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Probabilistic Analysis of a Thin-walled Beam with a Crack 

Chalitphan Kunaporn 

(ABSTRACT) 

 

 It is reasonable to assume that an aircraft might experience some in-flight discrete 

source damage caused by various incidents. It is, thus, necessary to evaluate the impact of 

such damage on the performance of the aircraft. This study is focused on evaluating the 

effect of a simple discrete damage in an aircraft wing on its static and dynamic response. 

The damaged wing is modeled by a thin-walled beam with a longitudinal crack the 

response of which can be obtained analytically. As uncertainties are present in the location 

and size of the crack as well as in the applied loads, their effects are incorporated into the 

framework consisting of structural response, crack propagation and aeroelasticity. 

 

 The first objective of this study is to examine the effect of damage represented by a 

crack on the wing flexibility that influences its deformation and aero-elastic divergence 

characteristics. To study this, the thin-walled beam is modeled by Benscoter thin-walled 

beam theory combined with Gunnlaugsson and Pedersen compatibility conditions to 

accurately account for the discontinuity at the interface of the cracked and uncracked beam 

segments. Instead of conducting a detailed finite element analysis, the solution is obtained 

in an exact sense for general distributed loads representing the wind pressure effects. This 

analytical approach is shown to provide very accurate values for the global beam response 

compared with the detailed finite element shell analysis. This analytical solution is, then, 

used to study the beam response probabilistically. The crack location and size are assumed 

to be uncertain and are, thus, characterized by random variable.  For a specified limit state, 

the probability of failure can be conveniently calculated by the first order second moment 

analysis using the safety index approach. The same analytical solution is also used to study 

the aero-elastic divergence characteristics of a wing, the inner structure of which is 

represented by a thin-walled beam with a crack of uncertain size and position along the 

beam. 

 



 

 

iii 

 

 The second objective of this study is to examine the time growth of a crack under 

dynamic gust type of loading to which a wing is likely to be exposed during flight.  

Damage propagating during operation further deteriorates the safety of the aircraft and it is 

necessary to study its time growth so that its impact on the performance can be evaluated 

before it reaches its unstable state. The proposed framework for the crack growth analysis 

is based on classical fracture mechanics where the remaining flight time is obtained by 

Monte Carlo simulation in which various uncertainties are taken into account. To obtain 

equivalent cyclic loading required for crack growth analysis, random vibration analysis of 

the thin-walled beam is conducted for stochastic wind load defined by a gust load spectral 

density function. The probability of failure represented by the crack size approaching the 

critical crack size within the flight duration or the remaining flight time before a crack 

reaches its limiting value are obtained. 

 

  This study with a simple representation of a wing and damage is anticipated to provide 

initial guidance for future studies to examine the impact of discrete source damage on the 

in-flight performance of the aircrafts, with the ultimate goal of minimizing the adverse 

effect and enhancing the safety of aircrafts experiencing damage. 
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Introduction 

 

 It is realistic to expect an aircraft having some damage caused by various reasons such fatigue 

induced cracks, impact with an object during, gust overload during its flight, etc. Nguyen et al. 

[1] have identified several such damage. Such damage can adversely affect the flight 

performance of the aircraft. Thus, in 2007, NASA launched a research initiative called Integrated 

Resilient Aircraft Control (IRAC) to study the effects of damage with the ultimate objective of 

assessing and increasing the survivability of the aircraft under various adverse conditions. This 

identified three research sub-topics for the development of computationally efficient: (i) methods 

for calculating the load constraints that are useful for control adaptation given damage, (ii) next 

generation methods for estimating the progression of the damage and (iii) a probabilistic 

methodology to estimate damage growth and remaining life considering all significant 

uncertainties of the event and the system. The focus of these sub-topics was on the effect of the 

so-called discrete source damage. Discrete source damage, while not leading to an immediate 

loss of the flight vehicle, may induce substantial reduction in the strength and stiffness that could 

greatly reduce the load carrying capability of the flight vehicle structure [2-4]. A rapid 

assessment of the damage and its effect on the further load carrying capability (maneuver loads) 

of the aircraft during the remainder of the flight is, thus, of crucial importance. 

 

1.1 Research Focus of the Study 

 Discrete source damage is of special concern if it occurs in the aircraft wings as the wings are 

among the most important structural and aerodynamic components of any aircraft. The damage-

induced reduction of the wing stiffness may require unexpected changes in control system of 

aircraft [2] as it may result in altered aeroelastic forces and wing deformations. Such damage 

may also grow with the time during the flight, further worsening the safety of the aircraft. It is 

thus important to be able to calculate the altered wing response in the presence of damage as well 

as to examine the growth of damage with time to determine if the aircraft can land safely before 

the damage becomes too large. The research in this study addresses these three objectives of 

calculating (a) the response of a damaged wing under static and dynamic loads that are likely to 

be applied to an aircraft wing, (b) the growth of a crack with time under applied loads and (c) the 

changes in divergence condition initiated by damage. Since there can be uncertainties in the 
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crack location and size as well as in the applied loads, this study considers the effect of these 

uncertainties in the wing response and crack growth. 

 

 The aircraft wings can be in different shapes and have different geometric and structural 

characteristics. To accurately represent the structural characteristics of such wings for a 

numerical study, one would need a finite element model of the beam. However, to formulate an 

analytical/numerical methodology to investigate the two aforementioned aims with reduced 

computational demand, herein in this study a simple shape of a thin walled beam of closed cross 

section is assumed to represent a wing. The damage in this beam is represented by the presence 

of a crack, the size and location of which are assumed to be uncertain quantities represented by 

random variables. Such a simplified model can be analyzed for different loading and damage 

scenario relatively easily without attempting to use a large finite element model with several 

thousand degrees of freedom. This study with a simple representation of a wing and damage is 

expected to provide the initial guidance about including the effects of the load and damage 

uncertainties in more realistic performance analysis and evaluation of actual aircraft wings. 

 

 The research framework of this study is focused around three related topics dealing with 

effects of crack on the response and performance of wings represented by thin-walled beams. In 

the first part, the focus is on the global response of a thin walled beam in the presence of a crack. 

This provides a basis to examine the effects of the random crack parameters on the global 

response quantities such as the angle of twist and deflections of the beam. Crack parameters that 

are considered are the size of the crack and its location along the span. The impact of the crack is 

evaluated in probabilistic terms such as the response exceeding a threshold. Although it is not a 

part of this research, this methodology can also be extended to examine the effect of the 

uncertainties on the control system constraints.  

 

 The focus of the second part of the study is on the local analysis where the growth of a crack 

in a thin walled beam subjected to external stochastic loads is of major concern. In this part also 

a cantilevered thin-walled beam of rectangular cross section with a crack is used as a simple 

representation of a damaged wing. Like the first part, the initial crack length and crack location 

are assumed to be random variables.  
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 The third part of study focuses on the effect of the crack on the aero-elastic response of the 

wing, again represented by a thin-walled beam. The interaction of the aero-dynamic loading with 

the twisting response of the wing can lead to a phenomenon, called divergence. Divergence in 

general can be estimated without difficulties; however, when damage is present, this condition is 

subjected to change. This study focuses on the effect of the crack characteristics such as its size 

and location on the divergence dynamic pressure. For random characteristics of the crack, the 

probability of the divergence dynamic pressure falling below a limit state value is also evaluated 

using the safety index approach. 

  

 Inclusion of damage and examining its impact on the performance of a structure like an 

aircraft wing accurately under dynamic and static loads is a difficult problem. Even for a wing 

modeled as a thin-walled beam, examining the effect of a damage like a crack which introduces 

discontinuity in the structural model requires special approaches in modeling to capture the 

damage effect accurately in calculating the response and evaluating its impact on the structural 

performance. To accurately include the effect of a crack in static and dynamic situations and to 

implement the probabilistic concepts in the analysis of the assumed structures, a handful of 

discontinuity modeling approaches and probabilistic approaches were reviewed in this study in 

order to select the most appropriate approach for the problem at hand. In the following, we 

present a survey of this literature review to provide the background to a reader about approaches 

that are used in the following chapters of this study. 

 

1.1.1 Modeling of Thin-walled Beams  

 Modeling of torsion and thin-walled beams has been of interest for more than a century and 

several theories have been developed. At the early stage of development, bending and torsion in 

thin-walled beam had been considered independently following the treatment for a beam of solid 

cross-sections. Theories on bending are well established and they thus are discussed here only 

for the completeness sake. The Euler-Bernoulli beam theory which ignores shear deformations 

and Timoshenko’s beam theory which includes shear deformation have been used to describe the 

bending of solid cross as well as section thin-walled beams. Development of theories for thin-

walled beam under torsion has many interesting aspects due to warping that are worth 

discussing. 
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 In 1853, St.Venant [3, 4] was perhaps the first one to address the issue of torsion in beams 

without warping. Prandtl [3, 5] later introduced the membrane analogy approach in 1903, making 

it possible to apply St.Venant’s theory to thin-walled cross-section. In 1905, Timoshenko 

introduced the concept of non-uniform torsion with warping when the governing equations of an 

I-beam with one end fixed were derived [6]. In 1921, Maillart [3] introduced the concept of shear 

center and explained the coupling between torsion and bending in unsymmetrical cross-sections. 

 

 

Figure 1.1 Free body diagram of a flexural-torsional member 

 

 During 1930s, Vlasov [7] published a book in Russian describing a generalized theory of 

coupled flexural-torsional of thin-walled beams currently recognized as Vlasov’s beam-torsion 

theory. His theory included an additional component subjected to the restraining warping and 

this is currently referred as “Vlasov shear”. Timoshenko and Goodier [7] also developed 

independently a generalized theory for coupled flexural-torsional beams [5]. In 1954, Benscoter 

[4, 8] introduced a more generalized theory for thin-walled beams with closed cross-section 

assuming an additional warping degree of freedom. This warping degree of freedom was 

assumed independent of the rate of twist, thus allowing the term of shear strain to be described in 

an exact sense. Since then, the theories by Vlasov and Benscoter have been used as the basis in 

most studies of thin-walled beams. 

 

 Some important contributions that are worth acknowledging were made during 1960 and 

1980. In 1964, Capurso [11] presented an idea of generalized higher order warping functions by 

incorporating additional degrees of freedom to better define the deformation modes of a cross-

section. Nishino et al. [9] in 1976 introduced a shearable theory for closed cross section thin-
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walled beams that took into account the transverse shear effect and distortion of cross-section. In 

1977, Bishop and Price [10] published a work, demonstrating how to include the effects of shear 

deformation and rotary inertia in flexural-torsional beam vibration regardless of the warping 

stiffness. They suggested that these effects are negligible in the deformation shapes of 

fundamental modes but become appreciable in the corresponding natural frequencies. In 1992, 

Capuani and Laudiero [11] generalized Timoshenko’s beam formulation to use in coupled 

vibration analysis by including the effect of shear strains due to non-uniform bending and 

torsion. The thin-walled beam torsion and bending theories proposed so far can be categorized 

into four groups [12, 13]. 

 

 Euler-Bernoulli’s theory: This beam theory for bending of Euler-Bernoulli was extended to 

include the coupled flexural-torsional effects by combining with St.Venant’s shear as shown in 

Dokumaci [14, 15] or St.Venant’s and Vlasov’s shear as in Bishop [16]. 

 

 Vlasov’s theory: Vlasov originally introduced a thin-walled beam theory for non-uniform 

torsion considering both St.Venant’s and Vlasov’s shear components. The theory basically 

generalized Euler-Bernoulli’s theory by taking the effect of rotary inertia into consideration [12]. 

This theory is discussed in many textbooks on thin-walled beam [4, 5, 17]. Applications based on 

this theory can be found in [17-22].  

 

  Timoshenko’s theory: This theory takes into account the rotary inertia and the shear 

deformation which allows the cross-section to deform in more realistic fashion. Early works 

based on this theory did not include the effect of restraining warping such as in [10] while later 

works that include warping stiffness can be found in [12, 13, 18-23]. 

 

 Benscoter’s theory: The assumption of warping displacement being dependent on the rate of 

twist could lead to significant errors in calculating shear stresses near the location of warping 

restraints and in closed cross-sections. Benscoter [8], thus, introduced a more generalized 

approach of employing an additional warping degree of freedom to describe displacement fields 

independently. This theory is illustrated in [13, 17-19]. 
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1.1.1.1 Thin-walled Beam of Discontinuous Cross Sections 

 In many situations, the thin-walled beams may have discontinuities in their cross sections 

introduced by cuts and openings. For the analysis of such a structure with sharp variation at 

interfaces of open and closed cross sections, classical thin-walled beam theories mentioned 

above cannot be applied without any modifications [17]. The sharp variations introduce 

discontinuities requiring special compatibility considerations. In classical beam theories, this 

issue had not been discussed, until Gunnlaugsson and Pedersen [18] in 1982 introduced the 

concept of least-square compatibility conditions. The idea proposed a practical way to minimize 

differences of warping displacements across interfaces between two contiguous beams possess 

different cross-sections. The conditions of least squares were implemented into Benscoter’s 

beam model including transverse shear deformation. Tralli [19] in 1986 presented the use of a 

hybrid beam-plate element to solve the same problem of a beam subjected to discontinuities or 

sharp variations at interfaces. In 1991, Pedersen [20] further improved this earlier work with 

Gunnlaugsson [18]. This work utilized the concept of generalized higher-order warping functions 

originally introduced by Capurso [21] to provide more accurate results both for static and 

dynamic responses [22]. Prokic [17, 23, 24] published a new warping function to be used in 

three-dimensional thin-walled beams. The approach is able to handle a beam of any arbitrary 

closed and open cross-sections as well as the issue of discontinuity. In 1996, Park et al. [25, 26] 

used the work of Gunnlaugsson and Pederson [18] in their study on the effect of shear lag on 

deflection and stress concentration caused by shear warping deformation. 

 

 Shakourzadeh et al. [13] published a work discussing on differences between Vlasov’s and 

Benscoter’s beam theory. Their results showed some pitfalls of Vlasov’s beam when applied to 

beams of closed-sections. Due to the complexity of full three-dimensional analysis of Prokic’s 

works, Saade et al. [27] published a work that simplified Prokic’s works by employing a single 

warping function instead of three-dimensional warping functions. This work gains the 

advantages from two different theories by utilizing Vlasov’s beam in open cross-section for 

simplicity whereas applying Benscoter’s beam in closed cross-section requiring the shear flow 

along periphery. 
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1.1.1.2 Vibration of Thin-walled Beam 

 This section is dedicated to the discussion on the solutions of thin-walled beam vibration 

problem. The review concentrates only on the solutions to torsional and coupled flexural-

torsional vibrations as the pure flexural and axial vibrations are not the cases of interest in this 

study. Different solution approaches have been developed independently. Exact analytical 

solutions are feasibly only for beams with simple boundary conditions [28] while approximate 

solutions are available through many techniques of discretization such as Lumped mass, 

Rayleigh-Ritz, Assumed mode, Galerkin and Finite element methods. Basically, these 

approaches can be divided into two categories. The first discretizes the continuous system by 

lumping the masses at discrete points while the second discretizes by assuming the final form of 

solution as the product of time and space-dependent functions [29]. All publications 

demonstrating applications of these methods to thin-walled beams are briefly discussed 

chronologically. 

 

 In 1954, Gere [30] published the classical work on exact solutions of pure torsional vibration 

problems of thin-walled beams of doubly symmetric cross-sections with various boundary 

conditions. Gere and Lin [31] published another paper on both exact and approximate solutions 

of coupled flexural-torsional vibrations for beams of non-symmetric cross-sections. In 1973, 

Falco and Gasparetto [15] applied the method of transfer matrix to a mass-discretized system so 

as to determine the natural frequencies and corresponding modes for the coupled flexural-

torsional vibration problem excluding warping rigidity. 

 

 Hallauer [32] in 1982 derived analytically the expression of dynamic stiffness matrix for 

coupled flexural-torsional Euler’s beams. In 1984, Rozmarynowski and Szymczak [33] derived a 

solution to the nonlinear problem of torsional vibration of bi-symmetric cross-section using a 

finite element method. Noor et al. [34] developed a mixed finite element method to solve the 

coupled flexural-torsional vibration of a curved beam. In 1990, Ahmad and Guile [35] presented 

a work on the comparison of coupled flexural-torsional natural frequencies between beam and 

shell models based on finite element. Results show consistency between models at fundamental 

modes. Banerjee and Williams [36] in 1992 demonstrate an analytical method to obtain the exact 

expression of dynamic stiffness matrix for coupled flexural-torsional Timoshenko’s beam. In 
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1993, Mcgee et al. [37] presented an analytical solution to the case of torsional vibration under a 

pre-twisted loading. 

 

 Bercin and Tanaka [12] in 1997 employed the method proposed by Banerjee and Williams 

[36] to obtain numerical results for the case of a thin-wall beam of monosymmetric cross-

section. They found that the effects of warping stiffness, shear deformation and rotary inertia 

were significant for the modal frequency when the thickness of cross-section increases. 

