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ABSTRACT

Motivation: Tissue heterogeneity, arising from multiple cell types, is

a major confounding factor in experiments that focus on studying

cell types, e.g. their expression profiles, in isolation. Although

sample heterogeneity can be addressed by manual microdissection,

prior to conducting experiments, computational treatment on

heterogeneous measurements have become a reliable alternative

to perform this microdissection in silico. Favoring computation over

manual purification has its advantages, such as time consumption,

measuring responses of multiple cell types simultaneously, keeping

samples intact of external perturbations and unaltered yield of

molecular content.

Results: We formalize a probabilistic model, DSection, and show

with simulations as well as with real microarray data that DSection

attains increased modeling accuracy in terms of (i) estimating cell-

type proportions of heterogeneous tissue samples, (ii) estimating

replication variance and (iii) identifying differential expression across

cell types under various experimental conditions. As our reference

we use the corresponding linear regression model, which mirrors the

performance of the majority of current non-probabilistic modeling

approaches.

Availability and Software: All codes are written in Matlab, and are

freely available upon request as well as at the project web page

http://www.cs.tut.fi/~erkkila2/. Furthermore, a web-application for

DSection exists at http://informatics.systemsbiology.net/DSection.

Contact: timo.p.erkkila@tut.fi; harri.lahdesmaki@tut.fi
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1 INTRODUCTION

For being able to fully utilize capabilities of high-throughput mea-

surement techniques that often have to deal with physically small

but also heterogeneous tissue samples, attention should be paid as

to how heterogeneity, the presence of multiple cell types in tissue,

is addressed. In many studies the focus of interest hovers around

identifying behavioral differences across cell types, and in such cases

sample heterogeneity clearly has a confounding effect on down-

stream experiments and analysis.

∗To whom correspondence should be addressed.

Although laser-capture microdissection (LCM; Emmert-Buck

et al., 1996) offers a direct way to address tissue heterogeneity by

allowing for isolation of morphologically distinguishable cell types,

there are occasions when it is not feasible. Yield of biological content

(e.g. mRNA) for conducting experiments becomes consequently

lowered, which often needs to be compensated for with either

more sensitive measurement devices or amplification of molecular

quantities (Sooriakumaran et al., 2009). However, amplification of

mRNA from small albeit pure cell samples has its shortcomings,

most notably nonlinearity (Otsuka et al., 2007), obscuring the

underlying profiles for distinct cell types.

Several authors have already studied performing computational

microdissection for heterogeneous tissues, and proposed promising

methods for microarray expression data. Initial attempts stem from

Venet et al. (2001), who proposed a linear model for estimating both

cell-type proportions and cell-type-specific gene expression profiles;

the model assumes that, as prior information, there exist known,

exclusively expressed genes for each cell-type. Subsequent studies

have then demonstrated that the linearity assumption and prior

information on either gene expression profiles, cell-type proportions,

or both, can yield meaningful interpretations for the constituents

of heterogeneous tissues (Abbas et al., 2009; Gosink et al., 2007;

Hoffmann et al., 2006; Jacobsen et al., 2006; Lähdesmäki et al.,

2005; Quon and Morris, 2009; Stuart et al., 2004).

In real experiments, conducted on the basis of heterogeneous

tissue samples, having precise prior information is unrealistic,

even though current models consistently rely on such information.

We incorporate this missing functionality into the already-familiar

linear regression framework through Bayesian prior densities

whose shapes reflect the uncertainties associated with the prior

information, such as cell-type proportions or cell-type-specific

expression profiles.

For all model parameters, an efficient Markov chain Monte

Carlo (MCMC) sampler is proposed. In addition to existing

microdissection models, we further assume that the heterogeneous

tissues have been measured under various experimental conditions,

having a possible impact on cell-type-specific expression profiles.

As cell-type-specific profiles are assumed to be different across both

cell types and experimental conditions, assessment of statistically

significant differential expression is performed with the two-sample

t-test, though other tests for differential expression can be used.

We use simulated and real gene expression data for assessing

the performance of the Bayesian model in contrast to a linear
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regression model that essentially captures properties common to

the aforementioned, deterministic approaches. A series of case

studies are used for demonstrating that the proposed method

is capable of (i) de-noising uncertain prior information about

cell-type proportions, (ii) more accurate estimation of replication

variance, consequently leading to (iii) more accurate identification of

differential expression across cell types and experimental conditions.

