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Abstract—The article deals with the analysis and interpre-
tation of dynamic scenes typical of urban driving. The key
objective is to assess risks of collision for the ego-vehicle. We
describe our concept and methods, which we have integrated
and tested on our experimental platform on a Lexus car and a
driving simulator. The on-board sensors deliver visual, telemetric
and inertial data for environment monitoring. The sensor fusion
uses our Bayesian Occupancy Filter for a spatio-temporal grid
representation of the traffic scene. The underlying probabilistic
approach is capable of dealing with uncertainties when modeling
the environment as well as detecting and tracking dynamic
objects. The collision risks are estimated as stochastic variables
and are predicted for a short period ahead with the use of
Hidden Markov Models and Gaussian processes. The software
implementation takes advantage of our methods, which allow for
parallel computation. Our tests have proven the relevance and
feasibility of our approach for improving the safety of car driving.

Index Terms—Intelligent vehicle, sensor fusion, probabilistic
filter, collision risk, driver assistance.

I. INTRODUCTION

A. Automotive and technological context

Driving a car assumes some level of risk of collision in

any traffic scenario. The modern technologies help mitigate the

effects of accidents (e.g. seat belts, airbags, safety glass, energy

absorbing frames) or reduce their likelihood (e.g. anti-lock

braking system, dynamic stability control). Concurrently, the

exploitation of the synergies between mechatronics, drive-by-

wire, perception, real-time data processing and communication

facilitates the risk management by traffic participants toward

zero-collision driving. The key problem is to correctly interpret

the traffic scene by means of processing information from a

variety of sensors.

Improvement of driving safety remains a highly relevant

topic, with significant accomplishments being reported, from

obstacle detection and driver warning to active response lead-

ing to modifying the driving parameters when a collision be-

comes imminent. Automated maneuvering represents a strong

advantage over manual driving since it reduces the required

reaction time (in comparison to a human driver) to avoid col-

lisions or mitigate their impact. Various successful automated

maneuvers were reported, using world-first prototypes such as:

an automated platooning system in the scope of the PATH

Program [1], or the automated parking systems at INRIA [2],

[3]. Recent promising results in more complex scenarios are

the CityCars concept [4], the DARPA Urban Challenge [5],

[6], or the Google Cars [7].

Another approach to reduce driving accidents is to assist

the driver in avoiding collisions, e.g. a parking assistance by

producing audible alarms to the human driver while the car

approaches obstacles [8]. More advanced systems anticipate

the car motion on the parking lot and display the situation to

the driver during a human-driven parking [9]. Such warning

signals along with the modification of velocity and steering

angle during the maneuvers assist the driver to smoothly

perform the maneuver while avoiding collisions. Other devices

allow for alerting the driver when drifting out of the traffic lane,

or provide an adaptive cruise control function [10].

Assessing the risks of collision in real driving situations is

a challenging problem. At present, the common measure of

collision risk is time-to-collision (TTC) [11]. It is calculated

by assuming all objects being detected, their positions being

computed and their velocities remaining constant relative to the

ego-vehicle. For a time horizon within a second on a straight

road, the TTC is used effectively in accident mitigation systems

(e.g. pretension of seat belts) just before impact. However, it

becomes less efficient for the time horizon of a few seconds.

Fig. 1 illustrates its limitation as the sole estimate of risk. If

all of the cars are stopped at the intersection, as shown in

Fig. 1-a, the TTC is calculated as infinite. Thus, a case of

relatively high-risk (many accidents occur in intersections) is

estimated as very low-risk, i.e. this is a false negative. The

situation on a curved road in Fig. 1-b gives an example of the

TTC calculated as very low, implying a very high risk. But

because the most likely result is the both cars moving in their

lanes, this case is a false positive, i.e. reporting very high risk

when in fact the risk is relatively low.

The above scenarios indicate that TTC alone is insufficient

as a risk indicator for managing complex situations. The road

context (road shape, speed limit, intersection layout, etc.) can

add relevant information. Predicting the future actions (beha-

viors) of other traffic participants, like a car or a pedestrian

in Fig. 1-a, can further improve estimation of collision risk.
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Figure 1: Limitation of TTC as a risk measure: (a) under-

estimation of collision risk at intersection with stopped cars,

(b) over-estimation of collision risk on a curved road.

Since these future behaviors can never be known exactly in

advance, their probabilistic prediction is required [12].

B. State of the art

Much research has focused on directly modeling and de-

tecting objects in the scene and various approaches have

been proposed, depending on the sensor involved: telemeter

like radar [13] or laser scanner [14], cooperative detection

systems [15], or vision systems. Most monocular vision ap-

proaches suppose recognition of specific objects, like vehi-

cles or pedestrians, using a model which is generally built

through statistical learning [16]. Stereo-vision is particularly

suitable for generic obstacle detection [17], [18] and object

classification [19], because it provides a three-dimensional

representation of the road scene.

The computational complexity has been a critical feature

of stereo-vision, but recent algorithms, like [20], as well as

progress in Graphics Processing Unit (GPU) computing [21]

now allow for processing of stereo images in real time.

Advanced approaches combine stereo-vision and movement to

make perception more robust [22]. It should also be noted that

most of the successful vehicles in the DARPA Urban Challenge

used a three-dimensional laser scanner Velodyne to assist in

finding obstacles [23].

Many approaches rely on sensor fusion to attain sufficient

reliability for automotive applications, with some methods

being designed for particular sensors [24], [25], or offering

a generic framework [26]. Most of them are at the object

level and must therefore deal with the difficult task of data

association. Rather than start with obstacle models, various

approaches take advantage of a grid representation of the

scene [27], [28], [29]. In order to work efficiently with oc-

cupancy grids, we have previously developed a probabilistic

framework with the Bayesian Occupancy Filter (BOF) [30],

[31], [32], which provides filtering, data fusion, and velocity

estimation capabilities while allowing for parallel computation.