Eisenberger [38] derived an exact solution of modal frequencies and dynamic stiffness matrix for 

torsional vibration of variable cross-section. In 1999, Wu [39] proposed an alternative method to 

estimate natural frequencies and mode shapes. The approach consisted of applying an analytic-

numerical combined method to the equivalent two degree of freedom spring-mass system. 

 

 In 2000, Kuang [40] utilized the Galerkin technique to approximate the frequencies and mode 

shapes of coupled flexural-torsional vibrations of shear walls. Ambrosini [41] presented the use 

of state-variable technique to analyze the free vibration of coupled flexural-torsional beams in 

the frequency domain. Mohri [42] studied the vibration characteristics of buckled thin-walled 

beams. Prokic [43, 44] published two companion papers in 2005 and 2006 giving comprehensive 

derivations of coupled flexural-torsional Vlasov’s and Timoshenko’s beam vibrations including 

their exact solutions for the case of uniform simply-supported beams. In 2006, Kapania and Kim 

[45] investigated the uses of various orthogonal polynomial functions in the approximate 

solutions of flexural-torsional vibrations of slewing beams. They found that the use of simple 

Legendre polynomials provide the best efficiency in obtaining results compared with other types 

of orthogonal polynomials. Senjanovic [46] demonstrated the use of one dimensional finite 

element model to approximate the dynamic response of ship hull. Several other studies by Song 

and Librescu [47], Librescu [48], Suresh [49], Qin [50], Librescu [51], Jun et al. [52] and Wang 

[53] are also available in the literature describing the solutions to thin-walled beam vibrations of 

anisotropic materials. 

 

1.1.2 Probabilistic Methods and Reliability Analysis 

 The concepts of probability were introduced to engineering applications to deal with the 

issues of uncertainty occurring naturally in the design of engineering structures. The review of 
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literatures on this section focuses on the development of these concepts and methodologies as 

applied to the field of structural engineering. Both static and dynamic methodologies are 

discussed for the sake of completeness. 

 

1.1.2.1 Reliability Method 

 The concept of reliability-based design was originally introduced by Freudenthal et al. [54-56] 

during 1950s and 1960s. Since in most engineering applications, one would usually have 

information only about the first two moments of the random variables and not full distribution 

information, in 1967 Cornell [57] introduced the safety index approach as a measure of safety or 

probability of survival of structures in terms of the first two moments of its load and capacity 

variables. In 1969 and 1974, Cornell and Ang [58, 59] formalized this concept of reliability 

evaluation approach called as the first-order reliability method (FORM) or particularly first-order 

second-moment method (FOSM). The approach used the first-order linear approximation of limit 

state function. Due to neglecting higher order terms, the result contained significant error for the 

case of non-linear limit state function and the safety index of reliability could not be uniquely 

defined for different but equivalent forms of the limit state function. Realizing this, in 1974 

Hasofer and Lind [60] introduced the use of transformed or reduced coordinated system to 

normalized random variables. This idea enabled the use of an optimization technique based on 

Lagrange multipliers to obtain the invariant safety index values for nonlinear limit state 

functions. This approach is currently referred as Hasofer-Lind method. In 1976, Rackwitz [61] 

formulated an iterative algorithm to circumvent the inconvenient procedure of solving multiple 

equations in the Lagrange multiplier approach. Due to the limitation of Hasofer-Lind method 

being only applicable to normal variables, Rackwitz and Fiessler [62] in 1976, introduced a 

method of estimating the equivalent normal distribution of non-normal variables. In 1978, 

Rackwitz and Fiessler [63] published an alternative algorithm of iteration based on Newton-

Raphson recursive formula. This method has an advantage over Rackwitz’s first method as it did 

not require the definition of the limit state equation in closed-form. This procedure is currently 

recognized as the Rackwitz-Fiessler algorithm. However, the algorithms sometimes do not 

converge to yield the final result in some certain cases due to numerical divergence. A method 

proposed by Broyden-Fletcher-Goldfarb-Shannon method or so-called BFGS algorithm is 

recommended for those particular cases [64]. 
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 To improve the accuracy of the results obtained using the first-order approximation (FORM), 

the second-order reliability method (SORM) was first introduced by Fiessler et al. [65] using the 

technique of quadratic approximations. In the case of correlated random variables, an additional 

step of orthogonal transformations needs to be incorporated into the formulations. Der 

Kiureghian and Liu developed a semi-empirical formulation to facilitate the complexity in 

obtaining the correlation matrix [64]. Most of the time, the solution of a structural engineering 

problem can only be obtained numerically and its limit state function is not explicitly defined in 

a closed form. Those standard approaches are inconvenient and complicated to be used to obtain 

the results. Therefore, computational approaches are preferable for the cases of implicit limit 

state function. Three categories of approaches are essentially Monte Carlo Simulation, the 

Response Surface Approach and Sensitivity-based Analysis [64]. Comprehensive details of 

derivations and calculations are described in several published books in this area by Ang [66], 

Elishakoff [67], Melchers [68], Rao [69], Haldar [64], Nowak [70], Nikolaidis [71, 72], Choi 

[73] and Maymon [74]. 

 

1.1.2.2 Random Vibration of Beam-type Structure 

 Probabilistic structural dynamics was originally developed in the late 1950s. Its objective was 

to deal with the issue of uncertainty in the motion of structures due to unpredictable excitations. 

Stochastic input yields the output of stochastic characteristics [75]. Books by Crandall [76] in 

1959, Crandall and Mark [77] in 1963 and Lin [78] in 1967 are among the classics on this topic, 

introducing the theory of random vibrations. In 1969, Shinozuka and Yang [79] demonstrated the 

application of random vibrations to linear structures. In 1980, Davies [80] presented a work on 

random vibration of beam subjected to impact loads dedicated to the application in piping 

systems. Elishakoff and Livshits [81, 82] in 1984 and 1989 presented closed-form random-

vibration solutions of Euler and Timoshenko beam bending respectively. In 1993, Singh and 

Abdelnaser [83, 84] derived analytical random-vibration solutions of externally-damped 

viscoelastic Timoshenko beams and cantilevered composite beams with coupled bending-torsion. 

Eslimy-Isfahany [85] presented a work in 1996 on the response of an aircraft wing modeled 

using coupled bending-torsion beam subjected to random loads. Jun et al. [86] in 2004 employed 

the concepts from a publication of Bercin and Tanaka [12] so as to derive the analytical 

expressions of the response of a mono-symmetric thin-walled beams subjected to random 
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excitations using combined approach of the normal mode superposition and frequency response. 

Jun and Xiading [87] also extended their derivations to composite thin-walled beams. 

Fundamental concepts of random vibrations are now given in several books in this area by 

Nigam [88, 89], Newland [90], Lin and Cai [75], Lutes and Sarkani [91] and Soong and Grigoriu 

[92]. 

 

1.1.3 Fracture and Fatigue 

 Since this study deals with the development of cracks under uncertain dynamic loading, here a 

brief review of the literature on this topic related to this study is presented. In particular the focus 

of this discussion will be on the literature involved in the study of growth of a crack with random 

properties and modeling uncertainties under random dynamic loading. Early contributions to the 

area of random fatigue were introduced during 1940s and 1950s in a series of publications by 

Freudenthal, Gumbel and Heller [93-95]. These early studies focused only on the initiation of 

cracks. Prominent references in this area are the books by Heller [96], Haugen [97], Provan [98], 

Sobczyk [99] and two latest published books by Schijve [100] and Castillo [101]. 

 

 A methodology based on theory of fracture mechanics was originally proposed during early 

1960s for fatigue crack growth investigations. The approach focused on the continuum regime or 

intermediate phase of crack propagation between the phases of crack initiation and final fracture 

phase. The approach assumes that even a crack size below a critical crack level will keep 

propagating when subjected to cyclic loading [102]. This approach is appropriate for failure 

analysis of damaged structures in which damage appears as a long crack. The fundamental 

concept of this approach is that the rate of crack growth is correlated to the change in stress 

intensity factor, which is described by an empirical differential-equation model. Within the 

intermediate zone of crack propagation, concepts of linear elastic fracture mechanics are 

applicable. Three classical models are Paris-Erdogan equation [103], Forman equation [104] and 

Walker equation [105]. Some slight differences between these models are mainly due to the use 

of the constants obtained by fitting experimental data. The load ratio or R-ratio is recognized to 

be an important factor in these fatigue crack growth models [99, 106]. Two important articles in 

the area were published in 1979 by Skelton [110] and Wanhill [111]. Skelton [107] proposed a 

method to be used for fatigue crack growth subjected to high strain and Wanhill [108] published 
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a study of fatigue crack propagation tested on a flight simulation. The failure of aerospace 

structural element is sometimes governed by low-cycle fatigue. In 1984, Kujawski and Ellyin 

[109, 110] developed a particular crack growth model taking into account of plastic strain energy 

occurring when overload exists as in case of low-cycle fatigue. For high-stress and low-cycle 

fatigue, Rahman et al. [111] in 1997 presented three different schemes to calculating J-integral 

based on EPFM to be used in Paris equation instead of stress intensity factor of LEFM. 

Comprehensive review of crack propagation models can be found in Beden et al. [112]. 

 

 The stochastic model of crack propagation was introduced during late 1970s. In 1979, Virkler 

[113] found from test results that the statistical distribution of cycle to failure could be 

represented by log normal distribution. Yang and Donath [114] in 1983 and Yang et al. [115] in 

1985 published works associated with stochastic crack propagation in fastener holes. Statistical 

distributions of crack size over time and probability of failure were obtained analytically. Results 

from their empirical model were consistent to the experimental data for various load spectra. In 

1985, Lin and Yang [116] introduced the approximation of time-dependent crack size using a 

Markov process. Results showed consistency for practical applications as far as fatigue life is not 

too short. Oh [117] in 1979 and Sobczyk [118] in 1982 proposed an idea of using Markov chain 

and Markov diffusion process to model the stochastic growth of crack. Sobczyk [122] in 1989 

and Trebicki [123] in 1991 considered the intermittent behavior of stochastic crack growth using 

cumulative jump model based on Poisson process while Ditlevsen and Sobczyk [119] included 

an additional effect due to retardation into the same model. Liu et al. [120] in 1996 introduced 

the use of two different first-order reliability methods (FORM) to analyze the stochastic growth 

of crack. The Lagrange multiplier based FORM approach appeared to be the most efficient and 

accurate. Other models and comprehensive discussions on probabilistic modeling of crack 

propagation can now be found in several books such as by Bloom [121], Ellyin and Fakinlede 

[122], Bogdanoff and Kozin [123], Provan [98], Sobczyk et al. [99], Ellyin [124], Maymon [125, 

126] and Castillo [101]. 

 

1.2 Dissertation Organization 

 This dissertation consists of three main chapters dealing with the three topics mentioned 

earlier. Each chapter is written as a technical paper, ready for submission for its possible 
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publication. The papers in Chapter 2 and Chapter 3 have already been published in the AIAA 

SDM conference held in Florida in April 2010. A brief outline of each chapter is provided in the 

following. 

 

 Chapter 2 presents the formulation for the global response analysis of a thin-walled 

cantilevered beam with a longitudinal crack. The model of rectangular beam with a crack parallel 

to the beam on one of the faces is considered to represent a damaged wing. The thin-walled beam 

is modeled using the Benscoter [8] theory coupled with Gunnlaugsson and Pedersen [18] 

compatibility conditions to deal with the issue of warping and deformation compatibility 

between the open and closed cross sections. The uncracked portion of the beam is represented by 

a closed cross section thin-walled beam and the cracked portion by an open cross section thin 

walled beam. The governing equations of the beam for general loading configuration with 

flexural, axial and torsional loads are obtained by the principle of virtual work. The couple 

equations of motion are solved analytically in closed-form using a special form of eigenfunction 

expansion approach so-called the Jordan canonical form to define the beam response under the 

applied loads. This closed form solution is then used in the probabilistic analysis where the 

parameters of crack location and crack length are considered as random variables with known 

mean and standard deviation values. The probability of a response quantity exceeding a limiting 

value is obtained using the safety index approach. Numerical results are obtained for the 

probability of the cracked beam response exceeding a factor time the un-cracked beam response 

using the safety index approach. The numerical results obtained in the first version of this study 

were presented in a paper in the SDM conference in April 2010 [127].  

 

 Chapter 3 describes a local analysis approach wherein a methodology for determining the 

growth of a crack under random dynamic loading is presented. The crack growth in the study is 

defined by the Forman equation which is a modified version of the famous Paris-Erdogan crack 

growth model. This model requires the definition of the stress field in uncracked beam, stress 

intensity factor, stress factor ratio and information about stress cycles. To obtain the stress cycle 

information for the beam, the beam is again modeled by Benscoter [8] thin-walled theory with 

combined bending torsion effects. The equations of motion of such a beam subjected to 

generalized loading are obtained by the variational methods. These equations of motion can be 
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solved analytically using the state-space form approach or by the Rayleigh Ritz approach with 

assumed modes. Here in this study, the results are obtained by the latter approach. The loading 

on the beam is defined by gust spectra characterized by a spectral density function. The 

equations of motion are solved to obtain the stress response spectral density function. This 

spectral density function is used to calculate the spectral moments of the stress response that are 

needed to define the probability density function of the stress peaks. The probability density 

function of the stress peaks is used to define the statistics of the peak stress response such as 

equivalent stress cycles and stress ratio factors that are needed in the crack growth analysis. 

Since the crack parameters, the location and the size, along with a few other parameters in the 

crack growth model equation are assumed to be random variables, the crack growth must also be 

defined in probabilistic terms. That is, at a given time the size of the crack is a random variable 

and thus must be characterized by its probability density function. To determine this probability 

density function of the crack length, Monte Carlo simulation is used. For each simulated set of 

variable values, the growth model equation is solved numerically to define the time evolution of 

the crack size. At a given time, the sample values of the crack size obtained for each simulation 

define the sample probability distribution of the crack length. The probabilistic comparison of 

the crack length with the fracture toughness provides a good estimate of the probability of failure 

with time. The results of the initial study completed on this topic are presented in a SDM 

Conference paper [128]. This study is hoped to provide the guidelines for the estimation of the 

time to failure and flight risk posed by the presence of a crack on the wing of an aircraft. 

 

 In Chapter 4, the analytical solution developed in Chapter 2 is extended for aero-elastic 

analysis of the beam representing the wing. In particular, the closed form analytical solution of a 

beam with a crack is used to calculate the divergence dynamic pressure for the wing considering 

the interaction between the angle of attack and the twisting moment acting on the wing. Two 

approaches herein called as the iterative and direct approaches are used. The impact of the 

uncertainties in the crack parameters (its size and location along the beam) on the divergence 

dynamic pressure is also investigated probabilistically. 

 

 The dissertation ends with Chapter 5 which finally presents an overall summary of the study 

and its main concluding remarks. 
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Probabilistic Analysis of a Thin-walled Beam with a Crack
*
 

Chalitphan Kunaporn, Mahendra P. Singh, Mayuresh J. Patil and Rakesh K. Kapania 

Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 

 

This paper presents the analysis of a thin walled beam with a longitudinal 

crack of random location and size. The research objective is to understand the 

response characteristics of such a damaged beam with the ultimate goal of 

examining the growth of a crack under random loading. This initial study is 

expected to guide the future analysis of an aircraft wing with uncertain 

damage characteristics. An analytical method is presented to obtain the 

response of a simple thin-walled beam of a closed cross section with a 

longitudinal crack of finite size. For random location and size of the crack, the 

methodology for the first order reliability analysis with analytically calculated 

response is described. The numerical results of the reliability analysis of the 

beam for the reliability defined as the non-exceedance of a limit state are 

presented. 

 

2.1 Introduction 

 The damage in a wing can significantly affect the performance of an aircraft. With the 

motivation of examining the performance of an aircraft with a damaged wing, this study 

examines the response of a hollow thin-walled beam with a longitudinal crack. The crack 

location and size are considered random. First the paper presents an analytical formulation to 

obtain the response of the beam as a function of the crack parameters followed by probabilistic 

and reliability analysis. 

 

 The currently available thin-walled beam theories are adequate to model beams without a 

crack and are able to provide accurate values of the overall response. They require appropriate 

modifications to include a crack and such modification are described in this study. However, 

even with such a modification, they are not able to accurately capture stresses near the crack. So 

the present work focuses primarily on overall deformation analysis of such a beam. 

                                                 
*
 This article is prepared for submission to the AIAA journal. 
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 A beam with a longitudinal crack can be represented by three interconnected thin-walled 

beams. The portion of the beam with the crack can be modeled as an open section thin-walled 

beam, whereas the other two sections as closed section thin-walled beams. Such a beam when 

subjected to lateral loads or a twisting moment is expected to warp. The thin-walled beam 

theories that allow us to include warping can be mainly divided into two categories: Vlasov 

beam theory [4, 5, 22, 43, 129] and Benscoter beam theory [8, 13, 18, 20, 26, 130, 131]. In this 

study, the derivation is based on Benscoter beam theory where the warping degree of freedom is 

considered independent of the rate of twist. The equilibrium equations and the boundary 

conditions for the system are derived using the principle of virtual work. The coupled 

equilibrium equations are then expressed in state space form which allows us to solve them using 

the Jordan canonical form approach. The accuracy of the calculated response by the proposed 

approach is validated by a detailed shell finite element analysis.  

