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Abstract

We analyze the probability that a random m-dimensional linear subspace of Rn both
intersects a regular closed convex cone C ⊆ Rn and lies within distance α of an m-
dimensional subspace not intersecting C (except at the origin). The result is expressed in
terms of the spherical intrinsic volumes of the cone C. This allows us to perform an average
analysis of the Grassmann condition number C (A) for the homogeneous convex feasibility
problem ∃x ∈ C \ 0 : Ax = 0. The Grassmann condition number is a geometric version of
Renegar’s condition number, that we have introduced recently in [SIOPT 22(3):1029–1041,
2012]. We thus give the first average analysis of convex programming that is not restricted
to linear programming. In particular, we prove that if the entries of A ∈ Rm×n are chosen
i.i.d. standard normal, then for any regular cone C, we have E[ln C (A)] < 1.5 ln(n) + 1.5.
The proofs rely on various techniques from Riemannian geometry applied to Grassmann
manifolds.
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1 Introduction

Convex programming is an efficient tool in modern applied mathematics. In fact, a commonly
accepted technique in current scientific computing is to “convexify”supposedly hard problems,
solve the relaxed convex problem, and then hope that the result is close to a solution of the
original problem. To quote from [7, §1.3.2]: “With only a bit of exaggeration, we can say that,
if you formulate a practical problem as a convex optimization problem, then you have solved
the original problem.”

But what is the complexity of convex programming? To specify this question further, we
ask for the number of arithmetic operations, or the number of iterations of an interior-point
method. Steve Smale suggested in [42] to use the concepts of condition numbers and proba-
bilistic analysis in a two-part scheme for the analysis of numerical algorithms: 1. Establish a
bound for the running time, which is polynomial in the size of the input and (the logarithm
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of) a certain condition number of the input. 2. Analyze the condition number of a random
input in form of tail estimates.

The first step of this scheme, i.e., the analysis of the role of condition numbers in convex
programming, was initialized by Jim Renegar in [37, 38, 39], and is an active area of research,
cf. [48, 49, 19, 21, 22, 34, 36, 13, 14, 17, 35, 20, 47, 4]. In these references, the role of condition
numbers is analyzed for linear and nonlinear convex programming, for exact arithmetic and
for finite-precision arithmetic, for ellipsoid and for interior-point methods, etc.

Yet, the second step of Smale’s scheme, i.e., the probabilistic analysis of the condition
number, was until now severly restricted to the linear programming case. See the survey
article [8] and the references given therein for more details on probabilistic analyses of condition
numbers for linear programming.

We will give in this paper the first average analysis of a condition number for the general
homogeneous convex feasibility problem. This includes the special cases of linear program-
ming, second-order programming, and notably also the semidefinite programming case. More
precisely, we consider the following problem:

Let C ⊆ Rn be a regular cone, i.e., C is a closed convex cone with nonempty interior that
does not contain a nontrivial linear subspace. The polar cone of C is defined as C̆ := {z ∈
Rn | ∀x ∈ C : zTx ≤ 0}. We call C self-dual if C̆ = −C. The homogeneous convex feasibility
problem is to decide for a given matrix A ∈ Rm×n, 1 ≤ m < n, the alternative1

∃x ∈ Rn \ 0 s.t. Ax = 0, x ∈ C̆, (P)

∃y ∈ Rm \ 0 s.t. AT y ∈ C. (D)

This problem reduces to the linear feasibility problem if C = Rn+; it reduces to the second-order
feasibility problem if C = Ln1×. . .×Lnr , where Ln := {x ∈ Rn | xn ≥ (x2

1+· · ·+. . . , x2
n−1)1/2}

denotes the n-dimensional Lorentz cone; and it reduces to the semidefinite feasibility problem
if C = Symk

+ = {M ∈ Symk | M � 0} is the cone of positive semidefinite matrices, where
Symk = {M ∈ Rk×k |MT = M}.

1.1 Grassmann condition number

The condition number, for which we will provide an average analysis, is the Grassmann con-
dition number, that we have introduced in [1, 3], cf. also [4]. Let us recall the necessary
definitions from [3]. We fix 1 ≤ m < n and consider the Grassmann manifold Grn,m, that is
defined as the set of m-dimensional linear subspaces W of Rn.

We also fix a regular cone C ⊆ Rn. The sets of dual feasible and primal feasible subspaces
with respect to C, respectively, are defined as follows:

Dm(C) := {W ∈ Grn,m |W ∩ C 6= {0}}, Pm(C) := {W ∈ Grn,m |W⊥ ∩ C̆ 6= {0}}.

Moreover, we we define the set of ill-posed subspaces with respect to C by

Σm(C) := Dm(C) ∩ Pm(C).

1In fact, (P) and (D) are only weak alternatives, as it may happen that both (P) and (D) are satisfiable.
But the Lebesgue measure of the set of these ill-posed inputs in Rm×n is zero.
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It is known (cf. [3]) that Dm(C) and Pm(C) are compact subsets of Grn,m and Grn,m =
Dm(C) ∪ Pm(C). Moreover, the boundaries of Dm(C) and Pm(C) coincide with Σm(C).
Furthermore,

Σm(C) = {W ∈ Grn,m |W ∩ C 6= {0} and W ∩ int(C) = ∅}.

In other words, the set of ill-posed subspaces consists of those subspaces, which touch the
cone C at the boundary. One can show that Pm(C) \ Σm(C) and Dm(C) \ Σm(C) are the
connected components of Grn,m \Σm(C).

The projection distance dp(W1,W2) of two subspaces W1,W2 ∈ Grn,m is defined as the
spectral norm dp(W1,W2) := ‖ΠW1 − ΠW2‖, where ΠWi denotes the orthogonal projection
onto Wi, cf. [26, §2.6]. Clearly, this defines a metric and a corresponding topology on Grn,m.

In [3, Def. 1.2] we made the following definition.

Definition 1.1. The Grassmann condition with respect to the regular cone C ⊆ Rn is defined
as the function

CC : Grn,m → [1,∞], CC(W ) :=
1

dp(W,Σm(C))
,

where dp(W,Σm(C)) := min{dp(W,W ′) |W ′ ∈ Σm(C)}.

Suppose that W ∈ Grn,m is represented by W = im(AT ) with a matrix A ∈ Rm×n of
full rank. Let κ(A) denote the matrix condition number, i.e., the ratio between the largest
and the smallest singular value of A. In [3, Thm. 1.4] (see also [4]), we proved the following
basic relation between the Grassmann condition number C (W ) of W and Renegar’s condition
number R(A) of the matrix A:

C (W ) ≤ R(A) ≤ κ(A) C (W ). (1.1)

This shows that the Grassmann condition number can be interpreted as a coordinate-free
version of Renegar’s condition number. The condition of the matrix A representing W enters
Renegar’s condition number R(A), but C (W ) is independent of this representation.

Our probabilistic analysis of the Grassmann condition crucially relies on a geometric inter-
pretation of this quantity that we explain next. There is a natural Riemannian metric on the
compact Grassmann manifold Grn,m that is invariant under the action of O(n), and which is
uniquely determined up to a scaling factor [27]. This induces an O(n)-invariant volume form
on Grn,m, which allows to define the volume rvolB of Borel measurable subsets B ⊆ Grn,m.
We assume that rvol Grn,m = 1.

The geodesic distance dg(W1,W2) between W1,W2 ∈ Grn,m is defined as the minimum
length of a piecewise smooth curve in Grn,m connecting W1 with W2. We remark that one
can nicely express dg(W1,W2) in terms of the principle angles between these subspaces, cf. [3,
equation (8)]; in particular, the diameter of Grn,m equals π/2.

In [3, Thm. 1.8] we proved that dp(W,Σm) = sin dg(W,Σm) for W ∈ Grn,m, where we
write Σm := Σm(C) to simplify notation. This implies that the tube T (Σm, α) of radius α
around Σm, defined as follows,

T (Σm, α) :=
{
W ∈ Grn,m | dg(W,Σm) ≤ α

}
(1.2)

equals the set of W ∈ Grn,m having Grassmann condition at least t := (sinα)−1.
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Suppose now that A ∈ Rm×n is a standard Gaussian random matrix. Then A almost surely
has full rank and W = imAT is uniformly random in Grn,m with respect to the normalized
volume measure rvol. The goal of this work is to prove upper bounds on Prob[C (A) ≥ t] that
hold for any regular cone C, thus showing that it is unlikely that C (W ) is large. By (1.2),
this means to bound the volume of the tubes around Σm(C).

This task is very much in the spirit of the seminal paper [15] by Jim Demmel and its
refinement in [10]. These papers provide upper bounds on the volume of tubes around algebraic
hypersurfaces in spheres. The main tool is a general formula, due to Hermann Weyl [50], on
the volume of tubes around smooth hypersurfaces of spheres. In Theorem 1.5 we will derive
a similar, though considerably more complicated formula for the volume of the tubes around
Σm(C) in the Grassmann manifold. We think that this new tube formula is of independent
mathematical interest. The proof is reduced to the case where the cone C has a smooth
boundary, in which Σm(C) turns out to be a smooth hypersurface in Grn,m.

An exact tube formula had been previously derived by Glasauer [24, 25] by measure the-
oretic techniques. However, Glasauer’s result has the serious drawback that it only holds for
radii below a certain critical value depending on the cone C, and this value is zero for all cones
of interest in convex programming; cf. Remark 3.1. By contrast, Theorem 1.5 states an upper
bound on the volume of tubes that holds for any radius.

1.2 Main results I: probabilistic analysis

Here is the main result of this paper.

Theorem 1.2. Let C ⊆ Rn be a regular cone with n ≥ 3. If A ∈ Rm×n is a standard Gaussian
random matrix, then we have

Prob[C (A) > t] < 6
√
m(n−m)

1

t
, if t > n

3
2 ,

E [ln C (A)] < 1.5 ln(n) + 1.5 .

In fact, these bounds hold for any probability distribution on Rm×n, that induces the
uniform distribution on the Grassmann manifold Grn,m via the map A 7→ imAT .

Theorem 1.2 is of relevance for the probabilistic analysis of algorithms in convex program-
ming.

Corollary 1.3. Let C be a self-scaled cone with a self-scaled barrier function. Then there exists
an interior point algorithm, that solves the general homogeneous convex feasibility problem for
Gaussian random inputs in expected O(

√
νC(ln νC + lnn)) number of interior-point iterations.

Here, νC denotes the complexity parameter of the barrier function for the reference cone C. For
linear programming, second-order programming, and semidefinite programming, the expected
number of interior-point iterations is O(

√
n lnn).

Proof. In [47] the authors describe an interior-point algorithm that solves the general homo-
geneous convex feasibility problem, for a self-scaled cone C with a self-scaled barrier function,
in O(

√
νC ln(νCR(A))) interior-point iterations.

The typical barrier functions for (LP), (SOCP), and (SDP), respectively, have the following
complexity parameter νC :

C = Rn+ : νC = n, C = Ln1 × . . .× Lnr : νC = 2 r, C = Symk
+ : νC = k.
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In particular, νC ≤ n in all these cases.
By (1.1), we have E[lnR(A)] ≤ E[lnκ(A)] + E[ln C (A)], hence a probabilistic analysis

of R reduces to that of C and κ. Theorem 1.2 states that E[ln C (A)] = O(ln(n)). In [12]
it was shown that E [lnκ(A)] = O(lnn) for Gaussian matrices A ∈ Rm×n. Combining these
estimates, we obtain E[ln(R(A))] = O(lnn). We conclude that the expected number of interior
point iterations of the algorithm in [47] is bounded by O(

√
νC ln(νC + lnn)). 2

Remark 1.4. In [47] it is also shown that the condition number of the system of equations,
that is solved in each interior-point iteration, is bounded by a factor of R(A)2. Therefore,
our results also imply bounds on the expected cost of each iteration in the above-mentioned
algorithm.

1.3 Intrinsic volumes and Weyl’s tube formula

The analysis of the homogeneous convex feasibility problem naturally finds its place in the do-
main of spherical convex geometry. Indeed, a linear subspace intersects a convex cone nontriv-
ially if and only if the corresponding subsphere of the unit sphere intersects the corresponding
spherically convex set. While Euclidean convex geometry is a classical and extensively stud-
ied subject, the situation for spherical convex geometry is much less established. For more
information, we refer to the theses [24, 25], [1], the article [23], and Section 6.5 in [41].