The Fast Clustering and Tracking Algorithm (FCTA) [33] is

then used to identify and track individual objects. The BOF is

designed with the intent of its implementation in hardware as

a system-on-chip. Like other grid based approaches, the BOF

framework performs sensor fusion at the cell level [30].

Collision risk assessment employs the information from

sensor fusion and uses models in order to estimate poten-

tial threats [34], [35], [36]. The information about the road

geometry and the communication between the vehicles and

with the infrastructure provide to improve risk assessment [37],

[38]. In addition to the knowledge about an object detected at

a certain location at a specific time in the traffic scene, the

prediction of its likely future behavior leads to more adequate

interpretation of its possible impact on the ego-vehicle [12],

[39], [40], [41].

C. Problem statement and approach

This article focuses on the probabilistic modeling and ana-

lysis of dynamic traffic scenes by means of sensor data fusion
from on-board sensors and continuous assessment of collision
risk [42]. Among the relevant sensors for monitoring the local

environment, we use stereo-vision and lidars, mounted on-

board of the ego-vehicle [43]. The environment is represented

by a grid, and the fusion of sensor data is accomplished by

means of the BOF [30], [31]. The BOF evaluates probabilities

of both cell occupancy and cell velocity for each cell in

a four-dimensional spatio-temporal grid. The monitoring of

traffic scenes includes detection and tracking of objects by the

FCTA [33]. The collision risks are considered as stochastic

variables. Hidden Markov Model (HMM) and Gaussian pro-

cess (GP) are used to estimate and predict collision risks and

the likely behaviors of multiple dynamic agents in road scenes.

The main contribution of this article is to present two

main components of our conceptual framework: traffic scene

modeling and collision risk assessment for the ego-vehicle. To

deal with uncertainties (e.g. possible noise on sensor data) and

with the complexity of road scenes, these functionalities have

been developed in our probabilistic framework ProBT c©. The

corresponding methods are implemented into the software that

runs on our experimental platform on a Lexus car and Toyota’s

driving simulator allowing for damage-free collision situations.

The article is organized as follow: Section II describes

our approach to model and monitor the dynamic traffic en-

vironment, Section III explains the approach to collision risk

assessment, Section IV discusses our experimental results and

Section V lists conclusions and indicates our ongoing work.

II. ONLINE TRAFFIC SCENE MODELING & MONITORING

An overview of our environment-modeling module is shown

in Fig. 2. The inputs to this module are sensor data. The

combined use of two lidars and stereo-vision helps mitigate

uncertainty and allows for detection of partially occluded

objects. The output of the module is an estimation of the

position, velocity and associated uncertainty of each observed

object, which are used as input to the risk assessment module.

A. Occupancy grid from lidar

An occupancy grid from lidar data is constructed using

a beam-based probabilistic sensor model, similar to that de-

scribed in [28], where each beam in a lidar detection frame



Figure 2: Architecture of the environment modeling module.

is considered as independent from the other beams. Static

and dynamic entities of the environment are separated, by

using a local-SLAM based algorithm. Let m denote the map,

Z0:t = (z0, · · · ,zt) be the sensor observations, where zi is the

frame of observation at time step i, U1:t = (u1, · · · ,ut) denote

the odometer data and X0:t = (x0, · · · ,xt) be the vehicle states.

The objective of a full sequential SLAM algorithm is to

estimate the posterior P(m,xt | Z0:t ,U1:t ,x0). Since we build

a map of a local area, which moves with the ego-vehicle, we

are not concerned with the precision of the vehicle’s global

states. Therefore, we use a maximum likelihood localization

and apply a log-odds filtering scheme to update the map. The

maximum likelihood state can be estimated for the localization

step as:

xt = argmax
x′ t

P(zt |m, x′t) P(x′t |xt−1, ut), (1)

where x′t denotes a state sample at time t. Then, based on the

new state of the vehicle, the occupancy map is updated. Let

l(mi |X0:t ,Z0:t) = log
P(mi | X0:t ,Z0:t)

P(¬mi | X0:t ,Z0:t)
(2)

denote the log-odds value of a cell mi in m. The update formula

can be written as:

l(mi |X0:t ,Z0:t) = l(mi |xt ,zt)− l(mi)+ l(mi |X0:t−1,Z0:t−1), (3)

where l(mi) is the prior value, and l(mi |xt ,zt) is obtained from

the beam-based inverse sensor model.

Given the occupancy grid map and the current state of the

vehicle, the laser impacts generated from stationary objects or

moving objects can be discriminated. For this purpose, clusters

are created from connected regions of the grid, and clusters

with a high average occupancy probability are classified as

static. Additionally, while using a multi-layer laser scanner,

only cells containing multiple laser impacts are considered as

occupied. This intends to remove laser hits on the road surface.

B. Occupancy grids from stereo-vision

Our stereoscopic sensor is equipped with two cameras in a

“rectified” geometrical configuration, where the image planes

are assumed to be perfectly parallel and aligned. To compute

the disparity map, we use a double correlation framework,

which exploits different matching hypotheses for vertical and

horizontal objects [44], [45]. Horizontal hypotheses are gen-

erated by applying an homography to the right image of the

pair, according to the road surface. This method provides an

immediate classification of pixels during the matching process,

resulting in two disparity images containing disparity pixels

from obstacles and the road surface.

The u-disparity representation

The u-disparity (similar to v-disparity [17]) is computed by

projecting the disparity map along the columns with accumu-

lation, see an example in Fig. 3. If the disparity map provides

a representation of the scene in the disparity space, then the

u-disparity representation is equivalent to a bird-eye view in

this space, as illustrated in Fig. 3-b. Vertical objects appear as

portions of lines in this image, e.g. the rear of the vehicle.

a

b
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Figure 3: Computation of the occupancy grid in the u-disparity

plane: (a) left image from the stereo camera, (b) obstacle u-

disparity image, (c) road u-disparity image, (d) occupancy grid

in the u-disparity plane.