 

 To investigate the effect of random characteristics of a crack on the performance, a first order 

reliability analysis method [61-64, 66] is used. The higher order analyses [65] could also be used 

to improve the reliability estimates especially if the limit state boundary is highly nonlinear. This 

is, however, not attempted in this study as the limit state boundaries used in this study are nearly 

linear. For the reliability analysis, the limit state is defined in terms of the angle of twist 

exceeding some limiting value. Since the response quantity of interest is not explicitly defined in 

closed-form in terms of the crack parameters, the gradients needed for the reliability analysis 

must be calculated by chain rule, applied at successive analytical steps that are used in the 

response calculations. The numerical results demonstrating the methodology are presented. 

 

2.2 Analytical Model of a Thin-walled Beam with a Crack 

 The damaged structure is modeled as a hollow cantilever thin-walled beam of a rectangular 

shape shown in Figure 2.1. The damage is represented by a longitudinal crack of a given length 

on the top face. The beam is divided into three parts with the cracked part between the two 

undamaged parts. The undamaged beam portions are represented as the closed cross-section 

beam and the damaged portion as the open cross-section beam as shown in Figure 2.1. The 

kinematics of thin-walled bar is described using the combination of the Cartesian         and 
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orthogonal curvilinear         coordinates. For convenience, the global     and local      

coordinates are used interchangeably. 

 

 

Figure 2.1 Damaged structure modeled with a cracked thin-walled cantilever 

 

 The closed cross-section is assumed to be not deformable in its own plane. Therefore, only 

rigid body motions are allowed for the in-plane displacements. The warping in both cross 

sections introduces axial deformations along the  -direction and shear deformations in the plane 

of the cross section. An arbitrary point,         , or so-called “Pole” is used as the reference to 

describe all displacement fields. The pole of a cross-section along the beam span is chosen at the 

shear centers and the angle of twist,   , is assumed to be about this point. Only two coordinates,   , and warping displacement,  , are needed to define the displacement and stress field to derive 

the governing equations. The tangential displacements,   , and the out-of-plane warping 

displacement,   are used to define the displacement field in the         coordinate system. To 

calculate the warping function of a thin-walled section, we choose a reference point,            , where the coordinate   = 0 for contour integration. The dimensions   and  , 

respectively, are the width and height of the beam cross-section. 
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Figure 2.2 Kinematics of a beam cross-section 

 

 An additional degree of freedom,     , is introduced as the measure of warping. As in the 

Benscoter’s thin-walled beam theory [8], it is assumed to be independent of the axial rotation 

degree of freedom of the beam. In terms of these, the tangential and warping displacements can 

now be written as follows [18]: 

 

                                                                                    (2.1) 

                                                                           (2.2) 

 

where      and      are the displacements of the pole in   and   directions, respectively;       

is the warping displacement of the contour origin;       and       are the rotations of pole with 

respect to the   and   axis, respectively;       is the angle of twist;        is the warping 

function;      is the measure of warping that in special cases can be approximated to the rate of 

twist;    .      denotes the derivative with respect to  ;      and      are Cartesian coordinate 

rewritten in terms of the tangential coordinate. In the linear theory, the rotations of pole are 

described as follows: 

 

                                                                             (2.3) 

                                                                             (2.4) 

 

where      and     are transverse strains. 
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 In the shear deformable beam theory, the Euler-Bernoulli hypothesis is no longer applicable 

as       and       and the transverse strains are included in the derivation. Infinitesimal 

strain tensor in linear theory is expressed in terms of displacements. Based on the thin-walled 

theory, the energy equation requires only two main strain components,     which is the normal 

strain in   direction and          which is the shear strain in    plane. They are defined as 

follows: 

                                                                              (2.5) 

                                                                            (2.6) 

 

 Both the open and the two closed cross-sections have the same geometric center but different 

shear centers, thus, causing the centers of twist to vary along the beam length. Although the 

beam is subjected only to torsion, it is no longer the case of pure torsion, but the coupled bending 

and torsion must be considered. The governing equations are derived using the principle of 

virtual work. The following derivation is based on isotropic materials; however, it could be 

generalized to use for the composite materials as shown in [22]. In static analysis, the principle 

of virtual work can be written as follows: 

 

                                                                               (2.7) 

                                                                  (2.8) 

 

where   and   stand for the body forces and the tractions, respectively.  

 For a thin-walled beam cross-section, the body forces are zero in a static case and the term of 

work due to strain energy can be simplified. Considering the tractions in the form of distributed 

loads along the span and concentrated loads at certain locations of the span, the principle of 

virtual work can be written as follows: 

 

                                                      

                                                                         

                                                                     (2.9) 



Chalitphan Kunaporn                                Chapter 2 Probabilistic Analysis                                               

 

22 

 

where   is the Young’s modulus and   is the modulus of torsional rigidity;   ,    and    are the 

distributed forces in  -,  - and  -direction, respectively;   ,    and    are the distributed 

moments with respect to  ,   and   axis, respectively;    is the distributed warping torque 

about   axis;    and    are the shear forces in   and   directions, respectively;    is the axial 

force;    and    are the bending moments with respect to   and   axis, respectively;    is the 

torque; and    is the warping moment or the so-called “Bimoment”. 

  

 In the span-wise direction, the beam model consists of three portions. For convenience, the 

local coordinates are mainly used as the references in the span-wise direction. The first portion 

has boundaries from      to      , the second portion with the crack spans from      to       and the last portion spans from      to      . For the plane of cross-section, 

however, the global coordinates are still used. The contour origin is chosen so that the warping 

displacement of the contour origin,      , is zero. Substituting all stress and strain components 

and applying the principle of virtual work, the system of equilibrium equations as well as the 

corresponding boundary-continuity conditions are obtained as follows: 

 

                                                                            (2.10) 

                                                                        (2.11) 

                                                                         (2.12) 

                                                                         

  (2.13) 

                                                                       

  (2.14) 

                                                                         (2.15) 

                                                                         

  (2.16) 

 

The geometric problem parameters used in the above equations are defined as follows:       ,          ,          ,           
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           ,           ,           ,  

            ,            ,            

            ,               ,                ,               ,                               ,                ,               ,                ,                 

 

The corresponding boundary conditions at the two ends are obtained as follows: 

 

At the fixed end, 

                                                               ,    ,     (2.17) 

                                                              ,     ,      (2.18) 

                                                                            (2.19) 

 

At the free end,  

                                                                     (2.20) 

                                                                     (2.21) 

                                                                          (2.22) 

                                                                           (2.23) 

                                                                            (2.24) 

                                                                       (2.25) 

                                                                           (2.26) 

 

At the interface of the uncracked and cracked portions of the beam, the boundary conditions are 

defined in terms of the continuity conditions as described in the following. 

 

2.2.1 Continuity Conditions 

 Due to different warping functions used between the closed and the open cross-sections, the 

discontinuity of warping displacements at the interface of the two sections across the beam 

portion is inevitable. In order to deal with this issue, the thin-walled beam theory is modified by 

incorporating the technique proposed by Gunnlaugsson and Pedersen [18, 130] to account for the 
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compatibility conditions in the standard governing equations. To facilitate the minimization of 

the difference, they proposed to include additional constants in the representation of the warping 

displacement only on one side of the interface, as explained in the following.  

 

 At the interface of the two different cross-sections, the warping displacement field of the 

element on the right-hand side is rewritten to include the assumed compatibility constants as 

follows: 

                                                                               

  (2.27) 

 

whereas the warping displacement of the right element remains unchanged as follows: 

 

                                                                        (2.28) 

 

To calculate the constants and define the compatibility condition, we minimize the following 

integral norm of the point-wise difference between the warping displacements: 

 

                                                                         (2.29) 

 

where the superscripts “left” and “right” denote the closed and open cross sections, respectively. 

 

 The necessary conditions for the minimization of this functional provide the compatibility 

conditions and the following four equations to calculate the constant di: 

 

      
        :                                                      (2.30) 

      
        :                                                      (2.31) 

      
        :                                                       (2.32) 

      
        :                                                        (2.33) 
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 On expansion, the above equations lead to the following four simultaneous equations for 

calculating the constants di expressed in terms of the integration constants of the beam cross 

sections.  

 

                                                                                     
 (2.34) 

                                                                                        
 (2.35) 

                                                                                        
 (2.36) 

                                                                                     (2.37) 

 

where the integration constants of the beam cross section,  ,    ,    ,    ,    ,    ,    ,    ,     

and     are the same as defined earlier after the equilibrium equations but they are now defined 

separately for the left and right parts of the beam cross sections. Another constant, undefined 

earlier, is                       which utilizes the warping function on the left and right 

hand side cross sections. 

 

 Here, it is noted that all integration constants are calculated using the shear centers as 

references for both cross-sections. At this step, the constants obtained using the pole as the 

references cannot be used because of the flexural-torsional coupling. However, in order to obtain 

the unique values of all constants no matter which element is assumed to be on the left-hand or 

the right-hand side, an additional normalization needs to be implemented. It requires that the 

product of both constants    -- one when the closed cross section is on the left and the other 

when the closed cross section is on the right -- be normalized, which is basically equivalent to 

the orthogonality as explained in [130]. The compatibility constants can be implemented into the 

model directly as follows:  

 

                                                                                  (2.38) 

                                                                                  (2.39) 

                                                                           (2.40) 

                                                                            (2.41) 
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                                                                           (2.42) 

                                                                                    (2.43) 

                                                                                 (2.44) 

                                                                                    (2.45) 

                                                                                    (2.46) 

                                                                                   (2.47) 

                                                                                 (2.48) 

                                                                                  (2.49) 

                                                                                  (2.50) 

                                                                                     (2.51) 

 

2.3 Analytical Solutions 

 

2.3.1 Solution Approach 

 To obtain the analytical solution for the general case, we require rewriting the set of equations 

as a set of coupled first order equations using state variables and then use Jordan canonical form 

of the system to uncouple the system. For this, the following auxiliary variables:      ,      ,        ,        ,         and       are introduced where     denotes the 

derivative with respect to  ;   is automatically uncoupled and is, thus, not included in the 

analysis. The state vector of variables is defined as follows:  

 

                                                           

 

With the assignment of auxiliary variables as indicated above, the coupled equations can be 

rewritten in the state form as follows: 
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  (2.52) 

 

Equation (2.52) yields the 1
st
 order ODE equation in the following form: 

 

                                                                             (2.53) 

                                                                             (2.54) 

 

 To obtain the solution, the technique of Jordan canonical form [132] is applied. The Jordan 

matrix and the corresponding matrix of transformation are represented by   and  , respectively.  

Let’s define  

 

                                                                                   (2.55) 

 

Substitute Eq. (2.55) into Eq. (2.54), we obtain:                                           

 

                                                                            (2.56) 

 

Pre-multiply Eq. (2.56) by    , we obtain: 

 

                                                                            (2.57) 

 

Consequently, 

                                                                                  (2.58) 

 

where        ,              and          . 
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 The final solution of ODE in Eq. (2.58) is typically written as the combination of 

homogeneous and particular solution as follows: 

 

                                                                               (2.59) 

 

The particular and homogeneous solution in this equation can be expressed as follows: 

 

                                                                             (2.60) 

                                                                                (2.61) 

 

where      and   are the matrix of functions and the vector of the constants of integration, 

respectively. The details of various matrices and vectors are provided in Appendix A. 

Substituting these forms of particular and homogeneous solutions in Eq. (2.59), we obtain the 

following for the complete solution: 

 

                                                                          ]  (2.62) 

 

where                       and            . 

 

Using this solution all response quantities related to the state vector can thus be written in 

analytical form. For example, the angle of twist and deflection in the i
th

 beam section are 

respectively given as:   

 

                                                                                      (2.63) 

                                                                                     (2.64) 

 

where   is the dimension of the state equation which in this case are     . 
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 To obtain the constants of integration in vector  , we need to apply the boundary and 

continuity conditions in each portion of the beam. For each section, the vector   consists of 12 

constants of integration. Thus, for a three section beam there are 36 such constants of integration. 

In addition there are 4 constants,    that were introduced in enforcing the warping displacement 

compatibilities at each section interface. With 2 section interfaces, this introduced 8 more 

constant to be calculated. Thus a three section beam will require the calculation of a total of 44 

constants. The 6 boundary equations, Eq. (2.17) to Eq. (2.19) at the fixed end, 6 boundary 

equations, Eq. (2.20) to Eq. (2.26) excluding Eq. (2.22) at the free end, 4 minimization 

conditions, Eq. (2.34) to Eq. (2.37) at each interface and 12 additional conditions in equations, 

Eq. (2.38) to Eq. (2.51) excluding Eq. (2.40) and Eq. (2.47) at each interface provide just the 

right number of equations to provide the all constants of integration in vector  . Application of 

these boundary conditions leads to the following simultaneous equations to solve for the 

constants. 

 

                                                                                                                            (2.65) 

 

The details of the elements of the matrix   and vectors   and    in Eq. (2.65) are provided in the 

Appendix B. Knowing these constants, one can obtain any quantity of interest that can be 

defined in terms of the state vectors. This expression is implemented into the probabilistic 

analysis in the following section. 

 

2.3.2 Probabilistic Analysis 

 In this section, the safety index approach is utilized to evaluate the effect of the presence of a 

crack on the system performance in probabilistic terms. It is assumed that the crack length    

and its location    along the beam are random quantities defined by two independent random 

variables. It could also be assumed that other problem parameters such as cross sectional 

dimensions and the applied load to be random quantities. However, to simplify the formulation 

and to demonstrate the methodology, it is assumed that just these two crack parameters are 

random variables. To evaluate probabilistic performance, a limit state is defined for which the 

performance of the system is examined. The limit state could be defined in terms of a stress or a 

deformation quantity exceeding the allowable values. Herein, for demonstration, the failure limit 



Chalitphan Kunaporn                                Chapter 2 Probabilistic Analysis                                               

 

30 

 

state is defined in terms of the angle of twist at the free end in the damaged beam exceeding by a 

fraction,  , of the angle of twist at same point in the uncracked beam,     
. This condition can 

thus be stated as               
. The corresponding limit state boundary for safety analysis 

is then defined as follows: 

 

                                                                           (2.66) 

 

where            implies safety and            as the failure. The angle of twist at the tip 

of the cracked beam,     , is defined by Eq. (2.63) above. 

 

 To obtain the probability of failure or survival, the probability distributions of the variables 

that define the limit state are required to find out the probability mass over the corresponding 

domains. Often, however, it is not possible to have reliable information about the distribution of 

the variables and only the first two moments (mean and variance) can be reliably obtained. Even 

if the distribution information were available, it is often very difficult to calculate the probability 

mass over the survival or failure domains, if the limit state is nonlinear. Methods have been 

developed to improve the accuracy for such calculations. The main difficulty, however, remains 

in defining the distributions of the random variables. With the limited information available 

about the first two moments, one can, however, obtain a good measure about the reliability or 

failure in terms of safety index. If the involved variables can also be considered to be Gaussian 

random variables, then the safety index provides the exact values of the probabilities if the limit 

state boundary is linear and an approximate value of the probabilities if the limit state boundary 

is nonlinear. Literature is now available that describes the safety index approach and the 

calculation of the probabilities. In the following, it is assumed that the mean and standard 

deviation values of the two random variables that define the crack parameters are known. The 

goal is to obtain the safety index and the approximate probability of failure assuming Gaussian 

distribution.  

 

 To calculate the safety index conveniently, the well-known Rackwitz and Fiessler [61-63] 

iterative algorithm is implemented. This algorithm calculates the design point, which is the 
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closest point to the limit state boundary in the reduced space of the variables. The coordinates of 

the design point in the space of the variables are defined as follows: 

 

                                                            ,                 (2.67) 

 

where an asterisk denotes the design point value of the variables;    and    are the mean and 

standard deviation values of the crack location,   ;    and    are mean and standard deviation 

values of the of crack length,   ;   is the safety index.    and    are direction cosines of the 

perpendicular to the limit state at the design point. These direction cosines are defined as 

follows:  

 

                                                                                               
 (2.68) 

                                                                                               
 (2.69) 

 

The safety index, as the shortest distance in the reduced space, is thus defined as follows: 

 

                                                                                (2.70) 

 

 For nonlinear limit states, the calculation of the safety index is an iterative process in which 

appropriate values are assumed for the design point at which the gradients and direction cosines 

are calculated. The design point defined by Eq. (2.67) lies on the limit state. Thus substitution of 

Eq. (2.67) in the limit state and solving for the safety index provides the first value of the safely 

index. This value is used in Eq. (2.67) to obtain the new design point and the process is then 

repeated. The convergence is fast in most cases. The gradients of the limit state function required 

in Eq. (2.68) and Eq. (2.69) are obtained by the chain rule of differentiation. For example, the 
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partial derivatives of the limit state function with respect to the variables    and    required in 

Eq. (2.68) and Eq. (2.69) are defined as follows: 

 

                                                   
                                     (2.71) 

                                                    
                                      (2.72) 

 

where   ,    and    are the variables of the coordinates of ends of the three beam sections shown 

in Figure 2.1. These coordinates can be expressed in terms of the random parameters of the 

crack,    and    as follows: 

 

                                                       ,       ,             (2.73) 

 

The partial derivatives appearing in Eqs. (2.71) and (2.72) are defined in terms of the following 

partials used in the chain rule. 

