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PROBABILISTIC ANALYSIS OF SOME DISTRIBUTED ALGORITHMS

Guy Louchard *, René Schott **

Abstract

In this paper, we analyze :

i) a storage allocation algorithm which permits to maintain two stacks
inside a shared (contiguous) memory area of a fixed size,

i) the well-known banker algorithm which plays a fundamental role in
parallel processing.

The natural formulation of these problems is in terms of constrained
random walks. Our results rely on diffusion techniques.

ANALYSE PROBABILISTE DE QUELQUES ALGORITHMES
DISTRIBUES

Résumé

Dans cet article, nous analysons :

i) un algorithme de gestion dynamique de deux piles avec mémoire
partagée,

ii) l'algorithme du banquier qui joue un réle important en parallélisme.
Ces problemes se modélisent en termes de marches aléatoires contraintes.
Les résultats sont obtenus a l'aide de techniques probabilistes liees aux
diffusions.
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ABSTRACT

In this paper, we analyse :

i) a storage allocation algorithm (Knuth [15] Ex.2.2.2.13) which permits to maintain
two stacks inside a shared (contiguous) memory area of a fixed size,

i1) the well-known banker algorithm which plays a fundamental role in parallel
processing (Frangon [10], Habermann [12], Peterson, Silberschatz [18]).

The natural formulation of the problems to be solved here is in terms of random
walks. For (i) the random walk Ym(.) takes place in a triangle in a 2-dimensional
lattice space with two reflecting barriers along the axes (a deletion takes no
effect on an empty stack) and one absorbing barrier parallel to the second diagonal
(the algorithm stops when the combined sizes of the stacks exhaust the available
storage).

For (ii) the random walk takes place in a reétaﬁé]e with breaked corner and has
four reflecting barriers and one absorbing barrier (see Figure 8).

With the help of diffusions techniques, we obtain,asymptotically:

- the hitting place (Zm) and time (Tm) distributions on the absorbing boundary

- the joined distribution of Zm and T

- - the distribution P[Ym(n)SQym, n<T.)

The two stacks problem has been partially investigated by Yao [19] and more
recently by Flajolet [39] with different tools. We provide here an analysis of the
general case with new limiting distributions. At our knowledge such kind of analysis
has never been done before for the banker algorithm.



1. INTRODUCTION

The analysis of distributed algorithms is often the source of difficult mathematical
questions. The two problems to be investigated here confirm this assertion.

First we consider the evolution of two stacks inside a shared, contiguous memory
area of a fixed size m. The shared storage allocation algorithm studied in this paper
lets them grow from both ends of .the memory until the cumulated sizes of the stacks
exhaust the available storage. That algorithm is to be compared to another strategy,
namely allocating separate zones of size m/2 to each stack. This problem of

Knuth [15] has been investigated by Yao [19) and more recently by Flajolet [9]

to obtain some probability distributions and expectations of the sizes of the stacks
and the time until the system runs out of memory. F1aj61et's approach is based on
generating functions and continued fractions techniques. As noticed, the natural
formulation of this problem is in terms of random walks inside a triangle with

two reflecting barriers along the axes (a deletion takes no effect on an empty
stack) and one absorbing barrier parallel to the second diagonal (the algorithm
stops when the combined sizes of the stacks exhaust the available storage).

See Figure 2 and 8 for a more detailed presentation of this problem. Diffusions
appear to be a powerful tool for the analysis of this algorithm and also for the
banker algorithm, another simple distributed algorithm whose complete description

can be found in (Frangon (10}, Habermann [12], Peterson and Silberschatz [18]).
Let us just mention that this algorithm permits to avoid deadlock in parallel
processing and works as follows consider p processes Pl’ P2, cees Pp who have access

to r entities Ry R2, e Rr (card (Ri)=1 for i € {1...,r}).

Initially, each process Pi gives to the banker (i.e. the controller) an upper
bound for the maximum number of examplars of each entity needed for the execution
of a given transaction.

Knowing these numbers, the banker decides to affect to the process Pi the required
entities only if the remainingentities are sufficient in order to fulfill the
requirements of the working processes.

The paper is organized as follows : the analysis of the two stacks storage allocation
algorithm is treated in Section II, basic notations and definitions are contained
in Subsection II.1, the trend-free case is examined in 11.2, the general case is
investigated in the part I1.3. Section III concerns the banker algorithm: do to
the difficulty of this problem, we consider here two processes Pl, P2 sharing



one entity R (card (R) = m=1). As explained in Section III.1. the formulation

of this problem is in terms of random walks inside a rectangle with breaked corner
(see Figure 8).

Results concerning the hitting place and time distributions on the absorbing
boundary are obtained with the same tools as previously. Detailed limiting
distributions shall be included in the full version of this paper.

IT. THE EVOLUTION OF TWO STACKS IN BOUNDED SPACE

I1.1. Basic notations and definitions

This problem was initially posed by Knuth [15]) and investigated successively by
Yao [19] and Flajolet [9]. It's easy to see that the natural formulation of the
shared storage allocation algorithm is in terms of random walks in a triangle in
a 2-dimensional lattice space: a state is the couple formed with the size of both
stacks. The random walk Ym(.) has two reflecting barriers along the axes and one
absorbing barrier parallel to the second diagonal (see Figure 2).

The steps distribution (steps of unit length): AY is given by Figure 1

Figure 1

with the boundary conditions :
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The following questions will be treated in this paper.

With initial condition Ym(0)=xm, what are asymptotically (m- )
® ‘the hitting place (Zm) distribution on the(A)boundary

e the hitting time (Tm) distribution on the(A)boundary

® the joined distribution of Zm and Tm

the distribution P[Ym(n)<ym. n<Tm]
If we let the drift (or trend)§u be (ul,uz) = (pl-ql,pz-qz), we have two
fundamental different limit behaviours, according to u=0 or u#0.