Working in the u-disparity plane has three main advantages.

First, it allows us to make use of equally-spaced measurement

points, with constant pixel-wise uncertainty. By contrast, mov-

ing to a Cartesian space before processing the data would give

a varying density of measurements. Second, the u-disparity

calculation is computationally efficient and allows for highly

parallel processing. Third, it allows for optical directions to be

seen as parallel during the calculation. In fact, a set of rays

belonging to the same vertical plane is represented by a column

in the u-disparity image. Consequently, it allows us to consider

the visible and occluded portions of the image directly, similar

to the common approaches used for range finders.

Occupancy grid in u-disparity

To benefit from the above advantages of the u-disparity rep-

resentation, we compute the occupancy grid in the u-disparity



plane. This type of approach has been studied in [46], but

our approach is novel in providing a probabilistic management

of the visible and occluded areas of the scene and in using

the information given by the road/obstacle pixel classification.

Here we give an overview of the approach, while its detailed

description can be found in [47].

Let us denote a detection plane in Cartesian coordinates

as P , which is the support of the grid. P is chosen to be

parallel to the plane defined by the camera baseline and the

optical axes. This configuration provides a direct invertible

transformation between a cell U = (u,d) in the u-disparity

plane and a cell X ⊂ P .

For building the grid, our objective is to obtain a probability

P(OU) for a cell U being occupied by an obstacle in the u-

disparity plane. This probability depends on the visibility, VU ,

and the confidence of observation, CU , where VU and CU are

binary random variables (e.g. either it is visible or not). P(VU)
and P(CU) are calculated for a given cell, and the laws of

probability are used to obtain the full decomposition of P(OU):

P(OU) =∑
v,c

P(VU = v)P(CU = c)P(OU |VU = v,CU = c). (4)

The probability density function P(OU |VU ,CU) is obtained

from P(VU) and P(CU ) and the following boundary conditions:

P(OU |VU = 0,CU) = 0.5,

P(OU |VU = 1,CU = 1) = 1−PFP,

P(OU |VU = 1,CU = 0) = PFN ,

(5)

where PFP and PFN are respectively the probability of a false

positive or a false negative in the matching process. These are

assumed to be constant and known empirically. Tuning these

parameters sets the confidence we have in the stereoscopic

data. While the range of occupancy values is reduced as these

parameters increase, the overall solution (relative values of one

cell compared to another) does not change significantly.

Because of the separation of the disparity image into ob-

stacle and road images, we can further improve the occupancy

grid by taking into account the road pixels. Call P(TU) the total

occupancy probability for cell U , considering both road and

obstacle pixels, and RU the binary random variable meaning

that cell U only belongs to the road surface. We begin with

the logical assertion that the cell is totally occupied if it is

occupied by an obstacle and not by the road surface:

P(TU) = P(OU)(1−P(RU)). (6)

To compute P(RU), we consider both obstacle and road pixels.

This is because road pixels are often found at the base of

obstacles, meaning that P(RU) must remain low when P(OU) is

high. This formulation allows us to be more certain that regions

of the image where the road can be seen are not occupied.

The basic application of this algorithm is depicted in Fig. 3.

The fronts of obstacles result in (mostly) straight black lines, as

shown in Fig. 3-b. The road u-disparity image (c), meanwhile,

shows much more detail where there is dense information

on the road, such as the crosswalk. You can see that in the

occupancy grid in Fig. 3-d where black color represents high

probability of occupancy, and white color corresponds to very

low probability. This grid maintains strong information about

the obstacles (they remain black lines), while a cell is empty

(white) in areas where the road was detected. Most areas

behind obstacles are unknown, meaning they are assigned a

value of P(TU) = 0.5 and are represented by gray color.

Occupancy grid in Cartesian space

The Cartesian occupancy grid requires the calculation of

those pixels in the u-disparity grid, which affect a given cell of

the Cartesian grid. Let us define the surface SU(U) of a cell U
as the region of the u-disparity image delimited by the intervals

[u− 0.5,u+ 0.5 [ and [d − 0.5,d + 0.5 [. Call SX (U) ⊂ P the

image of SU (U) in the detection plane P . To compute the

occupancy grid, the occupancy probability of cell U is simply

attributed to the area SX(U) of the detection plane. For short

distances from the camera, several pixels can affect the same

cell X ⊂ P of the metric grid. The occupancy is estimated

according to this set of data by using a max estimator, which

ensures a conservative estimation of the occupancy probability:

P(OX) = max {P(OU) |X ∈ SX (U)⊂ P }. (7)

The occupancy grid presents strong discretization effects,

due to the pixel-level sampling and the disparity estimation on

integer values. In order to obtain a smoother and more realistic

representation, an image-like filter, based on the convolution

with a Gaussian kernel, is used. We compute a Gaussian kernel

for each value in the occupancy grid, considering a constant

Gaussian kernel in the u-disparity plane. Thanks to the non-

constant kernel size, details are preserved at short distances,

while smoothness is added at longer distances.

C. Bayesian Occupancy Filter (BOF)

The BOF operates with a grid representing the environment.

Each cell of the grid contains a probability distribution of

the cell occupancy and a probability distribution of the cell
velocity. Given a set of observations, the BOF algorithm

updates the estimates of the occupancy and velocity for each

cell in the grid. As it is shown in Fig. 4, the inference leads

to a Bayesian filtering process. The BOF model is described

in detail in [30] and [31].