  

Derivatives of    , 
       , 

       ;         : 

 

                                                        
                                        (2.74) 

                                                      
                                  (2.75) 

 

With the angle of twist at the tip defined as follows:   

 

                                                                                        (2.76) 

 

Its partial derivatives with respect to    are defined as follows: 

 

                   
                                                                                            (2.77) 
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 It can be shown that all elements of Jordan matrix and transition matrix in different segments 

are not function of      Thus, 

 

                                  
              ;   

                                                              (2.78) 

 

Derivatives 
          and 

          depend upon the matrix of functions associated with Jordan canonical 

form.  

 

2.4 Numerical Results 

 

2.4.1 Structural Response  

 In this section, we present some numerical results for an example problem. It is assumed that 

the crack is symmetrically placed in longitudinal direction and all three portions of the beam 

have at least one fold of span-wise symmetry about     plane. For this one-fold symmetry, 

several geometric parameters of the cross section, such as    ,    ,    ,     and    , are zero. 

The contour origin is taken on the axis of symmetry thus the warping displacement of the 

contour origin can be dropped. This means that the points on the contour origins along the span 

do not warp due to the fact that every point along the fold of symmetry is fixed. This simplifies 

the equation considerably to the following set. 

 

                                                                       (2.79) 

                                                                       (2.80) 

                                                                        (2.81) 

                                                                        (2.82) 

 

From this set the equation of the beam displacement along the     and     axis are omitted, 

as they are uncoupled from this set and can be separately integrated. This reduced set of 

equations can be readily decoupled to obtain the analytical solution for each degree of freedom, 

as long as all distributed loadings are described as integrable functions. 



Chalitphan Kunaporn                                Chapter 2 Probabilistic Analysis                                               

 

34 

 

 To obtain the numerical results, the thin-walled beam is assumed to be 6 m long, with cross 

sectional dimensions of: width = 0.4 m, depth = 0.2 m and thickness = 0.01 m. The modulus of 

elasticity is assumed to be   = 71.7 GPa and   = 0.33. The numerical expressions of warping 

functions used herein are as follows: 

 

                             
                                                                                                                                                                                                                   (2.83) 

                           
                                                                                                                                                                                                                                                              (2.84) 

 

These warping functions are shown in meters in Figure 2.3. 

 

 

                                                   a) Closed cross-section 

 

                                                    b) Open cross-section 

Figure 2.3 Numerical plots of warping functions 
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 For this particular section, it is found that the compatibility constants have the following 

values,    =    = 0,    = -0.0294, and    = 0.122, the open cross-section being on the right-hand 

side.    = 0.240 and    = 8.16 when the open cross-section is on the left-hand side.  

 

 To validate this applied beam theory, the numerical results of a cracked beam obtained by this 

approach are compared with the more accurate results obtained computationally by the shell 

theory. The details of the shell model are provided in the Appendix C.  The numerical results are 

obtained and compared for the angle of twist and lateral deflection of three beams with three 

different crack sizes. The beams are subjected to the combined loadings of a torque,    = 1     and a lateral shear force,    = 1  , applied at the beam tip. Figure 2.4 shows the 

comparison of the angle of twist values and Figure 2.5 for the lateral deflection values for the 

three cases.  

 

Figure 2.4 Angle of twist along the beam span 

 

Figure 2.5 Lateral deflection along the beam span 
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The results clearly show that even for large cracks the proposed beam model yields quite 

consistent results for both the twist angle and deflection compared to those obtained with shell 

finite elements in ABAQUS


, thus validating the accuracy of the analytical solution. 

 

2.4.2 Probabilistic Safety Analysis  

 In the following, we show the results for crack parameters assumed to be Gaussian random 

variables with the mean and standard deviation values taken as               for the random 

variable of the crack location and                for the random variable of the crack size. The 

value of fraction   in Eq. (2.66) is assumed to be   = 0.1. In order to investigate the effects from 

different loads, a study is conducted for three different cases of distributed loadings, a) Uniform 

distribution, b) Triangle shape and c) Quarter-ellipse shape as depicted in Figure 2.6.  

 

 

Figure 2.6 Distributed twisting moment along the beam span 

 

 For comparison purpose, the areas under all shapes of loadings are set to be identical and 

equal 100    ; however, due to the fact that the relative condition for limit state function is 

used as previously illustrated, the magnitude of this area does not matter to the probabilistic 

results. To obtain the values of the safety index,  , for such failure criteria, the iterative approach 

proposed by Rackwitz and Fiessler [63] is used. Since the limit state function is only implicitly 

defined in terms of the random variables    and   , the gradients of the limit state boundaries 

with respect to these variables are calculated by using the chain rule. The design point and safety 

index values converged in three iterations for all three loading cases. The final values for the 

design point, safety index and probability of non-exceedance of the limit states are shown in 
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Table 2.1 for this case. As both variables are Gaussian, the probability of failure is simply 

defined as          . As one would expect, the safety index value is the lowest for the 

uniform loading and highest for the triangular loading; the reverse is also true for the probability 

of failure values.  

 

 Table 2.2 shows the comparisons of the probability of failure values computed by the above 

safety index approach and the Monte Carlo simulation. The results obtained by the proposed 

approach are based on three cycles of iteration while those from the Monte Carlo approach were 

obtained using 500 simulations. The results demonstrate the consistency as well as the validation 

of this approach. The table also provides the computation time required by these two methods on 

the same computer, showing the relative computational efficiency of the safety index approach.  

 

Table 2.1 Final converged values of design points and safety index values for a crack with 

parameters of Location Lc: N(3.0,0.5), Ld: N(0.6,0.15) and  = 0.1 

Loading type 
Design point values Safety 

index 

Probability of 

failure Location,     Size,     

Uniform 2.8268 0.74272 1.0125 15.6% 

Quarter-ellipse 2.7414 0.75526 1.1571 12.4% 

Triangular 2.5841 0.78151 1.4684 7.10% 

 

 In Figure 2.7, we show the values of the safety index and the corresponding probabilities of 

failure for the case of quarter-ellipse loading for a crack location defined by parameters Lc: 

N(3.0, 0.5) and for three crack sizes with mean values of 10%, 15% and 20% and increasing 

coefficients of variation. For this figure, the limit state is defined for        As expected, the 

safety index values decrease and the probability of failure values increase with the increasing 

coefficient of variation values. For a mean crack size of 21.0%, the probability of failure is 0.5 

and the value of safety index is zero. We call this set of value as the critical mean crack size 

values. This critical crack size depends upon the value of the parameter    For this critical value, 

the limit state boundaries pass through the origin of the reduced space. For any mean crack size 

values higher than the critical values, the safety index values are negative. Also in such cases, the 

safety index and the corresponding probability of failure value decreases with the increase in the 
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coefficient of variation. This is because as the coefficient of variation value increases, the 

chances of the crack length approaching the critical length also increase; thus, causing the 

probability of failure to increase to 0.5. These counter intuitive cases are, however, not presented 

here. 

 

Table 2.2 Comparison of probability of failure values calculated by Rackwitz-Fiessler 

algorithm and Monte Carlo simulation approach 

Loading Methodology 
Probability of 

failure (%) 

Computation time  

(second) 

Uniform Proposed Method 15.6 31.9 

 Monte Carlo simulation 17.4 768 

Quarter-ellipse Proposed Method 12.4 339 

 Monte Carlo simulation 11.9 2,380 

Triangle Proposed Method 7.10 58.8 

 Monte Carlo simulation 7.30 826 

 

  

               a) Safety index                                                b) Probability of failure 

Figure 2.7 Plots of safety indices and probabilities of failure versus coefficient of variation 

for  = 0.3, quarter-ellipse loading and different mean crack sizes 

  

 In the next two sets of figures, we compare the effect of the three loading patterns on the 

safety index and probability of failure values for increasing values of the coefficient of variation 

of the crack size. The mean location of the crack is in the middle of the beam -- 3m from the 
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fixed end. The mean crack size for Figure 2.9 is 15% of the beam length and for Figure 2.10 is 

for 20% of the beam length. Although the total torque on the beam is same for the three loading 

distributions, the uniform loading is the most severe of the three loadings as it leads to the lowest 

set of safety index values and the highest set of probability of failure values. 

 

     

        a) Safety index                                                     b) Probability of failure 

Figure 2.8 Plots of safety indices and probabilities of failure versus coefficient of variation 

for mean crack sizes of 15%,  = 0.3 and three different loadings 

 

   

         a) Safety index                                                   b) Probability of failure 

Figure 2.9 Plots of safety indices and probabilities of failure versus coefficient of variation 

for mean crack sizes of 20%,  = 0.3 and three different loadings 

 In Figure 2.11, we investigate the effect of different loading patterns on the safety index and 

probability of failure values for different locations of crack along the beam span. For the crack 
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size, its mean value is 15% of the beam length and its coefficient of variation is set at 20%. It is 

observed from the figure that both the locations of damage and the patterns of loadings do impact 

on the safety index and the corresponding probability of failure. For example, the safety index of 

the uniform loading case is higher than that of quarter-ellipse loading case when the location of 

damage less than a certain value around L/4 from the fixed end. This trend reverses for cracks 

located beyond that value near L/4. 

 

 

          a) Safety index                                                  b) Probability of failure 

Figure 2.10 Plots of safety indices and probabilities of failure versus location of crack for 

mean crack sizes of 15%, coefficient of variation of 20%,  = 0.3 and three different 

loadings 

 

 In Figure 2.12, we investigate the effect of different sizes of damage on the safety index and 

probability of failure values for different locations of crack along the beam span. These results 

are obtained for the loading pattern of quarter-ellipse. All crack sizes are assumed to have 

coefficient of variation of 20%. As expected, the beam subjected to smaller damage possesses 

the higher safety index and lower probability of failure. Also the safety index increases and the 

probability of failure decreases as the crack is located away from the fixed end. 
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           a) Safety index                                                b) Probability of failure 

Figure 2.11 Plots of safety indices and probabilities of failure versus location of crack for 

coefficient of variation of 20%,  = 0.3, quarter-ellipse loading and two different mean 

crack sizes 

 

2.5 Summary and Concluding Remarks 

 The paper presents an analytical approach to calculate the response of a thin walled beam with 

a crack oriented along the beam length. The governing equations and associated boundary 

conditions of the system are derived by variational principle. The coupled equations are then 

expressed in a state-space form which facilitates their uncoupling using the Jordan canonical 

form approach. This simple model where the response can be calculated analytically allows one 

to study the effect of various damage parameters in a rather simple manner. Such formulations 

also enable us to test the applicability of different approaches for calculating the crack growth 

without conducting a highly expensive finite element analysis. The analytical solution obtained 

with Jordan canonical form approach is used in the probabilistic analysis, assuming that crack 

location and crack size are random variables. First order reliability analysis is used to calculate 

the safety index and probability of failure for a limit state defined in terms of the angle of twist. 

The methodology for calculating the gradients for the limit boundary needed in the probabilistic 

analysis is presented. Numerical results demonstrating the application of this approach are 

presented for several combinations of parameters: crack size, crack size variability, crack 

location and different loading patterns. 
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Random Crack Propagation of a Thin-walled Beam with a Crack
†
 

Chalitphan Kunaporn, Mahendra P. Singh, Mayuresh J. Patil and Rakesh K. Kapania 

Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 

 

Probabilistic methodology is used for estimating the growth of an existing 

crack in a thin-walled beam with a closed cross-section. The beam is 

subjected to stochastic loads. The initial length of the crack is considered to 

be an uncertain quantity represented by a random variable. The random 

characteristics of the stress response, needed for crack growth analysis, are 

obtained by random vibration analysis of the thin-walled beam. The crack 

growth rate equation is solved for a large number of randomly generated 

sample values of the random parameters. The simulated crack growth results 

are then used to calculate the probability of failure. The failure is defined to 

occur when the actual crack size exceeds the critical crack size. For 

demonstration of the methodology, the numerical results for the time-

dependent probability of failure are obtained for an example problem of a 

thin-walled beam. 

 

3.1 Introduction 

 The crack propagation approach is typically used in fatigue analysis and in predicting 

remaining life of structural elements subjected to cyclic loadings. In this paper, we propose to 

use it to predict the time to failure of a thin-walled beam assumed to represent a damaged aircraft 

wing. An analytical beam model can be used for repeated analyses for different loadings and 

damage scenarios at acceptable computational cost while a finite element model with several 

thousand degrees of freedom would require significant computational resources. We assume that 

the beam has been damaged and this damage is represented by a longitudinal crack of finite but 

uncertain dimensions and uncertain location along the beam.  

 

 For investigations of fatigue crack growth, a fracture mechanics based methodology was 

proposed in early 1960s. The approach focused on the intermediate phase of crack propagation 

                                                 
†
 This article is prepared for submission to the journal of aircraft. 
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between crack initiation and final fracture where the concept of linear elastic fracture mechanics 

is applicable. It is based on the assumption that a small crack can grow when it is subjected to 

cyclic loads [102]. The basic concept of this approach is that the crack growth rate is directly 

related to the change in the stress intensity factor and is in the form of an empirical differential-

equation. The classical model that has been most commonly used is the Paris-Erdogan equation 

[103] and its variations such as the Forman equation [104] and the Walker equation [105]. These 

variations were introduced to obtain better fits with the experimental data. A comprehensive 

review of crack propagation models can be found in Beden et al. [112]. 

  

 There has also been considerable work done on the topic of crack growth under stochastic 

loads that are commonly encountered in practice. A brief account of these studies is given in 

Chapter 1. These studies have led to methodologies that can be effectively applied to examine 

crack growth under stochastic loads such as the problem in this paper. The modified Forman 

equation rewritten in the time domain is applied in this study. Several parameters in the models 

are considered uncertain. The beam is subjected to a stochastically defined load which causes the 

crack to grow. For calculating random characteristics of the stress in the beam, an analytical 

approach based on Benscoter beam theory [8, 13] is used. The equations of motion are derived 

using the principle of virtual work. The coupled equations of motion can be solved using either 

exact approach such as the eigenfunction expansion approach, applied in both time and spatial 

domains; or using an approximate approach such as the Rayleigh-Ritz method with assumed 

modes. In this study, the assumed-mode approach is applied to discretize the continuous system. 

 

 Probabilistic characteristics of random variables involved in the analysis are obtained from 

the global analysis of the structure while expressions of stress intensity factor are appropriately 

chosen for the particular structural element. For crack propagation analysis under random loads, 

the random characteristics of the peak stress response are calculated to include the effect of 

random cycles. The differential equation of the crack growth model is solved to obtain the 

evolution of the crack growth with time for several sample values of the random variables 

involved in the model. At each time instant, the simulated crack growth curves provide data to 

define the probability distribution of the crack size. This probabilistically defined crack size is 

then probabilistically compared with the critical crack size at which the structure fails. This 
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provides the probability of the structural failure at different time instants. Further details of the 

approach are described in the following sections.  

 

3.2 Crack Growth Modeling 

 The probabilistic analysis of structure defines the initial condition of damage. To further 

investigate the effects of damage on the fatigue life of the both wings, a crack propagation 

analysis is used to simulate the growth of crack over time. Over many decades, models have 

been developed to capture the characteristics of crack growth observed in experiments. There are 

a number of ways to implement stochastic factors into any of these models. For engineering 

purposes, the crack growth model based on fracture mechanics is recommended since the fatigue 

physical process is more relevant in the investigation of crack growth over time.  

 

 The Paris-Erdogan model of crack propagation is used in the present study. This model has 

been widely used to study the fatigue crack growth in materials. It defines the rate of change of 

the crack size with respect to the number of stress cycle as a linear function of the stress intensity 

factor on the log-log scale. It is observed to fit the experimental data in the initial stages well. To 

describe the behavior near failure and to capture intermingling of the growth curves obtained in 

experiments, some modifications have been suggested. One of the modifications is by Forman 

[99, 126] which is described by the following equations. 

 

                                                           
                               (3.1) 

 

where    is the change in the stress intensity factor;    is the critical stress intensity factor or so-

called fracture toughness;  ,   and   are the material constants;    is the equivalent loading 

frequency which allows to define the rate in terms of time instead of number of cycles; and   is 

the static bias factor or stress ratio, which is defined as the ratio of the minimum to maximum 

stress values. The function      is a random process, which makes the crack growth stochastic 

and creates intermingling in the growth curves observed in real data [115]. For two extreme 

cases, Gaussian random process is assumed for totally uncorrelated and Gaussian random 
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variables is assumed for fully correlated at all time. Here Gaussian random process with density 

function          is assumed and      is not included for the negative values of  .  

