
i ) with |G| ≤ |G′′|. Let S be a Θα(n,G)-

sequence with M = Match(G′′, S), and let w0 be the number of characters
of M that are not in the region ℵ(S). Then the probability is at most R =
2(v−1

t + cv

1−c ) that w0 ≥ 1.
(ii) The probability is at least Q0 −R that, given a Θα(n,G)-sequence S, ℵ(S) =

Match(G0, S).
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G′′

ℵ(S)� �
w′wM

Fig. 5. G′′ and M for Lemma 5.13.

Proof. Assume w0 ≥ 1. Let w be the number of characters outside ℵ(S) on the
left side of M , and let w′ be the number of characters outside ℵ(S) on the right side
of M . Clearly, w0 = w + w′. Since w0 ≥ 1, either w ≥ 1 or w′ ≥ 1. See Figure 5.
Without loss of generality, we assume w ≥ 1.

Statement (i). There are two cases.

Case (a). 1 ≤ w < v. By Lemma 5.2, the probability for this case for a fixed w

is at most 1
t . Thus, the total probability for this case is at most (v−1)

t .

Case (b). v ≤ w. By Lemma 5.2, the probability for this case for a fixed w is at

most e−
ε2

3 w. The total probability for this case is at most
∑∞

w=v e
− ε2

3 w = cv

1−c .

The probability analysis is similar when w′ ≥ 1. Therefore, the probability for
w0 ≥ 1 is at most R = 2(v−1

t + cv

1−c).

Statement (ii). By Lemma 5.8, with probability at least Q0, S contains a stable
motif region. By statement (i) of this lemma, we have probability at least Q0 − R
that, given a random Θα(n,G)-sequence, S, ℵ(S) = Match(G0, S).

Lemma 5.14 below shows that we can use G′ to extract most of the motif regions
for the sequences in Z2 if G′ = G0 (recall that G0 is close to the original motif G as
defined in Definition 5.11).

Lemma 5.14. Assume that |G′| ≥ |G| and Gi = Match(G′, Si) for Si ∈ Z2 =
{S1, · · · , Sk2} and i = 1, . . . , k2 (recall that each sequence Gi is either an empty se-
quence or a sequence of length |G′|).

(i) If G′ = G0, then the probability is at least 1−e−
ε2k2

3 that there are more than
(Q0 −R− ε)k2 sequences Gi with Gi = ℵ(Si).

(ii) The probability is at least 1 − e−
ε2k2

3 that for every G′, |{i | Gi �= ℵ(Si), i =
1, . . . , k2}| ≤ (R+ ε)k2.

Proof. Recall that sequence G0 is selected according to Definition 5.11. When
G′ is fixed, Gi = ℵ(Si) = Match(G′, Si) and Gj = ℵ(Sj) = Match(G′, Sj) are two
independent events due to the independence of Si and Sj . Thus, we can apply Chernoff
bounds in the proof below.

Statement (i). By Lemma 5.13, for every Si ∈ Z2, the probability is at least

Q0 − R that Gi = ℵ(Si). By Corollary 2.3, the probability is at most e−
ε2k2

3 that
there are fewer than (Q0 −R− ε)k2 sequences Gi with Gi = ℵ(Si).

Statement (ii). By Lemma 5.13, the probability is at most R that Gi �= ℵ(Si).

By Corollary 2.3, with probability at most e
ε2k2

3 , |{i | Gi �= ℵ(Si), i = 1, . . . , k2}| >
(R+ ε)k2.

5.4. Proof of the main theorem. We now give the proof of Theorem 4.1.
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Proof. The parameters α, δ0, δ1, and t0 are set as before. By Lemma 5.9, with
probability at least Q1, a pair (S′, S′′) from Z0 gives that Extract(S′, S′′) = ℵ(S′′)
and that ℵ(S′′) satisfies the conditions of Definition 5.7. The probability is at most
(1−Q1)

k1 ≤ η
2x (by inequality (11)) that the following statement (a) is false.

Statement (a). There exist sequences (S′, S′′) ∈ Z0 such that Extract(S′, S′′) =
ℵ(S′′) and S′′ contains a stable motif region (see Definition 5.7 and Lemma 5.8).

As we select G0 according to Definition 5.11, G0 = Extract(S′, S′′) = ℵ(S′′) (we
use the pair (S′, S′′) to represent the pair (S1, S2) of Z0 right after Lemma 5.9). By

Lemma 5.14, the probability is at most e−
ε2

3 k2 ≤ η
2x (by inequality (12)) that the

following statement (b) is false.