In this context, the prediction step propagates cell occu-

pancy and antecedent (velocity) distributions of each cell in

the grid and obtains the prediction P(Ot
c At

c) where P(Ot
c)

denotes the occupancy distribution and P(At
c) denotes the

antecedent (velocity) distribution of a cell c at time t. In the

estimation step, P(Ot
c At

c) is updated by taking into account

the observations Zt
i , i = 1,2, . . . ,S yielded by the sensors at

time t: ∏S
i=1 P(Zt

i |A
t
c Ot

c), where P(Zt
i |A

t
c Ot

c) is the model

of sensor i, in order to obtain the a posteriori state estimate

P(Ot
c At

c | [Z
t
1 · · ·Z

t
S ]). This allows us to compute by marginal-

ization P(Ot
c | [Z

t
1 · · ·Z

t
S ]) and P(At

c | [Z
t
1 · · ·Z

t
S ]), which will be

used for prediction in the next iteration.



Figure 4: Bayesian filtering in the estimation of occupancy and

velocity distributions in the BOF grid.

D. Fast Clustering and Tracking Algorithm (FCTA)

The FCTA works at the level of object representation to

track objects [33] and it can be roughly divided into three

modules: a clustering module, a data association module, and a

tracking and tracks management module. The clustering mod-

ule takes two inputs: the occupancy/velocity grids estimated

by the BOF, and the prediction of the tracker which provides

a region of interest (ROI) for each object being tracked. We

then try to extract a cluster in each ROI and associate it with

the corresponding object. This ROI based approach is designed

to improve the computational efficiency of the algorithm.

There could be a variety of cluster extracting algorithms,

however, we have found that a simple neighborhood-based

algorithm provides satisfactory result. The eight-neighbor cells

are connected according to an occupancy threshold and addi-

tionally a threshold of the Mahalanobis distance between the

velocity distributions is employed to distinguish the objects

that are close to each other but move at different velocities.

The output of this clustering module leads to three possible

cases, as shown in Fig. 5: (a) no observation, where the object

is not observed in the ROI, (b) ambiguity free, where one

and only one cluster is extracted and is implicitly associated

with the given object, and (c) ambiguity, where the extracted

cluster is associated with multiple objects. The data association

module is designed to remove the ambiguity. Let Nk be the

number of objects associated with a single cluster. The causes

of the ambiguity are further analyzed as twofold: (a) objects

are too close to each other and the observed cluster is the union

of more than one observations generated by Nk different real

objects, (b) Nk different objects correspond to a single object

in the real world and they should be merged into one.

Figure 5: Cases of the clustering result, ROIs are predicted

from the previous timestep to speed-up data association: (a)

no observation, (b) no ambiguity, (c) ambiguous association.

We employ a re-clustering strategy to the first situation and

a cluster merging strategy to the second one. The re-clustering

step divides the cluster into Nk sub-clusters and associates

them with the Nk objects, respectively. Because the number

Nk is known from the prediction step, we apply a K-means

based algorithm [48]. The cluster merging step is based on a

probabilistic approach. Whenever an ambiguous association Fi j

between two tracks Ti and Tj is observed, a random variable

Si j is updated to indicate the probability of Ti and Tj to be

parts of a single object in the real world.

The probability values P(Fi j |Si j) and P(Fi j |¬Si j) are pa-

rameters of the algorithm which are constant with regard to i
and j. Similarly, the probability Pt(Si j |¬Fi j) is updated when

no ambiguity between Ti and Tj is observed. Then, by thresh-

olding the probability Pt(Si j), the decision of merging the

tracks Ti and Tj can be made by calculating the Mahalanobis

distance between them. Now we arrive at a set of clusters

which are associated with the objects being tracked without

ambiguity. Then, it is straightforward to apply a general tracks

management algorithm to create and delete the tracks, and use

a Kalman filter to update their states [49].

III. COLLISION RISK ESTIMATION

Consider vehicle A and the ego-vehicle B traveling in the

same direction on the adjacent lanes, as shown in Fig. 6. The

risk of collision has to be estimated for vehicle B. From the

driver’s viewpoint, the road structure is described implicitly

by such maneuvers as: move straight, turn left, turn right or

change a lane, which define a set of possible behaviors. Each

behavior is represented as a probability distribution over the

possible future realizations of the vehicle’s paths.

Figure 6: Example of collision risk estimation by predicting

the path of vehicle A: sampling from the GPs for two possible

behaviors “moving straight” and “lane change”.

The GP samples for such behaviors as “lane change” and

“moving straight” are depicted in Fig. 6, where the dotted lines

represent the paths sampled from the GPs. The set of GPs

for each feasible behavior and the probability of vehicle A

executing a certain behavior, give a probabilistic model of



the evolution of vehicle A in the scene. In contrast to the

TTC’s linearity assumption about the future paths, we evaluate

the collision risk of the intended path of vehicle B against

all possible paths of vehicle A. The weights are assigned

according to the probabilistic model of the behaviors’ evolution

of vehicle A, and the collision risk is a weighted sum of the

paths leading to a collision.

An overall architecture of our risk estimation module is

sketched in Fig. 7. It comprises three sub-modules, such as:

driving behavior recognition, driving behavior realization, and

collision risk estimation [12], [50].

Figure 7: Architecture of the risk assessment module.

A. Behavior recognition and modeling

The behavior recognition aims at estimating the probability

for a vehicle to perform one of its feasible behaviors. The

behaviors are high-level representations of road structure,

which contain semantics. The probability distribution over

behaviors is obtained by HMM. Our current model includes

the following four behaviors: move straight, turn left, turn

right, and overtake. The algorithm assigns a label and a

probability measure to sequential data, i.e. observations from

the sensors. Examples of sensor values are: distance to lane

borders, signaling light status or a proximity to an intersection.

The objective is to obtain the probability values over behaviors,

i.e. the behaviors are hidden variables.