2 METHODS

2.1 Experimental design

We denote the tissue sample index with j and assume that there are J tissue

samples in total. The number of cell types represented in the J samples needs

to be known, and it is crucial that each of the J samples have the same cell

types represented. We denote the cell type index by t and assume that there

are T cell types in total. Lastly, we denote the number of probes (a generic

term, e.g. a gene or miRNA) in an experiment by I so that the modeled data,

which we denote by D, consists of I ∗J probe measurements,1 yij , one for

each probe i and tissue sample j.

In the simplest form this is all that is required. In addition, samples

are often prepared under various experimental conditions, say, under ‘No

treatment’, ‘Treatment 1’, ‘Treatment 2’, etc. and the analysis may be

focused on finding differences in probe measurements across experimental

conditions. Therefore, we incorporate the condition information into the

model with variable c(j) that takes on values 1,2,...,C, being linked to

the C different experimental conditions. For instance, if tissue samples 2

and 4 were measured under experimental condition ‘No treatment’, that

information could be encoded by assigning c(2)=c(4)=1; thus, condition

‘No treatment’ would be associated with index 1, and so on.

2.2 Data likelihood

For tissue sample j under experimental condition c(j), the data point for probe

i, yij , is modeled as a sum of pure probe readings of all cell types, xic(j) =
(x1ic(j),x2ic(j),...,xTic(j)), weighted by the respective cell type proportions,

pj = (p1j,p2j,...,pTj), plus an additive, normally distributed noise term, ǫij ,

reflecting replication noise with variance 1/λi:

yij =
T

∑

t=1

ptjxtic(j) +ǫij, (1)

so that the likelihood of data point yij ∈D becomes yij|pj,xi,λi ∼
Normal(

∑T
t=1 ptjxtic(j),1/λi). Thus, we model the replication variance, 1/λi,

as heteroscedastic across probes and homoscedastic across cell types and

experimental conditions. Assuming independent and identically distributed

(IID) measurements (elements in D), a factorized form for the joint data

likelihood can then be written as f (D|θ )=
∏I

i=1

∏J
j=1 f (yij|pj,xi,λi), where

θ is a collection of all model parameters, i.e. ptj’s, xtic’s, and λi’s. The

assumptions of additive, normally distributed noise and IID measurements

is standard practice, although there is statistical evidence that at least the IID

assumption may not always be valid (Efron, 2009).

2.3 Prior specifications

The model is next extended to account for parameter priors, so that the

posterior distribution of all unknown model parameters required for sampling

could be formulated. The prior assignments are done in a way that allows for

easy sampling, and the shapes of the prior distributions are chosen to reflect

the assumed variability of parameters.

1Data in linear form is preferred as modeling assumptions may otherwise

become violated; see Section 4 for further discussion.

We impose a normal prior xtic ∼N(µtic,ν) for the cell type and condition-

specific probe measurement i, where the prior expression means and

precision, µtic and ν, are extracted from the least-squares solution to the

corresponding linear regression model assuming cell-type proportions known

(see Supplementary Material for details). Normality is preferred so as to

make use of the property of conjugate priors (posterior for xtic will be a

normal density, given that the prior and likelihood densities are also normal).

Furthermore, a shared Gamma prior, Gamma(α,β), is placed on the inverses

of replication variances, i.e. precisions, λ1,...,λi,...,λI . Positive support and

flexibility of Gamma(·,·) make it useful in modeling precision parameters

in a Bayesian framework (Gelman, 2006). Furthermore, the shared prior

shrinks posterior estimates of λi’s toward their common prior mean, α/β,

regularizing estimates especially when dealing with small sample sizes

(Smyth, 2004).

The mixing proportions for tissue sample j, pj = (p1j,...,pTj), are limited

to a T -simplex; all elements in pj’s are non-negative and, vector-wise,

sum up to one. A natural prior density for such vectors is the Dirichlet

density, which we parameterize with w0 and p0j as pj ∼Dirichlet(w0p0j).