We call a subset K ⊆ Sn−1 (spherically) convex if for all p, q ∈ K with q 6= ±p, the
great circle segment between p and q is contained in K. This is equivalent to the requirement
that C := cone(K) := {λp | λ ≥ 0, p ∈ K} is a convex cone. Note that K = C ∩ Sn−1.
Let d(p, q) := arccos(〈p, q〉) denote the (spherical) distance between points p, q ∈ Sn−1. We
are interested in the volume of the tube T (K,α) :=

{
p ∈ Sn−1 | d(p,K) ≤ α

}
of radius α

around K. In general, unlike in Euclidean space, the tubes T (K,α) are not convex, which
causes technical difficulties; see Remark 3.1.

The volumes of the unit sphere Sn−1 := {x ∈ Rn | ‖x‖ = 1} and the unit ball Bn := {x ∈
Rn | ‖x‖ ≤ 1}, respectively, are given by (n ≥ 1)

On−1 := voln−1(Sn−1) =
2πn/2

Γ(n/2)
, ωn := volnBn =

On−1

n
=

π
n
2

Γ(n+2
2 )

(1.3)

(we also set ω0 := 1). We define for 0 ≤ k ≤ n− 1 and 0 ≤ α ≤ π
2 the functions

In,k(α) :=

∫ α

0
cos(ρ)k · sin(ρ)n−2−k dρ . (1.4)

If Sk denotes a k-dimensional unit subsphere of Sn−1, then it is known that (cf. [9, Lem. 20.5])

On−1,k(α) := voln−1 T (Sk, α) = Ok · On−2−k · In,k(α) . (1.5)

More generally, the volume of T (K,α) can be expressed in terms of certain quantities assigned
to K that we describe next.

Let C ⊆ Rn be a polyhedral cone. For j = 0, 1, . . . , n, we denote by Fj the set of
the relative interiors of the j-dimensional faces of C. Moreover, we consider the canonical
projection ΠC : Rd → C, x 7→ argmin{‖x − y‖ | y ∈ C}. Then the j-intrinsic volume Vj(C)
of C is defined by

Vj(C) :=
∑
F∈Fj

Prob
x∈N(0,Id)

{
ΠC(x) ∈ F

}
, (1.6)
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where N(0, In) stands for the standard Gaussian distribution on Rn. In particular, we have
Vn(C) = rvol(C∩Sn−1) and V0(C) = rvol(C̆∩Sn−1). It is easy to check that Vj(Rn+) =

(
n
j

)
2−n.

By continuous extension, one can assign intrinsic volumes V0(C), . . . , Vn(C) to any closed
convex cone C ⊆ Rn, see Section 3.3 and [2]. If K ⊆ Sn−1 is a closed spherically convex subset,
we define Vj−1(K) := Vj(C), where C := cone(K) (the index change has certain advantages). ←

The following result is essentially due to Weyl [50] (compare [23] and [41] for more infor-
mation): for 0 ≤ α ≤ π

2 we have

voln−1 T (K,α) = voln−1(K) +
n−2∑
j=0

Vj(K) · On−1,j(α) . (1.7)

From (1.6) one can derive that for closed convex cones C1 and C2 we have

Vj(C1 × C2) =

j∑
i=0

Vi(C1)Vj−i(C2), (1.8)

a fact that apparently was first observed in [1].

1.4 Main results II: Grassmannian tube formula

Let us return to the situation of Section 1.1. In order to bound the volume of the tube
T (Σm(C), α), we need to introduce some notation.

Using the analytic extension of the binomial coefficients
(
x
y

)
:= Γ(x+1)

Γ(y+1)·Γ(x−y+1) , for x > −1
and −1 < y < x+ 1, we have(

n/2

m/2

)
=

Γ(n+2
2 )

Γ(m+2
2 ) · Γ(n−m+2

2 )
=
ωm · ωn−m

ωn
. (1.9)

We also define the flag coefficients (cf. [30])[
n

m

]
:=

(
n

m

)(
n/2

m/2

)−1

=

√
π · Γ(n+1

2 )

Γ(m+1
2 ) · Γ(n−m+1

2 )
. (1.10)

We fix a regular cone C ⊆ Rn and put Σm := Σm(C). Recall the definition of the tube
T (Σm, α) from (1.2). We define the primal and the dual tube around Σm, respectively, by

T P(Σm, α) := T (Σm, α) ∩ Pm(C) , T D(Σm, α) := T (Σm, α) ∩ Dm(C) . (1.11)

The following tube formula is the technical heart of our work. In fact, Theorem 1.2 will follow
by bounding the right-hand side in this formula, taking into account that Vj(C) ≤ 1

2 .

Theorem 1.5. Let C ⊆ Rn be a regular cone. Then, for 1 ≤ m < n and 0 ≤ α ≤ π
2 , we have

rvol T P(Σm(C), α) ≤ 2m(n−m)

n

(
n/2

m/2

) n−2∑
j=0

Vj+1(C)

[
n− 2

j

] n−2∑
i=0

dnmij In,i(α) , (1.12)
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where the constants dnmij are defined for i+ j +m ≡ 1 (mod 2), 0 ≤ i−j
2 + m−1

2 ≤ m− 1, and

0 ≤ i+j
2 −

m−1
2 ≤ n−m− 1, by

dnmij :=

( m−1
i−j
2

+m−1
2

)
·
( n−m−1
i+j
2
−m−1

2

)
(
n−2
j

) ; (1.13)

and defined by dnmij := 0 otherwise. (See Table 1.)
The same upper bound holds for the volume of T D(Σm, α).

Remark 1.6. 1. It can be shown (see [1] for details) that (1.12) in fact holds with equality

if T (C ∩ Sn−1, α) is convex and if dnmij is replaced by (−1)
i−j
2
−m−1

2 · dnmij . This reveals
that the estimate in Theorem 1.5 is close to being sharp.

2. In the case m = 1 we have Grn,1 = Pn−1 and T P(Σ1, α) is the image of T (K,α)\K under
the canonical map Sn−1 → Pn−1 = Grn,1. Hence rvol T P(Σ1, α) = (voln−1 T (K,α) −
voln−1K)/(On−1/2). Taking into account that dn1

ij = δij , one can check that (1.12)
actually gives the expression in Weyl’s tube formula (1.7).

3. The symmetry relations dn,n−mi,n−2−j = dnmij and dnmn−2−i,n−2−j = dnmij hold.

4. The bound (1.12) has a remarkable symmetry. The involution ι : Grn,m → Grn,n−m,
W 7→ W⊥ maps Pm(C) to Dn−m(C̆), and therefore ι(Σm(C)) = Σn−m(C̆), cf. [3]. In
particular, ι maps the dual tube T D(Σm(C), α) of C to the primal tube T P(Σn−m(C̆), α)
of C̆, and so they must have the same volume. This symmetry is reflected in (1.12).
Indeed, if we simplify the upper bound for rvol T P(Σn−m(C̆), α) in (1.12) by using the
duality property Vj+1(C̆) = Vn−2−j+1(C) (cf. Proposition 3.3), by changing the sum-
mation via j ← n − 2 − j, and by using the symmetry relations dn,n−mi,n−2−j = dnmij ,( n/2

(n−m)/2

)
=
(n/2
m/2

)
, and

[
n−2
n−2−j

]
=
[
n−2
j

]
, then we end up with the upper bound for

rvol T P(Σm(C), α) from (1.12).

D7,1 =


1

1
1

1
1

1

 , D7,2 =


1
5

1 0 2
5

4
5

0 3
5

3
5

0 4
5

2
5

0 1
1
5

 , D7,3 =


1
10

2
5

0 3
10

1 0 3
5

0 3
5

3
5

0 3
5

0 1
3
10

0 2
5

1
10

 ,

D7,6 =


1

1
1

1
1

1

 , D7,5 =


1
5

2
5

0 1
3
5

0 4
5

4
5

0 3
5

1 0 2
5

1
5

 , D7,4 =


1
10

3
10

0 2
5

3
5

0 3
5

0 1

1 0 3
5

0 3
5

2
5

0 3
10

1
10

 .

Table 1: The coefficient matrices Dn,m = (dnmij )i,j=0,...,n−2 for n = 7, m = 1, . . . , 6.
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1.5 Basic outline for proof of tube formula

The basic idea of the proof relies on some Riemannian geometry. (We refer to [16], [6], or [11,
Ch. 1] for some general background on Riemannian geometry.)

Let R be a compact connected Riemannian manifold with distance metric d. The distance
d(p,M) of a point p ∈ R to a nonempty closed subset M of R is defined as the minimum of
d(p, q) over all q ∈M. For α ≥ 0 consider the α-neighborhood

T (M, α) :=
{
p ∈ R | d(p,M) ≤ α

}
ofM in R. We also call T (M, α) the tube of radius α around M. It is essential that the tube
can be described in terms of the exponential map of R if M is a smooth submanifold of R.
For stating this, let TR denote the tangent bundle of R, i.e., the disjoint union of all of its
tangent spaces. The exponential map of R is characterized as the map exp: TR → R such
that for p ∈ R and v ∈ TpR, the curve γ : R → R, t 7→ expp(tv) is the geodesic through p in
direction v, that is, γ(0) = p and γ̇(0) = v.

We will only consider a special kind of geodesics in the Grassmann manifold Grn,m, that
have a simple geometric meaning: Let W ∈ Grn,m, and consider a two-dimensional linear
subspace E ⊆ Rn such that dim(E ∩W ) = dim(E ∩W⊥) = 1. Letting Rt ∈ O(n) denote
the rotation in E by the angle t that keeps the vectors in E⊥ fixed, the map t 7→ Rt(W ) is a
geodesic through W .

Suppose now thatM⊆ R is a compact hypersurface in R with unit normal vector field ν.
Consider the following smooth map induced by exp:

ψ : M× R→ R, (p, θ) 7→ expp(θν(p)). (1.14)

It is a well-known fact that

T (M, α) = ψ
(
M× [−α, α]

)
. (1.15)

(For a proof, see [44, Addendum to Chap. 9, proof of Thm. 20].) Combining (1.15) with the
coarea formula (compare (2.2)), we obtain

vol T (M, α) ≤
∫

(p,θ)∈M×[−α,α]
|detD(p,θ)ψ| d(M× R). (1.16)

This inequality is the basis of the proof of Theorem 1.5. The main difficulty is to make effective
use of the right-hand side in the specific situation at hand.

In the case where the cone C ⊆ Rn is such that K := C ∩ Sn−1 has a smooth boundary
M := ∂K with positive curvature, we will prove that M = Σm(C) is a smooth hypersurface
in R = Grn,m and that M has a unit normal vector field (Proposition 4.2). Since any
W ∈ Σm(C) intersects K in a unique point p ∈ M (cf. Lemma 4.1), this defines a map
ΠM : Σm(C) → M, W 7→ p. We will prove that ΠM allows us to interpret Σm(C) as the
Grassmann bundle Gr(M,m− 1) over M . The most difficult part of the proof of Theorem 1.5
is to understand the normal Jacobian |detDψ| of the parameterization map ψ in our specific
situation; see Theorem 4.5. It turns out that the normal Jacobian is a certain subspace-
dependent version of the characteristic polynomial of the Weingarten map of M , for which we
coined the name twisted characteristic polynomal (cf. Section 4.2).
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1.6 Main results III: improved probability estimates

Assuming certain conjectures on the growth of the intrinsic volumes of special cones C, we
can considerably improve the bounds in Theorem 1.2.

In Section 3.3 we compute the intrinsic volumes

fj(n) := Vj(Ln) = 2−n
(n−2

2
j−1

2

)
for 1 ≤ j ≤ n− 1 (1.17)

of the n-dimensional Lorentz cone

Ln := {x ∈ Rn | xn ≥ (x2
1 + · · ·+ . . . , x2

n−1)1/2} .

(See (3.2) for a formula for fn(n) = f0(n).) Note that the sequence f(n) := (f0(n), . . . , fn(n))
is symmetric, i.e., fn−j(n) = fj(n), since Ln is self-dual.

It will be convenient to compare the intrinsic volumes of a self-dual cone C ⊆ Rn with
the intrinsic volumes of the Lorentz cone Ln. We thus define the excess e(C) of C over the
Lorentz cone as

e(C) := min
0≤j≤n

Vj(C)

fj(n)
. (1.18)

In other words, e(C) is the smallest constant such that the inequality Vj(C) ≤ e(C)fj(n) is
satisfied for all j. Clearly, e(Ln) = 1 by definition. One can check that e(Rn+) <

√
2 and

limn→∞ e(Rn+) = 1.
Based on experiments, we set up the following conjecture.