The behavior modeling contains two hierarchical layers, and

each layer consists of one or more HMMs. The upper layer

is a single HMM where its hidden states represent high-level

behaviors, such as: move straight, turn left, turn right, and

overtake. For each hidden state or behavior in the upper layer

HMM, there is a corresponding HMM in the lower layer which

represents the sequence of finer state transitions of a single

behavior, as depicted in Fig. 8.

Define the following hidden state semantics in the lower

layer HMMs for each behavior of the higher layer HMM:

• Move straight (1 hidden state): move forward.

• Turn left or turn right (3 hidden states): Decelerate before

a turn, execute a turn, and resume a cruise speed.

Figure 8: Layered HMM where each lower layer HMM’s

observation likelihood is the upper layer HMM’s observation.

• Overtake (4 hidden states): lane change, accelerate (while

overtaking a car), lane change to return to the original

lane, resume a cruise speed.

In order to infer the behaviors, we maintain a probability

distribution over the behaviors represented by the hidden states

of the upper layer HMM. The observations of cars (i.e. sensor

data) interact with the HMM in the lower layer and the

information is then propagated up to the upper layer. In the

lower layer, there is a corresponding HMM for each higher

level behavior description. Each HMM in the lower layer,

indexed by h = 1, . . . ,H, updates its current state by:

P(St,h Q1:t) ∝ P(Qt | St,h) ∑
St−1,h

P(St−1,h)P(St,h | St−1,h), (8)

where St,h is the hidden state variable of HMM h at time t,
Q1:t = {Qt ,Qt−1, . . . ,Q1 } and Qt are the observations at time t.
Then, the observation likelihood for each lower level HMM is:

Lh(Q1:t) = ∑
St,h

P(St,h Q1:t). (9)

The observation likelihoods Lh(Q1:t) are the “observations”

for the upper layer HMM. The inference of the upper level

behaviors takes a similar form:

P(Bt |Q1:t) = P(Q1:t |Bt) ∑
Bt−1

P(Bt−1)P(Bt |Bt−1) (10)

= LBt (Q1:t) ∑
Bt−1

P(Bt−1)P(Bt |Bt−1), (11)

where Bt is the hidden state variable of the upper level HMM

at time t, and P(Bt |Bt−1) is the upper level behavior transition

matrix. In order to distinguish whether the change of the high-

level behavior occurs after the completion of the low-level

behavioral sequence, two transition matrices are used: T f inal

corresponds to the high-level behavior transition when the

lower level behavioral sequence is completed, otherwise the

transition matrix Tnot− f inal is used. The upper level behavior



transition matrix depends on the lower level states:

P(Bt |Bt−1) = ∑
St,Bt−1

P(St,Bt−1
)P(Bt |St,Bt−1

Bt−1), (12)

where St,Bt−1
is the state at time t of the lower level HMM,

corresponding to the previous behavior Bt−1, and by definition:

P(Bt |St,Bt−1
Bt−1) =

{

T f inal , if St,Bt−1
is a final state,

Tnot− f inal otherwise.
(13)

The probability distributions over high-level behaviors

P(Bt |Q1:t) are maintained iteratively, and the layered HMM

is updated according to Algorithm 1.

Input: Current observation Qt

Output: P(Bt | Q1:t)
foreach Lower layer HMM h do

Update P(St,h Q1:t) (Eqn. 8);

Calculate log-likelihood Lh(Q1:t) (Eqn. 9);

end

Update upper layer HMM P(Bt |Q1:t) (Eqn. 11).

Algorithm 1: Layered HMM Updates.

B. Driving behavior realization

A behavior is an abstract representation of the vehicle

motion. Driving behavior realization is modeled as GP, i.e.

a probabilistic representation of the possible evolution of the

vehicle motion for a given behavior [51]. This model allows

us to obtain the probability distribution over the physical

realization of the vehicle motion by assuming a usual driving

represented by GP, i.e. lane following without drifting too far

off to the lane sides. On a straight road, this is a canonical GP

with the mean corresponding to the lane middle.

To deal with variations of lane curvature or such behaviors

as “turn left” or “turn right”, we propose an adaptation

procedure, where the canonical GP serves as a basis and

it is deformed according to the road geometry. The defor-

mation method is based on the Least Squares Conformal

Map (LSCM) [52]. Its advantage is a compact and flexible

representation of the road geometry. The canonical GP can

be calculated once and then can be reused for different

lane configurations, thus, resulting in a better computational

efficiency. An example is shown in Fig. 9 for a curved road.

C. Estimation of risk

A complete probabilistic model of the possible future

motion of the vehicle is given by the probability distribution

over behaviors from driving behavior recognition and driving

behavior realization. The layered HMM approach assigns a

probability distribution over behaviors at each time instance,

and a GP gives the probability distribution over the physical

realization for each behavior. Because the behavioral semantics

are propagated from the layered HMM down to the physical

level, it is now possible to assign semantics to risk values.

Figure 9: Deformed GP model example for a lane turning left.

Note that the definition of risk can take a variety of forms,

depending on how the risk output is going to be used. A risk

scalar value might be sufficient for a crash warning system,

or an application might require the risk values against each

vehicle in the traffic scene.

The risk calculation is performed by first sampling of the

paths from the GP. The fraction of the samples in collision

gives the risk of collision, which corresponds to the behavior

represented by the GP. A general risk value is obtained by

marginalizing over behaviors based on the probability dis-

tribution over behaviors obtained from the layered HMM.

It is possible to calculate risk of taking a certain path, a

certain behavior, or a general risk value of a certain vehicle

against another vehicle. The flexibility of this estimation is

due to HMMs in identifying behaviors and the use of GPs

for behavior realization, while taking into account the road

geometry and topology. Intuitively, the result of our risk

estimation can be explained as “collision risk for a few seconds

ahead”. A systematic framework for evaluation of different

types of collision risk can be found in [12].