We will need the covariance matrix of one step :

2
T <°y1 C¥12

CY:=E(AY.AY ') = ? . This is easily computed as
W2 9

2
P1+91-(Py-9y) -(pP1-97)(P,-q,)

u
—

—
—

cY
2
-(P1-91)(Py-3,) Po*ay-(Pya,)

The following notations will be used in the sequel
® ~ : asymptotic to, for mow

® = : weak convergence of random functions in the space of all right
M =

continuous functions having left limits and endowed with the Skorohod
metric (see Billingsley [3 ] Ch.III.)

. df(M,V):= the Normal (or Gaussian) random variable with mean M and variance V

I1.2. The trend-free case_: p=0

To simplify the analysis, assume that P1701=P5=05" % .

(The case P1=Gy> P,=q, can be treated along the same lines). The asymptotic

p
2
distribution of Ym(.) is given by the following Theorem



Theorem 1

2
/2 Y (Im“t])
m

- W(t) (2)

where W(t) is a two-dimensional Brownian Motion (B.M.) with the following

boundary conditions
yzl\
1
(R) (A)

o (R) 1

<V
—

Figure 3

Let the hitting time for W(.) be T. The density of W(.) is given by

P IW(t) € dy, t<T) =

{2 zl exp(-kznzt/Z)cos(knxl)[cos(knyl)-cos[kn(l-yz)]]
k=

+ 2 zl exp(-zznzt/Z)cos(nﬁxz)[cos(ﬁnyz)-coé[zﬁil-yl)]] (3)
L=

g 2,2, 2
+43% % expl-(k“+L7)n t/2]cos(knx1)cos(2nx2)

k=1 2=1
.[cos(knyl)cos(znyz)-cos[kn(l-yz)]cos[Zn(l-yl)]]} dyldy2

Proof

The weak convergence of (2) is easily deduced from Chung-Williams [4] Th.8.4.

(The /2 factor is derived from oy2 as given by (1)). The limiting process is not
sticking at the R boundary (RB) as the probability of te random walk staying at
RB during one step is © (probability of leaving RB). The classical one-dimgnsiona]
B.M. with reflecting boundaries at 0 and 1 is well known : see Feller [8] ‘

Ex.X.5.@ and prob.XIX.9.11. Its density is given by (call this process wl):



Py () € dy1] -
{142 f’ exp(- ken t/2]cos(knx1)cos(kny1)}dy1 = [1+ xl(x .ylldyl,say,and similarly

for wz
By a classical ref]ectibn ﬁffnéip1e aéross the absorbing boundary, we see that

P IN(t) € dy, t<Tl = {[1+Z;(X]2y1) 11+E5(X50Y5)]
= [1+ £9{xy,1-y,) 1[1+Z,5(x,,1-y I }dy,dy,

hence (3). [

We now have all necessary ingredientsto derive the 1imiting hitting distributions.

Let a new coordonate system z be given by the following translation and rotation

We have the following theorem for the hitting place (Z) and hitting time (T)

distributions.
Theorem 2

P [TEdt, 2(T)€dz,) =

2.2 2kn 1. %
(¥ exp(-k°nt/2)cos(kmx,) S8 sin{kn( =1
kel ) S ) 2!
2 24m 1%
+ ¥ exp(-zzn t/2)cos(anx,) — sinfan( % - —= )]
2=1 2z ? 2

. z 1 %
+ ¥ F expl- k +4 t/2]cos (knx,)cos(Lmwx,) 4n [ksm[kn(1 + 2 Ylcos[an(x - —)]
Ly 5y ettty ezicos i eostime) 7 2 2
1, %2 1. 1 %
+ cos(kn(z + —= )Isin{en(z -~ =£ ))1} dtdz (4)
wostinlz "2y 2



The marginal densities are given by

P (2(t) €dz,) =
4 cos(kmx,)

{;72_ [kgl — Sin[kn(?- + — )]

cos(amnx,) 2
v 2 npans - 22
0=l [l S n[lﬂ(i /5 )]

N

cos (kmx, Ycos(&nx,) z
L L Sl [ksin[kn(,lz+7§-)]cosun(,lz-

; £))
w2 k=1 g=1 (k°+ 2°)

7z

Z

+ acos[kn(z + 75? )Isinlen(z - =2 )11} dz, (5)

N1y

P ITEdt] =

{4 z exp(-kznzt/Z)cos(knxl)
k odd>0
+4 I exp(-zznzt/Z)cos(znxz)
2 o0dd>0 (6)

8 £ expl-(kZra?)nlt/21(k%412)/ (k2-12)cos (kmxy )cos (2mx,)

k 0odd>0 geven>0

-8 z z exp[-(k2+22)n2t/2] (k2+h2)7(k2-22)cos(knxl)cos(znxz)} dt
k even>0 20dd>0

Proof

The new coordonate system (2122) is given by

1 -2

¥y = 5+ (29+2,)//2 2, = ——(1-y,-¥,)

12 172 or 1 - 7 172 (7)
2

1 .
yz = ?’ + (zl'zz)//i 22 = "2" (yl'.Yz)

In this new system, let

¢&(t,zl.zz):= P [W(t) € dz, t<T]
It is well known that the hitting density is given by

1



(this is a classical outward heat flow). This gives (4) after standard
manipulations. Note that permuting X1 with Xo in (4) changes z, into -2,
(as it should be). Integrating on t gives (5).
(6) is obtained from (4) after some tedious but simple computations. One could
wonder if (6) is an honest density.
This can be checked as follows. Integrating (6) on t gives, for the first
term
2

4 b cos(kmx,)4 - = «2x, + 1 by (A.3)

k 0dd>0 1Rz T
The second term gives -2x2 + 1,

the fourth term leads to

(-8) & & ——-Zk-——cos(k“xl) z 1 cos(amx,) (8)
- n
;? k even>0 20dd#0 (k=27 2

The last T in (8) easily gives

sin(z'nxz)

sin(knxz) z ——gT = % sin(knxz) by (A.5).
£'0dd+0
(8) becomes
4 5 cos(knxl)zin(knle
" k even>0
2 . .
= - = £ (sinlkm(x;+x,)] + sinlkn(x,-x,)]1/k (9)
" k even>0 172 21

Assume, without loss of generality, that x1>x2

By (A.4) (9) gives 2x2.