Conjecture 1.7. The convolution of f(n1) with f(n2) satisfies f(n1) ∗ f(n2) ≤ 2f(n1 + n2)
for n1, n2 ≥ 2.

From this conjecture and (1.8) it easily follows that e(C1 × C2) ≤ 2 e(C1)e(C2) for closed
convex cones C1, C2. Therefore, e(Ln1×. . .×Lnr) ≤ 2r−1. For the cone of positive semidefinite ←
matrices, we make the following conjecture; see [2] for motivation and experiments.

Conjecture 1.8. We have e(Symk
+) < 2 for the cone Symk

+ of positive semidefinite matrices.

The following theorem refines Theorem 1.2 in terms of the excess of the Lorentz cone.
We remark that, conditional on the above conjectures, the obtained bounds on the condition
number are independent of the dimension n of the ambient space, for second-order cone pro-
gramming (C = Ln1× . . .×Lnr with r fixed ), and for semidefinite programming, respectively. ←

Theorem 1.9. Let C ⊆ Rn be a self-dual cone. If A ∈ Rm×n, with m ≥ 8, is a standard
Gaussian random matrix, then we have

Prob[C (A) > t] < 20 e(C)
√
m

1

t
, if t > m,

E [ln C (A)] < lnm+ max{ln e(C), 0}+ 3.

To conclude, let us point out that the shape of the distribution of the intrinsic volumes of
a convex cone is currently a subject with a wealth of open questions. We make the following
conjecture, that can be considered a spherical analog of the Alexandrov-Fenchel inequality ;
cf. [45, 40].
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Conjecture 1.10. For every closed convex cone C ⊆ Rn, the sequence V (C) of its intrinsic
volumes is log-concave, i.e., Vj(C)2 ≥ Vj−1(C)Vj+1(C) for 1 ≤ j < n.

We have verified this conjecture for products of circular cones (in particular for the positive
orthant and for products of Lorentz cones); see [1, 2] for more information.

1.7 Outline of paper

We recall some basic facts from Riemannian geometry in Section 2. Section 3 is a short review
of spherical convex geometry, with particular emphasis on spherical intrinsic volumes. In
Section 4 we derive the tube formula in Theorem 1.5 from a main technical lemma about the
normal Jacobian of the exponential map that parametrizes the tube around Σm(C), the proof
of which we defer to Section 7. Along the way, we introduce in Section 4 an algebraic object of
possible independent interest: to an endomorphism ϕ of a Euclidean vector space V together
with a linear subspace Y ⊆ V , we assign its twisted characteristic polynomial chY (ϕ, t). For the
proof of the tube formula we will use the fact that the expectation of chY (ϕ, t), with respect
to a randomly chosed subspace Y , is an explicit function of the characteristic polynomial of ϕ.
In the interest of clarity, we defer the proof of this last fact to the appendix.

In Section 5, based on the tube formula, we provide the proofs of the main results (Theo-
rem 1.2 and Theorem 1.9), which provide the desired average-case analyses of the Grassmann
condition number.

The goal of the last part of the paper is to provide the proofs that have been left open in
Section 4. For this, a good understanding of the metric properties of Grassmann manifolds,
is required: Section 6 presents the necessary background. Finally, the remaining proofs are
provided, the most delicate being the one of Theorem 4.5 that expresses the normal Jacobian
of the parameterization map of the tube around Σm(C) in terms of twisted characteristic
polynomials of the Weingarten maps of the boundary of the cone C.

Acknowledgments. We are grateful to one of the anonymous referees for criticism that has
led to a substantial improvement of the paper’s presentation.

2 Differential geometric preliminaries

2.1 Coarea formula

We define the normal determinant of a surjective linear map A : V → W between Euclidean
vector spaces V and W by

ndet(A) := | det(A|ker(A)⊥)| ,

where A|ker(A)⊥ : ker(A)⊥ → W denotes the restriction of A to the orthogonal complement
of the kernel of A. Obviously, if A is bijective, then ndet(A) = | det(A)|. Thus the normal
determinant provides a natural generalization of the absolute value of the determinant.

The smooth coarea formula, stated below, is our main tool for volume computations.

Theorem 2.1. Let ϕ : R1 → R2 be a smooth surjective map between Riemannian mani-
folds R1,R2. Then for any f : R1 → R that is integrable with respect to dR1, we have∫

R1

f dR1 =

∫
q∈R2

∫
p∈ϕ−1(q)

f

ndet(Dpϕ)
dϕ−1(q) dR2 . (2.1)
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If additionally dimR1 = dimR2, then

volR2 :=

∫
R2

dR2 ≤
∫
q∈R2

#ϕ−1(q) dR2 =

∫
p∈R1

ndet(Dpϕ) dR1 , (2.2)

where #ϕ−1(q) denotes the number of elements in the fiber ϕ−1(q). 2

See [32, 3.8] or [18, 3.2.11] for proofs of the coarea formula where R1,R2 are submanifolds
of Euclidean space. For a proof of the coarea formula in the above stated form, see [29,
Appendix]. One calls ndet(Dpϕ) the normal Jacobian of ϕ at p.

Remark 2.2. The inner integral in (2.1) over the fiber ϕ−1(q) is well-defined for almost all
q ∈ R2, which can be seen as follows: Sard’s lemma (cf. [43, Thm. 3-14]) implies that almost
all q ∈ R2 are regular values, i.e., the derivative Dpϕ has full rank for all p ∈ ϕ−1(q). The
fibers ϕ−1(q) of regular values q are smooth submanifolds of R1 and therefore the integral
over ϕ−1(q) is well-defined.

2.2 Exponential maps and tubes

Suppose we are in the situation of Section 1.5. Thus letR be a compact connected Riemannian
manifold and M⊆ R be a compact hypersurface with unit normal vector field ν. Recall the
map ψ : M×R→ R from (1.14), which satisfies T (M, α) = ψ(R×[−α, α]) according to (1.15).

We additionally assume that there are closed subsets P,D ⊆ R such that R = P ∪D and
M = P ∩ D. Moreover, we assume that there exists ε > 0 such that ψ(M× [0, ε]) ⊆ P and
ψ(M× [−ε, 0]) ⊆ D. (We express this property by saying that ν points into P and −ν points
into D.) In Proposition 4.2 we will show that Pm(C) and Dm(C) satisfy these assumptions.

Lemma 2.3. We have

T (M, α) ∩ P ⊆ ψ(M× [0, α]) and T (M, α) ∩ D ⊆ ψ(M× [−α, 0])

for all α ≥ 0.

Proof. By symmetry, it suffices to prove the first inclusion. Let q ∈ P with α := d(q,M) > 0.
From (1.15) we get that a minimum length geodesic between some p ∈M and q has the form

γ : [0, α]→ R, ρ 7→ expp(ρ δ ν(p)) ,

where δ ∈ {1,−1}. It is sufficient to prove that δ = 1. By way of contradiction, assume that
δ = −1. Then q = γ(α) = expp(−αν(p)) ∈ P. Since by our assumption, we have γ(ρ) ∈ D
for sufficiently small 0 < ρ < α, there exists 0 ≤ α0 < α such that γ(α0) ∈ P ∩ D = M.
Therefore, d(q,M) ≤ d(γ(α), γ(α0)) ≤ α− α0 < α, which is a contradiction. 2

2.3 Weingarten maps

We recall a further basic notion from differential geometry (cf. [46, Ch. 9]). Let M be a
(smooth) hypersurface of Sn−1 with a unit normal vector field ν. The Weingarten map Wp

at p ∈M is defined as

Wp : TpM → TpM, Wp(ζ) = −Dpν(ζ) , (2.3)
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where Dpν denotes the derivative of ν : M → Sn−1 at p. It can be shown that the Weingarten
map is self-adjoint; we denote its eigenvalues by κ1(p), . . . , κn−2(p). These are called the
principal curvatures of M at p. Furthermore, we denote by σk(p) the kth elementary symmetric
function in the eigenvalues of Wp. We call the product σn−2(p) := κ1(p) · · ·κn−2(p) the
Gaussian curvature of M at p.

2.4 Volume of Grassmann manifold

Let O(n) := {Q ∈ Rn×n | QQT = In} denote the orthogonal group. Recall that Oi denotes
the volume of Si−1, cf. (1.3). The following result is well-known.

Lemma 2.4. We have

volO(n) =
n−1∏
i=0

Oi and vol Grn,m =
volO(n)

volO(m) · volO(n−m)
.

Proof. The map ϕ : O(n)→ Sn−1, Q 7→ Qe1, where e1 ∈ Rn denotes the first canonical basis
vector, is a Riemannian submersion. In particular, we have ndet(DQϕ) = 1 for all Q ∈ O(n).
Moreover, each fiber of ϕ is isometric to O(n−1). So an application of the coarea formula (2.1)
shows that volO(n) = On−1 · volO(n− 1) and the formula for volO(n) follows by induction.

For Grn,m, it suffices to note that we have a Riemannian submersion Π: O(n) → Grn,m,
whose fibers are isometric to the direct product O(m)×O(n−m). 2

For later use, we record the following

vol Grn−2,m−1

vol Grn,m
=

∏n−3
i=n−m−1Oi∏m−2
i=0 Oi

·
∏m−1
i=0 Oi∏n−1
i=n−mOi

=
Om−1 · On−m−1

On−2 · On−1

(1.3)
=

m(n−m)

n
· ωm · ωn−m
On−2 · ωn

(1.9)
=

m(n−m)

n
·
(
n/2

m/2

)
· 1

On−2
. (2.4)

3 Background from spherical convex geometry

This section extends the background from spherical convex geometry given in Section 1.3 with
special emphasis on spherically convex sets with smooth boundary.

3.1 The metric space of spherically convex sets

Recall that a subset K ⊆ Sn−1 is called (spherically) convex iff C := cone(K) is a convex
cone. We have K = C ∩ Sn−1. We denote the family of closed spherically convex sets by
K(Sn−1). The duality map, which sends a closed convex cone C to its polar cone C̆, naturally
defines an involution on K(Sn−1): it maps K ∈ K(Sn−1) to K̆ := C̆∩Sn−1. It is easy to check
that K̆ = {p ∈ Sn−1 | d(p,K) ≥ π

2 }, where d(p, q) denotes the (spherical) distance between
p, q ∈ Sn−1.

It is easily seen that a closed convex cone is regular if and only if both C and C̆ have
nonempty interior. We say that K ∈ K(Sn−1) is regular if cone(K) is regular and denote by
Kr(Sn−1) the set of regular K ∈ K(Sn−1).
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The set K(Sn−1) is a compact metric space with respect to the Hausdorff metric dH, which
for K1,K2 ∈ K(Sn−1) is defined by

dH(K1,K2) := max
{

min{α ≥ 0 | K2 ⊆ T (K1, α)} , min{β ≥ 0 | K1 ⊆ T (K2, β)}
}

;

cf. [33, §1.2]. A spherically convex set K ∈ K(Sn−1) is called polyhedral if cone(K) is the
intersection of finitely many closed half-spaces (containing the origin). One can show that
the set Kp(Sn−1) of polyhedral convex sets in Sn−1 is dense in K(Sn−1) with respect to the
Hausdorff metric. This is seen by an easy adaption (cf. [24, Hilfssatz 2.5] or [1, Prop. 3.3.4])
of the proof for the corresponding Euclidean statement in [40, §2.4].

Remark 3.1. One important difference between Euclidean and spherical convex geometry
are the convexity properties of tubes. In the Euclidean case, the tubes around a convex set
are again convex. In the spherical case this is rarely true. Suppose that for K ∈ K(Sn−1) the
cone C has a supporting hyperplane H ⊆ Rn, H ∩ int(C) = ∅, such that the face H ∩ C has
dimension at least two. Then one can show that the tube T (K,α) is not convex, unless α = 0
or T (K,α) = Sn−1. This implies that for n ≥ 3 and k ≥ 3, the cones Rn+ and Symk

+ do not
have convex tubes, respectively.

3.2 Smooth convex sets

We call K ∈ K(Sn−1) smooth if K is regular and its boundary M = ∂K is a smooth hyper-
surface of Sn−1 with nowhere vanishing Gaussian curvature. Let Ksm(Sn−1) denote the family
of smooth K ∈ K(Sn−1). If we chose for ν(p) the unit vector in TpS

n−1 normal to TpM and
pointing inwards K, then all principal curvatures of M at p are positive, i.e., Wp is positive
definite.

Lemma 3.2. Ksm(Sn−1) is dense in Kr(Sn−1).