IV. EXPERIMENTAL RESULTS

The relevance and feasibility of the two main functionalities

have been evaluated experimentally. For environment mod-

eling, early experiments have been performed on real urban

data obtained with our experimental vehicle. The collision risk

assessment has been evaluated on a driving simulator, and

behavior estimation has also been tested during a highway

driving.

A. Experimental setup

Our experimental platform is a Lexus LS600h car shown

in Fig. 10. The vehicle is equipped with a variety of sensors

including two IBEO Lux lidars placed toward the edges of

the front bumper, a TYZX stereo camera situated behind the

windshield, and an Xsens MTi-G inertial sensor with GPS.

Extrinsic calibration of these sensors is done manually for

this work. Note that, thanks to the grid-based approach and

considering the resolution of the grid, a slight calibration error

has very little impact on the final results.

The stereo camera baseline is 22 cm, with a field of view

of 62◦. Camera resolution is 512x320 pixels with a focal



Figure 10: Lexus LS600h car equipped with two IBEO Lux

lidars, a TYZX stereo camera, and an Xsens MTi-G inertial

sensor with GPS.

length of 410 pixels. Each lidar provides four layers of up to

200 impacts with a sampling period of 20 ms. The angular

range is 100◦, and the angular resolution is 0.5◦. The on-

board computer is equipped with 8GB of RAM, an Intel Xeon

3.4 GHz processor and an NVIDIA GeForce GTX 480 for

GPU. The observed region is 40 m long by 40 m wide, with

a maximum height of 2 m. Cell size of the occupancy grids is

0.2x0.2 m. For stereo-vision, the correlation window measures

11pixels in width and 21pixels in height.

B. Occupancy grid mapping

Fig. 11 shows examples of occupancy grid mapping with

the proposed approach. The arrows indicate the pedestrian, the

car, and the bicycle, which appear in the camera images and

the occupancy grids. Because the accuracy of stereo-vision

tends to become poor at large distance, the corresponding grid

has been attenuated beyond 20 m and the system is tuned to

give more confidence to the lidars than to the stereo-vision.

One of advantages of sensor fusion is a larger viewfield so

that the vehicles overtaking the ego-vehicle (they are not seen

in the camera images) are correctly mapped on the resulting

BOF grid. Moreover, the sensor fusion as well as the Bayesian

estimation provide to filter out the laser impacts with the road

surface, e.g. right lidar in Fig. 11. Note that a large number of

dynamic objects in the traffic scenes may lead to a failure of

object-based fusion because of a large number of association

hypotheses. The grid-based approach allows us to avoid the

object association problem for sensor fusion.

C. Object detection and tracking

The object level representation is obtained from the BOF,

by clustering the occupancy and velocity grids by means of

the FCTA. Examples of detections in typical urban scenes

are shown in Fig. 12. The output of FCTA being a set of

ellipses in the detection plane, the ROIs in the images are

obtained by using a ground plane hypothesis. The height of

ROI is set empirically to 1.8 m, and the width is double

of the lateral standard deviation of the detected object. As

it is shown in Fig. 12-a, both vehicles and a pedestrian are

correctly detected and tracked. An advantage of the BOF over

other occupancy grid approaches is illustrated by Fig. 12-b: the

estimated velocity of the white vehicle and of the bicycle being

very different (here the bicycle is faster), they are correctly

detected as two different objects, even if they are very close

(adjacent cells in the grid).

a

b

Figure 12: Example of the objects detected using BOF and

FCTA: (a) cars and a pedestrian, (b) cars, a bicycle and a bus.

D. Computation time

Two critical stages of the algorithm have been implemented

on GPU: the BOF and the stereo processing, including match-

ing and occupancy grid computation. FCTA has not, since it

has been shown in [31] and [33] that its computational cost

can be neglected, compared with the computational cost of

the BOF. The BOF being designed to be highly parallelizable,

it runs on GPU in 20 ms, without specific optimization.

Concerning stereo-vision, the matching process is performed in

6 ms and the occupancy grid computation in 0.1 ms. This level

of performance is reached thanks to the u-disparity approach,

which allows for highly parallel computation on GPU.

E. Collision risk assessment

The simulation of crash situations in performed a virtual

environment. This environment is a 3D geometric model of a

road network, where each vehicle is driven by a human driver.

The simulator was developed by Toyota Motor Europe (TME).

Each human driver controls his or her virtual vehicle by

means of a steering wheel, the acceleration and brake pedals.

Recording a scenario with multiple vehicles, which are driven

concurrently, requires a large number of human drivers. An

alternative is to generate the scenario iteratively, with one

human-driven vehicle at a time and “adding” human drivers

iteratively, with a replay of the previously recorded human-

driven vehicles. The resulting virtual environment allows us to

simulate crash situations safely.



Left camera image Left lidar Right lidar Stereo-vision Data fusion with the BOF

Figure 11: Examples of occupancy grid mapping in typical urban traffic scenes, from left to right: left image from the stereo

pair, an occupancy grid from the left lidar, an occupancy grid from the right lidar, an occupancy grid from stereo-vision, an

occupancy grid estimated by data fusion with the BOF, and a probability scale.

The layered HMM evaluates the behavior of every vehicle

in the scene for different time horizons, except the ego-vehicle.

The training data are obtained by collecting sequences for

a series of human-driven cases, where each driver uses the

steering wheel as an interface to the virtual environment of the

simulator. The driving sequences are annotated manually by

means of an annotation tool of ProBayes. Then, the annotated

data are used to train the layered HMM.