Similarly, the fourth term of (6) leads to (-1+2x1). Collecting our results,
we see that (6) is indeed an honest density integrating into 1. |
By (2) the original hitting place (Zm) and hitting time (Tm) are given by

2z T
™ QZ, ?‘T




Note also that the particular case x1=x2=0 transform;, after some simple
manipulations, formula (5) into Flajolet [9] Th.2 and formula (6) into the

bivariate theta distribution announced in Flajolet (9] Th.4.
u is defined by (uy.u,) where
ul = pl-qlt UZ = pZ-QZ°

In the new system of Fig.4, we have by (7)

L2 7

iuzl =3 (U1+U2) = —g' (p1+p2-q1-q2) (10)
2y = 5 (i) = 5 (970179540,
Let 0 be given by : tge := WZ,/uzy (11)

Three different subcases must be considered, depending on the relative
values of x and 6. The following diagram will help to understand the

different situations

Figure 5

We immediately check by (7) that

(l-xl-xz)

NN NNy

(xl'xz)



10.
V2
("2" - B) = Gtgel ’ ("2‘ +8) = 'atgez
1-x1 = x2t962 l-x2 = -xltge4

The different subcases are obviously related to the direction & of the trend

with respect to By i=1...4,

Subcase 3.1: '9.1 <o 93_

The asymptotic distribution of Ym is now derived in the following theorem

Theorem 3

AAELIED ey w (e (1)

where

W(t) is a B.M, with covariance matrix CY as given py (1)

Proof

Were it not for the reflection boundaries, the convergence is deduced from
Billingsley [ 3]
But proceeding exactly as in Yao [19) Lemma 2 and 3, it is easily shown that

we can indeed asymptotically ignore the(R)boundaries (we omit the details).
a

Subcase 3.1 can now be described by the following diagram




11.

where, by (11), ¥ = auz,/uz; and the process ut + W(t)//m is (grossly)
pictured by the dotted 1ine eec.e
Hitting P1éce Z and hitting time T are now characterized by the following theorem

Theorem 4
T s (T-0/uzy) ~ df[o,a.czf/(m.uzf)]. (13)
Conditioned on v, we have .

(z + uzl.Czlz.r/ozf) ~ df[o.a(ozg-szz/czf)/(m.uzl)] (14)

where Cz12 is given by (15) below
Following Fig.6, we have

l=p+y+ 2

Proof
We have already computed (“zl’“zz) (see (10)) in the new system of Fig.4.

The new covariance matrix CZ := E(Az;AZT) 1s given from (7) as

1 1 11
CZ = cYy /2. By (1) this gives -
1-1 1 -1

1-(p1-ql+pz-q2)2 pl+q1-p2-q2-(pl-q1)2 + (pz-qz)2
. /

Py*a;-P,"q, 1-(p1-q1-pz+q2)2

-(py=ap)°

+(p2-q2)2

ozf Cz12

L

2 say. : (15)
Cz12 022



12.

We can now consider the asymptotic T distribution.’

We have, by (12), for some classical B.M. By
P tmin(u's uzju' + Bl(u')ozl//ﬁ = a) € du]
= P [min(u': By(u') = (a~uzqu')/M/oz;) € du] (16)

-~ -m(a-uzlu)%
377 e*Pl 7
azlffﬁ'u 2uozy

] du

. by a classical result on the crossing time of a B.M. and a straight line :
see Cox and Miller [5 ] p. 221.

let u = a/uzy + 1 (17)

We obtain the following asymptotic density for t

/ﬁ“zf/z (223 /(20022 )
——— exp[-mt uz aoz
Vero z1 1 1

which proves (13).
Let now pZypi= Czlz/(czl.ozé)'(correlatioﬁ coefficient).

Conditioned on Bl(u), it is well known that the projection of'%é%l along Zy
m

is given by ' SRRy
B,(u)oz
2is —2 2 it
vm
B, (u) By(U)  —— o
u N

(14) is now easily deduced.
Note that, here, the originaTAhitt1ng place (Zm) and hitting time (Tm)

are given by

A T
-ﬁm- - 7, _—mﬂ’-ovT



Note also that the particular case x1=x2=0, PP, 9159, leads to

B=v=0, 0212 =0, uzy = /?(pl-ql), a=(g , ozf = % - 2(p1-q1)2. ozg = 1/2
2
[1-4(py-qy) 7]
So that (T - ————l___) ~ of(0, 1 *é ]
2(py-9y) 8m(p;-9;)
and z ~ d%(0, S S
4m(p1"ql)

This gives E(1z]) ~ 1//2nm2p1-q1) which confirms Yao [13] Th.1.

Subcase 3.2 : 8 €[-81-8,0;1, 6 €[ 83.04% 0,4

Let us consider the second case (the other one is similar). The process can

be described by the following diagram

0 (R) 1

where B = '“le/”l' § 1= 1-x2-B

Indeed, by the same argument as in Theorem 3's proof, the absorbing boundary
can be asymptotically ignored in the first part of the process, leading to
hitting place V .(at time T, say) on the R-boundary.