The parametrization is done in a way that allows for prior knowledge on

ptj’s to be plugged into the model in a straightforward manner. Namely,

we assume that a user has obtained prior information on the cell-type

proportion in the J samples (e.g. by looking at the histology slides of

the samples and making rough estimates or in an automated manner using

digital microscopy images of the samples, or with flow cytometry, etc.),

and these prior proportions are stored in p0j . Moreover, the belief of the

correctness of prior proportions is specified by the multiplicative weight

w0. This way the user can tune the peakedness of the prior density around

the prior guess, p0j ; increasing w0 increases the peakedness and vice versa.

For compactness, we encapsulate the aforementioned parameters in a vector

ξ = (α,β,µ111,...,µTIC,w0,p01,...,p0J ).

2.4 Posterior sampling

Unknown parameters, i.e. θ , in our model are estimated in an MCMC

fashion, which means we first must devise a sampling scheme under which

samples from the posterior density of our parameters, given data and fixed

parameters, f (θ |D,ξ )∝ f (D|θ )f (θ |ξ ), are drawn. Assuming S samples drawn

from the posterior, the samples are subsequently used for summarization,

i.e. approximating the expected value of the parameters with Monte Carlo

integration (Gelman et al., 2004), E[θ |D,ξ ]≈1/S
∑S

s=1θ (s). Gibbs sampling

(Gelman et al., 2004) is one such sampling method, employing the idea of

drawing a value from a conditional posterior for the respective parameters

one at a time, while conditioning on all other model parameters, being set to

previously sampled values, and data.

Next, we will construct a hybrid Gibbs and Metropolis–Hastings (M–H)

sampler for all the model parameters; detailed derivations are shown in the

Supplementary Material. The posterior for xtic is

xtic|·∼Normal

(

Ptic

Qtic

,
1

Qtic

)

, (2)

where the parameters of that distribution are Ptic =
λi

∑

j:c(j)=c (yijptj −ptj

∑

t′ �=t pt′jxt′ic)+νµtic and Qtic =λi

∑

j:c(j)=c p2
tj +ν. In

a similar fashion, one finds the posterior for λi to be

λi|·∼Gamma

⎛

⎝α+
J

2
,β+

1

2

J
∑

j=1

e2
ij

⎞

⎠, (3)

where eij is the model residual eij =yij −
∑T

t=1 ptjxtic(j). However, one cannot

find such a density for the cell-type proportions since the normalizing

constant for that posterior is computationally infeasible to solve. Thus, we

cannot proceed with Gibbs sampling in this particular case but make use of

M–H sampling (Gelman et al., 2004) instead; Gibbs sampling is a special
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case of M–H, thus, both Gibbs and M–H sampling can be utilized in the

same framework (Andrieu et al., 2003).

For employing M–H sampling, one needs an un-normalized posterior of

pj and a transition kernel. The un-normalized posterior is

f (pj|·)∝exp

{

−
1

2

I
∑

i=1

λie
2
ij +sj

}

, (4)

where eij is, again, the model residual and sj =
∑T

t=1 (w0p0tj −1)ln(ptj).

Dirichlet density as the transition kernel for M–H works well in our case

since the sampler for the posterior of pj must stay within the T -simplex,

as previously explained. Now, if the previous value in the Markov chain

is denoted by p∗
j , a proposal value, denoted by pj , will be drawn from

Dirichlet(wp∗
j ), and the corresponding kernel, i.e. Dirichlet density function,

is denoted by K(p∗
j →pj). The role of w is analogous to that of w0, as w is

used to control the peakedness of the transition kernel around the previously

sampled value, p∗
j . The acceptance of the proposed, newly sampled value

then depends on the factor

ρj(p
∗
j →pj)=

f (pj|·)K(p∗
j →pj)

f (p∗
j |·)K(pj →p∗

j )
, (5)

and the probability of acceptance is determined by P[accept]=
min{1,ρj(p

∗
j →pj)}.

3 RESULTS

In computing the forthcoming results with DSection, we used

the following values for controlling parameters of our model.

Namely, we set peakedness around prior cell-type proportions

to w0 =10, peakedness of transition kernel to w=100, burn-

in period to B=2000 iterations, and chain length to S =500

iterations. Along sampling, we also computed and visualized

estimates of autocovariance functions of the sampled parameters,

which indicated that our choice for the chain length was reasonable,

i.e. covariance diminished relatively rapidly as lag was increased

(data not shown) (Cowles and Carlin, 1996; Rasmussen, 2000).