The TME simulator provides a 3D road view for the driver

and a 2D view of the road network, as shown in Fig. 13. The

collision risk is calculated for a yellow vehicle, while other

vehicles are shown by red rectangles (relevant area is inside a

large yellow circle). The right-hand traffic rule is assumed. The

trail behind the yellow vehicle in 2D view indicates the risk

levels estimated previously. At each instant, the probabilities

of the possible behaviors of the nearest neighbor (red vehicle)

are estimated by the layered HMM and are displayed by the

vertical white bars. The speed of the yellow vehicle is shown

in 3D view, where the right-side vertical bar shows the risk

encoding by color from “low” (green) to “high” (red). The

left-side vertical bar in 3D view indicates the current risk value

for the yellow vehicle.

Figure 13: Virtual environment of the TME simulator.

The speed warning about a potential danger of frontal colli-

sion is available in most commercial systems. Additionally to

this functionality, our algorithm evaluates risk at intersections,

where the linearity assumption about the vehicle motion would

result in underestimated values of risk. The combination of

the behavior estimation by the layered HMM and the use of

semantics (e.g. turn right or move straight) at the geometric

level allows us to obtain the appropriate risk values.

The training data for the layered HMM were collected with

ten human drivers who were asked to show different driving

behaviors. The data is split by the uniform distribution into

the training data and the test data (30% of the samples). The

behavior recognition is trained on the training data and is

evaluated against the test data.

Fig. 14 summarizes the recognition performance of the

layered HMM. The results are presented as a confusion matrix,

where the columns correspond to the true class and the rows

correspond to the estimated class. The diagonal values of

the confusion matrix give the correctly predicted class, while

non-diagonal values show the percentage of mislabelling for

each class. The highest recognition rate is for “move straight”

behavior (91.9%) as well as “turn right” or “turn left” ones

(82.5% and 81.1%, respectively). The “overtake” behavior has

a relatively low recognition rate of 61.6%. Intuitively, this

lower rate can be explained by a composite structure of the

overtaking maneuver because it consists of such behaviors as:

accelerating, lane changing, returning to the original lane, and

resuming a cruise speed. Consequently, it also takes longer

than a three-second period (current prediction horizon) to

complete an overtaking maneuver.

The approach to risk assessment is illustrated by Fig. 15,

where the probability of collision is estimated for a period

of three seconds ahead of each collision for ten different

traffic scenarios. The rapid increase in the probability of

collision and its certainty are observed when the collision

instant approaches.



straight overtaking turning_left turning_right
straight 91.9% 15.2% 13.9% 13.6%
overtaking 2.2% 61.6% 3.3% 2.0%
turning_left 2.4% 10.9% 81.1% 2.0%
turning_right 3.5% 12.3% 1.7% 82.5%
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Figure 14: Performance summary of the behaviors recognition

with layered HMM.
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Figure 15: Example of collision risk assessment for ten human-

driven scenarios and a three-second prediction horizon.

F. Behavior estimation on a highway

The first phase is to gather sensor data when driving on a

highway to estimate behaviors of other vehicles. The experi-

ments have been conducted jointly by the TME and ProBayes

on a different vehicle. The data acquisition was performed

for four scenarios on a highway, with each scenario lasting

for ten minutes approximately and the sensor data (stereo

camera images, vehicle odometry, and GPS information) being

recorded. The behaviors to be estimated are: move straight, a

lane change to the left, and a lane change to the right.

The detection of vehicles is performed by clustering of

the disparity points obtained from the stereo camera mounted

behind the windshield. The clustering is performed in the

image areas, which are indicated by the image based detection

using support vector machines. The positions of vehicles are

tracked on the road plane by means of the BOF.

The observation variables for behavior recognition include

the vehicle’s speed, the distances to the lane borders, and

the information about the presence of other vehicles on the

adjacent lanes. In order to obtain the observation variables in

a global reference frame, a particle filter is used for localizing

the vehicle on the highway map obtained from the Geographic

Information System. The particle filter allows us to estimate the

position and direction of the vehicle at each time instant and to

employ the observations from stereo-vision (lanes detection),

GPS and vehicle odometry. A similar approach is used for

the training phase, when the acquired data is divided into the

training and evaluation sets annotated manually to indicate the

current behavior for each time instance of the data acquired.

An example of the behavior estimation on a highway

is shown in Fig. 16. The positions of the tracked vehicles

are projected onto the image plane and are represented by

the rectangles. The probability distribution of the estimated

behaviors is shown by the height of the color bars above the

vehicles, e.g. the “lane change to the right” behavior of the

vehicle on the middle lane and the “move straight” behavior of

the two vehicles on the left lane are evaluated correctly. These

results illustrate the validity of the proposed approach for

behavior estimation. The different probability decomposition

of the observation variables, the selection of the observation

variables and the reactivity of the behavior estimation are

topics of our ongoing work to generalize the approach.

Figure 16: Example of behavior estimation on a highway where

a vehicle on the middle lane performs a lane change to the

right.

V. CONCLUSION

We proposed a conceptual framework to analyze and inter-

pret the dynamic traffic scenes by means of sensor fusion with

the BOF and risk evaluation for the ego-vehicle. Our concept

differs from other approaches due to its underlying probabilis-

tic methods and its computational efficiency because of the

parallel implementation of data processing from stereo-vision

and lidars. The experimental platform was built on a Lexus car

with embedded sensors and the dedicated software modules.



This system is capable of monitoring its local environment,

detecting and tracking static and dynamic objects in real traffic

scenarios. The analysis and interpretation of traffic scenes rely

on evaluation of driving behaviors as stochastic variables to

estimate and predict collision risks for the ego-vehicle for a

short period ahead, in order to alert the driver and help improve

the safety of car driving. The experiments and simulation have

shown promising results. The discussed conceptual framework

will be extended to deal with complex traffic scenarios, and the

experimental system will be used to create a database to allow

for benchmarking, quantitative evaluation and comparison with

alternative approaches.