The weak convergence of Theorem 3 is still valid. From V on, the ¥p-component
of the process obeys Theorem'3 law and the yl-component is given by a classical

reflecting random walk.

13.



The following theorem gives the asymptotic laws for Z and T
Theorem 5
Te=T + T, where
tyi= (Tyxg/ 1) ~ o [0, xp.oy/(mluyl ®)
3
tyie (T (8-2)/u) ~ (0, 6.0y5/(mi3)) (18)

with, conditioned on Ty»

(2 + Iyl Cyppe 1y/08) ~ P10, x)(ovB-CySp/ayd)/(miuy 1))
Z1 ~ 1-k/m, (19)

where the distribution of k is given by (20) below.
Proof
The first part of the Theorem is derived similarly to Theorem's 4 proof,

we omit the details. We only have to check that the reflected - random

walk contribution is asymptotically negligible.

Indeed, in the original Fig.2 random walk,

But is well known (see Cox and Miller [ 5] p.45) that the reflected random

walk has an asymptotic stationary distribution (even when py+q;<1)

Pty k1 = (1 2y oLy (20)
N = e g) (g

This distribution is in force after T2 m
So, in (18), & should be changed into & - %
with &4 = 0(1). But 7, and z are both 0(1//m). The contribution of A is

asymptotically negligible.
(19) is now obvious from (20).
Again,

T Z
ﬁm' - T, -— - 7

14,



15.

Subcase 3.3 : 6, + 6, S 8S 8,7 85

This subcase will itself lead to different possibilities.
ubcase 3.3.1 : py=p,=p, 4,39,=0, P<q

This is the simplest random walk, which can be analysed as follows.

A first theorem is obtained on the limiting hitting place Zn distribution.

Theorem 6

The hitting place Zm is asymptotically uniformly distributed on the absorbing

boundary.

Proof

First of al1, proceeding similarly to subcase 3.2, we see that, asymptotically,
we reach the origin in time Tm = 0(m).

From there on, the reflecting random walks on Y and Yo reach their stationary
distribution (20) with exponential speed : from Feller [ 7] p.438, equ.3.16,

we see that the extra terms converge to 0 as [2Vpq 1",

The joined stationary distribution is thus given by
P2 P Ki+k,

(-3 T

, constant on the line k1+k2 = k

If we can show that the absorbing time is large enough, (this is proved in the

next theorem), the asymptotic hitting place Zm is indeed uniformly distributed

on the absorbing barrier.

Theorem 6 is identical to Flajolet [ 9] Th.3, but our direct probabilistic

proof is much simpler.

To analyse the hitting time Tm’ we firstly make the following approximation:
given that the random walk is on the diagonal y1+y2=j, we assume that it is

uniformly distributed on that diagonal. In the following we call this the

Basic assumption.




16.

A11 quantities related to this new process will be ‘indexed by the diagonal

value and affected by a star: *,

In

this section, we set p':=2p, q':=2q. We firstly need the probably wﬁ m

that starting at j, we reach 0 before m (see B.7). This is given in the

following theorem.

Theorem 7

wg,m = 1- ¥(j-1)/¥(m-1) (21)

with

v(§-1):= 31: (8114

P
w30~ @I - pieoh) (22)
J*co
Proof
o* satisfies the equations (we drop the m-to ease notations)
= n' ' o J ;
SRS RRE ol RIS o R
w% =1, wa =0
To solve this difference equation, set
Aj:= ¢? - “?-1 and
Y. .

e J

B141°% ToT (g)

This readily gives

Y

= Y51 7 Y



17.

so that

y

3 Yy gi-1
¢§ =1l+x T (2) =14+ Yo ¥(j-1), hence (21).
i

olo

The asymptotic form (22) is obtained as follows: let 6:=q/p

v(j-1) = "] %6_11'2 _ Gi-l ng j?]-(k _ eJ'i-l Jél ::55
j
= _ﬁg:i jél o*[1+ % + f; ]
”Q'JTE T eJ’(lfe nzt
”%{[9}1*.1?+ : -

Proceeding now as in Sec.B.2, we analyse the probability generating function

(P.G.F.) H n(S) of the hitting time to O before m.

Let the double G.F.: G*(u,s):= ¥ ol H;(s). Its general expression is given in
0

the following theorem.

Theorem 8

6*(u.s) = (1-u/7)) (1-u/%,)8 + p(u)(u-T))A(u-7))° (23)

with

T1:=1/x1, Xp:=1/x, (With X[, X, given by (B.1), with P\a')

A:=('i'2-1)/('i'l-'i'2), B:=(1-%)) (X;-%,)

D(u):=C(s)/(-sq") fg [(V-i&)A+1(V-?é)B+1]-1 dv (24)

C(s):=[1-p's Hf(s)-sq’]



Proof

H‘(s) satisfies the equations

3 =s [p' H1+1 fLT H* + g 31T H3 1] , J#0,m

H; =1, Hy = 0

This leads to the following differential equation

2

Ga'(u-p's-q's u®) = G*(-1+q's+q'u s) + (1-p's HT- sq')

The roots of the first polynomial are obviously i&, ié.

Routine computation leads to (23).

We must now derive Hf(s) from the condition H;(s) = 0.

But according to Sec. B.2, all we need is to use this condition with m=e

18.

(25)

(this amounts to jgnore the barrier at m) and 1imit ourselves to the neighbourhood

of s=1 (i.e. n=0). We then obtain the followipg result.

