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Abstract

Land subsidence is a global problem in urban areas. The main cause of land
subsidence is the pumping of subsurface water. It is of great significance to study
the subsurface settlement and water flow of the lands due to pumping. In this study,
the probabilistic analysis of land subsidence due to pumping is performed by Biot’s
poroelasticity and random field theory based on a case study. The results show that
the change of deformation of the aquifer is far less significant than the hydraulic
head over the years. When considering the spatial variability of soil strength, the land
subsidence suffers from great uncertainty when the correlation length is large.
Nevertheless, the spatial variability of soil strength on the uncertainty of hydraulic
head can be ignored. When considering the spatial variability of soil hydraulic
conductivity, the uncertainty of the hydraulic head is mainly located near the
bedrock and increases markedly along with the rise of the correlation length. Time is
another important factor to increase the uncertainty of the hydraulic head. However,
its contribution to the uncertainty of displacement is insignificant.

Keywords: Land subsidence, Pumping, Biot’s consolidation, Poroelasticity, Random
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Introduction
Land subsidence is the gradual or rapid sinking of the ground surface due to the de-

formation of subsurface earth materials, which is a global problem in urban areas [18,

43]. The main cause of land subsidence is the pumping of subsurface water [8, 14, 31].

It is of great significance to study the subsurface settlement and water flow of the lands

due to pumping.

The land subsidence is often simulated or evaluated based on the soil consolida-

tion theory, which is a process of volumetric changes of soil due to water pres-

sure. Early methods to model soil consolidation are based on Terzaghi’s theory. It

assumes that the settlement and flow of water are vertical. Ignoring the horizontal

deformation does not allow for a complete analysis of problems of consolidation.

If the horizontal deformation needs to be considered, this one-dimensional theory
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of consolidation may not be valid. In recent decades, the more rigorous Biot’s por-

oelasticity considering horizontal and vertical components of elastic deformation

has been widely used for the problems of land subsidence. Bear and Corapcioglu

[3] developed a mathematical model for regional subsidence due to pumping from

an aquifer based on Biot’s theory on coupled three-dimensional consolidation.

Chiou and Chi [11] studied the settlement induced by surface loading and land

subsidence due to pumping for saturated layered soils. Xu et al. [42] presented the

prediction approaches on land subsidence employed in China and found that Biot’s

consolidation can simulate the field data better. Ferronato et al. [16] proposed a

coupled Biot model based on a three-field formulation to predict the land subsid-

ence in the Chaobai River alluvial fan, China.

However, most of the studies related to land subsidence did not consider the un-

certainty of geo-properties. It is well recognized that the subsurface geo-properties

such as seepage and strength parameters are remarkably variable and heteroge-

neously suffering from great uncertainty. To understand the uncertainty of soil

consolidation, probabilistic analysis by Monte Carlo simulation is always adopted

regarding the different engineering geological backgrounds. The parameters in

Biot’s formulations are modeled as random variables to account for the uncertainty

of subsurface geo-properties or further modeled as random fields to consider

spatial variability. For example, Houmadi et al. [23] used a collocation-based sto-

chastic response surface method for the probabilistic analysis of a consolidation

problem of a single clayey layer, and the deterministic model is based on a Biot

consolidation analysis using the finite difference code FLAC 3D. Cheng et al. [10]

integrated random field simulation of soil spatial variability with numerical model-

ing of coupled flow and deformation to investigate consolidation in spatially ran-

dom unsaturated soil. Zhang et al. [49] proposed a probabilistic method to

calibrate coupled hydro-mechanical slope stability model with the integration of

multiple types of field data. Houmadi et al. [24] analyzed the impact on surface

settlement due to a uniform surcharge loading on the ground surface with a two-

dimensional spatially varying Young’s modulus by the subset simulation method.

Savvides and Papadrakakis [30] presented a stochastic analysis to study the consoli-

dation phenomenon of clayey interaction. In summary, based on the models of

Biot’s consolidation, the uncertainty of many geotechnical issues including land

reclamation, embankments, tunnels, and excavation are evaluated by several re-

searchers. However, the probabilistic analysis for the problem of land subsidence is

seldom involved.