An Euclidean analogue of this result was first shown by Minkowski (cf. [5, §6]). Using this
result, it is not hard to derive the above lemma; we refer to [1, Prop. 4.1.10] for a proof.

3.3 Intrinsic volumes

In Section 1.3, we defined the intrinsic volumes V0(C), . . . , Vn(C) of a polyhedral convex
cone C ⊆ Rn. This allows to define the intrinsic volumes Vj(K) := Vj+1(cone(K)) for K ∈
Kp(Sn−1), −1 ≤ j ≤ n− 1. Recall from Section 3.1 that Kp(Sn−1) is dense in K(Sn−1). It is
a well-known fact that the functions Vj : Kp(Sn−1) → R have a unique continuous extension
to K(Sn−1) with respect to the Hausdorff metric dH , cf. [41, Sec. 6.5].

The following well-known facts [41, Sec. 6.5] about the intrinsic volumes are easily verified
for polyhedral cones and therefore, by continuity, hold for any closed convex cone.

Proposition 3.3. Let C ⊆ Rn be a closed convex cone.

1. The intrinsic volumes V0(C), . . . , Vn(C) form a probability distribution: Vj(C) ≥ 0 and∑n
j=0 Vj(C) = 1.

2. Vj(QC) = Vj(C) for Q ∈ O(n) (orthogonal invariance).

3. We have Vj(C) = Vn−j(C̆).
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For a regular cone C one can slightly improve the bound Vj(C) ≤ 1.

Lemma 3.4. For any regular cone C ⊆ Rn we have Vj(C) ≤ 1
2 for all 0 ≤ j ≤ n.

Proof. It is known that

V1(C) + V3(C) + V5(C) + . . . = V0(C) + V2(C) + V4(C) + . . . = 1
2χ(C ∩ Sd−1),

where χ denotes the Euler characteristic, cf. [24, Sec. 4.3] or [41, Thm. 6.5.5]. Moreover, C is
contained in an open halfspace since C is regular. This implies χ(C ∩ Sd−1) = 1. 2

We next state a well-known formula for the spherical intrinsic volumes of smooth spheri-
cally convex sets, which directly follows from Weyl’s tube formula [50]. (See [1, Ch. 4] for the
proof of a more general statement.)

Proposition 3.5. Let K ∈ Ksm(Sn−1) and 0 ≤ j ≤ n − 2. Then the intrinsic volumes of K
are given by

Vj(K) =
1

Oj · On−2−j

∫
p∈M

σn−2−j(p) dM ,

where M := ∂K denotes the boundary of K, and σk(p) denotes the kth elementary symmetric
function in the principal curvatures of M . 2

For an important special case consider a circular cap K := B(z, β) = {p ∈ Sn−1 | d(z, p) ≤
β} of radius β ∈ (0, π). The boundary M = ∂K is a sphere of dimension n−2 and radius sinβ.
Hence voln−2(M) = sin(β)n−2 · On−2. The principal curvatures of M at any of its points p
are given by κ1(p) = . . . = κn−2(p) = cot(β). In particular, we have σi(p) =

(
n−2
i

)
cot(β)i.

Proposition 3.5 implies that for 1 ≤ j < n,

Vj(K) =
On−2

Oj−1 · On−j−1
·
(
n− 2

j − 1

)
· sin(β)j−1 · cos(β)n−j−1

(5.2)
=

(
(n− 2)/2

(j − 1)/2

)
· sin(β)j−1 · cos(β)n−j−1

2
.

Furthermore,

Vn(K) =
On−2

On−1
·
∫ β

0
sin(ρ)n−2 dρ

(1.9)
=

(
(n− 2)/2

(n− 1)/2

)
· n− 1

2
·
∫ β

0
sin(ρ)n−2 dρ . (3.1)

Recalling V0(K) = Vn(K̆), we get from this

V0(K) =
On−2

On−1
·
∫ β

0
cos(ρ)n−2 dρ =

(
(n− 2)/2

−1/2

)
· n− 1

2
·
∫ π

2
−β

0
sin(ρ)n−2 dρ . (3.2)

The intersection of a Lorentz cone Ln with Sn−1 is a circular cap of radius β = π
4 . From

the above, we obtain the formula for fj(n) = Vj(Ln) that was already stated in (1.17).
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4 Deriving the Grassmannian tube formula

Let C ⊆ Rn be a regular cone and put K := C ∩ Sn−1. In a first step, we reduce the proof
of Theorem 1.5 to the case where K is smooth. Consider both sides of the inequality (1.12):
the intrinsic volumes Vj+1(C) = Vj(K) are continuous in K with respect to the Hausdorff
metric. Furthermore, it is straightforward to check that, for fixed α, rvol T P(Σm(K), α) de-
pends continuously on K, cf. [1, Lemma 6.1.7]. Moreover, by Lemma 3.2, Ksm(Sn−1) is dense
in Kr(Sn−1). Therefore, for proving Theorem 1.5, we can assume without loss of generality
that K ∈ Ksm(Sn−1).

4.1 Parameterizing the tube around Σm

In this subsection, we assume that C = cone(K) for some K ∈ Ksm(Sn−1). Fix 1 ≤ m < n.
In Section 1.1, we assigned to C the compact subsets Pm(C) and Dm(C) of the Grassmann
manifold Grn,m. The set Σm(C) = Pm(C) ∩ Dm(C) consists of the subspaces W touching C.
It is known that Σm := Σm(C) is the common boundary of Pm(C) and Dm(C), cf. [2]. We
analyze now the geometry of Σm(C).

We begin with the basic observation that any W ∈ Σm(C) intersects K in a unique point p,
which moreover lies in the boundary of K. This allows us to define the map ΠM : Σm →
∂K, W 7→ p.

Lemma 4.1. If W ∈ Σm, then W ∩K = {p} for some p ∈ ∂K.

Proof. As W ∈ Σm, we have Σm∩C = Σm∩∂C 6= {0}. It follows that there exists p ∈W ∩K.
To prove that p is the only element in W ∩K, we assume that there exists q ∈W ∩K, p 6= q.
As K is regular, we have p 6= −q, so that there exists a unique great circle segment between p
and q. By convexity of W and K, this arc lies in W ∩ K, and thus in the boundary of K.
But this implies that along this arc, M has zero Gaussian curvature, which contradicts the
assumption K ∈ Ksm(Sn−1). 2

Write M := ∂K. Later on, we will see that ΠM : Σm → M, W 7→ p can be interpreted as
the Grassmann bundle Gr(M,m− 1) over M . This will lead us to the following basic result,
whose proof is postponed to Section 7.

Proposition 4.2. Let K ∈ Ksm(Sn−1) and C := cone(K). Then Σm(C) is a connected
hypersurface of Grn,m. Moreover, Σm(C) has a unit normal vector field νΣ such that νΣ

points into Pm(C) and −νΣ points into Dm(C) (compare Section 2.2 for this notion).

Proposition 4.2 says that we are in the situation of Section 1.5, where R = Grn,m and
M = Σm(C). We reparameterize the map ψ : Σm × R, (W, θ) 7→ expW (θ νΣ(W )) by setting
t = tan θ and thus obtain the smooth map

Ψ: Σm × R→ Grn,m, W 7→ expW (arctan t νΣ(W )) . (4.1)

The main technical difficulty is to understand the normal Jacobian of Ψ. It turns out that
the normal Jacobian is a certain subspace-dependent version of the characteristic polynomial
of the Weingarten map of M = ∂K. In the next section we define this purely algebraic notion,
for which we coined the name twisted characteristic polynomal.
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4.2 Twisted characteristic polynomials

Let ϕ be an endomorphism of a k-dimensional Euclidean vector space V . We denote by σj(ϕ),
0 ≤ j ≤ k, the coefficients of the characteristic polynomial of ϕ (up to sign). More precisely,

det(ϕ− t · idV ) =

k∑
i=0

(−1)k−i · σi(ϕ) · tk−i .

Note that we have σk(ϕ) = det(ϕ), σ0(ϕ) = 1, and σ1(ϕ) = trace(ϕ). In the following we
denote by Gr(V, `) the set of all `-dimensional linear subspaces of V .

Definition 4.3. Let Y ∈ Gr(V, `), and denote by ΠY and ΠY ⊥ the orthogonal projections
onto Y and Y ⊥, respectively. The twisted characteristic polynomial chY with respect to Y is
defined as

chY (ϕ, t) := tk−` · det
(
ϕ−

(
t ·ΠY − 1

t ·ΠY ⊥
))

,

We denote by ϕY : Y → Y the restriction of ϕ, i.e., ϕY (y) := ΠY (ϕ(y)), and we use the
notation detY (ϕ) := det(ϕY ).

Note that for ` = k we get chV (ϕ, t) = det(ϕ− t · idV ), the usual characteristic polynomial,
whereas for ` = 0 we get ch0(ϕ, t) = det(t · ϕ+ idV ).

We claim that
chY (ϕ, 0) = detY (ϕ) . (4.2)

In order to see this, let us express the twisted characteristic polynomial in coordinates. For
A ∈ Rk×k and 0 ≤ ` ≤ k we use the notation ch`(A, t) := chR`×0(ϕ, t), where ϕ : Rk → Rk,
x 7→ Ax. Note that if A has the block decomposition A =

(
A1 A2
A3 A4

)
, where A1 ∈ R`×`, and

the other blocks accordingly, then

ch`(A, t) = det

(
A1 − tI` A2

tA3 tA4 + Ik−`

)
. (4.3)

From this description we get for Y = R` × 0 the identity chY (ϕ, 0) = det(A1) = detY (ϕ),
which proves (4.2).

The next result expresses the expectation of the twisted characteristic polynomial chY (ϕ, t),
taken over a random subspace Y ∈ Gr(V, `), concisely in terms of the (coefficients of) the
characteristic polynomial of ϕ. We postpone the proof of this result to Appendix A.

Theorem 4.4. Let V be a k-dimensional Euclidean vector space and let ϕ be an endomorphism
of V . If Y ∈ Gr(V, `) is chosen uniformly at random, then

E
Y

[
detY (ϕ)

]
=

1(
k
`

) · σ`(ϕ) . (4.4)

Moreover, the expectation of the twisted characteristic polynomial is given by

E
Y

[chY (ϕ, t)] =
k∑

i,j=0

dij · σk−j(ϕ) · tk−i , (4.5)
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where the coefficients dij are given by

dij := (−1)
i−j
2
− `

2 ·

( `
i−j
2

+ `
2

)
·
( k−`
i+j
2
− `

2

)
(
k
j

) ,

for i + j + ` ≡ 0 mod 2, 0 ≤ i−j
2 + `

2 ≤ `, and 0 ≤ i+j
2 −

`
2 ≤ k − `; and given by dij := 0

otherwise. (Note that |dij | = dk+2,`+1
ij in the notation of (1.13).)

If ϕ is positive semidefinite, then we have for t ∈ R that

E
Y

[∣∣ chY (ϕ, t)
∣∣] ≤ k∑

i,j=0

|dij | · σk−j(ϕ) · |t|k−i . (4.6)

We are now in a position to state the announced formula that expresses the Jacobian of
the parameter map Ψ in terms of the twisted characteristic polynomial of the Weingarten map
of ∂K. We postpone the rather difficult proof to Section 7.

Theorem 4.5. Let K ∈ Ksm(Sn−1) and write M := ∂K, C := cone(K), and Σm := Σm(C).
For W ∈ Σm let νΣ(W ) ∈ TW Grn,m denote the unit normal vector pointing inside Pm(K).
We define the maps ΠM and Ψ via

ΠM : Σm →M Ψ: Σm × R→ Grn,m (4.7)

W 7→ p , where W ∩K = {p} , (W, t) 7→ expW (arctan t · νΣ(W )) .

Then the normal Jacobians of ΠM and Ψ are given by

ndet(DWΠM) = detY (Wp)
−1, |det(D(W,t)Ψ)| = (1 + t2)−n/2 · |chY (Wp,−t)|

detY (Wp)
, (4.8)

where W ∩K = {p}, Y := p⊥ ∩W , and Wp denotes the Weingarten map of M at p.

After these preparations, we are now ready to present the proof of the tube formula stated
in Theorem 1.5.

4.3 The Grassmannian tube formula

Proof of Theorem 1.5. By Proposition 4.2, Pm(C) and Dm(C) satisfy the assumptions of
Lemma 2.3, hence T P(Σm, α) ⊆ Ψ

(
Σm × [0, α]

)
. Let 0 ≤ α ≤ π/2 and put τ := tanα.