Theorem 9

HI(s) ~ 1 +vyn n=20

with Y::(ZQ'D)/(Q;‘p)

Proof

From (B.3) we infer, with é:=1-p/q
T~ g-(1+n). Ty~ 1-n, A~n/s, B~ -l-n/s.

Call GY the first part of (23).

(26)

(27)



19.

By Darboux'theorem (see Greene and Knuth [11] equ.4.117), we derive

(<un>F is the coefficient of u" in the expansion of F)

n

> 6}~ (1- P ! : (28)

'T? F(-A)nA+1

>, 2

2

Let G5 be the second part of (23). Assume firstly that &) <%,.
Expanding (24) in the neighbourhood of v=31 (3&<ﬁé), and using again
Darboux' theorem, we deduce, after some tedious manipulations that GE is

made of two parts:

*
G2,1 + Gz’2 where
Al 1

n[- %+ o (A)]
<" G; L~ A 1 'va
r(-B)s q Ao Xo
~B
C(s) X _
60 % 6] —— [Tl“"z(")}
s q (xl-xz)(xz-xl)
A
1-v)'-1
le(A) - Iél) X+ dv
v
X/ (Y,-%7)
1 2 "1 1 -1
Clearly <u™ G = 0 iff
m —» oo
-C(s) ig
— = = B +1 =0
S q (Al-xz)(xz-xl) A

which easily leads to (26).



20.

X7
If now 2?i> Té, we decompose (24) into Io 172 +fu and a similar
X, X
analysis again yields (26). 172 n

We now have all necessary ingredients to proceed as in (B.9): starting from
Bs) = T e ot i) Sk tegr )
m k=o 1-Q'S “1,m | -q's 1,m

it is not too difficult to deduce, for the hitting time T; P.G.R.

n -£ it
2 2 2
F*(s) ~ = —f- (29)
0 n-n, e, S-S,

with np= m 62(%)m and €= M q' 63(%)m, hence the following result on T;.

Theorem 10

82T; is asymptotically distributed as a negative exponential random variable

(with density e™). .

Remark 1

At this time of our analysis, one could wonder if it is not possible to
derive Fg(s) from a direct computation similar to our Theorem 8. Indeed F}

satisfies the equation

*_ 1c* ¥ *_

Fo = sla'Fy + p'Fyl, Foo= 1

* ¥ Q' * v J e .

FJ = s[p FJ+1 + T Fj +q 3T Fj-ll’ J*+0,m

Defining again G'(u,s):: )% uJFE(s), the associated differential equation leads
o)

now to



6%(u,s) = F3(s)(1-u/X A (1-u/%)°

X
1,8 1

and <u™ G*(u,s)~1 + (1- =)
| %, A0r(-R) A

(we cannot neglegt here the constant term as we did in (28)).

But <um>G‘(u,s)=0, which by asymptotic analy:i again leads to (29).

Remark 2
Theorem 7 can also be deduced from Theorem 8's techniques.

. *
Indeed mg’m = lim Hj’m(s).

S <0

Letting s»1 in the differential equation (25) and solving, we obtain

p'(1-0%) '
G*(U) = 1_—3; + -1}—u' ——q'r—T' In[1- %Tl{]

which leads to (21) by standard expansion.

Remark 3

To analyse the effect of the reflecting boundary, consider two absorbing
(diagonal) barriers: at d (d>>1) and m.

Starting from d+j, what is the P.G.F. H;’m’d(s) of the hitting time to d
before m.

Proceeding as in Theorem's 8 proof, and omitting the details, we can check
that we again derive an explicit solution for the double G.F. G*(u,s,ﬁ).
For large d, we can show that G* is asymptotically equivalent to the G.F.

of an ordinary one-dimensional random walk (with step probabilities p', q'

and absorbing barriers at d and m). The reflecting affect is asymptotically

negligib]e.

21.
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It is now time to discuss our Basic assumption of uniform distribution on the

diagonal.

First of all, let us check the mean hitting time a from 1 to 0, as given by
(26) and the relation s-1= (q'-p')n (see Sec..B.l).

This leads to a = (2q-p)/[2(q-p)2]. o (29)
But this can be checked by a formula dating back to Smoluchowski:

let v be the time, for an initial state of some set o of a recurrent
recurrence '
Markov chain to another state of q, with a stationary distribution n.

Smoluchowski's formula te11§ us that

ai= E(y) = (I-nt 1)/(nt P 1) (30)
where P is the associated transition matrix and

means X Airbr' (similarly £ for A'B). (For a simple proof: see
i€q J T iga
Louchard [ ]).

(A'B);

In our case, let o = (0,0). It is easily checked that "(j,i)= (1- %)z(g-)j
where for each state (XI’XZ)’ J is given by the diagonaI value j:=x1+£2

and i (i=1...j+1) denotes the position of the state along that diagonal
(starting form above). (29) is now immediate for (30).

Let us mention that E(Yz) can be associateg to the capacity of o in the
potential associated to P (see Louchard [ ], Sec.III). This analysis is
presently under investigation.

The second aspect of our Basic assumption deals with the hitting probability
w(j,i),m approximated by wﬁ,m in Theorem 7.

Dropping m to ease the notations, we define g(j,i) by g(j,i):=w(j,i)-wg'

We will derive the following result.
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Theorem 11

There exists-some constant K and, for any sufficiently large m,

some small 1 such that

v, .
(j-1) X .
85,1 <\P(m-1) T fordel

and j=m-1, i € [mt/z,m-mT/Z]

Proof

The proof is rather long and will be divided into 4 steps
i) After a detailed analysis of our random walk, it appears that

E(j,i) satisfies the equations

-(3-1) B

faa0) TS TP Sy 9 5 i
' j=1...m-1 (32)
(similar equation for é(j,j+1)
S(3,1) T OE(5-1,1) T E(4-1,i-1)7 T PLE(Ge1,i) *E(ge1,ie1)) * 2By
- j=1...m-1, i#l,j+1
a(o.o) ) C(m..) =0
where .- [q(%)j—ll/[(jﬂ)j @/m-1)].
oo Py _
et o4y (@7 L5,y

(For the interested reader, let us mention that this amountsto use the dual
Markov Process (M.P.): see Kemeny et al, [14] p.136 for more details).