Therefore, in this study, the probabilistic analysis of land subsidence due to pumping

is performed by Biot’s poroelasticity and random field theory. First, based on Leake and

Hsieh [26], the numerical model of an aquifer underlain by a bedrock step and pump-

ing is established. Second, to consider soil spatial variability, two key parameters (i.e.,

Young’s modulus and hydraulic conductivity) in Biot’s equations are viewed as hetero-

geneous properties and generated by random field theory. Finally, the influence of cor-

relation length and time on the uncertainty of pumping responses (i.e., displacement

and hydraulic head) are investigated.

Deng et al. Journal of Engineering and Applied Science           (2022) 69:18 Page 2 of 18



Methods
Biot’s poroelasticity

In this study, the built-in module in COMSOL Multiphysics [13] is adopted to simulate

land subsidence. Based on Biot’s poroelastic theory [4, 5], the constitutive relations for

the poroelastic behavior are:

σ ¼ c : ε−αbIp ð1Þ

where σ is the total stress; “:” stands for the double-dot tensor product; c denotes the

elasticity matrix of solid; ε is the strain tensor; p is the fluid pore pressure; I is the iden-

tity matrix; αb is the Biot-Willis coefficient representing the coupling between the stress

and the pore pressure. The value of αb is less than unity, indicating the extent to which

the pore pressure contributes on elastic deformation.

The form of force balance equation is:

∇ � σ þ ρg ¼ ∇ � σ þ ϕρ f þ ρs
� �

g ¼ 0 ð2Þ

where ρ represents the average density of solid and fluid; ρf and ρs are the density of

the fluid and solid, respectively; ϕ is the porosity; g represents the acceleration of grav-

ity. Note that Eq. (1) is the linear theory of elasticity, implying that the general theory

proposed by Biot is the linear poroelasticity. Biot’s equations can be extended to non-

linear poroelasticity, such as elastoplastic materials, by changing the form of Eq. (1) [2].

Based on the mass conservation equation, with the increase of the rate of expansion

of the pore space, the volume available for the fluid also increases and thereby gives rise

to liquid sink [22]:

Sb
∂p
∂t

þ ∇ � −k∇pð Þ ¼ −αb
∂εv
∂t

ð3Þ

where t is time; k is the hydraulic conductivity; εv is the volumetric strain, εv = εx + εy
+εz, which is the trace of ε; Sb is the storage coefficient of Biot’s poroelasticity, which is

related to the compressibility of the fluid and solid phases. When both the solid and

the fluid are assumed compressible, it can be calculated from basic material properties

as [7]:

Sb ¼ ϕ
K f

þ αb−ϕ
Ks

ð4Þ

where Kf is the fluid bulk modulus, which is the inverse of the fluid compressibility

χf, and Ks is the solid bulk modulus and Ks ¼ E
3ð1−2νÞ for elastic materials. E and ν are

Young’s modulus and Poisson’s ratio, respectively.

For saturated soil, some studies assumed that the water and soil are incompressible.

Therefore, the values of Sb and αb can be 0 and 1, respectively, and ρ is equal to the

density of soil [6, 23–25, 34]. While some other studies, such as oil reservoir simula-

tion, considered the contributions of Sb and αb [20, 47]. Since the poroelasticity of

Biot’s consolidathangion is a built-in module in COMSOL Multiphysics, the solution of

the above equations is very convenient. As a result, the compressible nature of soil and

water is taken into consideration in this study.
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Numerical model of an aquifer

The numerical model of land subsidence is referenced from Leake and Hsieh [26].

There is an aquifer system overlying an impermeable bedrock in a basin. The height of

the aquifer is 420 m, and the length exceeds 4000 m. The bedrock is a fault and acts as

a step near a mountain front. The aquifer system includes a middle compressible con-

fining unit, which is 20 m below the ground surface (Fig. 1).

In this study, the predefined mesh grid of COMSOL is adopted. The finer element

size (Fig. 1b) is chosen for simulation. The maximum element size is 117 m. Note that

the finite element mesh is usually finer than the random field grid to capture the infor-

mation on the spatial variability. However, the overly fine mesh will lead to high com-

putational costs. There is a trade-off between the accuracy of the solution and

computational efficiency. In this study, the maximum element size is larger than some

examined correlation lengths because the area to be simulated is very large. To over-

come this problem, the midpoint discretization method [32, 37] is employed to deter-

mine grid points of the random field. Shen et al. [33] illustrated that this method is

sufficient to obtain accurate statistics of model responses. Please refer to Shen et al.