 

 To represent the nondeterministic nature of the crack growth, material-related parameters 

such as fracture toughness as well as other model parameters can be assumed to be random 

variables. In this study, the initial crack size is assumed to be a random variable. The failure is 

defined by the condition that the rate of change of crack length becomes unbounded, indicating 

that the crack grows uncontrollably and causes eventual failure. It is thus defined by 

 

                                                                      
       (3.2) 

 

This implies that the denominator of Eq. (3.1) approaches zero. 

 

                                                                            (3.3) 

 

 The change in the stress intensity factor    is a function of crack size, shape and member 

size. For some standard configurations, expressions for this have been developed and are 

available in the literature on the subject reference. For a special configuration, one may need to 

define this by refined numerical analysis. In this study, it is defined by the following equation.  
 

                                                                                      (3.4) 

 

where    is the stress range (the difference of the maximum and minimum stress);   is the crack 

length;      is the geometric factor. For the particular case of a thin walled beam with a crack 

this factor as developed by Dang et al. [133] is expressed as follows: 

 

                                                                                         (3.5) 

 

where   is the width of the rectangular cross section. 
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 To obtain the critical crack length, one can solve Eq. (3.3). The probability of failure of the 

structure is defined when the crack size becomes such that Eq. (3.2) is satisfied. That is, when 

the rate of the crack growth becomes uncontrollably large. 

 

 One needs to solve Eq. (3.1) to define the crack length as a function of time. One generates 

the random values of the involved variables and generates the time function for      using the 

characteristics of the random process. One also needs to solve the vibration problem for the 

external random loads to define the stress level and the peak response characteristics of the 

stress. These stress values are used in calculating the stress ratio and stress range. 

 

 For a stochastically defined external load, the stress response as well as peak characteristics 

are random quantities. That is, there is no unique frequency    and corresponding stress 

amplitude. These quantities are also defined in probabilistic terms and some characteristics 

values are used in Eq. (3.1). Finally, with all parameter values defined, Eq. (3.1) can be 

numerically solved. At each time step, the collective solutions obtained for each random sample 

set define the sample probability density function of the crack length.  

 

 The structural component is assumed to have failed when the crack length exceeds the critical 

length. The probability of failure of this event can be obtained by using the sample probability 

density function of the crack length and that of the critical crack length. Thus a complete crack 

growth analysis under random loading involves: (a) the random response analysis of the structure 

to calculate the peak stresses and the equivalent load frequency, (b) the numerical solution of Eq. 

(3.1) and (c) the calculation of probability of failure analysis at each time step that is used to 

predict remaining flight time.  

 

3.3 Dynamic Analysis of a Thin-walled Beam  

 In this section, the equations of motion are first developed for a thin-walled beam of any 

shape of cross section. The thin-walled beam of a closed cross section is modeled by the 

Benscoter beam element in which an additional warping degree of freedom, independent of the 

angle of twist is used [13]. Boundary conditions are derived for the fixed end and the free end. 
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The cracked portion being small compared to the length of span is assumed not to affect the 

global response and, thus, the presence of the crack is excluded from the dynamic analysis. 

 

 

Figure 3.1 Cracked wing model based on a thin-walled cantilever 

 

The cross-section is not deformable in its own plane and therefore only rigid body motions are 

allowed for in-plane displacements. An arbitrary point          called as the “Pole” is used as 

the reference to describe all displacement fields. The pole is chosen to coincide with the center of 

mass. In thin-walled theory, the two displacements that are required in the derivation of 

governing equations are: the tangential displacement,   , and the out-of-plane or warping 

displacement,  , both defined in the         coordinate. A point             called as the 

origin of contour is used as the reference point for contour integration,    , to calculate the 

warping function of section.  

 

   

Figure 3.2 Kinematics of a beam cross-section 

 

The additional degrees of freedom used as the measure of warping,     , is assumed to be 

independent of the axial rotational degree of freedom, the angle and the rate of twist, of the 
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beam. In terms of these degrees of freedom, the tangential and warping displacements can be 

written as follows [32]: 

 

                                                                                  (3.6) 

                                                                          (3.7) 

 

where      and      are the displacements of the pole in   and   directions respectively;      

is the warping displacement of the contour origin;       and       are the rotations of pole with 

respect to the   and   axis respectively;       is the angle of twist;        is the warping 

function;      is the measure of warping that in special cases can be approximated to the rate of 

twist,    ;     denotes the derivative with respect to  ;      and      are Cartesian coordinate 

rewritten in term of tangential coordinate; and the distance         is shown in Figure 3.2. In the 

linear theory, the rotations of pole are described as follows: 

 

                                                                             (3.8) 

                                                                             (3.9) 

 

where     and     are transverse shear strains. In the shear deformable beam theory, the Euler-

Bernoulli hypothesis is no longer applicable as       and       and the transverse strains 

are included in the derivation. Infinitesimal strain tensor in linear theory is expressed in terms of 

displacements. Based on the thin-walled theory, the energy equation requires only two main 

strain components,    , which is the normal strain in  -direction, and         , which is the 

shear strain in the     plane. These strain components are defined as follows: 

 

                                                                                (3.10) 

                                                                                 (3.11) 

 

Even a beam subjected only to a twisting moment is no longer a case of pure torsion. Coupled 

bending and torsion must be considered. Benscoter beam element includes the warping degree of 
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freedom. The governing equations of the thin-walled beam are derived using the principle of 

virtual work. The principle of virtual work can be written as follows: 

 

                                                                                (3.12) 

                                                    U  U      (3.13) 

 

where   and   stand for body forces and tractions, respectively.  

 

 For a beam of thin-walled cross-section, the strain energy term is simplified by deleting the 

terms with zero strains and considering only the non-zero strain terms. With tractions in the form 

of distributed loads along the span and concentrated loads at certain locations of the span, the 

equation of virtual work can be written as follows: 

 

                                                                        

                                                                            

                                                                        (3.14) 

 

where   is the Young’s modulus and   is the modulus of torsional rigidity;    ,    and    are 

the distributed forces in  ,   and   direction, respectively;    ,    and    are the distributed 

moments with respect to  ,   and   axis, respectively;    is the distributed warping torque 

about the   axis;    and    are the shear forces in   and   directions, respectively;    is the axial 

force;    and    are the bending moments with respect to   and   axis, respectively;    is the 

torque; and    is the warping moment or so-called “Bimoment”.  

 

 Substituting all stress and strain components and applying the principle of virtual work, the 

system of equilibrium equations as well as corresponding boundary-continuity conditions are 

obtained as follows: 

 

                                                                           (3.15) 

                                                                    (3.16) 
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                                                                   (3.17) 

                                                                                                  (3.18) 

                                                                                                   (3.19) 

                                                                                   (3.20) 

                                                                                                  (3.21) 

 

The geometric problem parameters used in the above equations are defined as follows: 

       ,          ,          ,           

           ,           ,           ,  

            ,            ,            

            ,               ,                ,               ,                               ,                ,               ,                ,                 

 

The corresponding boundary conditions are obtained as follows: 

 

At the fixed end,                        

                                                              ,    ,     (3.22) 

                                                            ,     ,      (3.23) 

                                                                           (3.24) 

 

At the free end,     

                                                                      (3.25) 

                                                                       (3.26) 
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                                                                            (3.27) 

                                                                          (3.28) 

                                                                           (3.29) 

                                                                       (3.30) 

                                                                           (3.31) 

 

3.3.1 Beam Vibration 

 In our study, the focus will be on a thin-walled beam of rectangular cross section. Thus, 

because of symmetry of this cross section, the system of coupled governing equations are 

reduced since some of the cross-axis constants, such as    ,    ,     and     are all zero. The 

contour origin is assumed to be located on the axis of symmetry thus the warping displacement 

of the contour origin can also be dropped. This means that the points of contour origins along the 

span do not warp due to the fact that every point along the fold of symmetry is fixed. With these 

modifications, the reduced system of governing equations for the case of     symmetry along 

the entire span can be written as follows:  

 

                                                                              (3.32) 

                                                                          (3.33) 

                                                                             (3.34) 

                                                                           (3.35) 

 

 These equations could be solved by using the eigenfunction expansion approach both in the 

spatial and time domains. Herein, it is proposed to use the assumed-mode approach wherein 

admissible functions that satisfy the essential boundary conditions for all the variables are used. 

As all the variables possess identical essential boundary conditions involving only the non-

derivative functions, the independent admissible functions are used as follows [134]: 

 

                                                                                   where              (3.36) 
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 Each degree of freedom is then expressed in terms of the admissible functions and the 

generalized time dependent coordinates as follows:   

 

                                                                                  (3.37) 

                                                                                  (3.38) 

                                                                                  (3.39) 

                                                                                  (3.40) 

 

where    represents generalized coordinates associated with each degree of freedom. Although it 

is possible to use different admissible functions for each degree of freedom as shown in Eqs. 

(3.37) to (3.40), here we use the same admissible functions given in Eq. (3.36) for all degrees of 

freedom for obtaining the numerical results that are presented later. 

  

 The governing equations in Eq. (3.32) to (3.35) were expressed in terms of the variables of the 

degrees of freedom. To obtain these equations in terms of the generalized coordinates described 

above, the virtual work is now utilized as follows: 

 

                                                                             (3.41)                         
                                                    

                                           

                                                                                       

                                                           (3.42) 

 

Using Eq. (3.37) to (3.40) in Eq. (3.42) and applying the variational approach, the continuous 

system can be represented by the following discretized equations of motion expressed in terms of 

the generalized coordinates. 

 

                                                                              (3.43) 
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where 

                                                                                                       

                                                                                                                                                                                    

                                                                                      

 

The system of equations in Eq. (3.32) to (3.35) is rewritten using matrix expression as follows: 

 

                                                                                                                                                                                                                                                                                                 

  (3.44)  

 

where the sub-matrices         and         each are n x n, the elements of which are          
 and          

. The sub-vectors of the generalized coordinates,     , are of size n x 1, the elements of 

which are           the sub-vector of the generalized forces,     , are of size n x 1, the elements 

of which are      .  
 

 Eq. (3.44) is rewritten in the compact matrix form as follows: 

 

                                                                               (3.45) 

  

where       and       are of size 4n x 4n and the vectors of the generalized coordinates     and 

forcing vectors     are of size 4n x 1. This equation can be solved using traditional methods 

without any difficulties. The free vibration analysis of this equation provides the system 
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frequencies    and corresponding modes (eigenvectors),     . These modes and natural 

frequencies can be used in the standard modal analysis approach to obtain the generalized 

coordinates and thus the response. For the applied forces defined as random processes, it is 

convenient to express the response in the frequency domain as explained in the next section. 

 

 Table 3.1 presents the comparison of the frequencies of the thin walled beam calculated by 

the Benscoter theory (the present formulation), Vlasov beam theory, and those calculated by the 

shell finite element analysis. These results are obtained for a thin walled beam of the dimensions: 

beam width = 0.4 m, beam height = 0.2 m, wall thickness = 0.01 m, the span length = 6 m. The 

details of the shell finite element analysis used here in this comparison are given in Appendix B. 

A first few frequencies associated with bending modes are estimated accurately by the thin 

walled beam theories. The torsion mode frequency is, however, overestimated by about 8%. This 

is simply because the shell finite element allows the out-of-plane element deformations whereas 

the thin walled beam theories assume the cross section to be rigid thus not permitting any wall 

deformation out of the beam surface.  

 

Table 3.1 Comparison of natural frequencies (Hz) of a rectangular thin-walled cantilever  

Mode Vlasov 

beam 

This 

formulation 

Shell 

1
st
 Major-axis Bending 7.07 7.04 7.00 

1
st
 Minor-axis Bending 11.9 11.9 11.8 

2
nd

 Major-axis Bending 44.3 43.0 42.2 

2
nd

 Minor-axis Bending 74.9 71.4 71.1 

1
st
 Twisting 102 102 94.7 

3
rd

 Major-axis Bending 124 116 109 

 

3.3.2 Random Responses of Beam 

 For the applied load defined as a random process, the beam response is also a random process. 

The random characteristics of such loads are often defined by their spectral and cross spectral 

density function. For such description, it is usually convenient to work in the frequency domain 
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to obtain the beam response. It can be shown that the cross spectral density function of any two 

displacement, rotation or warping response quantities can be expressed as follows: 

 

                                                                                  (3.46) 

 

where            is cross spectral density function of response.      is the eigenfunction for 

the response quantity of interest. For example, for the quantities of interest here, these mode 

shapes are defined as follows:  

 

                                                                                 (3.47) 

                                                                                   (3.48) 

                                                                                  (3.49) 

                                                                                 (3.50) 

 

where     to   and     to   ,    - eigenvector matrix.        is the modal frequency 

response function defined [88] as follows: 

 

                                                                                      ;              (3.51)  

 

where    ,    are the natural frequency and viscous damping ratio of the i
th

 mode. Herein, the 

viscous damping ratio is introduced to account for the inevitable energy dissipation in the 

system. For numerical results, a value of 1% is assumed in the beam-model as a representative 

value for the vibration of an aircraft wing [85]. 

 

 The spectral density of the generalized forces for the modes   and   in Eq. (3.46) is defined 

[135] as follows: 

 

                                                                                   (3.52)  
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where                is the cross spectral density function of the external forces applied at 

locations             on the beam,         is the eigenfunction as indicate earlier and the 

integrations are over the entire domain   subjected to loadings. The final expression for the 

spectral density function of the response quantities can be written in the following matrix form. 

 

                                                                                        (3.53)  

 

where    denotes the location of the applied load and   denotes the location of the observed 

response. 

 

 Power spectral density function of shear stress can be defined in terms of the power spectral 

density function of the response variables that define the shear stress. The definition of the shear 

stress is as follows: 

 

                                                                             (3.54)  

 

The expression for the spectral density function of the shear stress is defined by 

 

                                                                               (3.55)  

 

 For calculating the numerical results in this study, the applied load on the beam is defined by 

the von Karman’s gust load power spectral density function. However, due to the fact that the 

structural model in this study is scaled down and occupies the range frequencies that are much 

higher than those of a full-scale aircraft, the power spectral density used here is modified such 

that it maintains the original shape but adjusts the range of frequencies. As the gust load is 

assumed to be distributed uniformly, the power spectral density of distributed twisting moment 

along the span is defined as follows: 
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 (3.56)  

 

where   is an assumed constant and   is a scaled factor of frequency. It was assumed that       and        . The assumed power spectral density of input is shown in Figure 3.3. 

 

 

Figure 3.3 Power spectral density of the twisting distributed moment (Input) 

 

 For this random input, the power spectral density function of the shear stress response at the 

mid span is shown in Figure 3.4. It is observed that the higher modes falling outside the 

frequency range of the input spectral density function are minimized and almost do not 

contribute to the response. 

 

 

Figure 3.4 Power spectral density of the shear stress at the mid span (Output) 
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3.3.3 Stochastic Characteristics of Responses  

 For crack growth analysis under dynamic random loads, the statistics of the peak stress 

response are necessary. Assuming that the input and the response are zero-mean Gaussian 

random processes, the probability density function of the peak stress is defined as follows [136]: 

  

                                                                                   (3.57)  

 

where   and   are the probability density function and cumulative distribution function of the 

standard normal distribution, respectively;    are the spectral moments, which can be obtained 

from response power spectral density as follows: 

 

                                                                               where           (3.58) 

 

 The factor,  , is often called the regularity factor and the spectral band width parameter,  , are 

defined in the term of the spectral moments as follows: 

 

                                                                              (3.59) 

                                                                                 where      (3.60) 

 

 For a narrow band process, for which   is small (nearly zero) the distribution in Eq. (3.57) 

approaches a Raleigh distribution. For the broad band case when this parameter is nearly one, the 

distribution approaches the Gaussian distribution as follows: 

 

                                                                                       if         (3.61) 

                                                                                  if        (3.62) 

 

 The plot in Figure 3.5 compares the probability density function of stress peak obtained at 

mid span (L/2) for the example problem considered here with the corresponding narrow and 
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broad band density functions. It should be noted that the peak stress distribution is nearly a 

Raleigh distribution.  

  

Figure 3.5 Comparison of the calculated probability density function of the peaks of the 

shear stress at mid span with the Raleigh and Gaussian density functions 

 

 For the example problem of a beam, Table 3.2 shows the three spectral moments and the 

parameters   and   calculated at three beam locations.  

 

Table 3.2 Statistical parameters of shear stresses at different locations 

Location from the fixed end 

(Span length=L) 

    

(MPa)
2
 

    

(MPa.rad/s)
2
 

    

(MPa.(rad/s)
2
)
2
 

    

L/4 20.31  8.277 x 10
6
 3.389 x 10

13
 0.998 0.070 

L/2 7.434  3.052 x 10
6
 1.341 x 10

12
 0.967 0.256 

3L/4 0.692  3.568 x 10
5
 4.390 x 10

11
 0.647 0.762 

 

 Figure 3.6 shows the mean square value of the shear stress obtained at these three locations. 