(32) implies
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where P” is the transition matrix of the transient M.P. with absorbing

barriers at 0 and m and

. = P = -RJ i - N
V(§.1) T V(a1 ()T (971) By (34)
, ey o= E-] i=
V(J’~|) z(q) BJ’ i=2 J
(32) is now solved by
- ] .
g =v(l-P ]~ ‘ (35)
Note that X v(j iy~ 0. This allows us to use Lemma (2.3) from Haviv et al.
.i b}
(13] which states that, under this condition, and setting k:=(2,v).
- (9y2
el = (" Iyl
<m-l q\2-3
s = j - . #,. . - min ¥,. . 2
E, 41T (30 By tmax # s gy M F ek
J L o (36)

RSN PU-D) ) (max . i | koK
-5 NG ey e TG kT M P K T2

where

oy r is the probability of reaching state r from state u in the M.P.

P”, before absorption at 0 or m.

and # is the mean number of passages from k to r under the same conditions.

k,r

ii) Let us now analyse #k K" From now on, K, will denote constants independent

of m.
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® for k=(1.), it is clear, by replacing the absorbing barrier at m

by a reflecting barrier, that # , < I 2(l-q) q* = l&ﬂ
’ 0

e for k=(m-1,.), we replace the absorbing barrier at 0 by a reflecting barrier
and we consider the mean number of returns to diagonal (m-1). We are led

- ]
to a geometric distribution with mean 152—

e for k=(j,i), j€[2,m-2], we replace the absorbing barrier at m by a
reflecting barrier. Then we firstly consider the mean number of returns
to diagonal j, eicluding any excursion to (%,.), ¢t < j. This is obviously bounded
by BTga
We now count the mean number of returns from any state (j-1,.) tO-diagona? A
(with reflexion at j) before absorption at 0. It is clear that this quantity
‘is bounded by the mean number of returns to j from j-1 in a one-dimensional
random walk with absorption at-0 and probabflities [p',q9,q] for steps
[+1,+0,-1). By (B.7) we obtain the bound (1-p'/q)/(p'/q). Combining our two
bounds yields qz(l-p'/qw[p'(p‘w)l.

® to conclude, the;eexists some K1 such that # <K

k,k "1°
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iii) A_; a f_ivrst crude _bound, it is not difficult to deduce from (22) and

(36) that

Eg,vy) S K (87" mlog m (37)

For k = (1,.), we derive, from (35) that, by symmetry,

_1
PG Kk T2 TG Pk T R ]

1 : -
2 ey, 0,2)] (f Y(5.1) °<j.i),1)*k.k

where Su 1 is now the probability of reaching the diagoha1 1 from state u,
before absorption at m. ‘
In (36 ’ 1= 6 . s -minbp,. . .
(36), we can thus use AJ [m?x P(3,i).1 m}n o(J’1),1]
But repeating the reasoningwhich led to (37), with, this time, the M.P.

with absorption at diagonal 1 and m, we can check that

85 < K (%)m'j mlogm : o | (38)

We are now ready to use (36): let the I be decomposed, for some small +,

m-m’ -1 m-1
into Iy = 2 v I = T . (36) and (38) imply,after some elementary
j=2 j=m-m?

manipulations

K
4 [ log m ym 1

| < y(m-1) m-m"

Iz(l'.')

which easily leads to (31).



iv) for k=(m-1,i), i € [mT/Z,m-mT/z), we ajain decompose the ¥ in (26)

£, and . Let t':=7/2

1 2’ A
In Xl, we deduce from (22) and (37)

C(j,u),k:g Ks(g)m'jf ? + m log m]. Hence, from (36)
2 1 7!
nogg, M log (2ym
i 6 m-m" q

in Z,, we return to the exact fcrm (35), which yields

j+l

(ufl () 2.0k ik
From (B.7), we infer,

"(350) k:< g)m for u€ll,i-1-m" Juli+lem® ,j+1].

The corresponding scmmation in IC(m~1 1.)ileads from (34) to a bound

\ t

For u € [i-m" ,i+m" ], we obtain in (m-1,7) @ bound

(39) and (40) easily lead to (31).

Repeating now the proof of Theorem 10, with w(l ) as given by Theorems 7

and 11, we derive the following result.

27.
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Theorem.12

csz is asymptotically distributed as a negative exponential random variable.

Remark 4

Theorem 6 tells us that the asymptotic hitting place is uniformly distributed
on the diagonal. This allows us to use the first passage time approach
(see Sec.B.3) in the following way: let the diagonal % be a reflecting barrier.

What is the stationary distribution mw of this new recurrent M.P.?

It is easily checked that "(5.i) C C(%)J.
L A

This gives C L. )X (j+1)(-qp-)J ~-J§ , #>>1. Let o be the diagonal 2.
0 , 8

Smoluchowski's formula (30) gives
(@*

ZB—"_

E(y,) = [1-C(g)1 (g+1)]/[£q.c(%)£] -
29

But Y, is nothing but the hitting time diagonal g, starting from an uniform
to :

distribution on diagonal 2-1. The total mean hitting time is given by

(9ym
~ —~§P——— which is exactly the mean l/c2 computed in Theorem 12.
1 d"mq’ ]

Remark 5

We can also construct another recurrent M.P. from Fig.2: replace the absorbing
barrier at m by letting the random walk move from diagonal m to (0,0), with
probability r and returning to diagonal m with probability 1-r.