[33] for the discussion of finite element meshes and discretization error.

For the deterministic model, the parameters of an aquifer, semi-confined layer, and

water are summarized in Table 1. The hydraulic and physical properties are set as the

alluvial basin in the southwestern USA [21]. The values of porosity for aquifer ϕa and

semi-confined layer ϕi are 0.25 and 0.025, respectively. The hydraulic conductivity ka of

the aquifer is 25 m/day whereas ki = 0.01 m/day for the semi-confined layer. Young’s

modulus is assumed to be different. Ea = 800 MPa for aquifer and Ei = 80 MPa for

semi-confined layer. Except for the above parameters, the Poisson’s ratio and density of

soil are the same for the aquifer and the semi-confined layer. The Poisson’s ratio ν and

ρ are assumed to be 0.25 and 2750 kg/m3, respectively. The constants for the water of

compressibility χf and density ρf are 4 × 10−10 1/Pa and 1000 kg/m3, respectively.

The boundary conditions of the aquifer model are shown in Fig. 1. The hydraulic

head in JA-AB-BC is specified as zero-constant during the entire period of simulation

to assume that no consolidation occurs in this part. IH is fixed with a head that linearly

declines by 60 m over 10 years. Other boundaries are no-flow. For the mechanical

Fig. 1 Numerical model of a basin based on the Biot’s consolidation. a Materials and boundary conditions.
b Geometry and mesh girds
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boundary conditions, EF-FG-GH around the bedrock step is a fixed constraint, which

means the horizontal and vertical displacements are zero. IH is the roller constraint

allowing to move in the vertical direction. Free boundary conditions are used for other

boundaries.

Random field

It is well known that the soil properties of an aquifer are variant but correlated in space

due to the geological processes. Site investigation can only obtain limited samples of

soil parameters. From the point of view of probability, the statistical characteristics of

soil parameters can be obtained from limited samples with randomness. Therefore, ran-

dom field theory is used to characterize the spatial variability of soil properties.

Soil parameters such as Young’s modulus and hydraulic conductivity are positive and

fit well with log-normal distributions [1, 29, 48]. Therefore, the natural logarithm of a

certain soil parameter follows a normal distribution. Its mean value μln and the stand-

ard deviation σln are calculated as follows:

σ2ln ¼ ln 1þ σ2

μ2

� �
ð5Þ

μln ¼ lnμ−
σ2

2
ð6Þ

where μ and σ are the mean value and the standard deviation of soil parameters,

respectively.

In random field theory, the covariance function is proposed to illustrate the spatial

correlation of a certain soil parameter. It is a function related to coordinates x = [(x1,

z1), (x2, z2)] in the domain. The horizontal and vertical correlation lengths (lx and lz)

are thresholds to determine the relevance of a soil parameter of two positions in the

domain. In this study, an empirical covariance function C(x) is used to simulate the

spatial variability of soil parameters [40, 41, 44]:

Table 1 Parameters of the numerical model and random field

Parameters Values Unit Definitions

Aquifer ϕa 0.25 Porosity of aquifer

ka 25 m/day Hydraulic conductivity of aquifer

Ea 800 MPa Young’s modulus of aquifer

ν 0.25 Poisson’s ratio

ρs 2750 kg/m3 Density

Semi-confined layer ϕi 0.025 Porosity of semi-confined layer

ki 0.01 m/day Hydraulic conductivity of semi-confined layer

Ei 80 MPa Young’s modulus of semi-confined layer

ν 0.25 Poisson’s ratio

ρs 2750 kg/m3 Density

Water ρf 1000 kg/m3 Density

χf 4 × 10−10 1/Pa Fluid compressibility
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C xð Þ ¼ σ2ln exp −
x1−x2ð Þ2

l2x
þ z1−z2ð Þ2

l2z

" #1
2

8<
:

9=
; ð7Þ

Table 2 Parameters of aquifer for probabilistic analysis

Parameters Values Unit Definitions

Case 1: Spatial variability of soil strength ME 800 MPa Mean of Ea

COVE 0.3 Coefficient of variation of Ea

lx 200~800 m Horizontal correlation length
of InEa

lz 40~160 m Vertical correlation length of
InEa

ka 25 m/
day

Hydraulic conductivity of
aquifer

Case 2: Spatial variability of soil hydraulic
conductivity

Mk 25 m/
day

Mean of ka

COVk 0.8 Coefficient of variation of ka

lx 200~800 m Horizontal correlation length
of Inka

lz 40~160 m Vertical correlation length of
Inka

Ea 800 MPa Young’s modulus of aquifer

Fig. 2 One realization of lognormal random fields (mean = 25, COV = 0.8). a lx = 200 m, lz = 40 m. b lx =
400 m, lz = 80 m. c lx = 600 m, lz = 120 m. d lx = 800 m, lz = 160 m
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Fig. 3 Effect of the number of random fields on the mean values of subsidence at surface nodes. a
Random field of Ea (case 1, lx = 200 m, lz = 40 m). b Random field of ka (case 2, lx = 200 m, lz = 40 m)

Fig. 4 Deterministic results of the displacement. a Year 1. b Year 4. c Year 7. d Year 10
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Fig. 5 Deterministic results of the hydraulic head. a Year 1. b Year 4. c Year 7. d Year 10

Fig. 6 Effects of the correlation length of Ea on the uncertainty of displacement. a lx = 200 m, lz = 40 m. b
lx = 400 m, lz = 80 m. c lx = 600 m, lz = 120 m. d lx = 800 m, lz = 160 m
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To generate random fields, the covariance function C(x) is decomposed by the

Karhunen-Loève expansion method as previous studies [45, 46]. More details of this

method can be found in Ghanem and Spanos [19].

The land subsidence based on Biot’s consolidation is a coupled hydro-mechanical

problem. Therefore, two parameters, Ea and ka, of strength and hydraulic conductivity

for the aquifer are modeled by random field to consider their spatial variability. Corres-

pondingly, two cases are used to illustrate the effects of spatial variability of soil

strength and hydraulic conductivity on the uncertainty of model responses. It is recog-

nized that the hydraulic properties of soil suffer from great uncertainty. According to

previous studies, the CoV of the saturated coefficient of hydraulic conductivity can be

ranged from 50 to 450% [9, 48]. Relatively, the CoVs of soil strength parameters are

small, around 5~50% [12, 28]. Therefore, the CoVs of ka and Ea are assumed to be 80%

and 30% in this study, respectively. The first case considers the spatial variability of soil

strength. The mean and coefficient of variation (COV) of Ea are 800 MPa and 0.3, re-

spectively. The same idea applies to ka for the second case, where it no longer goes into

details. Please refer to Table 2 accordingly.

The selection of the correlation lengths for the parametric study is mainly based on

the following facts: (1) For natural soil parameters, the vertical correlation length varies

from less than 1 m to more than 20 m [15, 17, 36]. The horizontal correlation length is

generally much larger than the vertical length due to the stratification of natural de-

posits. (2) For the practice of probabilistic study, many studies set the correlation

lengths as a ratio of the model size for uncertainty or reliability analysis [35, 50]. It is

Fig. 7 Effects of the correlation length of Ea on the uncertainty of hydraulic head. a lx = 200 m, lz = 40 m. b
lx = 400 m, lz = 80 m. c lx = 600 m, lz = 120 m. d lx = 800 m, lz = 160 m
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suggested that the correlation length of the soil parameters can be taken as 0.02~2

times the model size. 3. In geotechnical engineering, the site-scale models are gen-

erally adopted, and the model size is commonly less than 100 m, while the model

size in this study is in large basin-scale. The large-scale models, such as

watershed-scale, are considered as references. It is reported that the correlation

length can exceed 650 m [38, 39]. Therefore, in this study, lx and lz vary from 200

to approximately 800 m and 40 to approximately 160 m, respectively. Typical

realization of lognormal random fields with different correlation lengths is shown

in Fig. 2.