Statement (b). |{i | Match(G0, Si) = ℵ(Si) for Si ∈ Z2 = {S1, · · · , Sk2}}| ≥
(Q0 −R− ε)k2.

Suppose G′′ is one of the sequences in W returned by Phase-One of Algorithm
Find-Noisy-Motif. If |G′′| > |G|, then M = Extract(G′′, S) has w0 ≥ 1 (see Lemma
5.13). By Lemma 5.13, the probability is at most R that Extract(G′′, S) is not empty.

By Corollary 2.3, the probability is at most e−
ε2

3 k2 that |{i | Match(G′′, Si) �= ∅
for Si ∈ Z2}| ≥ (R + ε)k2. Since Phase-One of Algorithm Find-Noisy-Motif returns
at most k1 sequences in W (because Z0 has only k1 pairs), the probability is at most

k1e
− ε2

3 k2 ≤ η
2x (by inequality (13)) that the following statement (c) is false.

Statement (c). |{i | Match(G′′, Si) �= ∅ for Si ∈ Z2 = {S1, · · · , Sk2}}| ≤ (R+ ε)k2
for every G′′ ∈ W with |G′′| > |G|.

Let G1 be any of the longest sequences returned by Extract(S′
1, S

′
2) such that

|{i | Match(G1, Si) �= ∅ for Si ∈ Z2 = {S1, · · · , Sk2}}| ≥ (Q0 − R − ε)k2 > (R + ε)k2
(by inequality (24)). If statements (a), (b), and (c) are all true, then |G1| = |G|. By
Lemma 5.14, the probability is at most e−

ε2k2
3 that |{i | Match(G1, Si) = ℵ(Si) for

Si ∈ Z2 = {S1, · · · , Sk2}}| < (Q0 −R− ε−R − ε)k2 = (Q0 − 2R− 2ε)k2. Therefore,

the probability is at most k1e
− ε2k2

3 ≤ η
2x that the following statement (d) is false.

Statement (d). |{i | Match(G1, Si) �= ℵ(Si) for Si ∈ Z2 = {S1, · · · , Sk2}}| ≥
(Q0 − 2R − 2ε)k2 for every longest G1 that satisfies |{i | Match(G1, Si) �= ∅ for Si ∈
Z2 = {S1, · · · , Sk2}}| ≥ (Q0 −R− ε)k2.

For a fixed j with 1 ≤ j ≤ |G1| = |G| and k2 sequences in Z2, by Corollary 2.3,

with probability at most e−
ε2k2

3 , there are more than (α + ε)k2 mutated characters

ℵ(Si)[j] (i = 1, . . . , k2). Thus, the probability is at most n0e
− ε2k2

3 ≤ η
2x (by inequal-

ity (12)) that the following statement (e) is false.

Statement (e). For every j with 1 ≤ j ≤ |G1|, |{i | ℵ(Si)[j] �= G[i] for Si ∈ Z2 =
{S1, · · · , Sk2}}| ≤ (α+ ε)k2.

We have probability at most 5 · η
2x ≤ 1

2x that at least one of statements (a)–(e)
does not hold. In other words, we have probability at least 1 − 1

2x that statements
(a)–(e) are all true. Now we assume that statements (a)–(e) all hold.

Therefore, by inequality (24), (Q0 − 2R − 2ε − α − ε)k2 > k2

2 . For each j
with 1 ≤ j ≤ |G1| = |G|, we have |{i | Extract(G1, Si)[j] = G[j] for Si ∈ Z2 =
{S1, · · · , Sk2}}| ≥ (Q0 − 2R− 2ε − α− ε)k2 > k2

2 . Therefore, G can be recovered by
voting.

The running time of Phase-One is O(k1n
3), and the running time of Phase-Two

is O(k1k2n
2). The total time complexity for Find-Noisy-Motif is O(n3) since k1 is

constant for some fixed x and k2 = O(log n).

Since the length upper bound of motif G is no more than the length of an input
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sequence (n0 ≤ n), we have the following simplified result, which does not involve n0.

Theorem 5.15. Assume that the mutation probability upper bound α is less than
0.1771. There exist constants t0, δ0, and δ1 such that if the size t of the alphabet Σ is
at least t0 and the length of the motif G is at least δ0 logn, then, given k Θα(n,G)-
sequences with k ≥ δ1 logn, Algorithm Find-Noisy-Motif outputs G with probability at
least 1− 1

2x and runs in O(n3) time.
Proof. Set n0 = n and apply Theorem 4.1.