Let the corresponding stationary distribution n be given by

= . E‘j 1= . .Mm=
"(j,.)' w(J’1) (q) LN 1..m-1
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o ; (41)
and T, = q' m, +q "(1.) +r "(m.)
m
- - (42)
"(m ) p' £ "(m-1,1)+ (1-r) "(m,.)
1
It is readily checked that w(j i) satisfies the equations characterizing
the exact probability of hitting O before m, starting from (3,1).
(42), theorems 7 and 11 imply
~mop'n (Bym1 43
r iy ~ M P (q) 6. (43)
m-1 PyJ 1
But we must have m, jfo ? w(j,i)(q) * )
with leads to Mo ~ 62. Let o be the diagonal m.
(30) leads to E(y) ~ l/rn(m ) which, with (43) yields the mean l/c2
given by Theorem 12.
(41) is asymptotically checked by immediate computations. L

Subcase 3.3.2. : PP,

This more difficult situation is under investigation: the distribution is still

of exponential type but the analysis of a is more intricate.

ITI. THE BANKER ALGORITHM

Here we restrict our attention to the following subproblem : consider two
processes Pl’ P2 sharing m'examplars of an entity R. P1 (resp. P2) needs at

most my ( resp. m2) items.

An execution of the system (Pl'pZ) is a random walk inside the rectangle

0A18A2 below (see Figure 8) and is correct only if the random walk remains inside

the rectangle with breaked corner OAIBIBZAZ‘
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(0,A,], [A;,B,], [BZ‘AZ]‘ [A,,0] are reflecting barriers,[Bl,BZ] is an absorbing

boundary y
xzr
Al (R
M2 '
(R)
—®
(R)
AI X,
0 (R) A1
™
Figure 8

The absorption time Tm now corresponds to a deadlock detection.

The prevention algorithm leads to the following boundary

(R)
(A .-
(A |.
(R)
(R) m
Figure 9

As in the storage allocation algorithm, several sub-cases must be ‘considered.

To simplify the analysis, we will set my =m,=m,
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It is easily seen that our random walk is weakly convergent to a B.M..

W(t) with the following boundary conditions

(R) S L) B—
. (A
A
w| " m w | @l w [®
(A)M(A) )
(R) (R)
deadlock prevention

The density f(x,y,t):= Px[w(t) € dy, t<T] satisfies the equation

8tf=%Af

f(x,.,t)= 0 on the absorbing boundary

ix f =0 on the reflecting boundary (Sx is the normal derivative)
f(x,y,0) = 6(x-y) (Dirac distribution ).

The analysis of f is presently under .investigation in cooperation with

M. Tolley (see Descloux and Tolley [6 ] for a typical approach.

LR R -2 iy

As far as u is included in the following range (see Sec.lI.3 for notations):
8 € [- % ,% J, the analysis proceeds exactly as in sub-case I11.3.1 and II.3.2
(we omit the details). The other sub-cases are more difficult. We will limit
ourselves to the case (similar to sub-case 11.3.3.1): Py=Po=Ps G1=G,=9, p<q.

We obtain the following theorem.
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Theorem 13

In the detection algorithm, the hitting place Zm is asymptotically uniformly
distributed on the absorbing boundary; 53Tm is asymptotical distributed as a
negative exponential random variable

where eq:= (2m-m‘)q'63 ( )m' ] (44)

0o

Proof

For a two reflecting barriers, one-dimensional random walk, the stationary
distribution (20) is again reached with exponential speed (we just have to

change P(y1=0) by suitable normalisation).

If we ignore the absorbing boundary, the mean return time to 0 is still given

by Theorem 9.

For j<m, the hitting probability ¢§ satisfies the same equations as in Theorems'7

proof, so that (with this proof's notation)

q? =1+ Yo ¥(j-1)

,

y -
nd g <oy o (T

At m, we have. by our random walk reflecting properties

o .. ]
G g ey vater ]y e

which yields
. _ Yo
Ana1*™ ¥ne1 " T

)m

vlo

For j>m, the equations are

_ i ' ) Zm'j
e = qley ) ¢ TP_‘m-j+1 IR oy L
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and, after some difference equation manipulation,

@ =+ v, #i-1)

I R
where ¥(j) = I (9) /(2m-i). We have
j=m P

0y o Qo s e 1.,
¥(i-1) ~ @7/ 0(am-341) @ -1)I11+ 0(z3))

The condition o = 0 now leads to Yo ~ - (2m-m')(% -1)(%)m and we finally
obtain @ ~1 - (2m-m')(% -1)(%)“‘.

We now follow Theorem 10's proof: (44) is readily derived. L
The detection algorithm is more difficult to analyse: this problem is under

investigation.

IV. CONCLUSION AND FURTHER ASPECTS

For the two stacks problem, we have recovered in a more simpler way results
obtained previously by Yao and Flajolet -with different techniques and we have
obtained new limiting distributions.

The banker algorithm his bq“analysed wi;h the same tools. The case were the
number of processes is greater than two and the number of entities greater
than one is the object of a work in process.