3.1 Simulation

In order to demonstrate full functionality of DSection, we designed

a simulation experiment containing both multiple cell types and

experimental conditions; an analysis of simpler, real data will

follow. Expression profiles of 700 genes of three cell types under

two experimental conditions were created. The expressions, xtic,

were chosen so that there existed probes for which expression

profiles were either identical across cell types and conditions,

differed only across cell types, differed only across conditions,

or both, and expressions were set to vary within the range

100...1600; thus, the theoretically maximum, achievable fold-

change is log2(1600/100)=4. Next, for each gene, a precision,

λi, was drawn from Gamma(5,1/0.0003) (mean precision 0.0015);

justification for using the Gamma density is the same as with prior

densities. In total, 14 samples, 7 per experimental condition, were

created and normally distributed noise with variance 1/λi was added.

Performance of the models is assessed on the basis of their ability

to identify differential expression across cell types and experimental

conditions—that is, probe i may be differentially expressed across

some cell types and experimental conditions, at most in
(6
2

)

=15

different ways, which are tested separately with the two-sample t-test

(see Supplementary Material for more details).

The data are analyzed with the two models, linear regression

and DSection, where the latter is utilized both with fixed cell-type

proportions and by sampling from posterior of cell-type proportions.

Simulation results (Fig. 1) show an increase in identification

accuracy of differential expression for DSection, in contrast to

our reference, the linear regression model. Thus, the analysis

results indicate that our method with uncertainty in proportions

incorporated actually attains an accuracy comparable with the ‘best-

case’ scenario, i.e. cell-type proportions are known precisely and a

linear regression model is used.

The methods differ mostly in estimation of replication variance,

1/λi.Actually the discrepancy between ground-truth and estimates is

sometimes so high that we visualize replication standard deviation

(SD),
√

1/λi, instead. As the visuals suggest, only those models

assuming fixed and precisely known cell-type proportions suffer

from these high biases (Fig. 1c–e), whereas for DSection, which

assumes noisy cell-type proportion priors, this bias is absent

(Fig. 1f). Importantly, the bias is most strongly present in probes

for which differential expression across cell types and experimental

conditions is high; to elucidate this, we labeled each SD estimate

with a color, and the intensity of that color increased along with

average differential expression.

3.2 Affymetrix data

Next, we analyzed a publicly available dataset from Affymetrix

oligonucleotide arrays [data downloaded from Affymetrix (2009)],

consisting of over 15000 genes whose heterogeneous expressions

comprising of human brain and heart cells were summarized using

robust multi-array averaging (RMA) procedure (Irizarry et al.,

2003). There are 33 samples in the dataset in total, each sample being

designed to contain specific proportions of the distinct cell types.

Table 1 contains all the samples provided within the Affymetrix

dataset, but we only use those that contain cell types with ratio

25% : 75% and vice versa. Other samples—especially the ones with

pure samples that we used for reference—were discarded from the

analysis, for better reflecting the scarcity of repeated measurements

and heterogeneity within samples, which is usually the case.

Moreover, we use the procedure described in the Supplementary

Material for deriving noisy estimates for cell-type proportions, in

turn reflecting inaccurate prior proportion predictions.

Although no ground-truth for replication variances of Affymetrix

data truly exists, we can exploit the samples for each mixture

experiment to at least derive good estimates (see Supplementary

Material for details). Using these derived ground-truth estimates,

Figure 2 shows, again, a similar bias pattern to what is observable

with simulated data (Fig. 1). Bias in SD estimation accuracy for

most highly differentially expressed genes is visible for the linear

regression model that assumes fixed cell-type proportions, whereas

DSection, which accounts for noisy cell-type proportion priors,

reduces such biases.

Moreover, no ground-truth for truly differentially and non-

differentially expressed genes exist for Affymetrix data. However,

as we have samples representing pure cell types, they can be derived

as well (see Supplementary Material for details). As can be seen in

Figure 2b, the receiver operating characteristic (ROC) curves clearly

have a similar pattern to what we observed with simulated data.