Applying the coarea formula to the map Ψ and using the formula in (4.8) for the Jacobian
of Ψ, we obtain

vol T P(Σm, α)
(2.2)

≤
∫

(W,t)∈Σm×[0,τ ]

|det(D(W,t)Ψ)| d(Σm × R)

(4.8)
=

∫
W∈Σm

∫ τ

0
(1 + t2)−n/2 · |chY (Wp,−t)|

detY (Wp)
dt dW.
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Changing the integration via the coarea formula applied to the map ΠM : Σm →M , and using
the formula in (4.8) for the normal Jacobian of ΠM , we get

vol T P(Σm, α) ≤
∫
p∈M

∫
Y ∈Gr(TpM,m−1)

∫ τ

0
(1 + t2)−n/2 · |chY (Wp,−t)| dt dY dp

=

∫
p∈M

∫ τ

0

vol Grn−2,m−1

(1 + t2)n/2
· E
Y

[
|chY (Wp,−t)|

]
dt dp ,

where the expectation is with respect to Y chosen uniformly at random in Gr(TpM,m − 1).
Using the bound (4.6) in Theorem 4.4 with k = n− 2 and ` = m− 1, we obtain

vol T P(Σm, α) ≤
∫
p∈M

∫ τ

0

vol Grn−2,m−1

(1 + t2)n/2
·
n−2∑
i,j=0

∣∣dnmij ∣∣ · σn−2−j(Wp) · tn−2−i dt dp

= vol Grn−2,m−1 ·
n−2∑
i,j=0

∣∣dnmij ∣∣ · ∫ τ

0

tn−2−i

(1 + t2)n/2
dt ·

∫
p∈M

σn−2−j(Wp) dp

= vol Grn−2,m−1 ·
n−2∑
i,j=0

∣∣dnmij ∣∣ · In,i(α) · Oj · On−2−j · Vj+1(K) ,

where for the last equality, we have used Proposition 3.5 and the definition (1.4) of the

functions In,i(α). Finally, we get for rvol T P(Σm, α) = vol T P(Σm,α)
vol Grn,m

, using the formulas (1.9)

and (2.4)

rvol T P(Σm, α) ≤ vol Grn−2,m−1

vol Grn,m
·
n−2∑
i,j=0

∣∣dnmij ∣∣ · In,i(α) · Oj · On−2−j · Vj+1(K)

(2.4)
=

2m(n−m)

n
·
(
n/2

m/2

)
·
n−2∑
j=0

Vj+1(K) · Oj · On−2−j
2 · On−2

·
n−2∑
i=0

∣∣dnmij ∣∣ · In,i(α)

(1.9)
=

2m(n−m)

n
·
(
n/2

m/2

)
·
n−2∑
j=0

Vj+1(K) ·
[
n− 2

j

]
·
n−2∑
i=0

|dnmij | · In,i(α) .

The upper bound on the volume of T D(Σm, α) is proved analogously. 2

5 Condition number estimates

We derive here Theorem 1.2 and Theorem 1.9 from the tube formula in Theorem 1.5.

5.1 Some technical estimations

In the following proposition we collect some useful identities involving the binomial coefficients
and the flag coefficients introduced in (1.10).
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Proposition 5.1. 1. For n,m ∈ N, n ≥ m,(
n

m

)
=

[
n

m

](
n/2

m/2

)
=

√
π · Γ(n+1

2 ) · Γ(n+2
2 )

Γ(m+1
2 ) · Γ(m+2

2 ) · Γ(n−m+1
2 ) · Γ(n−m+2

2 )
.

2. For n,m ∈ N, n ≥ m,(
n/2

m/2

)
=
ωm · ωn−m

ωn
,

[
n

m

]
=
Om · On−m

2On
. (5.1)

In particular,(
n

m

)
· ωn
ωm · ωn−m

=

[
n

m

]
,

(
n

m

)
· 2On
Om · On−m

=

(
n/2

m/2

)
. (5.2)

3. For n,m→∞ such that (n−m)→∞,[
n

m

]
∼
√
π

2
·
√
m(n−m)

n
·
(
n/2

m/2

)
, (5.3)

where the symbol ∼ means that the quotient of the two sides tends to one.

Proof. The first equation in (1) follows from applying the duplication formula of the Γ-function

Γ(2x) = 1√
π
·22x−1 ·Γ(x)·Γ(x+ 1

2) to the term
(
n
m

)
= Γ(n+1)

Γ(m+1)·Γ(n−m+1) . The remaining equations

follow by plugging in the definitions of the corresponding quantities. As for the asymptotics
stated in (5.3), we compute√

π

2
·
√
m(n−m)

n
·
(
n/2

m/2

)
=

√
π

2
·
√
m(n−m)

n
·

Γ(n2 + 1)

Γ(m2 + 1) · Γ(n−m2 + 1)

=

√
π ·
√

n
2 · Γ(n2 )√

m
2 · Γ(m2 ) ·

√
n−m

2 · Γ(n−m2 )
∼

√
π · Γ(n+1

2 )

Γ(m+1
2 ) · Γ(n−m+1

2 )
=

[
n

m

]
,

where we have used the asymptotics
√
x · Γ(x) ∼ Γ(x+ 1

2) for x→∞. 2

We now rewrite the upper bound in Theorem 1.5.

Lemma 5.2. Let C ⊆ Rn be a regular cone, 1 ≤ m < n, and 0 ≤ α ≤ π
2 . Using the convention(

k
`

)
:= 0 if ` < 0 or ` > k, we have

rvol T (Σm(C), α) ≤ 8

n−2∑
i,k=0

Vn−m−i+2k(C) ·
Γ(m+i−2k+1

2 )

Γ(m2 )
·

Γ(n−m−i+2k+1)
2 )

Γ(n−m2 )

·
(
m− 1

k

)(
n−m− 1

i− k

)
· In,n−2−i(α) .

Proof. Theorem 1.5 implies that

rvol T (Σm(C), α) ≤ 4m(n−m)

n

(
n/2

m/2

)
·
n−2∑
j=0

Vj+1(C) ·
[
n− 2

j

]
·
n−2∑
i=0

dnmij · In,i(α) . (5.4)
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Using Proposition 5.1, we derive the following identity:

4m(n−m)

n
·

(n/2
m/2

)
·
[
n−2
j

](
n−2
j

) (1)
=

4m(n−m)

n
·

(n/2
m/2

)((n−2)/2
j/2

)
(1.9)
=

4m(n−m)

n
·

Γ(n+2
2 )

Γ(m+2
2 ) · Γ(n−m+2

2 )
·

Γ( j+2
2 ) · Γ(n−j2 )

Γ(n2 )
= 8 ·

Γ( j+2
2 )

Γ(m2 )
·

Γ(n−j2 )

Γ(n−m2 )
.

Using this in (5.4), changing the summation via i← n− 2− i and j ← n− 2− j, and taking
into account the symmetry relations for dnmij stated in Remark 1.6, we get

rvol T (Σm(C), α) ≤ 8
n−2∑
i,j=0

Γ( j+2
2 )

Γ(m2 )
·

Γ(n−j2 )

Γ(n−m2 )
· Vj+1(C) ·

(
n− 2

j

)
· dnmij · In,i(α)

= 8

n−2∑
i,j=0

Γ( j+2
2 )

Γ(m2 )
·

Γ(n−j2 )

Γ(n−m2 )
· Vn−1−j(C) ·

(
n− 2

j

)
· dnmij · In,n−2−i(α) (5.5)

= 8
n−2∑
i,j=0

i+j+m≡1
(mod 2)

Vn−1−j(C) ·
Γ( j+2

2 )

Γ(m2 )
·

Γ(n−j2 )

Γ(n−m2 )
·
(

m− 1
i−j
2 + m−1

2

)(
n−m− 1
i+j
2 −

m−1
2

)
· In,n−2−i(α) .

Here we interpret
(
k
`

)
= 0 if ` < 0 or ` > k, i.e., the above summation over i, j in fact

only runs over the rectangle determined by the inequalities 0 ≤ i−j
2 + m−1

2 ≤ m − 1 and

0 ≤ i+j
2 −

m−1
2 ≤ n−m−1 (cf. Figure 1). As the summation runs only over those i, j, for which

i+j+m ≡ 1 mod 2, we may replace the summation over j by a summation over k = i−j
2 +m−1

2 .
The above inequalities then transform into 0 ≤ k ≤ m− 1 and 0 ≤ i− k ≤ n−m− 1. So we
get from (5.5)

rvol T (Σm(C), α) = 8
n−2∑
i,k=0

Vn−m−i+2k(C) ·
Γ(m+i−2k+1

2 )

Γ(m2 )
·

Γ(n−m−i+2k+1)
2 )

Γ(n−m2 )

·
(
m− 1

k

)(
n−m− 1

i− k

)
· In,n−2−i(α) . 2

In the next lemma we provide a number of technical estimates. For the ease of presentation
we defer the proof of this lemma to Appendix B.

Lemma 5.3. Let i, k, `,m, n ∈ N with n ≥ 2 and 1 ≤ m ≤ n− 1.

1. We have
Γ(m+`+1

2 )

Γ(m2 )
≤
√
m

2
·
(
m+ `

2

) `
2

. (5.6)

2. For 0 ≤ k ≤ m− 1 and 0 ≤ i− k ≤ n−m− 1 we have(
m+ i− 2k

n−m− i+ 2k

) i−2k
2

< n
i
2 . (5.7)
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3. For 0 ≤ α ≤ π
2 , t := sin(α)−1, and n ≥ 3, we have

n−2∑
i=0

(
n− 2

i

)
· n

i
2 · In,n−2−i(α) <

3

t
, if t > n

3
2 , (5.8)

n−2∑
i=0

(
n− 2

i

)
· In,n−2−i(α) < exp

( n
m

)
· 1

t
, if t > m . (5.9)

5.2 Proof of the general bound

In the following proof, in the remainder of this section as well as in Appendix B, we will mark
estimates that are easily checked with a computer algebra system with the symbol .

Proof of Theorem 1.2. We have Vj(C) ≤ 1
2 by Lemma 3.4. Using this bound in Lemma 5.2

and applying Lemma 5.3, we get

rvol T (Σm, α) ≤ 8
n−2∑
i,k=0

Vn−m−i+2k(C) ·
Γ(m+i−2k+1

2 )

Γ(m2 )
·

Γ(n−m−i+2k+1)
2 )

Γ(n−m2 )

·
(
m− 1

k

)(
n−m− 1

i− k

)
· In,n−2−i(α)

(5.6)

≤ 2
√
m(n−m)

n−2∑
i,k=0

(
m+ i− 2k

2

) i−2k
2
(
n−m− i+ 2k

2

)− i−2k
2

·
(
m− 1

k

)(
n−m− 1

i− k

)
· In,n−2−i(α)

(5.7)

≤ 2
√
m(n−m)

n−2∑
i=0

n
i
2 · In,n−2−i(α) ·

n−2∑
k=0

(
m− 1

k

)(
n−m− 1

i− k

)
.

By Vandermonde’s identity we have
∑n−2

k=0

(
m−1
k

)(
n−m−1
i−k

)
=
(
n−2
i

)
. So we get

rvol T (Σm, α) ≤ 2
√
m(n−m)

n−2∑
i=0

(
n− 2

i

)
· n

i
2 · In,n−2−i(α)

(5.8)
< 6

√
m(n−m)

1

t
, if t > n

3
2 and n ≥ 3 .

This is the tail bounded stated in Theorem 1.2.
As for the expectation of the logarithm of the Grassmann condition, we compute

E [ln CG(A)] =

∫ ∞
0

Prob[ln CG(A) > s] ds

< 1.5 ln(n) + r +

∫ ∞
ln(n3/2)+r

6
√
m(n−m) · exp(−s) ds

= 1.5 ln(n) + r + 6

√
m(n−m)

n3/2︸ ︷︷ ︸
≤ 2

3

√
6 , if n ≥ 3

· exp(−r)

< 1.5 ln(n) + 1.5 ,
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if we choose r := 1
2 ln

(
8
3

)
. This finishes the proof of Theorem 1.2. 2

5.3 A certain log-concave sequence

Before we finish this section with the proof of Theorem 1.9, we need yet another technical
lemma. A sequence (an) of nonnegative real numbers is called log-concave iff a2

n ≥ an−1 an+1

for all n. See [45] for a survey on log-concave sequences and their appearances in diverse areas
of mathematics.