In a static case, this shear stress caused by a uniform twisting moment due to gust loads is 

linearly increasing from the tip to the fixed end. In the dynamic case, similarly, the inertial effect 

being significant cause higher levels of stress near the fixed support. Thus, a crack near the fixed 

support is likely to grow faster. However, the dynamic stress does not vary linearly as the static 

case.  
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Figure 3.6 Root mean square values of dynamic shear stresses at various locations along 

the span 

 

3.4 Crack Growth Simulations under Stochastic Loadings 

 To use the crack growth rate equation, one needs to know the frequency of loading fs, the 

stress range,   , and stress ratio factor R for the applied load. For a constant amplitude cyclic 

loading for which the crack growth rate models were originally intended to be used, these 

parameters could be easily defined. For a random train of cycles, however, it is not quite clear 

how to define these quantities. To calculate these quantities for a random response, several 

different interpretations have been proposed. For example, to calculate the stress range, Sobczyk 

[99] suggested to use twice the value of the root mean square response. Later, however, it was 

suggested to use the peak response characteristics of the stress to define the quantities of the 

average minimum stress, the average maximum stress, the stress range and the stress ratio as 

follows: 

 

                                                                           (3.63) 

                                                                           (3.64) 

                                                                            (3.65) 

                                                                                            (3.66) 

 

where       is the average static level of the stress and      is the average peak stress which 

can be obtained from the probability function of the peak stress as follows: 
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                                                                             (3.67) 

 

The probability density function of the peak stress is defined by Eq. (3.57). Substituting the 

expression of the density function, the average peak stress can be calculated as follows: 

 

                                                                           (3.68) 

 

where      is the square root of the zeroth order spectral moment     . In the numerical 

example, the average static stress value       is assumed to be 60 MPa. 

 

 Another parameter that needs to be defined for calculation of the crack growth rate is the 

equivalent frequency value, fs. In a random sequence of stress cycles there is no one frequency 

that can be used, so a decision has to be made. Herein the stress response is strongly narrow band 

as indicated by a very small value of the parameter,  . In this case, thus, it is appropriate to use in 

place of equivalent fs, the zero crossing rate defined by the following equation, 

 

                                                                                          (3.69) 

 

In Table 3.3, some of these parameters can be calculated for the example problem. These values 

are used in the crack growth simulation described in the following section. 

 

Table 3.3 Equivalent deterministic parameters of stress responses at different locations 

Distance from the fixed end 

(Span=L) 

      

(MPa) 

    

(MPa) 

      

(MPa) 

      

(MPa) 

  

 

L/4 4.51 11.27 54.37 65.63 0.828 

L/2 2.73 6.61 56.70 63.30 0.896 

3L/4 0.83 1.35 59.33 60.68 0.978 
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 To perform the crack growth analysis, it is assumed that the overall response of the beam 

stress remains unchanged as the crack grows, so that uncracked beam response can still be used 

to examine the growth with proper use of the stress intensity factor. For the numerical 

simulation, it is assumed that initial crack size is a Gaussian random variable with mean and 

standard deviation values of           mm. The geometric factor of stress intensity factor is 

defined by Eq. (3.5). The fracture toughness is assumed to be                     [137];  ,   and   are aluminum constants used in the crack growth model obtained from NASGRO 

[126] where               ,       and    .  

 

 The simulation is based on Monte Carlo approach and proceeds as follows. To calculate the 

stress intensity factor, random sample values of the crack size are generated. The distribution of 

the critical crack length is defined using Eq. (3.2). For the applied stochastic load, the stress 

range and the stress ratio needed in Eq. (3.1) are then calculated according to Eq. (3.65). 

Equation (3.1) is then integrated from one time step to another. At each time step, a random 

value of      is generated to introduce the intermingling of the growth curves. 

 

 The simulation results obtained for three different locations of the crack are shown in Figure 

3.7. Each growth curve corresponds to a set of sample values for which Eq. (3.1) was integrated. 

From these simulation results, it is observed that a crack near the fixed support can very quickly 

grow to approach the critical crack length that causes failure. With increasing time duration, it 

can also be observed that a large dispersion shows up in the simulation results. This is clearly 

shown in the set of the results shown in Figure 3.8 where the plot of the histogram of the crack 

sizes is depicted at different time for the three crack locations. As time increases, larger and 

larger numbers of sample values are seen to approach the critical length indicating the failure. 

This fraction of samples that reach the critical length out of the ensemble of the total samples 

considered in the simulation gives the estimate of the probability of failure at that time. Also this 

dispersion is larger near the fixed end where the presence of a crack is certainly more critical. In 

these figures, the log-normal distributions are plotted correspondingly with the same mean and 

standard deviations as the sample values in the histogram. For larger time steps, the actual 

distribution becomes highly skewed and thus cannot be reasonably represented by a log-normal 

distribution. 
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 The analytically defined probability distributions at different times, described, could not be 

used to calculate the probability of failure. The failure is defined to occur when the crack size 

exceeds the critical crack size; defined by Eq. (3.2). The probability distribution of this crack size 

is obtained by simulation. Figure 3.8 shows the sample histograms obtained at the three locations 

while Figure 3.9 depicts the corresponding distributions of critical crack size in the form of a 

histogram fitted with associated log-normal curves. Although the two figures, Figures 3.8 and 

3.9, can be used to evaluate the probability of failure by the approach of standard stress-strength 

interference, it is more convenient to evaluate this value by counting the number of failure 

samples with respect to the time using Figure 3.7. 

 

 Figure 3.10 shows the growth in the probability of failure with time at the three crack 

locations on the beam. The probability of failure increases at a much faster rate for a crack near 

the support. For the example problem considered here, the probability of failure for a crack near 

the tip, on the other hand, is very low. In fact, in the simulation conducted in this study no 

sample is seen to reach the critical length for crack near the tip. For a probability of exceedance 

value of 25%, a cracked panel at the location of L/4 fails at 1.2 hours and the panel at mid span, 

L/2 fails at 6.8 hours. The cracked panel near the tip at the location 3L/4, however, does not fail 

within the investigated period of seven hours as the growth of crack at this location is rather slow 

but the rapid growth of crack size near the support where the stress level is high, and the fact that 

inertial effects also increase stress response to be higher near the fixed support, clearly show that 

the crack growth depends upon the level of stress and the dynamic effect.  

 

    

Figure 3.7 Evolution of crack growth with time for three damage locations, L/4 (left), L/2 

(middle) and 3L/4 (right) from the fixed end  
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          a) L/4 

 

      b) L/2 

    

     c) 3L/4 

Figure 3.8 Histograms of the crack length distribution at three time instants of 1 hour 

(left), 2 hours (middle) and 3 hours (right) for three damage locations from the fixed end 

    

Figure 3.9 Critical crack length distribution for three damage locations, L/4 (left), L/2 

(middle) and 3L/4 (right) from the fixed end 
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Figure 3.10 Time evolution of the probability of failure for three damage locations, L/4 

(left), L/2 (middle) and 3L/4 (right) from the fixed end 

 

3.4 Summary and Concluding Remarks 

 This paper describes a methodology for probabilistic growth analysis of a damaged thin 

walled beam subjected to stochastically defined loads with the ultimate objective of using it on 

an aircraft wing. It is assumed that the state of stress in the uncracked beam with proper stress 

concentration factor can be used in predicting the crack growth rate. The paper, thus, describes 

the analysis of a thin walled beam subjected to a set of random loads. First, a general formulation 

which can be used with general loading conditions is developed. The numerical results are, 

however, obtained for a beam subjected to a uniform twisting moment induced by gust loads. 

The coupled equations of motion are discretized by using the assumed-mode approach and the 

statistics of the response needed in crack growth simulation are obtained by frequency domain 

analysis. The Forman equation is used to model the crack growth. The growth rate simulation 

results are obtained by solving the differential equation numerically for a large sample of 

randomly generated values of the variables in the model. The peak response statistics is 

calculated by random vibration analysis of the beam. The results of this simulation are then used 

in calculating the probability of failure, providing the probability of failure with time. The results 

are obtained for three crack locations on the beam. These results clearly show that a crack near 

the fixed end grows most rapidly because the shear stress is higher near the fixed end as well as 

because of the enhanced dynamic effects of the beam vibrations near the fixed end. 
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Aeroelastic Divergence of a Thin-walled Beam with a Crack
‡
 

Chalitphan Kunaporn, Mahendra P. Singh, Mayuresh J. Patil and Rakesh K. Kapania 

Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 

 

Aeroelastic divergence which strongly depends on the torsional stiffness 

of the aircraft wings, is of concern in the design of aircraft. This paper 

examines the effect of a discrete damage such as a crack on the divergence 

dynamic pressure of a wing. The wing is represented by a simple model of a 

thin-walled beam with a crack with random characteristics. Two approaches 

are used to calculate the divergence dynamic pressure: an iterative approach 

when the mathematical model is difficult to analyze and the direct approach 

which can only be used if the response for the model can be expressed in 

closed form. For the assumed simple model of a thin-walled beam with a 

longitudinal crack both approach could be applied. The effects of the 

location and the size of the crack on the divergence dynamic pressure are 

examined. The effect of the uncertainties in the crack location and size on the 

divergence dynamic pressure is examined probabilistically.  

 

4.1 Introduction 

 In the design of aircraft wings, aeroelastic divergence is a significant constraint that needs to 

be satisfied. Divergence is a structural instability in which, depending upon the wing’s torsional 

rigidity, the twisting moments induced by aerodynamic forces [138, 139] and corresponding 

torsional deformations can grow large with undesirable consequences. The twisting moment, the 

angle of twist and the angle of attack are three inter-dependent quantities. The angle of attack is 

equal to the sum of initial angle of attack and the angle of twist. Since the angle of attack affects 

the twisting moment which in turn determines the angle of twist, these quantities feed into each 

other. Depending upon the torsional rigidity and the airfoil characteristics, this feedback may 

create a situation with ever increasing twisting moment and the torsional response of the wing 

leading to an undesirable response. Since this phenomenon is highly dependent on the wing’s 

torsional rigidity and since a discrete source damage lowers the wing’s rigidity, it is important to 
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examine the effect of such damage on this response. In this paper, we, thus, focus on the study of 

the aeroelastic divergence of a wing with a crack as it will not only affect the strength of 

structure but also the stiffness, hence its aeroelasticity behavior. 

 

 This study utilizes a simple model of a hollow thin-walled beam with a longitudinal crack 

representing the damaged wing. The portion of the beam with the crack is modeled as an open 

section thin-walled beam, whereas the other two sections are represented by closed section thin-

walled beams. The analysis of such a thin-walled beam with discontinuities has received only 

limited attention from the researchers. After a detailed literature survey, it was found that the 

approach proposed by Gunnlaugsson and Pedersen published in a series of papers [18, 20, 130] 

perhaps provides the most accurate treatment to the problem. Their formulation is based on the 

Benscoter’s thin-walled beam element [8]. To include the effect of an opening in the finite 

element analysis of a thin-walled beam, Gunnlaugsson and Pedersen proposed to use special 

compatibility conditions at the interfaces of the open and closed cross-sections. In our study, the 

Gunnlaugsson and Pedersen compatibility conditions are used to formulate an analytical 

approach to solve the problem of a thin-walled beam with a crack. 

 

 The initial part of the paper develops the governing equations of equilibrium of a thin-walled 

beam with a crack along with the necessary compatibility and boundary conditions. These 

equations are coupled. In their original complicated form they cannot be solved individually. To 

allow them to be solved conveniently, these equations are re-stated in state-space form which 

permits them to be decoupled using the Jordan canonical form approach. These uncoupled 

equations can be solved to obtain the response in an exact sense for any arbitrary loading on the 

beam. The validity that the Benscoter’s thin-walled beam theory [8] coupled with Gunnlaugsson 

and Pedersen compatibility conditions can provide accurate response values is numerically 

established through detailed shell finite element analysis of an example problem. 

 

 The above approach is used to express the angle of twist as a function of the aerodynamic 

pressure loading analytically. The divergence condition with this analytical solution is used to 

calculate the minimum pressure at which divergence in the response occurs. The validity of this 

approach is verified by comparing the results obtained with the traditional divergence solution 



Chalitphan Kunaporn                                       Chapter 4 Divergence                                                          

 

70 

 

approach. Finally, this approach is used to calculate the divergence dynamic pressure for 

different characteristics of the crack, such as its location along the beam and its size. Since the 

size and location parameters of a crack are random quantities, a probabilistic measure of 

divergence possibility is required. For this, the proposed analytical approach is also used to 

probabilistically characterize the divergence dynamic pressure for randomly defined crack size 

and location.  

 

4.2 Aeroelastic Modeling of a Wing as a Cracked Thin-walled Beam 

 A low-order, computationally-efficient aeroelastic model of a wing is required to study the 

effect of uncertainties in discrete source damage on divergence instability. We consider a hollow 

thin-walled beam of rectangular cross section with a longitudinal crack on one of its faces 

subjected to aerodynamics loads. This wing model is shown in Figure 4.1. The damage 

parameters considered are the crack length and its location along the beam and they are assumed 

to be uncertain quantities with known mean and standard deviations. The beam is divided into 

three parts with the cracked part between the two undamaged parts. The undamaged beam 

portions are represented as the closed cross-section beam and the damaged portion is represented 

as the open cross-section beam as shown in Figure 4.1. The kinematics of thin-walled beam are 

described using the combination of Cartesian coordinate         and orthogonal curvilinear 

coordinate        . For convenience, the global     and local      coordinates are used 

interchangeably. 

 

 

Figure 4.1 Damaged structure modeled with a cracked thin-walled cantilever 
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 The closed cross-section is assumed to be not deformable in its own plane. Therefore, only 

rigid body motions are allowed for the in-plane displacements. The warping in both cross 

sections introduces axial deformations along the  -direction and shear deformations in the plane 

of the cross section. An arbitrary point,         , or so-called “Pole” is used as the reference to 

describe all displacement fields. The poles of cross-sections along the beam span are chosen at 

the shear centers and the angle of twist,   , is represented relative to this point. Only two 

coordinates,   , and warping displacement,    are needed to define the displacement and stress 

field to derive the governing equations. The tangential displacements,   , and the out-of-plane 

warping displacement,   are used to define the displacement field in the         coordinate 

system. To calculate the warping function of a thin-walled section, we choose a reference point,              where the coordinate    0 for contour integration. The dimensions   and  , 

respectively, are the width and height of the beam cross-section. 

 

 

Figure 4.2 Kinematics of a beam cross-section 

 

An additional degree of freedom      is introduced as the measure of warping. As in the 

Benscoter’s thin-walled beam theory [8], it is assumed to be independent of the axial rotation 

degree of freedom of the beam. In terms of these, the tangential and warping displacements can 

now be written as follows [18]: 

 

                                                                                  (4.1) 

                                                                         (4.2) 
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where      and      are the displacements of the pole in x and y directions, respectively;      

is the warping displacement of the contour origin;       and       are the rotations of pole with 

respect to the   and   axis, respectively;       is the angle of twist;        is the warping 

function;      is the measure of warping that in special cases can be approximated to the rate of 

twist,    ;     denotes the derivative with respect to  ;      and      are Cartesian coordinate 

rewritten in term of tangential coordinate. In the linear theory, the rotations of pole are described 

as follows: 

 

                                                                             (4.3) 

                                                                             (4.4) 

 

where     and     are transverse shear strains. In the shear deformable beam theory, the Euler-

Bernoulli hypothesis is no longer applicable as       and       and the transverse strains 

are included in the derivation. Infinitesimal strain tensor in linear theory is expressed in terms of 

displacements. Based on the thin-walled theory, the energy equation requires only two main 

strain components,     which is the normal strain in   direction and          which is the shear 

strain in    plane. They are defined as follows: 

 

                                                                              (4.5) 

                                                                            (4.6) 

 

 Both the open and the two closed cross-sections have the same geometric center but different 

shear centers, thus, causing the centers of twist to vary along the beam length. Although the 

beam is subjected only to torsion, it is no longer the case of pure torsion, but the coupled bending 

and torsion must be considered. The governing equations are derived using the principle of 

virtual work as follows. The following derivation is based on isotropic materials; however, it 

could be generalized to use for the composite materials as shown in [22]. In static analysis, the 

principle of virtual work can be written as follows: 

 

                                                                               (4.7) 
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                                                                   (4.8) 

 

where   and   stand for body forces and tractions, respectively.  

 

 For a thin-walled beam cross-section, the body forces are zero in a static case and the term of 

work due to strain energy can be simplified. Considering the tractions in the form of distributed 

loads along the span and concentrated loads at certain locations of the span, the equation of 

virtual work can be written as follows: 

 

                                                      

                                                                         

                                                                     (4.9) 

 

where   is the Young’s modulus and   is the modulus of torsional rigidity;    ,    and    are 

the distributed forces in  -,  - and  -direction, respectively;    ,    and    are the distributed 

moments with respect to  ,   and   axis, respectively;    is the distributed warping torque 

about   axis;    and    are the shear forces in   and   directions, respectively;    is the axial 

force;    and    are the bending moments with respect to   and   axis, respectively;    is the 

torque; and    is the warping moment or so-called “Bimoment”.  