The uncertainty of the model responses can be determined by running the model

repeatedly with different random soil parameters to arrive at an estimate of the

standard deviation of the model responses, i.e., the so-called Monte Carlo simula-

tion. A sensitivity analysis is conducted to determine the number of random fields

for Monte Carlo simulation. Figure 3 presents the effect of the number of random

fields on the mean values of subsidence at surface nodes. There is almost no fluc-

tuation of the estimation of mean values when the number of random fields is less

than 500. Therefore, a total number of 500 random fields is generated to assess

the uncertainty of the model responses, which is also consistent with the previous

study suggested by Peng et al. [27].

Fig. 8 Effects of the correlation length of ka on the uncertainty of displacement. a lx = 200 m, lz = 40 m. b
lx = 400 m, lz = 80 m. c lx = 600 m, lz = 120 m. d lx = 800 m, lz = 160 m
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Results and discussions
Deterministic results

Figure 4 shows the deterministic results of displacement over the years. The displace-

ment at the upper boundary indicates the surface subsidence. The surface subsidence

exceeds 2 m, and it is gradually grown over the years. With the increase of depth, the

displacement is decreased and less sensitive to time.

Figure 5 shows the deterministic results of hydraulic heads over the years. The hy-

draulic head in the whole domain is reduced rapidly as a result of pumping. The hy-

draulic head around the bedrock is reduced from − 4 to − 40 m for 10 years, which

nearly drops 4 m per year due to pumping. Comparably, the change of deformation of

the aquifer is far less significant than the hydraulic head over these 10 years.

Effects of correlation lengths

Case 1: Spatial variability of soil strength

The effect of the correlation length of Ea on the standard deviation of displacement (σs)

is illustrated in Fig. 6. With the increase in correlation length of Ea, σs increases dra-

matically. The maximum value of σs for surface settlement is around 0.6 m with the lar-

gest correlation length. The effect of the correlation length of Ea on the standard

deviation of displacement is significant. The land subsidence due to pumping suffers

from great uncertainty when the correlation length of soil strength properties is large.

Fig. 9 Effects of the correlation length of ka on the uncertainty of hydraulic head. a lx = 200 m, lz = 40 m. b
lx = 400 m, lz = 80 m. c lx = 600 m, lz = 120 m. d lx = 800 m, lz = 160 m
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Figure 7 shows the standard deviation of the hydraulic head (σh) considering the

spatial variability of Ea. Although the σh rises with the increase of the correlation length

of E, the values of σh are very small compared to displacement. Even when lx = 800 m

and lz = 160 m, the maximum σh is only 0.004 m. It is indicated that the spatial vari-

ability of Ea has a slight influence on the uncertainty hydraulic head for land subsidence

due to pumping.

Case 2: Spatial variability of soil hydraulic conductivity

The effects of the correlation length of ka on the uncertainty of displacement are dis-

played in Fig. 8. The spatial variability of soil hydraulic conductivity has a minor influ-

ence on the uncertainty of displacement. The maximum σs is only 0.03 m in year 10. It

implies that the uncertainty of displacement is insignificant when dealing with the

spatial variability of soil hydraulic conductivity.

Figure 9 presents the effect of the correlation length of ka on the uncertainty of the

hydraulic head. When lx = 200 m and lz = 40 m changes to lx = 800 m and lz = 160 m,

respectively, the maximum value of σh increases from 2 to 6 m, which is nearly tripled.

The correlation length of ka is strongly influential to σh. The σh increases markedly

along with the rise in the correlation length of ka. In addition, like Fig. 7, the σh around

the bedrock is comparatively large, which illustrates that the uncertainty of the hy-

draulic head is mainly located near the bedrock.

Fig. 10 Uncertainty of displacement over the years considering the spatial variability of Ea (lx = 200 m, lz =
40 m, COV = 0.3). a Year 1. b Year 4. c Year 7. d Year 10
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Effects of time

Case 1: Spatial variability of soil strength

Figure 10 shows the uncertainty of displacement over the years considering the spatial

variability of Ea. The σs is steadily increased with years. In the tenth year, the maximum

σs is approximated to 0.30 m near the surface. It illustrates that the uncertainty of land

subsidence rises gradually over the years due to pumping.