DSection not only outperforms the linear regression model in terms

of ROC, but also the performance of DSection is comparable with

the ‘best-case’, which we computed by plugging the true cell-type

proportions into the linear regression model, as described earlier.
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(a) (b) (c)

(d) (e) (f)

Fig. 1. Analysis results with simulated data—3 cell types, 2 experimental conditions, 700 genes and 14 samples (seven for each experimental condition). (a)

Estimation of cell-type proportions (bright spots), given noisy priors (faint spots). (b) ROC curves of the compared methods (solid lines). As a reference, best

performance, obtained by plugging the true cell-type proportions into the linear regression model and performing the analysis, along with the worst performance

(diagonal in ROC plots) are visualized as dashed lines. (c) Estimation of measurement SD (given as
√

1/λi). Estimation of measurement SD for (d) The linear

regression model with fixed cell-type proportions, (e) DSection with fixed cell-type proportions and (f) DSection with varying cell-type proportions, where

estimates are colored depending on true, average differential expressions of probes—higher color intensity means higher average differential expression.

Clearly, SD estimation accuracy for highly differentially expressed genes is poor when uncertainty in cell-type proportions are not properly accounted for [(d)

and (e) versus (f)].

Table 1. Known cell-type proportions for each sample in Affymetrix data

Sample (j) 1−3 4−6 7−9 10−12 13−21 22−24 25−27 28−30 31−33

Brain (p1j) 0.00 0.05 0.10 0.25 0.50 0.75 0.90 0.95 1.00

Heart (p2j) 1.00 0.95 0.90 0.75 0.50 0.25 0.10 0.05 0.00

For each mixing experiment (one column of the table), a triplet of measurements have been conducted except for samples 13–21, which all have 50%/50% mixing ratio. Samples

10–12 and 22–24 were used for estimating cell-type-specific gene expression profiles, and the expression estimates were then compared with the pure cell-type-specific gene

expressions (samples 1–3 and 31–33). Furthermore, we included samples 7–9 and 25–27 when testing how increasing the number of heterogeneous samples for analysis with

DSection affects the model performance.

3.2.1 Increasing sample size Additionally, we assessed the effect

an increase in sample size has on both cell-type proportion

estimation and expression profiling. In addition to the six samples

(25%/75% and vice versa) we already used in the previous case

study, we augment that data by the ones which contain cell types

with ratio 10%/90% and vice versa—that is, 6 more samples making

12 samples in total.

The assessment of improvement was made in the following

manner. The six samples of 25%/75% etc. purity were augmented by

(i) a subset of 0,1,...,6 samples of 10%/90%, etc. purity, (ii) noise

was added to the ground-truth cell-type proportions of the selected

samples with the previously used method, (iii) linear regression

model and DSection was fitted to the data and (iv) this was repeated

10 times.

For each iteration, mean absolute differences (MAD) between

the estimates and ground-truth cell-type proportions and expression

profiles were computed, followed by computing a sample mean over

the 10 iterations. MAD was preferred as it essentially captures both

bias and variance into single quantity. As we increased the number

of samples from 6 to 12, MAD was consistently lower for DSection

than that for the noisy estimates of cell-type proportions (those used

directly with the linear regression model) (Fig. 3).Adecreasing trend

for MAD is observable while more samples were added, however,

that is due to our way of adding noise to cell-type proportions.

Namely, the closer the true cell-type proportions are to 1/T , i.e.

as heterogeneous sample as possible, the more noise is added. And

since the augmented samples were less heterogeneous in contrast

to 25%/75% ones, increasing sample size in turn decreased the
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Fig. 2. Analysis results with Affymetrix data—2 cell types, 1 experimental condition, ∼15000 genes and 6 samples (25%/75% and vice versa). (a) Estimation

of cell-type proportions (bright spots), given noisy priors (faint spots). (b) ROC curves of the compared methods. Estimation of measurement STD for (c) The

linear regression model with fixed cell-type proportions and (d) DSection with varying cell-type proportions, where estimates are colored depending on true,

average differential expressions of probes. Again, as with simulated data, STD estimation accuracy for highly differentially expressed genes is poor when

uncertainty in cell type proportions are not properly accounted for [(c) versus (d)].

average MAD of noisy cell-type proportions, in turn decreasing the

MAD of DSection estimates. We did not observe any significant

difference of MAD for expression profiling between the two models

(data not shown), indicating that DSection relies heavily upon the

priors derived using the deterministic linear regression counterpart.