 

 In the span-wise direction, the beam model consists of three portions. For convenience, the 

local coordinates are mainly used as the references in the span-wise direction. The first portion 

has boundaries from       to      , the second portion with the crack spans from      to        and the last portion spans from      to      . For the plane of cross-section, 

however, the global coordinates are still used. The contour origin is chosen so that the warping 

displacement,        at the contour origin is eliminated. Substituting all stress and strain 

components and applying the principle of virtual work, the system of equilibrium equations as 

well as corresponding boundary-continuity conditions are obtained as follows: 
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                                                                            (4.10) 

                                                                        (4.11) 

                                                                         (4.12) 

                                                                         

  (4.13) 

                                                                      

  (4.14) 

                                                                         (4.15) 

                                                                        

  (4.16) 

 

The geometric problem parameters used in the above equations are defined as follows: 

       ,          ,          ,           

           ,           ,           ,  

            ,            ,            

            ,               ,                ,               ,                               ,                ,               ,                ,                 

 

The corresponding boundary conditions at the two ends of a section are obtained as follows: 

 

At the fixed end,  

                                                                ,    ,     (4.17) 

                                                               ,     ,      (4.18) 

                                                                             (4.19) 

 

At the free end,  

                                                                      (4.20) 
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                                                                      (4.21) 

                                                                             (4.22) 

                                                                            (4.23) 

                                                                             (4.24) 

                                                                       (4.25) 

                                                                            (4.26) 

 

 At the interface of the uncracked and cracked portions of the beam the boundary conditions 

are defined in terms of the continuity conditions as described in the following. 

 

4.2.1 Continuity Conditions  

 Due to the different warping functions between closed and open cross-sections, the 

discontinuity of warping displacements at the interface of the two sections across the beam 

portion is inevitable. In order to deal with this issue, the thin-walled beam theory is modified by 

incorporating the technique proposed by Gunnlaugsson and Pedersen [18, 130] to include the 

compatibility conditions in the boundary conditions at the interface. The objective of their 

technique is to minimize the difference between the warping displacements of the closed and 

open sections on the two sides of an interface. To facilitate the minimization of the difference, 

they proposed to include additional constants in the representation of the warping displacement 

only on one side of the interface, as explained in the following. 

 

 At the interface of the open and closed cross-sections, the warping displacement of the 

element on the right-hand side is rewritten to include the assumed compatibility constants as 

follows: 

                                                                               

  (4.27) 

 

whereas the warping displacement of the right element remains unchanged as follows: 
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                                                                         (4.28) 

 

To calculate the constants and define the compatibility condition, we minimize the following 

integral norm of the point-wise difference between the warping displacements: 

 

                                                                         (4.29) 

 

where left and right superscripts denote the closed and open cross sections, respectively. 

 

The necessary conditions for the minimization of this functional provide the compatibility 

conditions and the following four equations to calculate the constant di: 

 

      
        :                                                      (4.30) 

      
        :                                                      (4.31) 

      
        :                                                       (4.32) 

      
        :                                                       (4.33) 

 

On expansion, the above equations lead to the following four simultaneous equations for 

calculating the constants di expressed in terms of the integration constants of the beam cross 

sections.  

 

                                                                                     
 (4.34) 

                                                                                        
 (4.35) 

                                                                                       
 (4.36) 

                                                                                     (4.37) 

 

where the integration constants of the beam cross section,  ,    ,    ,         ,         ,    ,     

and     are the same as defined earlier after the equilibrium equations, but they are now defined 
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separately for the left and right parts of the beam cross sections. Another constant, undefined 

earlier, is                       which utilizes the warping function on the left and right 

hand side cross sections. 

 

 Here, it is noted that all integration constants are calculated using the respective shear centers 

as references for both the cross-sections. At this step, the constants obtained using the pole as the 

references cannot be used because of the flexural-torsional coupling. However, in order to obtain 

the unique values of all constants no matter which element is assumed to be on the left-hand or 

the right-hand side, an additional normalization needs to be implemented. It requires that the 

product of both constants    -- one when the closed cross section is on the left and the other 

when the closed cross section is on the right -- be normalized, which is basically equivalent to 

the orthogonality as explained in [130]. The compatibility constants can be implemented into the 

model directly as follows: 

  

                                                                                  (4.38) 

                                                                                    (4.39) 

                                                                           (4.40) 

                                                                            (4.41) 

                                                                           (4.42) 

                                                                                    (4.43) 

                                                                                 (4.44) 

                                                                                    (4.45) 

                                                                                    (4.46) 

                                                                                   (4.47) 

                                                                                 (4.48) 

                                                                                  (4.49) 

                                                                                  (4.50) 

                                                                                     (4.51) 
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4.2.2 Aerodynamic Loadings and Divergence 

 Although the load-bearing structure is modeled with a thin-walled beam of rectangular shape, 

the wing is of airfoil shape. In this paper, the wing is assumed to have a symmetric shape of 

airfoil wrapped around the beam as shown in Figure 4.3, where    is the aerodynamic center,   , is the center of twist,  , is the length of chord and   is the distance as shown in Figure 4.3 

This distance,  , is in general independent of the angle of attack and assumed to be 15% of the 

chord length, that is,         for this calculation. When an airfoil is exposed to airflow with an 

angle of attack,    , it experiences an additional lifting force,  , acting at the aerodynamic center 

and a moment about aerodynamic center,   , as shown in Figure 4.3. 

 

 

Figure 4.3 Airfoil as a shell around the thin-walled beam wing structure 

 

 For the assumed case of the damage symmetrically placed on the top surface of the cross-

section, the center of twist is on the same y-axis as the pole for the entire span. In such a damage 

configuration, the lifting force,  , will generate only the twisting moment,   . The lift force and 

the twisting moments can now be written in terms of the dynamic pressure on the wing and its 

dimensions as follows:  

 

                                                                                 (4.52) 

                                                                             (4.53) 

 

where   is the dynamic pressure and   is the lift-curve slope which is basically the ratio between 

the lift coefficient and the angle of attack. That is, the product          represents the lift 

coefficient.  
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Figure 4.4 Configurations of an airfoil showing the angle of incident and the angle of twist 

 

Figure 4.4 shows that the angle of attack,    , is sum of the angle of incident,   , and the angle of 

twist,   , written as follows: 

 

                                                                             (4.54) 

 

Therefore, assuming the symmetry of airfoil, without any loss of generality,      ; 

 

                                                                               (4.55) 

 

4.3 Analytical Solutions 

 The divergence occurs when the angle of twist starts to grow disproportionately as the 

twisting moment is increased and the air pressure at which this starts to happen is the divergence 

dynamic pressure. Since the twisting moment caused by the aerodynamic motion depends not 

only on the initial incidence angle but also on the wing twist caused by aerodynamic moment 

acting on the elastic axis, it is necessary to calculate the angle of twist, which in turn depends on 

the twisting moment acting on the wing. One, thus, needs to use an iterative approach in which 

one calculates the twisting moment for initial value of the angle of attack followed by the 

solution of the equilibrium equations to obtain the angle of twist. For small values of the pressure 

this iterative approach will converge to a final stable solution. However, as the pressure is 

increased, the final solution for the angle of twist will start to grow disproportionately large thus 

creating a condition of aeroelastic divergence. This iterative approach can be computationally 

demanding, but it is necessary for a loosely coupled system, which will be the case for the 

complicated structural configurations where one must use the finite element approach. Often, an 
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eigenvalue analysis, for linear structure and aerodynamics, can be used. In our case, however, we 

can obtain the divergence dynamic pressure much more efficiently as we can solve the 

equilibrium equations analytically because of the assumed configuration of the cross section as a 

thin-walled beam of simple cross section. In the following, we, thus, present a direct one-step 

approach to calculate the divergence dynamic pressure. This approach also permits us to study 

the probabilistic characteristics of divergence dynamic pressure for a beam with uncertain 

damage characteristics. However, before the direct approach is used with the cracked beam in 

this study, it is first validated for its accuracy by comparing the solution obtained by this 

approach with that obtained using the iterative approach for a simple beam. In the following 

section we describe the analytical solution that we have used to calculate the angle of twist 

needed in the two divergence calculating methods. 

 

 To obtain general full-form analytical solution of the seven coupled differential equations, Eq. 

(4.10) – Eq. (4.16), we rewrite them as a set of coupled first order equations using auxiliary 

variables and then use Jordan canonical form of the system to decouple the system. The 

following auxiliary variables:      ,      ,        ,        ,        ,       are 

introduced where     denotes the derivative with respect to  . The equation for the displacement,  , in  -direction is already uncoupled and, thus, it is not included in the analysis. The state 

vector of variables is defined as follows:  

 

                                                          

 

With the assignment of auxiliary variables as indicated above, the coupled equations can be 

rewritten in the state form as follows: 

 

   
   
   
   
                                                                                                 

   
   
   
  

   
   
   
   
                                        

   
   
   
 
 

   
   
   
   
                                                                                                                                     

   
   
   
  

   
   
   
   
                            

   
   
   
 
 

   
   
   
   
                       

   
   
   
 
 

     (4.56) 
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Substituting Eq. (4.55) into Eq. (4.56) to introduce the aero-elastic twisting moment and 

transferring the force terms dependent on the twisting angle to the left hand side we obtain:  

 

   
   
   
   
                                                                                                 

   
   
   
  

   
   
   
   
                                        

   
   
   
 
 

   
   
   
   
                                                                                                                                         

   
   
   
  

   
   
   
   
                            

   
   
   
 
 

   
   
   
   
                           

   
   
   
 
 

  (4.57) 

Equation (4.57) yields the 1
st
 order ODE equation in the following form 

 

                                                                           (4.58) 

                                                                           (4.59) 

  

 To obtain the solution, the technique of Jordan canonical form [132] is applied. Jordan matrix 

and the corresponding matrix of transformation are represented by   and  , respectively. Let’s 

define  

 

                                                                                  (4.60) 

 

Substitute Eq. (4.60) into Eq. (4.59), we obtain:                                          

 

                                                                            (4.61) 

 

Pre-multiply Eq. (4.61) by    , we obtain: 

 

                                                                            (4.62) 

 

which is re-written in standard form as follows: 
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                                                                                 (4.63) 

 

where       ,              and          . 

 

The final solution of ODE in Eq. (4.63) is typically written as the combination of the 

homogeneous and particular solutions as follows: 

 

                                                                               (4.64) 

 

The particular and homogeneous solution in this equation can be expressed as follows: 

    

                                                                           (4.65) 

                                                                              (4.66) 

 

where      and   are the matrix of functions and the vector of the constants of integration, 

respectively. The details of various matrices and vectors are provided in the Appendix A. 

Substituting these forms of particular and homogeneous solutions in Eq. (4.64), we obtain the 

following for the complete solution: 

 

                                                                           ]  (4.67) 

 

where                       and            . 

 

Using this solution all response quantities related to the state vector can thus be written in 

analytical form. For example, if we are interested in the angle of twist and deflection, say in the 

i
th

 beam section we can obtain them from the following equations:  

 

                                                                                      (4.68) 

                                                                                     (4.69) 
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where   is the dimension of the state equation which in this case are     . 

 

 To obtain the constants of integration in vector  , we need to apply the boundary and 

continuity conditions in each portion of the beam. For each section, the vector   consists of 12 of 

the constant of integration. Thus, for a three section beam there are 36 such constants of 

integration. In addition there are 4 constants,   , that were introduced in enforcing the warping 

displacement compatibilities at each section interface. With 2 section interfaces, this introduced 

8 more constant to be calculated. Thus a three section beam will require the calculation of a total 

of 44 constants. The 6 boundary equations, Eq. (4.17) to Eq. (4.19) at the fixed end, 6 boundary 

equations, Eq. (4.20) to Eq. (4.26) excluding Eq. (4.22) at the free end, 4 minimization 

conditions, Eq. (4.34) to Eq. (4.37) at each interface and 12 additional conditions in equations, 

Eq. (4.38) to Eq. (4.51) excluding Eq. (4.40) and Eq. (4.47) at each interface provide just the 

right number of equations to provide the all constants of integration in vector  . Application of 

these boundary conditions leads to the following simultaneous equations to solve for the 

constants. 

 

                                                                                                                            (4.70) 

 

 The details of the elements of the matrix   and vectors   and    in Eq. (4.70) are provided in 

the Appendix B. Knowing these constants, one can obtain any quantity of interest that can be 

defined in terms of the state vectors.  

 

 Once the angle of twist is calculated either by numerical approach or analytically as explained 

above, one can calculate the divergence dynamic pressure by an iterative approach or by a one-

step direct approach as explained in the following paragraphs. 

 

4.3.1 Pressure at Divergence: Iterative Approach 

 As mentioned earlier, in the iterative approach one first calculate the twisting moment based 

on the initial angle of incidence and applies it as the input to the system to compute the resulting 

angle of twist. This calculated angle of twist is then used to augment the angle of incidence for 

which a new twisting moment is calculated and applied to the system as the input in the second 
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step of the iteration. In such successive steps one then examines the trend in the change of the 

angle of twist. If the change in the angle of twist in successive steps gets smaller, then the 

applied pressure is below the divergence dynamic pressure and the successive steps will 

converge to the final angle of twist. However, if the change in the angle of twist in successive 

steps tends to increase then a divergence condition has occurred and in this situation the total 

angle of twist will tend to become large without any convergence. Thus the critical pressure can 

be defined as the condition at which the change in the angle of twist is two successive steps are 

equal to each other. With the solution approach described above, we thus use the following steps 

to calculate the critical pressure at which this occurs. 

 

Cycle no.1: Define the applied twisting moments assuming the angle of attack equal to the initial 

angle of incidence as                 . Solve equilibrium equations for the angle of twist,       , at a convenient location on the beam in terms of unknown pressure,  . 

 

Cycle no.2: For the next step, express the new twisting moment in terms of the augmented angle 

of attack using the angle of twist calculated in the previous step as                          . Solve the equilibrium equations for the new angle of twist,       , for the second 

iterative step in terms of the unknown pressure,  .  

 

Cycle no.3: For the third step, express the new twisting moment in terms of the new augmented 

angle of attack using the angle of twist calculated in the previous step as                          . Solve the equilibrium equations for the new angle of twist,       , for the third 

iterative step in terms of the unknown pressure,  .  

 

 The critical pressure at which the divergence will occur is then defined by the condition that 

the increase in the angle of twist in the two successive steps are at least equal. That is, the critical 

dynamic pressure,  , at divergence is the first root of the following equation. 

 

                                                                          (4.71) 

 

which can also be written as follows: 



Chalitphan Kunaporn                                       Chapter 4 Divergence                                                          

 

85 

 

                                                                            (4.72) 

 

4.3.2 Pressure at Divergence: Direct Approach 

 The more direct one-step approach utilizes the condition that at divergence the angle of twist 

would keep increasing till it becomes unbounded. That is, the divergence begins as soon as the 

angle of attack mathematically approaches the value of infinity. This condition can be stated in 

the following form.  

                                                                    
          (4.73) 

 

The first root of this equation provides the dynamic pressure at divergence. 

 

4.4 Numerical Results 

 To obtain the numerical results, we consider a beam with a longitudinal crack which is 

symmetrically located on one of its faces. With such symmetry, several terms in the equation of 

equilibrium become zero. For the system with span-wise     symmetry, the geometric 

parameters of the cross section,    ,    ,    ,      and    , are all identically zero. For 

convenience, we choose the contour origin to be on the axis of symmetry so the warping 

displacement of the contour origin can be also dropped. This means that the points on the 

contour origins along the span do not warp due to the fact that every point along the fold of 

symmetry is fixed. This simplifies the equation considerably to the following set. 

 

                                                                          (4.74) 

                                                                        (4.75) 

                                                                           (4.76) 

                                                                        (4.77) 

 

From this set the equations of the beam displacement along the     and     axis are omitted, 

as they are uncoupled from this set and can be integrated separately. This reduced set of 

equations can be readily decoupled as explained earlier, to obtain the analytical solution for each 

degree of freedom, as long as all distributed loadings are described as integrable functions. 
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 To obtain the numerical results, the length of thin-walled beam,   is assumed to be 6 m, with 

cross sectional dimensions of width = 0.4 m, depth = 0.2 m and thickness = 0.01 m. Let the 

modulus of elasticity   = 71.7 GPa and   = 0.33. The numerical expressions of warping 

functions used herein are as follows: 

 

                                  
                                                                                                                                                                                                                   (4.78) 

                                
                                                                                                                                                                                                                                                              (4.79) 

 

The plots of these warping functions are shown in, meters, in Figure 4.5. 