The effects of spatial variability of Ea on σh over the years are shown in Fig. 11. There

is no difference among them, indicating the σh is constant with time. Although the hy-

draulic head is gradually increased, its uncertainty is invariable over the years if only

considering the spatial variability of Ea. Besides, the values of σh are all around the

order of a millimeter, indicating the trivial effect on the uncertainty of the hydraulic

head. To conclude, the spatial variability of Ea on the uncertainty of hydraulic head for

land subsidence due to pumping can be ignored.

Case 2: Spatial variability of soil hydraulic conductivity

The uncertainty of displacement over the years considering spatial variability of ka is

shown in Fig. 12. Obvious changes in the σh appeared, but σh is only approximated to

0.01 m even in the 10-year settlement for land subsidence. The contribution of spatial

variability of soil hydraulic conductivity to the uncertainty of displacement is

unimportant.

Fig. 11 Uncertainty of hydraulic head over the years considering the spatial variability of Ea (lx = 200 m, lz =
40 m, COV = 0.3). a Year 1. b Year 4. c Year 7. d Year 10
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In Fig. 13, the uncertainty of hydraulic head over the years considering the spatial

variability of ka is shown. In year 1, the maximum of σh is approximately 0.2 m, and it

is increased to 2 m in year 10. Therefore, besides the correlation length of hydraulic

conductivity, time is another important factor to increase the uncertainty of hydraulic

head for land subsidence due to pumping.

Effects of boundary conditions

The effect of boundary conditions on the uncertainty of land subsidence is further in-

vestigated. The results of two different boundary conditions are shown in Fig. 14. Fig-

ure 14a shows the hydraulic head and land subsidence at year 1 with hydraulic head

boundary condition. Figure 14b shows the corresponding result with flux boundary

condition in the final steady state. It can be seen that the two different boundary condi-

tions produce the same results.

The effects of boundary conditions on the uncertainty of hydraulic head considering

spatial variability of ka are shown in Fig. 15. When choosing head boundary condition,

a large uncertainty appeared around the bedrock (Fig. 15(a)). However, in Fig. 15(b),

the uncertainty around the flux boundary condition is large. The standard deviation of

the hydraulic head exceeds 0.25 m. Therefore, flow boundary condition has an obvious

impact on the uncertainty of the hydraulic head.

Fig. 12 Uncertainty of displacement over the years considering the spatial variability of ka (lx = 200 m, lz =
40 m, COV = 0.8). a Year 1. b Year 4. c Year 7. d Year 10
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Conclusions
In this study, the probabilistic analysis of land subsidence due to pumping is performed

by Biot’s poroelasticity and random field theory based on a case study. First, the numer-

ical model of an aquifer underlain by a bedrock step and pumping is established. Sec-

ond, to consider soil spatial variability, two key parameters in Biot’s equations

controlling deformation and hydraulic head are viewed as heterogeneous properties

and generated by random field theory. Finally, the influences of correlation length and

Fig. 14 Effects of the boundary conditions on the deterministic results. a Hydraulic head boundary
condition. b Flux boundary condition

Fig. 13 Uncertainty of hydraulic head over the years considering the spatial variability of ka (lx = 200 m, lz =
40 m, COV = 0.3). a Year 1. b Year 4. c Year 7. d Year 10
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time on the uncertainty of pumping responses are investigated. Major conclusions were

summarized as follows:

1. The total surface settlement exceeds 2 m for 10 years of land subsidence due to

pumping. The hydraulic head around the bedrock nearly drops 4 m per year due

to pumping. In general, the change of deformation of the aquifer is far less

significant than the hydraulic head over these 10 years.

2. When considering the spatial variability of soil strength, it suffers from great

uncertainty when the correlation length is large. The uncertainty of displacement

gradually rises over the years. Nevertheless, the spatial variability of Young’s

module on the uncertainty of hydraulic head can be ignored.

3. When considering the spatial variability of soil hydraulic conductivity, the

uncertainty of the hydraulic head is mainly located near the bedrock and increases

markedly along with the rise of the correlation length. Time is another important

factor to increase the uncertainty of the hydraulic head. However, its contribution

to the uncertainty of displacement is insignificant.
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