4 DISCUSSION

Previous studies, including this, have almost exclusively been

considering microarray gene expression data. However, due to

recent revolutionizing improvements in sequencing techniques,

gene expression measurements by sequencing, or RNA-seq (Wang

et al., 2009; Wilhelm and Landry, 2009), has become a serious

competitor to standard probe-based microarray alternatives, not

only due to increased genome coverage offered by RNA-seq,

but also due to increased measurement reproducibility (Marioni

et al., 2008). Although data preprocessing and normalization steps

between microarray and RNA-seq data are different, there are no

fundamental factors that would directly make current modeling

approaches obsolete. In fact, since a strong linear relationship

between RNA concentrations and sequence reads has been reported

(Mortazavi et al., 2008), in contrast to not-so-linear microarrays

(Quackenbush, 2002), one would expect the modeling transition

from array-based analysis to RNA-seq to be rather effortless for

any model, including ours.

We propose a framework under which measurements, arising from

heterogeneous tissues, can be analyzed without having to rely upon

manual—and possibly time consuming—sample preprocessing

steps such as LCM. Instead, DSection assumes that measurements

contain profiles of all cell types of interest with varying proportions

in the tissue samples. Furthermore, as without constraints this task

would contain no unique solution for expression profiles and cell-

type proportions, uncertain information is assumed to be available

on the cell-type proportions. In realistic situations where information
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Fig. 3. MAD for cell-type proportion estimates (referenced against the

ground-truth). MAD for the linear regression model basically stands for the

baseline, i.e. cell-type proportion estimation was not supported by the model,

and anything below that (black bars) is considered as improvement. In terms

of MAD, DSection (gray bars) is able to recover true cell-type proportions

under noisy estimates.

about cell-type proportions is extracted on the basis of, say,

microscopy or flow cytometry, it is evident that such estimates are

prone to inaccuracy. We showed that, under the Bayesian framework,

not only the passing of uncertain information to our model is

straightforward due to the notion of prior information, but also that

our model is capable of ‘de-noising’ that uncertain information, thus

resulting in more accurate overall modeling performance in contrast

to traditional models without this functionality implemented.

The extraction of information about cell-type proportions was not

addressed in this article, although it is a crucial part required to make

the model work as intended. In real experiments, i.e. those including

real tissue samples with unknown cell-type proportions, as opposed

to data we used, such precise information as cell-type proportions

does not exist. However, as our results suggest, prior information

about the proportions of different cell types can be exploited in

modeling even though the estimates of proportions would include

uncertainty. Thus, including image-based prior estimation could

provide a valuable addition into the current analysis framework,

but in order to be useful the image analysis needs to be done in

an automated manner. Numerous tissue image analysis methods

have been presented in the literature, such as those in Kleiner et al.

(2009); Newberg and Murphy (2008) and Strömberg et al. (2007),

and incorporating similar methods as a part of the analysis pipeline

is one of our main objectives.

Imposing w0 =10 results in a lightly concentrated density surface

around the prior cell-type proportions, p0j , which along with

the results suggest that having strong prior information, at least

on cell-type proportions, is not required. However, constraining

model parameters albeit vaguely is required as the model would

otherwise become unidentifiable. If proportions for some cell types

are missing, due to morphological indistinguishability, for instance,

one could consider pooling those cell types together and model

them as one; this approximation would be accurate only in cases

where pooled cell types share similar expression profiles. On the

other hand, if the precise value for T is debatable but now cell-

type proportions for different values of T existed, cross-validation,

reversible-jump MCMC (Green, 1995), etc., for determining most

suitable T could be utilized.

Although the assumed linearity may not strictly hold for some or

even most of the genes being considered, it is still expected that such

a linear model can, to some extent, capture nearly linear responses

with sufficient accuracy (Hoffmann et al., 2006). In fact, during

parameter estimation, we usedAffymetrix data with and without log-

transform (results shown here are for non-log data) with comparable

accuracy in terms of ROC, suggesting that the linearity assumption

indeed is fairly robust. Furthermore, Gaussian processes (Rasmussen

and Williams, 2006) are currently under investigation as part of

incorporating nonlinear responses into the model.
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