‘Diffusions appear to be a powerful tool for the analysis of distributed

algorithms (see Louchard [12] for other typical applications of these techniques).
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APPENDIX A : some Fourier Analysis

By Abramowitz and Stegun {A.S.) [ 1] (23.1.18) we know that, for I<x<1 :

1 @ cos 2kmx . 1 2
= By(x) = = - x + x (A.1)
2kl k 2 6
So that
\ 2 "
cos(knx n o

z ———i?——l = > B,{x) (A.2)

k even>0 Kk 472

Substituting x-’% into (A.1) and substracting (A.2) gives

: 2
cos(knx) _ =
s coslim)

k odd>0

) {A.3)

Nf —

By A.S[ 1] (23.1.17), we have, for 0<x<1 :

of M:-nBl(x)z-n (x—%-)

k=1 k

Proceeding as previously, this gives

5 sin(kmx} _ 28, (x) (A.8)
k evendC ' ) ’
and

5 sin(kmx) _ = (A5)

k odd >0 K 4



APPENDIX B : some results on one-dimensional random walk

Let us analyse the hitting time distribution in a one-dimensional random
walk with reflecting barrier at the origin and absorbing barrier at m.
Forward and backward steps propabilities are gi.ci. vy p and q:=1-p.

The probability generating functions (P.G.F.), Fj(s) of the hitting time

Tm’ starting at j, is characterized by the following equations

Fm(s) =1
Fo(s) = sla F (s) + p Fy(s)]
Fj(s) = s[p Fj+1(s) +q Fj-l(s)]’ j*0,m,

The solution is easily seen to be (see Feller [7] p.496, ex.12)

Fi(s) = [x{*l (l-xz)-x%+l (1-x1)]/[xT+1‘(1-x2)-xg+1 (1-3))]

With  Ap,h, 1= [l /1-8pgs®1/2ps.

(B.1)

Note that xlxz = q/p, x1+A2 = l/ps,.x1>x2.

Let j:=m-1 and mew .

1 _p
m173% T g’
Interchanging p and q and replacing j by m-j yields (the absorbing barrier

(B.1) readily gives F

is now at 0 and we ignore the barrier at m)

Fl-o)\z (B.2)

From now on assume: p<gq.

The asymptotic behaviour of Fj for meew is related to the dominant singularity

of (B.1). Following Feller [7 ] p.352, we set

s:= 1/[2/pq cos ¢].

B.1



B.2

i . i i ingularit
This gives ry.x, = /% eX'® It is easily checked that the dominant sing y

of (B.1) is given by 517 1+ £y with cl>»0, el<<1. Let 09 be the corresponding
value of ¢. Set ¢: -iy. We verify : e’ *1 % . Let e=s-1 = (@-p)n
S~

We can check that, for n-0: Al"'% (1=n), Ap~1ln, eY ~:/f§§(1-n) (B.3)

An asymptotic analysis of (B.1) readily gives

-n -t -&
1. 5 H
Fo(s) ~ n=m - e-gy - 575, (B.4)
with n:= 6(2)" and 6:= 1- g .

This leads to ¢, = q az(g)m. (B.4) yields now

-€q N
Po[Tm=n] ~ €€ (with mean 1/&1) (B.5)
In the following, we will need another P.G.F. Let us consider a one-dimensional

random walk with absorbing barriers both at 0 and m. The P.G.F. Hj m(s) of the

hitting time to O before absorption at m is easily computed as

o (oM m J m_.m
Remark that Hj (s) - Ag which is of course identical to (B.2).
’ M-+ co <
. 0. = [1-(& m-J -(2y™ 7
As sl Hy (s) =@ = [1-(5)771/01-(g)") (B.7)

which is nothing but the probability of hitting 0 before m.

We will now analyse another way of getting (B.4). Assume we are at position

m-¢2.,2¢0,m. The P.G.F. of the last leaving time from m-¢£ given that we never

return to m-2~1 in obviously given, from (B.7), by




B.3

J(s) = £ ps w;( 2[;‘2(2) pS]k [1- ¢ VI 19 41 (B.8)
k___o. £ ) ] s

where iz(z) the P.G.F. of the hitting time to m-%, starting at m-g+l,

given that there is no absorption at m.

Similarly, the P.G.F. of the last leaving time from O is given by

_ 5 o ps_ ks s .k
Jo(s) = kfo Togs @1 mlAa(m) qu—s"] [1- 0 1. (B.9)

As a first approximation, and following (B.2), we use Ao instead of 32
in (B.8) and (B.9).
The total P.G.F. of the hitting Tm is now given by

F (s) - (s) 1 J(s). (B.10)

A detailed asymptotic analysis shows (we omit the details), that the
dominant contribution of (B.10) is only due to Jm(s) and, asymptotically,
is identical to (B.4). -

Now the exact P.G.F. 52(1) is given (from (B.6)) by H; (s)/w; . instead of :,.

After some tedious manipulations, it can be checked that this doesn't affect
the asymptotic behaviour of (B.9).

It is also remarkable that Ao enter into (B.8) only though its first
approximation A2~a1+n.

By (B.3) this is identical to Ao ~ 1+ 1 (s-1), which shows that the mean

q-p
hitting time from 1 to O is given by 1/(q-p). This is well-knownand can easily

be checked.



Still another way of deriving (B.4) is to analyse the first passage time

form 2-1 to ¢ for ¢ = 1..m.

Letting Fj,z(s) be Fj(s) from (B.1) with m replaced by ¢, we immediately

deduce (this is the classical ladder technique)

m -

F (s) = Egl Foa1.g(8) (B.11)
Again, an asymptotic analysis shows that the dominant singularity is derived
'ﬁvnlﬁm_l,m(s) but, this time, all terms of (B.11) contribute to the final

asymptotic form, which is of course identical to (B.4).

We also observe that these contributions are exponentially decreasing from
2=m to 1.

As a final remark, the asymptotic mean of (B.5): 1/51, can also be recovered
by summing all asymptotic means related to each term of (B.1ll)(again with

exponentially decreasing contribution from ¢ = m to 1).
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