 

 

                                                    a) Closed cross-section 

 

                                                    b) Open cross-section 

Figure 4.5 Numerical plots of warping functions used in the study. 
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 For this particular section, it is found that the compatibility constants have the following 

values,    =    = 0,    = -0.0294, and    = 0.122, the open cross-section being on the right-hand 

side while    = 0.240 and    = 8.16 when the open cross-section is on the left-hand side.  

 

 For aerodynamic configurations, the length of chord,  , is assumed equal to twice the beam 

width that is c =    and thus   =     . The lift-curve slope,  , is assumed to be 0.1 per degree. 

The choice of the angle of incidence,   , is arbitrary. 

 

4.4.1 Validation  

 To validate the proposed methodologies for predicting the aeroelastic divergence pressure, a 

pristine structure without a single crack is first investigated. In this particular case, there exists an 

empirical approach. Although its derivation does not contain the component of warping, it is 

expected to yield a relatively good result since the effect of warping restraint at the fixed end is 

minimized for the thin-walled beam with a closed-section. The dynamic pressure at the 

divergence or so-called divergence dynamic pressure from this empirical approach is given as 

follows [2, 140] : 

 

                                                                                                                               (4.80) 

 

where   is the polar moment of inertia of the cross-section. 

 

 Table 4.1 provides results from three different methods of obtaining the divergence dynamic 

pressure. Comparisons of the results indicate consistency. 

 

Table 4.1 Divergence dynamic pressures (qdiv) obtained by different approaches 

Method qdiv (Pascal) 

Empirical formula 7.1662 x 10
5
 

Iterative approach 7.1795 x 10
5
 

Direct approach 7.2040 x 10
5
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4.4.2 Parametric Investigation 

 In the following, we present some results showing the impact of the crack parameters on the 

calculated divergence dynamic pressure. The crack parameters of interest are the crack location 

and crack dimensions. The crack location is defined by the parameter,    which is the location of 

the center of the crack along the beam length and the crack size,   . 

 

 Figures 4.6, 4.7 and 4.8 show the effect of the crack size and crack location on the divergence 

dynamic pressure,     , in different forms. In Figure 4.6, we show the divergence dynamic 

pressure for cracks located at three distinct positions of    ,     and      along the span with 

crack size varying within the range of 0 to 20%. The same results are presented in normalized 

form in Figure 4.7 where the divergence dynamic pressure for the cracked beam is normalized by 

the pressure for the same beam without any crack. In Figure 4.8, we plot that as a function of the 

crack location along the span for three distinct crack sizes. All these figures clearly indicate that 

the presence of a crack lowers the divergence dynamic pressure compared to the pressure for an 

uncracked beam. Secondly, we observe that a larger crack lowers the pressure more; that is, a 

beam with a larger crack will reach the divergence at lower dynamic pressures than a beam with 

a smaller crack. Furthermore, a crack near the fixed end lowers the divergence dynamic pressure 

more than a crack farther away from the fixed end; that is, a crack near the root makes the beam 

more susceptible to the divergence than the crack farther away from the root. These observations 

are quite understandable as the larger cracks and the cracks closer to the root reduce the stiffness 

of the beam more, thus making it more susceptible to divergence.  
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Figure 4.6 Divergence dynamic pressures for different crack sizes located at three different 

positions along the beam  

 

 

Figure 4.7 Normalized divergence dynamic pressures for different crack sizes located at 

three different positions along the beam 
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Figure 4.8 Divergence dynamic pressures for three different size cracks located at different 

locations along the beam.  

 

4.4.3 Probabilistic Characteristics of the Divergence Dynamic Pressure 

 In the following, we present some Monte Carlo simulation results obtained for 

probabilistically defined crack parameters. Given that the location and size of the crack are 

Gaussian variables, Figures 4.9, 4.10 and 4.11 shows the statistical distribution of the divergence 

dynamic pressure in form of a histogram of 500 samples for various sets of distribution 

parameters. 
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                                                   a)               m 

 

                                                  b)               m 

 

                                                  c)               m 

Figure 4.9 Distributions of divergence dynamic pressures for the crack location, 

Lc: N(1.5,0.375) and three different distributions of crack sizes 
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                                       a)               m 

 

                                                   b)               m 

 

                                                  c)               m 

Figure 4.10 Distributions of divergence dynamic pressures for the crack location, 

Lc: N(3.0,0.375) and three different distributions of crack sizes 
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                                               a)               m 

 

                                               b)               m 

 

                                              c)               m 

Figure 4.11 Distributions of divergence dynamic pressures for the crack location, 

Lc: N(4.5,0.375) and three different distributions of crack sizes 
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 For the histograms shown in Figures 4.9 to 4.11, the statistics of the divergence dynamic 

pressure were calculated and are given in Table 4.2. Figures 4.9 - 4.11 show an interesting trend 

in the skewness of the divergence dynamic pressure distribution. We observe that the 

distributions are more skewed when we have a large coefficient of variation and also when the 

crack location is farther away from the fixed end. It is primarily because for very small crack 

sizes (which occur in the crack size samples more frequently for distributions with large 

variability) or for cracks near away from the fixed end, the effect of the crack on the divergence 

dynamic pressure value is rather small and then the divergence dynamic pressure is essentially 

the same as the divergence dynamic pressure for an uncracked beam. This value of the 

divergence dynamic pressure for the chosen cross section is equal 7.2040x10
5
 Pa. The calculated 

skewness coefficient values are shown in Table 4.2 which clearly indicates the above observed 

trend. This trend is also apparent from the figures of the histogram. This skewness of the 

distribution affects the calculated sample mean and coefficient of variation values. The mean 

values of the divergence dynamic pressures for cracks near the free end are closer to the crack-

free divergence value. The distributions for this case are more skewed towards this crack free 

divergence value with large skewness coefficient and smaller coefficient of variation. As we 

approach the fixed end the mean and skewness coefficient values go down and the coefficient of 

variation does not have a clear trend.  
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Table 4.2 Statistics measures of divergence dynamic pressures due to various combinations 

of crack parameters 

Crack parameters 
Mean 

Coefficient 

of variation 
Skewness 

Location,    (m) Size,    (m) 

N(1.5,0.375) N(0.3,0.15) 6.9978 0.0180 -0.6130 

N(1.5, 0.375) N(0.3,0.06) 7.0137 0.0074 -0.1637 

N(1.5, 0.375) N(0.3,0.03) 7.0178 0.0041 -0.0229 

N(3.0, 0.375) N(0.3,0.15) 7.0859 0.0110 -0.9180 

N(3.0, 0.375) N(0.3,0.06) 7.0993 0.0049 -0.4553 

N(3.0, 0.375) N(0.3,0.03) 7.0992 0.0035 -0.2834 

N(4.5, 0.375) N(0.3,0.15) 7.1716 0.0040 -1.7485 

N(4.5, 0.375) N(0.3,0.06) 7.1761 0.0022 -0.9611 

N(4.5, 0.375) N(0.3,0.03) 7.1758 0.0020 -0.6706 

  

 Using the simulated divergence dynamic pressure values, we also calculate the probability of 

the divergence dynamic pressure,    falling below a certain value. We call this probability as the 

probability of failure. This limiting value of the divergence dynamic pressure was chosen to be a 

factor (less than 1) times the divergence dynamic pressure,      of undamaged beam. In Figures 

4.12a, 4.12b and 4.12c are shown the plots of these probabilities of failure for three different 

locations of damage at L/4, L/2 and 3L/4, respectively. The two curves are very close to each 

other because their coefficients of variation are rather close to each other. The probability curve 

is flatter for the case with larger coefficient of variation as in this case there are several samples 

with large crack size values that reduce the divergence dynamic pressure. This is indicated by the 

left hand portions in Figures 4.12. At the same time for large coefficient of variation case, there 

are several crack size samples that have very small values for which the divergence dynamic 

pressure approaches the value      for the uncracked beam. It is for this reason, the probability 

values for this case are lower than for the other two cases, as show in the right hand portion of 

Figures 4.12a and 4.12b. The curves for all three crack size distributions approach each other for 

the cracks located near the free end, as observed in Figure 4.12c and to some extent in Figure 

4.12b as well.   
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                                               a) L/4 

 

                                               b) L/2 

  

                                              c) 3L/4 

Figure 4.12 Probability of divergence dynamic pressure for cracked beam being less than a 

factor time the divergence dynamic pressure of uncracked beam for three different 

coefficients of variation of crack size 
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4.5 Summary and Concluding Remarks 

 The paper presents an analytical approach to determine the divergence of a thin walled beam 

with a crack oriented along the beam length. The governing equations and associated boundary 

conditions of the structural model are derived using the principle of virtual work. To obtain the 

analytical solution, the coupled system equations are first expressed in the state-space form and 

then are decoupled using the Jordan canonical form. The uncoupled equations are then solved 

using standard approach. The formulations for calculating the divergence dynamic pressure by 

the iterative and direct approaches that utilize the analytical solutions are presented. These 

formulations are used to conduct a parametric study showing the effect of the crack parameters 

on the divergence dynamic pressure as well as to investigate the effect of uncertainty in the crack 

parameters in a probabilistic sense. 

 

 



 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 5: Summary and Concluding Remarks 
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Conclusions 

 

5.1 General Summary 

 In this chapter we summarize the study presented in the previous four chapters. The primary 

motivation of this study was to evaluate the effect of discrete source damage that an aircraft 

might experience on its wing structure during its operation. Discrete source damage could occur 

due to different reasons and could also take widely different forms and configurations. To limit 

the scope of the work and to conduct the study without detailed finite element modeling of the 

wing structure, here a simple thin-walled beam with a simple longitudinal crack on one of its 

surfaces is examined with the hope that this study will establish a simple computational frame 

work to study this problem in possibly more details for more realistic structural configurations of 

the wings with damage. As the size and location of the damage are likely to be uncertain, the 

study develops a framework to incorporate these uncertainties in the analysis to study their 

impact on static and dynamic responses, time growth of the crack and aero-elastic divergence 

instabilities.  

 

 In Chapter 2, first the analytical modeling of the thin-walled beam with a crack is described.  

After a careful study of the available literature on the modeling of thin-walled beam, a model 

based on Benscoter [8] thin-walled beam theory is adopted to account for warping deformations 

properly. To handle the issue of discontinuities between different cross-sections due to the 

existence of a crack, some adjustments to the classical theory of thin-walled beam are required. 

Unlike modified theories such as hybrid elements or special warping functions, the concept of 

least-square compatibility conditions proposed by Gunnlaugsson and Pedersen [18, 20, 130] is 

used directly into the boundary value problem obtained from a classical thin-walled theory, 

Benscoter’s beam. The equilibrium equations are developed using the principle of virtual work. 

Without exception, the general form of the exact solution can be obtained for these equilibrium 

equations using a combination of the state variables representation and the Jordan canonical 

form. The validity of the proposed analytical approach is established by comparing the numerical 

response results obtained by the approach with those obtained by detailed shell finite element 

analysis using ABAQUS


. Characteristics of the damage are uncertainty quantities. The 

analytical solution is used in the probabilistic analysis where for a crack with random location 
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and size the probability of the cracked beam response exceeding a limit state are calculated using 

the first order safety index analysis. Such analyses can be beneficial at the preliminary design 

stage of an aircraft wing so that the weak point of the structure can be detected and reinforced 

accordingly. 

 

 During a flight, a crack is prone to propagate further and worsen the aircraft performance. 

Chapter 3 is focused to study this concern as to how one can calculate the time growth of a crack 

and its chances of reaching the critical state. The chapter develops a computational framework to 

estimate time growth of a crack using the modified Paris-Erdogan model represented by the 

Foreman equation with the using Monte Carlo simulation to include the effect of uncertainties in 

the model parameters and stochastic nature of the applied load. To obtain the peak cyclic 

response of the stress in the thin-walled beam for stochastically defined gust loading, random 

vibration analysis is performed. The peak response statistics are used in crack growth analysis. 

This approach is used to calculate the probability of a crack approaching its critical size in a 

given flight duration as well as the remaining flight time before a crack approaches a limiting 

value. Although the analysis of crack propagation conducted on a beam structure, such as the one 

considered in this study, is less accurate than that of a more detailed shell finite element analysis 

of the wing structure, the proposed procedure being simple consumes a lot less computational 

resource and thus can be used in quick estimates of an evolving operational condition in real-

time for health monitoring of the structure under operation.  

 

 Chapter 4 addresses the issue of aero-dynamic stability and divergence of a damaged wing 

modeled by a thin-walled beam with a crack. The analytical solution developed in Chapter 2 

greatly facilitates the calculation of the divergence dynamic pressure. Thus, the formulation of 

Chapter 2 is specialized to solve for the dynamic pressure at divergence of a wing the internal 

structure of which is represented by a thin-walled beam. Similar to the standard approaches 

employed in simple beam theories, both iterative and direct approaches are used with exact 

analytical solution. The numerical results are obtained for different crack configurations, 

including the uncertainties in its location and size. The results show some interesting trends in 

divergence conditions under different damage characteristics. 
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5.2 Concluding Remarks 

 Each chapter presents numerical results pertaining to the topic of that chapter including its 

findings. The overall focus of this study has been to use an analytical approach to study the 

performance of a damaged wing by modeling it by a thin-walled beam primarily because such 

modeling and analyses are much less computationally demanding and are hoped to capture 

general features of the more practical problem. Thus, this modeling and analytical framework 

developed herein is expected to be useful for evaluating the effect of discrete source damage on 

the static and dynamic responses, crack growth and aeroelastic divergence characteristics of an 

aircraft wing. 

 

5.3 Suggestions for Future Research 

 The following are suggested as the possible topics for future research.  

a. In this study of thin-walled beam with a crack, some simplifying assumptions were made 

about the crack configurations. In particular, the crack was assumed to be parallel to the 

longitudinal axis.  The crack, however, can develop in arbitrary directions. Future studies 

could focus on analytical modeling and solution of thin-walled beams with such general 

crack configurations. 

b. The probabilistic analysis of the divergence instabilities was primarily performed using 

the Monte Carlo studies. In this analysis, the calculation of the probability of the 

divergence dynamic pressure falling below a limiting value under randomly defined 

crack conditions was performed using the Monte Carlo simulation approach and was thus 

observed to be computationally demanding. The implementation of a first order safety 

index approach to calculate such probabilities for the divergence dynamic pressure 

defined through implicit conditions appears to be a challenging problem and thus appears 

to be a good topic for future studies. 
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Appendix A Numerical Examples of Jordan Canonical Form 

 

 In this appendix, the details of the vectors and matrices used in the Jordan canonical form 

solution of the governing equation are provided.  

 

Configurations of system 

Section shape: Rectangular thin-walled 

Section dimension (width x height x thickness): 0.4 m x 0.2 m x 0.01 m 

Material properties:    = 71.7 x 10
9
 Pa and   = 0.33. 

Loading type: Uniformly distributed twisting moment 

Loading magnitude: 16.67 N/m 

 

Since the cross-section of the cracked beam in our case has one-fold symmetry, only 4-coupled 

of the six equations of equilibrium are coupled. For this case, the state-variable and force vectors 

are defined as follows: 

                                            

 

Whereas the state and other matrices in the state equations are defined as follows for the cracked 

and uncracked portions of the beam: 

 

Uncracked portion 
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Correspondingly, the Jordan matrix,  , the matrix of transformation,  , and the matrix of 

functions,     , can be determined following Weintraub [132]. A built-in MATLAB function 

called “jordan” has been used to facilitate these calculations. Derivations and comprehensive 

details can be found in the text by Weintraub [132]. The calculated matrices are defined as 

follows: 
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Cracked portion 

               
   
   
                                                                                                                     

   
  
  

 

     
   
   
                                                                                                                   

   
  
          

                      

 

The corresponding Jordan matrix,  , matrix of transformation,  , and matrix of functions,     , 

for this case are as follows: 
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Appendix B Assembled Matrix Components 

 

Matrix   

Column
Column 13-24                          
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Column 25-36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    
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Vector c  

Row 1-12                                                                              

Row 13-24                                                                               

Row 25-36                                                                               

 

Vector   , Row 1-12                                                                                         
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Vector   , Row 13-24                                                                          
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Vector   , Row 25-36                                                                                          
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Appendix C Configurations of Shell Model used to validate the results obtained by closed 

form solution 

 

Software: ABAQUS


 

Numerical approach: Finite element 

Part dimension: 

 Shape: Rectangular thin-walled cross-section 

 Cross-section dimension: 0.4 m x 0.2 m 

 Span length: 6 m  

Element type: Shell element,     

Material: 

 Type: Mechanical 

 Elasticity type: Elastic 

 Elastic type: Isotropic 

 Young’s modulus: 71.7 x 10
9
 Pa 

 Poisson’s ratio: 0.33 

Section: Solid, homogeneous, shell thickness: 0.01 m 

Mesh size: 0.05 m 

Analysis: 

 Static response (deformation) 

  Step:  

    Procedure type: General, Static 

    Incrementation: 1 x 10
-5 

 of the full load 

 Dynamic response (frequency) 

Step:  

    Procedure type: Linear perturbation, Frequency 

  Eigensolver: Lanzos 
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