Lemma 5.4. For n ≥ 2 and 1 ≤ m ≤ n− 1 let gm(n) :=
Γ(n

2
)·exp(

n
m )

Γ(m
2

)·Γ(n−m
2

)·2n/2 .

1. The sequence (gm(n))n is log-concave, i.e., gm(n)2 ≥ gm(n−1) gm(n+ 1) for n ≥ m+ 2.

2. For fixed m ≥ 8 we have max{gm(n) | n > m} = max{gm(2m+ k) | k ∈ {5, 6, 7}}.

3. For m ≥ 8 we have
gm(n) < 2.5

√
m . (5.10)

Proof. (1) We have

gm(n)2

gm(n− 1) gm(n+ 1)
=

Γ(n2 )2

Γ(n−m2 )2
·

Γ(n−1−m
2 )

Γ(n−1
2 )

·
Γ(n+1−m

2 )

Γ(n+1
2 )

.

In order to show that this expression is greater or equal than 1, we use induction on m. For
m = 0 this is trivially true, and for m = 1 this is easily checked with a computer algebra
system. For m ≥ 2 we have, using Γ(x+ 1) = x · Γ(x),

Γ(n2 )2

Γ(n−m2 )2
·

Γ(n−1−m
2 )

Γ(n−1
2 )

·
Γ(n+1−m

2 )

Γ(n+1
2 )

=
(n−m)2

(n− 1−m) · (n+ 1−m)︸ ︷︷ ︸
>1

·
Γ(n2 )2

Γ(n−(m−2)
2 )2

·
Γ(n−1−(m−2)

2 )

Γ(n−1
2 )

·
Γ(n+1−(m−2)

2 )

Γ(n+1
2 )︸ ︷︷ ︸

≥1 by ind. hyp.

> 1 .

(2) As the sequence (gm(n))n is log-concave and positive, it follows that it is unimodal.
This means that there exists an index N such that gm(n − 1) ≤ gm(n) for all n ≤ N , and
gm(n) ≥ gm(n+ 1) for all n ≥ N (cf. [45]). Moreover, for m ≥ 8 we have N ∈ {2m+ k | k ∈
{5, 6, 7}}, as

gm(2m+ 4)

gm(2m+ 5)
=

Γ(2m+4
2 )

Γ(2m+5
2 )

·
Γ(m+5

2 )

Γ(m+4
2 )
·
√

2

exp
(

1
m

) < 1 ,

gm(2m+ 7)

gm(2m+ 8)
=

Γ(2m+7
2 )

Γ(2m+8
2 )

·
Γ(m+8

2 )

Γ(m+7
2 )
·
√

2

exp
(

1
m

) > 1 , for m ≥ 8 .

(3) For fixed k, the following asymptotics is easily verified:

gm(2m+ k)√
m

m→∞−→ 4 exp(2)√
2π

< 12 .

In particular, it follows by (2) that for m ≥ 8 we have an asymptotic estimate of gm(n) =
O(
√
m). More precisely, it is straightforward to check that for k ∈ {5, 6, 7} and m ≥ 8 we

have gm(2m+ k) < 2.5
√
m. It follows by (2) that for m ≥ 8 we have gm(n) < 2.5

√
m. 2
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5.4 Proof of the refined bounds

Proof of Theorem 1.9. We will estimate the intrinsic volumes of C via Vj(C) ≤ e(C) fj(n),
where fj(n) = Vj(Ln) and e(C) denotes the excess over the Lorentz cone introduced in (1.18).
Note that for j = m+ i− 2k with 1 ≤ j ≤ n− 1, we get from (1.17) using (1.9)

fn−(m+i−2k)(n) =

( (n−2)/2
(n−m−i+2k−1)/2

)
2n/2

=
Γ(n2 )

Γ(n−m−i+2k+1
2 ) · Γ(m+i−2k+1

2 ) · 2n/2
. (5.11)

We thus obtain from Lemma 5.2, using Lemma 5.3 for the last equality:

rvol T (Σm, α) ≤ 8

n−2∑
i,k=0

Vn−m−i+2k(C) ·
Γ(m+i−2k+1

2 )

Γ(m2 )
·

Γ(n−m−i+2k+1)
2 )

Γ(n−m2 )

·
(
m− 1

k

)(
n−m− 1

i− k

)
· In,n−2−i(α)

(5.11)

≤ 8 e(C) ·
Γ(n2 )

Γ(m2 ) · Γ(n−m2 ) · 2n/2
·
n−2∑
i=0

In,n−2−i(α) ·
n−2∑
k=0

(
m− 1

k

)(
n−m− 1

i− k

)

= 8 e(C) ·
Γ(n2 )

Γ(m2 ) · Γ(n−m2 ) · 2n/2
·
n−2∑
i=0

In,n−2−i(α) ·
(
n− 2

i

)
(5.9)
< 8 e(C) ·

Γ(n2 ) · exp( nm)

Γ(m2 ) · Γ(n−m2 ) · 2n/2
· 1

t
, if t > m and n ≥ 3.

Using the notation from Lemma 5.4, this implies the desired tail estimate

rvol T (Σm, α) < 8 e(C) gm(n)
1

t

(5.10)
< 20 e(C)

√
m

1

t
, for t > m ≥ 8 .

Analogous to the proof of Theorem 1.2, we estimate the expectation of the logarithm of
the Grassmann condition. Defining ẽ(C) := max{e(C), 1}, so that in particular ln ẽ(C) ≥ 0,
we get

E [ln CG(A)] =

∫ ∞
0

Prob[ln CG(A) > s] ds

< ln(m) + ln(ẽ(C)) + r +

∫ ∞
ln(m)+ln(ẽ(C))+r

20 · e(C) ·
√
m · exp(−s) ds

= ln(m) + ln(ẽ(C)) + r +
20 e(C)√

m · ẽ(C) · exp(r)

< ln(m) + ln(ẽ(C)) + 3 , if m ≥ 8 ,

where the last inequality follows from choosing r := ln
(

20√
8

)
. This completes the proof of

Theorem 1.9. 2

6 Geometry of Grassmann manifolds

It remains to prove Proposition 4.2, which describes Σm as a smooth hypersurface in Grn,m,
as well as Theorem 4.5 on the Jacobian of the parameterization Ψ of the tube around Σm.
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We provide these proofs in Section 7. As they require a good understanding of the metric
properties of orthogonal groups and Grassmann manifolds, we collect here the necessary no-
tions needed for these proofs. For a general background on Riemannian geometry we refer
to [16], [6], or [11, Ch. 1]; as necessary we will give more specific references.

6.1 Orthogonal groups

The orthogonal group O(n) is the compact Lie group consisting of the U ∈ Rn×n such that
UTU = In. Its Lie algebra is given by

TInO(n) = Skewn := {U ∈ Rn×n | UT = −U}.

The tangent space of an element Q ∈ O(n) is thus given by TQO(n) = Q · Skewn.
As for the Riemannian metric on O(n), it is convenient to scale the (Euclidean) metric

induced from Rn×n by a factor of 1
2 . The Riemannian metric 〈., .〉Q on TQO(n) = Q · Skewn

is thus given by
〈QU1, QU2〉Q = 1

2 tr(UT1 U2). (6.1)

for U1, U2 ∈ Skewn. Observe that we have a canonical basis for Skewn given by {Eij − Eji |
1 ≤ j < i ≤ n}, where Eij denotes the (i, j)th elementary matrix, i.e., the matrix whose
entries are zero everywhere except for the (i, j)th entry, which is 1. This basis is orthogonal
and by the choice of the scaling factor it is also orthonormal.

For the orthogonal group O(n), the exponential map expQ : TQO(n)→ O(n) at Q ∈ O(n)

is given by the usual matrix exponential, i.e., for U ∈ Skewn we have expQ(QU) = Q · eU =

Q ·
∑∞

k=0
Uk

k! . For example, for

N :=


0 0 1

0 0 0

−1 0 0

 (6.2)

the exponential map at Q in direction QN is given by the rotation

expQ(ρ ·QN) = Q ·Qρ , Qρ :=


cos ρ 0 sin ρ

0 In−2 0

− sin ρ 0 cos ρ

 . (6.3)

Note that d
dρQρ = Qρ ·N .

6.2 Grassmann manifolds

We defined the Grassmann manifold Grn,m, 1 ≤ m ≤ n as the set of all m-dimensional
subspaces of Rn. For our explicit explicit calculations, it is essential to view the Grassmann
manifold as a quotient of the orthogonal group. Namely, we can describe Grn,m as the quotient
O(n)/H := {QH | Q ∈ O(n)} of O(n) by the subgroup

H :=

{(
Q′ 0
0 Q′′

)∣∣∣∣Q′ ∈ O(m) , Q′′ ∈ O(n−m)

}
' O(m)×O(n−m)
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in the following way:

O(n) Grn,m

O(n)/H

Π

∼ , with Π: Q 7→ Q (Rm × 0). (6.4)

In other words, the identification of Grn,m with the quotient O(n)/H amounts to identifying
an m-dimensional linear subspace W of Rn with the set of all orthogonal matrices, whose first
m columns span W . Note that this identification endows Grn,m with the quotient topology
on O(n)/H.

In the following paragraphs, we will give a concrete description of the tangent space
TW Grn,m for W ∈ Grn,m, and we will describe the Riemannian metric and the exponen-
tial map on Grn,m. Note that the natural action of O(n) on Rn induces a corresponding
action on Grn,m. It can be shown that, up to scaling, there exists a unique Riemannian metric
on Grn,m, which is O(n)-invariant. This is the Riemannian metric, that we will next describe
explicitly.

Let W ∈ Grn,m and let Q ∈ Π−1(W ), i.e., the first m columns of Q span W . The coset
QH is a submanifold of O(n), and its tangent space at Q is given by

TQQH = Q · TInH = Q ·
{(

U ′ 0
0 U ′′

)∣∣∣∣U ′ ∈ Skewm , U
′′ ∈ Skewn−m

}
.

Note that the orthogonal complement (TQQH)⊥ of TQQH in TQO(n) is given by

(TQQH)⊥ = Q · Skewn , where Skewn :=

{(
0 −XT

X 0

)∣∣∣∣X ∈ R(n−m)×m
}
. (6.5)

It can be shown (cf. [27, Lemma II.4.1]) that there exists an open ball B around the origin
in TQO(n) such that the restriction of Π ◦ expQ to B ∩ (TQQH)⊥ is a diffeomorphism onto
an open neighborhood of W = Π(Q) in Grn,m. The derivative of Π ◦ expQ therefore yields a
linear isomorphism

(TQQH)⊥
∼−→ TW Grn,m, QU 7→ ξ := D(Π ◦ expQ)(QU),

where U ∈ Skewn.
The pair (Q,U) with U ∈ Skewn thus defines the tangent vector ξ := D(Π ◦ expQ(QU))

in TW Grn,m. However, we may also represent the subspace W by a group element Qh, for any
h ∈ H. A small computation shows that the pair (Qh, h−1Uh) represents the same tangent
vector ξ. More generally, if we define an equivalence relation ∼ on O(n)×H via

(Q,U) ∼ (Q′, U ′) :⇐⇒ ∃h ∈ H : (Q′, U ′) = (Qh, h−1Uh),

then it follows that the tangent vector ξ ∈ TW Grn,m can be identified with the equivalence
class [Q,U ] := {(Qh, h−1Uh) | h ∈ H} ∈ (O(n)×H)/ ∼. We have thus obtained the following
model for TW Grn,m:

TW Grn,m '
{

[Q,U ] | Q ∈ Π−1(W ) , U ∈ Skewn

}
. (6.6)
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Note that in this model, the derivative DQΠ of Π at Q is given by

DQΠ(QU) = [Q, π(U)], (6.7)

where π : Skew→ Skewn denotes the orthogonal projection.
We can now define the Riemannian metric on Grn,m by setting

〈
[Q,U1] , [Q,U2]

〉
:= 〈U1, U2〉In

(6.1)
= 1

2 · tr(U
T
1 · U2), (6.8)

for U1, U2 ∈ Skewn (this is clearly a well-defined O(n)-invariant Riemannian metric). This
way, Π: O(n) → Grn,m becomes a Riemannian submersion, i.e., for every Q ∈ O(n) the
restriction of D expQ to the orthogonal complement of its kernel is an isometry. Using the
above description of DΠ and elementary properties of geodesics (cf. for example [16, Sec. 3.2]),
one can show that the exponential map on Grn,m is given by

expW (ξ) = Π(expQ(QU)) = Π
(
Q · eU

)
, ξ = [Q,U ] ∈ TW Grn,m . (6.9)

6.3 Frame bundle and Grassmann bundle

In the remainder of this section, we discuss some properties of frame bundles and Grassmann
bundles.