6. Lower bounds on the parameters of motif discovery. In this section,
we show some lower bounds for the length of the motif and the number of input
sequences that are needed to recover the motif with high probability. Theorems 6.1
and 6.2 together show that the requirements for the motif length and the number of
input sequences for Find-Noisy-Motif in the main theorem, Theorem 4.1, are optimal
to within a multiplicative constant factor.

6.1. Lower bound for the motif length. Theorem 6.1 shows that when the
motif is short relative to the lengths of input sequences, it is impossible to recover the
motif with a small number O(log n) of sequences.

Theorem 6.1. Assume that constant ε > 0 and the alphabet has constant number
t characters. There is a constant δ > 0 such that with probability at least 1−o(1), given
n1−ε input Θα(n,G)-sequences S1, · · · , Sn1−ε , every sequence of length m0 = 	δ logn

is a substring of each Si for i = 1, 2, . . . , n1−ε.

Proof. We assume that n is sufficiently large. Assume that the length of the
motif is m0 = 	δ logn
 ≤ 2δ log n for a small constant δ > 0 such that δ log t < ε/8.
Thus, tm0 ≤ 2(log t)(2δ logn) < 2

ε
4 logn. Let S be a Θα(n,G)-sequence. We partition a

substring S′ of length n/3 of S such that S′ does not intersect the motif region ℵ(S)
into n′ = � n

3

m0
� > n

6δ logn blocks of size m0 each. The probability that a pattern G′ of

length m0 does not occur in these n′ blocks is (1− 1
tm0

)n
′
< 2

−n′
tm0 < 2

− n
6δ log n

1

2
ε
4

log n <

2
− n

2
ε
3

log n ≤ 2−n1− ε
3 for large n. The probability that at least one of those tm0 patterns

does not occur in S is at most tm0(1− 1
tm0

)n
′
< 2

ε
4 logn2−n1− ε

3 < 2−n1− ε
2 .

The probability is at least 1 − 2−n1− ε
2 that the above sequence S′ contains all

the sequences of length m0 as its sequences. If the number of input sequences is

k = n1−ε, then the probability is at least (1− 2−n1− ε
2 )k = 1− o(1) that each of the k

input sequences of length n contains all sequences of length m0 as its substrings.

6.2. Lower bound for sample complexity. We consider the lower bound for
the number of sequences needed for recovering the motif. Theorem 6.2 shows that if
the number of input sequences is o(log n), then it is impossible to recover the motif
correctly.

Theorem 6.2. There exists a constant δ such that no algorithm can recover the
exact motif G with at most δ logn Θα(n,G)-sequences.

Proof. Assume that the motif region occupies each input sequence entirely. Thus,
every character in the input sequence has probability α to mutate. We assume that
α is a positive constant. Assume that we have k sequences S1, · · · , Sk. For a fixed i
with 1 ≤ i ≤ n, the probability that all the characters S1[i], · · · , Sk[i] mutate is αk.
Therefore, the probability is 1− (1− αk)n that for some i with 1 ≤ i ≤ n, all the ith
characters S1[i], · · · , Sk[i] mutate. Note that 1 − (1 − αk)n is very close to 1 when
k < δ logn. When there is an i such that all characters S1[i], · · · , Sk[i] mutate, it is
impossible to recover the ith character of the motif.
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7. Conclusions. We have proved that if the mutation probability upper bound
α is less than 0.1771, there exist constants t0 > 0, δ0 > 0, and δ1 > 0 such that
if the length of the motif is n0 > δ0 logn and the alphabet has at least t0 charac-
ters, then there exists an O(n3)-time algorithm that, given at least δ1 logn0 input
sequences, can find the motif with high probability, where n is the longest length of
any input sequence. Very recently, we have also shown [4] that for any alphabet Σ
with |Σ| ≥ 2, for every motif G ∈ Σρ − Ψρ,h,ε(Σ), where Ψρ,h,ε(Σ) is a small subset

of Σρ with
|Ψρ,h,ε(Σ)|

|Σρ| ≤ 2−Θ(ε2h), if G has length at least c0 logn, it can be recovered

with O(n log n) sequences with high probability. This second algorithm is applica-
ble to DNA motif discovery. An interesting open problem is whether there exists an
algorithm to recover all the motifs for an alphabet of four characters.
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