VI. ACKNOWLEDGMENT

The authors thank Gabriel Othmezouri and Ichiro Sakata

of Toyota Motor Europe as well as Hiromichi Yanagihara of

Toyota Motor Corporation for their continuous support of our

experimental work on the Lexus car and collaboration on

collision risk assessment. Our thanks are given to Nicolas

Turro and Jean-François Cuniberto of INRIA for their technical

assistance in setting our experimental platform.

REFERENCES

[1] R. Horowitz and P. Varaiya, “Control design of an automated highway
system,” IEEE: Special Issue on Hybrid Systems, vol. 88, no. 7, 2000.

[2] I. E. Paromtchik and C. Laugier, “Automatic parallel parking and
returning to traffic,” in Video Proc. of the IEEE Int. Conf. on Robotics and
Automation, (Leuven, Belgium), 1998. http://www.youtube.com/watch?
v=6yS inHMJJI [Online; accessed June 8, 2011].

[3] I. E. Paromtchik, “Planning control commands to assist in car maneu-
vers,” in Proc. of the IEEE Int. Conf. on Advanced Robotics, (Coimbra,
Portugal), pp. 1308–1313, June 2003.

[4] R. Benenson, S. Petti, T. Fraichard, and M. Parent, “Toward urban
driverless vehicles,” Int. J. Vehicle Autonomous Systems: Special Issue on
Advances in Autonomous Vehicle Technologies for Urban Environment,
vol. 1, no. 6, pp. 4–23, 2008.

[5] C. Urmson et al., “Autonomous driving in urban environments: Boss and
the Urban Challenge,” J. Field Robotics, vol. 25, no. 8, 2008.

[6] M. Montemerlo et al., “Junior: The Stanford entry in the Urban Chal-
lenge,” J. Field Robotics, vol. 25, no. 9, 2008.

[7] J. Markoff, “Google cars drive themselves, in traffic,” The New York
Times, October 2010.

[8] Ford, “Safety and security.” http://www.ford.co.uk/Cars/Mondeo/
Safetyandsecurity. [Online; accessed June 8, 2011].

[9] G. Vasilash, “The Lexus LS 600H L: Not just another production car.”
http://www.autofieldguide.com/articles/060705.html. [Online; accessed
June 8, 2011].

[10] Mercedes-Benz, “2010 E-class sedans.” http://www.mbusa.com/
mercedes/#/bodyStyleOverview/?vc=E&bs=SDN. [Online; accessed
June 8, 2011].

[11] D. N. Lee, “A theory of visual control of braking based on information
about time-to-collision,” Perception, vol. 5, no. 4, pp. 437–459, 1976.

[12] C. Tay, Analysis of Dynamics Scenes: Application to Driving Assistance.
PhD thesis, INRIA, Grenoble, France, 2009.

[13] M. Skutek, M. Mekhaiel, and G. Wanielik, “Precrash system based
on radar for automotive applications,” in Proc. of the IEEE Intelligent
Vehicles Symp., (Columbus, OH, USA), 2003.

[14] T.-D. Vu and O. Aycard, “Laser-based detection and tracking moving
objects using data-driven Markov chain Monte-Carlo,” in Proc. of the
IEEE Int. Conf. on Robotics and Automation, (Kobe, Japan), May 2009.

[15] P. Griffiths, D. Langer, J. A. Misener, M. Siegel, and C. Thorpe,
“Sensorfriendly vehicle and roadway systems,” in Proc. of the IEEE
Instrumentation and Measurement Technology Conference, (Budapest,
Hungary), 2001.

[16] M. Enzweiler and D. Gavrila, “Monocular pedestrian detection: Survey
and experiments,” IEEE Trans. on Pattern Analysis and Machine Intel-
ligence, vol. 31, 2009.

[17] R. Labayrade, D. Aubert, and J. P. Tarel, “Real time obstacle detection
on non flat road geometry through ’v-disparity’,” in Proc. of the IEEE
Intelligent Vehicles Symp., (Versailles, France), 2002.

[18] S. Nedevschi, R. Danescu, D. Frentiu, T. Marita, F. T. Graf, and
R. Schmidt, “High accuracy stereovision obstacle detection on non planar
roads,” in Proc. of the IEEE Intelligent Engineering Systems, (Cluj
Napoca, Romania), 2004.

[19] A. Makris, M. Perrollaz, I. E. Paromtchik, and C. Laugier, “Integration of
visual and depth information for vehicle detection,” in IEEE/RSJ IROS
Workshop on Perception and Navigation for Autonomous Vehicles in
Human Environment, (San-Francisco, CA, USA), September 2011.

[20] H. Hirschmüller, “Stereo processing by semi-global matching and mutual
information,” IEEE Trans. on Pattern Analysis and Machine Intelligence,
vol. 30, no. 2, 2008.

[21] CUDA. http://www.nvidia.com. [Online; accessed June 8, 2011].

[22] U. Franke, C. Rabe, H. Badino, and S. Gehrig, “6D-Vision: Fusion of
stereo and motion for robust environment perception,” in Proc. of the
DAGM Symp. on Pattern Recognition, (Vienna, Austria), 2005.

[23] Velodyne, “High definition lidar.” http://www.velodyne.com/lidar/. [On-
line; accessed June 8, 2011].

[24] R. Labayrade, C. Royere, D. Gruyer, and D. Aubert, “Cooperative fusion
for multi-obstacles detection with the use of stereovision and laser
scanner,” Autonomous Robots, vol. 19, no. 2, 2005.

[25] A. Broggi, P. Cerri, S. Ghidoni, P. Grisleri, and H. G. Jung, “A new
approach to urban pedestrian detection for automatic braking,” IEEE
Trans. on Intelligent Transportation Systems, vol. 10, no. 4, 2009.
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