Let V be a k-dimensional Euclidean vector space. A frame of V is an orthonormal basis
of V . We denote by

F (V ) = {(q1, . . . , qk) ∈ V k | ∀i, j : 〈qi, qj〉 = δij}

the set of frames of V . We can identify F (Rk) with the orthogonal group O(k) by identifying
the frame (q1, . . . , qk) ∈ F (Rk) with the orthogonal matrix having the columns q1, . . . , qk. This
way, F (V ) gets the structure of a smooth Riemannian manifold.

Recall the `th Grassmann manifold Gr(V, `) consisting of the `-dimensional linear subspace
of V (1 ≤ ` ≤ k). It inherits from Gr(Rk, `) the structure of a smooth Riemannian manifold,
since Gr(Rk, `) = Grk,`. Moreover, the smooth surjective map F (V )→ Gr(V, `), (q1, . . . , qk) 7→
lin{q1, . . . , q`} provides a close connection between these two manifolds.

Let M be a k-dimensional smooth Riemannian manifold and 1 ≤ ` ≤ k. The orthonormal
frame bundle and the `th Grassmann bundle over M , respectively, are defined as

F (M) =
⋃
p∈M
{p} × F (TpM), Gr(M, `) =

⋃
p∈M
{p} ×Gr(TpM, `).

Using charts of M to connect the manifolds F (TpM), one can show that F (M) has the
structure of a smooth manifold. Moreover, F (M)→M is a fiber bundle (cf. for example [31,
§I.5]). The same holds true for the Grassmann bundle Gr(M, `)→M . Furthermore, the maps
of the fibers F (TpM)→ Gr(TpM, `) may be combined to a smooth surjective bundle map

Πb : F (M)→ Gr(M, `), Πb(p, Q̄) = (p, lin{q1, . . . , q`}), (6.10)

where Q̄ = (q1, . . . , qk).
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For (p, Q̄) ∈ F (M) one has a natural decomposition of the tangent space of F (M) at (p, Q̄)
into a vertical space and a horizontal space,

T(p,Q̄)F (M) = T v(p,Q̄)F (M)⊕ T h(p,Q̄)F (M). (6.11)

The vertical space is defined by

T v(p,Q̄)F (M) := T(p,Q̄)({p} × F (TpM)). (6.12)

For defining the horizontal space we consider the following construction. Let ζ ∈ TpM and
let c : R → M be such that c(0) = p and ċ(0) = ζ. Furthermore, let Q̄t denote the parallel
transport (cf. for example [6, Thm. VII.3.12]) of the frame Q̄ along c at time t. Then the map
cF : R → F (M), t 7→ (c(t), Q̄t), defines a smooth curve in F (M) and thus a tangent vector
˙cF (0) ∈ T(p,Q̄)F (M). It can be shown (cf. for example [31, §II.3]) that this tangent vector does

not depend on the specific choice of the curve c. Moreover, one can show that the induced
map TpM → T(p,Q̄)F (M) sending each tangent vector ζ to the above defined tangent vector

of F (M) at (p, Q̄), is an injective linear map. The image of this injective linear map is defined
as the horizontal space. One can then show the decomposition (6.11) of the tangent space of
F (M) at (p, Q̄) into the direct sum of the vertical and the horizontal space.

Analogous statements about the decomposition of the tangent spaces also hold for the
Grassmann bundle Gr(M, `). Moreover, the derivative of the bundle map Πb : F (M) →
Gr(M, `) certainly maps the vertical spaces of F (M) to the vertical spaces of Gr(V, `). As for
the horizontal spaces, note that the parallel transport of a linear subspace may be achieved by
parallel transporting a basis for this subspace. This implies that also the horizontal spaces of
F (M) are mapped to the horizontal spaces of Gr(V, `) via the derivative of the bundle map Πb.

7 Computation of Normal Jacobians

For the sake of clarity, we first study a more general situation. Here is a brief outline: Let
M ⊆ Sn−1 be a compact hypersurface with a distinguished unit normal vector field ν : M →
Sn−1. We embed F (M) into O(n) via the map Φ̂: F (M)→ F (Rn) = O(n) that sends a frame
(q1, . . . , qn−2) of TpM to the frame (p, q1, . . . , qn−2, ν(p)) of Rn. In Section 7.1 we prove that
Φ̂ is an injective immersion of F (M) into O(n). Hence the image Σ̂(M) of F (M) under Φ̂ is
a smooth submanifold of O(n).

We are interested in the set Σ(M), which is defined as the image of the map

Φm : Gr(M,m− 1)→ Grn,m, (p, Y ) 7→ Rp+ Y.

The point is that Σ(M) = Σm(C) in the special case, where M = ∂K is the boundary of a
smooth K ∈ Ksm(Sn−1) and C = cone(K). The idea is that Σ(M) can also be obtained as
the image of Σ̂(M) under the canonical projection Π: O(n)→ Grn,m defined in (6.4), see the
commutative diagram (7.1).

In Section 7.2 we prove, via the detour over Φ̂, that Σ(M) is a smooth hypersurface of Grn,m
in the case where M = ∂K with K ∈ Ksm(Sn−1). This provides the proof of Proposition 4.2.
We then go on working in this framework to complete the proof of Theorem 4.5.
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7.1 Analyzing the situation lifted to the frame bundle

We fix a compact hypersurface M ⊆ Sn−1 with a unit normal vector field ν : M → Sn−1.
In the following, we identify the tangent space TpM for p ∈ M with the linear subspace

TpM = p⊥∩ν(p)⊥ of Rn, which has codimension 2. If (p, Q̄) ∈ F (M), then Q̄ = (q1, . . . , qn−2)
is an orthonormal basis of TpM , and in the following we shall interpret Q̄ as the matrix
in Rn×(n−2) with the columns qi ∈ Rn. Note that (p, Q̄, ν(p)) = (p, q1, . . . , qn−2, ν(p)) ∈ O(n).
This defines the map

Φ̂: F (M)→ O(n), (p, Q̄) 7→ Q = (p, Q̄, ν(p)).

We define the lifted Sigma set Σ̂(M) as the image of the map Φ̂:

Σ̂ := Σ̂(M) := Φ̂(F (M)) = {Q ∈ O(n) | ∃p ∈M : Q · e1 = p , Q · en = ν(p)},

where ei ∈ Rn denote the canonical basis vectors. Analogous to the definition of Φ̂, we define
for 1 ≤ m ≤ n− 1 the map

Φm : Gr(M,m− 1)→ Grn,m, (p, Y ) 7→ Rp+ Y,

where Y ∈ Gr(TpM,m− 1) is interpreted as an (m− 1)-dimensional subspace of Rn. Further-
more, we define

Σm := Σm(M) := Φm(Gr(M,m− 1)) = {W ∈ Grn,m | ∃p ∈M : p ∈W , W ⊆ ν(p)⊥}.

Note that we have Π(Σ̂(M)) = Σm, where Π: O(n)→ Grn,m denotes the canonical projection
(cf. (6.4)), but we have a strict inclusion Σ̂(M) ( Π−1(Σm(M)).

The following commutative diagram provides an overview over the relations, which are
central for the understanding of Σm:

F := F (M) Σ̂ O(n)

G := Gr(M,m− 1) Σm Grn,m

Φ̂

Φm

Πb ΠΣ Π . (7.1)

Here Πb is defined as in (6.10), and ΠΣ is defined as the restriction of Π (cf. (6.4)) to Σ̂. Note
that if (p, Q̄) ∈ F (M) with Q̄ = (q1, . . . , qn−2), then Φ̂(p, Q̄) = Q = (p, q1, . . . , qn−2, ν(p)) ∈ Σ̂
and Πb(p, Q̄) = (p, Y ), where Y is the span of q1, . . . , qm−1.

The tangent spaces of the fiber bundles F (M) and Gr(M,m − 1) have natural decompo-
sitions into vertical and horizontal components (cf. Section 6.3):

T(p,Q̄)F = T v(p,Q̄)F ⊕ T
h
(p,Q̄)F, T(p,Y )G = T v(p,Y )G⊕ T

h
(p,Y )G. (7.2)

We denote the images of the vertical and the horizontal space of the frame bundle at (p, Q̄)
under the derivative DΦ̂ by

T vQΣ̂ := DΦ̂
(
T v(p,Q̄)F

)
, T hQΣ̂ := DΦ̂

(
T h(p,Q̄)F

)
. (7.3)
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We will give next concrete descriptions of these spaces.
Before we state the next result about the derivative of Φ̂, we define the following linear

maps for Q = (p, Q̄, ν(p)) ∈ Σ̂

Êv : Skewn−2 → Skewn, Êh : Rn−2 → Skewn, (7.4)

Êv(Ū) :=


0 0 0

0 Ū 0

0 0 0

 , Êh(a) :=


0 −aT 0

a 0 −b
0 bT 0

 , where b := Q̄T · Wp(Q̄a).

Here Wp : TpM → TpM is the Weingarten map of M at p, cf. (2.3), and we recall that the
image of Q̄ ∈ Rn×(n−2) equals TpM , since (p, Q̄, ν(p)) ∈ Σ̂. Note that Êv is an isometric
embedding independent of the manifold M and the element Q ∈ Σ̂, while Êh is a linear
injection, which depends both on M and on Q. For the sake of simplicity, we do not reflect
this dependence in the notation. Note further that the images of Êv and Êh are orthogonal
subspaces of Skewn.

Lemma 7.1. Let (p, Q̄) ∈ F (M) and Q := Φ̂(p, Q̄) = (p, Q̄, ν(p)) ∈ Σ̂. Then we have

T vQΣ̂ = Q · im(Êv), T hQΣ̂ = Q · im(Êh). (7.5)

Proof. Since p = Qe1 and ν(p) = Qen, the image of the fiber {p}×F (TpM) under the map Φ̂
is given by

Φ̂({p} × F (TpM)) =

Q ·


1 0 0

0 Q̃ 0

0 0 1


∣∣∣∣∣∣∣∣ Q̃ ∈ O(n− 2)

 .

This implies that the image of the vertical space T v
(p,Q̄)

F (M) under the derivative DΦ̂ is given

by T vQΣ̂ = Q · im(Êv), cf. (6.12).

As for the horizontal space, let ξ ∈ T h
(p,Q̄)

F (M) be represented by the curve cF : R→ F (M),

i.e., cF (0) = (p, Q̄) and ˙cF (0) = ξ, which is given in the following way: cF (t) = (c(t), Q̄t),
where Q̄t is the parallel transport of Q̄ along the curve c (cf. Section 6.3). Let us denote
by ζ := ċ(0) ∈ TpM the tangent vector at p defined by c. The image of the curve cF
under Φ̂ is thus given by Φ̂(cF (t)) = (c(t), Q̄t, ν(c(t))) =: Q(t), and the image of ξ is given by
DΦ̂(ξ) = Q̇(0). It is sufficient to show that Q̇(0) is given by

Q̇(0) = Q ·


0 −aT 0

a 0 −b
0 bT 0

 , where a = Q̄T ζ, b = Q̄TWp(ζ). (7.6)

To prove (7.6), note first that as Q(t) ∈ O(n) and Q(0) = Q, we have Q̇(0) = Q · U with
U ∈ Skewn. Recall that the columns of Q̄ form an orthonormal basis of TpM = p⊥ ∩ ν(p)⊥,
hence QTTpM = e⊥1 ∩ e⊥n . Therefore, ċ(0) = ζ = Q̄a for some a ∈ Rn−2, which implies

a = Q̄T ζ. The first column of U is thus given by Ue1 = QT Q̇(0)e1 = QT ζ =
(

0
a
0

)
. By

skew-symmetry of U , this also gives us the first row of U . The zero matrix in the middle
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follows from the fact that the frame Q̄ is parallel transported along c (cf. [6, §VII.3]). Finally,
the last column of Q̇(0) is given by Dpν(ζ). This implies that the last column of U is given by

QTDpν(ζ)
(2.3)
= −QTWp(ζ).

As Wp(ζ) ∈ TpM = p⊥ ∩ ν(p)⊥, the last column of U has the form

(
0
−b
0

)
. Therefore

Wp(ζ) = Q
(

0
b
0

)
= Q̄b, which implies b = Q̄TWp(ζ). The last row follows again by skew-

symmetry of U . 2

Corollary 7.2. The map Φ̂ is an injective immersion of F (M) into O(n). In particular, Σ̂ is
a smooth submanifold of O(n) of codimension n− 1, and the tangent space TQΣ̂ at Q ∈ O(n)

has the orthogonal decomposition TQΣ̂ = T vQΣ̂⊕ T hQΣ̂.

Proof. The fact that Φ̂ is a smooth injective map is obvious. Furthermore, by Lemma 7.1,
it follows that the derivative DΦ̂ at (p, Q̄) has full rank. The map Φ̂ is thus an injective
immersion, and as the domain F (M) is compact, it is also an embedding. As for the dimension,
we compute

dim Σ̂ = dimF (M) = dimM + dimO(n− 2) = n− 2 + (n−2)(n−3)
2 = (n−2)(n−1)

2

= dimO(n)− (n− 1).

The decomposition of the tangent space into the direct sum TQΣ̂ = T vQΣ̂⊕ T hQΣ̂ follows from

the decomposition of the tangent space of the fiber bundle (7.2). The fact that T vQΣ̂ and T hQΣ̂
are orthogonal follows from the description given in Lemma 7.1. 2

Now that we have a clear description of the lifted Sigma set Σ̂, we will transfer this
description to Σm via the projection map ΠΣ : Σ̂ → Σm defined in (7.1). Analogously to the
lifted case, we denote the images under the derivative DΦm of the vertical and the horizontal
space, cf. (7.2), of the Grassmann bundle at (p, Y ) by

T vWΣm := DΦm

(
T v(p,Y )G

)
, T hWΣm := DΦm

(
T h(p,Y )G

)
. (7.7)

Recall that the subspace Skewn defined in (6.5) serves as a model for the tangent spaces
of Grn,m. We consider the linear map

α : Rn−2 → Skewn, x =

(
x1

x2

)
7→

 0
−xT2 0

0 −x1

x2 0
0

0 xT1

 , (7.8)

where x1 ∈ Rm−1 and x2 ∈ Rn−m−1, and we denote its image by

Sn := im(α) ⊆ Skewn.
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Note that dimSn = n− 2. We now define the following linear maps for Q = (p, Q̄, ν(p)) ∈ Σ̂:

Ev : R(n−m−1)×(m−1) → Skewn, Eh : Rn−2 → Sn, (7.9)

Ev(X) :=


0

0 0

−XT 0

0 X
0

0 0

 , Eh(a) :=

 0
−aT2 0

0 −b1
a2 0

0
0 bT1

 ,

where again b := Q̄T ·Wp(Q̄a), and a =
(
a1
a2

)
, b =

(
b1
b2

)
with a1, b1 ∈ Rm−1, a2, b2 ∈ Rn−m−1.

The map Ev is an isometry if the scalar product on Skewn induced from Rn×n is scaled by 1
2 .

Note that Ev is independent of M and Q. On the other hand, as in the lifted case, the map Eh

depends on both M and Q. Unlike in the lifted case, the map Eh need not be injective. We
will see below in Proposition 7.3 that it is injective iff the restriction Wp,Y of the Weingarten
map Wp to the subspace Y = lin{q1, . . . , qm−1} ⊆ TpM , where Q = (p, q1, . . . , qn−2, ν(p)), has
full rank. If this is the case, then imEh = Sn.

Note that we have an orthogonal decomposition of Skewn into

Skewn = imEv ⊕ Sn ⊕ RN, (7.10)

where N ∈ Skewn was defined in (6.2). If we define ι : R(n−m−1)×(m−1) → Skewn−2, via
X 7→

(
0 −XT

X 0

)
, and if we denote by π : Skewn → Skewn the orthogonal projection, then we

have the crucial relation

Ev(X) = Êv(ι(X)), Eh(a) = π(Êh(a)). (7.11)

Proposition 7.3. 1. Let (p, Y ) ∈ Gr(M,m−1) and W := Φm(p, Y ), and let Q ∈ Σ̂ be such
that ΠΣ(Q) = W . Then we have, using the model of tangent spaces of Grn,m described
in (6.6):

T vWΣm =
{

[Q,U ] | U ∈ im(Ev)
}
, T hWΣm =

{
[Q,U ] | U ∈ im(Eh)

}
. (7.12)

2. The rank of the map Eh is given by

rk(Eh) = n−m− 1 + rkWp,Y ,

where Wp,Y : Y → Y is the restriction of the Weingarten map Wp to the subspace Y
of TpM . Moreover, if Wp,Y has full rank and if we consider Sn to be endowed with the
scalar product 〈U1, U2〉 := 1

2 · tr(U
T
1 · U2), then

|det(Eh)| = |detY (Wp)|, (7.13)

where detY (Wp) denotes the determinant of Wp,Y (cf. Definition 4.3).

3. The rank of the derivative D(p,Y )Φm is given by

rkD(p,Y )Φm = m(n−m)−m+ rkWp,Y ,
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Proof. (1) Since the derivative of the bundle projection Πb : F (M)→ Gr(M, `) defined in (6.10)
maps the vertical spaces of the frame bundle to the vertical spaces of the Grassmann bundle
(cf. Section 6.3), we have

T vWΣm
(7.7)
= DΦm

(
T v(p,Y )G

)
(7.1)
= DΠΣ(T vQΣ̂)

(7.5)
= DΠΣ(Q · im(Êv)).

Using DQΠΣ(QU) = [Q, Ū ] (cf. (6.7)), we may continue as

T vWΣm =
{

[Q,U ] | U ∈ π(im(Êv))
}

=
{

[Q,U ] | U ∈ im(Ev)
}
.

Similar arguments show the description (7.12) of the horizontal space.
(2) By the above choice of scalar product in Sn, the map α defined in (7.8) is an isometry

on its image. Hence, instead of considering Eh we may focus on the map

α−1 ◦ Eh : Rn−2 → Rn−2, a =

(
a1

a2

)
7→
(
b1
a2

)
,

where as usual b = Q̄T · Wp(Q̄a), and a =
(
a1
a2

)
, b =

(
b1
b2

)
with a1, b1 ∈ Rm−1, a2, b2 ∈

Rn−m−1. Let Λ ∈ R(n−2)×(n−2) be the representation matrix of Wp with respect to the or-
thonormal basis q1, . . . , qn−2 of TpM , i.e., Λa = Q̄T · Wp(Q̄a) = b. Furthermore, let Λ be

decomposed as Λ =

(
Λ1 Λ2

Λ3 Λ4

)
, where Λ1 ∈ R(m−1)×(m−1) and the other blocks accordingly.

Then the representation matrix of α−1 ◦ Eh is given by

(
Λ1 Λ2

0 In−m−1

)
. As Λ1 is the repre-

sentation matrix of Wp,Y with respect to the orthonormal basis q1, . . . , qm−1 of Y , we obtain

rk(Eh) = rk(α−1 ◦ Eh) = n−m− 1 + rk(Λ1) = n−m− 1 + rk(Wp,Y ).

Furthermore, if Wp,Y has full rank rkWp,Y = m− 1, then

|det(Eh)| = | det(α−1 ◦ Eh)| = | det(Λ1)| = |detY (Wp)|.

(3) From (1) and (2) we obtain

dimT vWΣm = rk(Ev) = (m− 1)(n−m− 1),

dimT hWΣm = rk(Eh) = n−m− 1 + rkWp,Y .

This implies that the rank of the derivative of Φm is given by

rkD(p,Y )Φm = dimT vWΣm + dimT hWΣm = m(n−m− 1) + rkWp,Y . 2

7.2 Specializing to the boundary of a convex set

We assume now that M = ∂K for some K ∈ Ksm(Sn−1).
The subsequent corollary implies Proposition 4.2, as well as the claim about the normal

Jacobian of ΠM in Theorem 4.5.

Corollary 7.4. Let M = ∂K with K ∈ Ksm(Sn−1).

32



1. Then Φm is an injective immersion of Gr(M,m − 1) into Grn,m, and Σm is a smooth
hypersurface of Grn,m. Furthermore, for W ∈ Σm, the tangent space of Σm at W has
the orthogonal decomposition TWΣm = T vWΣm ⊕ T hWΣm.

2. Recall N ∈ Skewn defined in (6.2). If W = ΠΣ(Q) ∈ Σm for Q ∈ Σ̂, then νΣ(W ) =
[Q,N ] ∈ TW Grn,m is a unit normal vector of Σm at W that points into Pm(C). More-
over, −νΣ(W ) points into Dm(C).

3. Consider ΠM : Σm → M, W 7→ p, where W ∩ K = {p}, cf. (4.7). Then the normal
Jacobian of ΠM at W ∈ Σm is given by ndet(DWΠM) = detY (Wp)

−1, where Y :=
W ∩ p⊥ ∈ Gr(TpM,m− 1).

Proof. (1) The injectivity of Φm follows from Proposition 4.1. Furthermore, the Weingarten
map Wp of M is positive definite for every p ∈ M . Therefore, the restriction Wp,Y of Wp

to any subspace Y ∈ Gr(TpM,m − 1) is positive definite and in particular has full rank.
It follows from Proposition 7.3 that Φm is an injective immersion. By compactness of the
domain Gr(M,m − 1), it follows that Φm is an embedding. The image Σm is thus a smooth
submanifold of dimension dim Σm = dim Gr(M,m−1) = m(n−m)−1. The claimed orthogonal
decomposition of TWΣm is a consequence of (7.12) and (7.10).

(2) It is clear from the orthogonal decompositions TWΣm = T vWΣm ⊕ T hWΣm and (7.10)
that νΣ(W ) lies in the orthogonal complement of TWΣm in TW Grn,m. Consider the geodesic

Wρ := expW (ρ · νΣ(W ))
(6.9)
= Π(expQ(QN))

(6.3)
= Π(Q ·Qρ)

through W in direction νΣ(W ).
The first column of Q ·Qρ is given by pρ := p cos ρ− ν(p) sin ρ. In particular, pρ ∈Wρ. By

assumption, the normal vector ν(p) points inwards K. Therefore, for all ρ < 0 with |ρ| small
enough, we have pρ ∈ K, which implies Wρ ∈ Dm(C). Hence −νΣ(W ) points into Dm(C).

On the other hand, the orthogonal complement of ν(p) is a supporting hyperplane of
cone(K). From this it follows that Wρ ∩K = {0} for all sufficiently small ρ > 0. Therefore,
Wρ ∈ Grn,m \Dm(C) ⊆ Pm(C). Hence νΣ(W ) points into Pm(C).

(3) We may lift the function ΠM : Σm → M to the function Π̂M : Σ̂ → M , Q 7→ p, where
Q = (p, q1, . . . , qn−2, ν(p)). So we have the following commutative diagram

Σ̂ Σm

M

ΠΣ

ΠMΠ̂M

,

Q W

p

, (7.14)

where W = lin{p, q1, . . . , qm−1}. We next show that the orthogonal complement of kerDWΠM

in TWΣm is given by the horizontal space T hWΣm.

As the map Π̂M is just the projection onto the first column, the kernel of DQΠ̂M is given
by

kerDQΠ̂M = {U ∈ TQΣ̂ | QUe1 = 0}.

It follows that T vQΣ̂ ⊆ kerDQΠ̂M and T hQΣ̂ ∩ kerDQΠ̂M = 0. Using the commutative dia-

gram (7.14), we obtain T vWΣm ⊆ kerDWΠM and T hWΣm ∩ kerDWΠM = 0. The fact that
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TWΣm = T vWΣm ⊕ T hWΣm is an orthogonal decomposition implies that T vWΣm = kerDWΠM

and hence T hWΣm = (kerDWΠM)⊥.
In order to compute DWΠM on the horizontal space T hWΣm, we consider for fixed Q =

(p, q1, . . . , qn−2, ν(p)) ∈ Σ̂ the following diagram

Rn−2 Sn T hWΣm

=

Rn−2 TpM

Eh β

DWΠM

γ

,

where β(U) = [Q,U ] for U ∈ Sn, and γ(a) =
∑n−2

i=1 ai · qi for a = (a1, . . . , an−2)T ∈ Rn−2. Let
us check that this diagram is commutative: using

DQΠΣ(Q · Êh(a))
(6.7)
= [Q, π(Êh(a))]

(7.11)
= [Q,Eh(a)],

we get

DWΠM([Q,Eh(a)]) = DWΠM(DQΠΣ(Q · Êh(a)))
(7.14)

= DQΠ̂M(Q · Êh(a)) = γ(a).

Since β and γ are isometric we obtain

ndet(DWΠM) = |det(Eh)|−1 (7.13)
= |detY (Wp)|−1 = detY (Wp)

−1,

where the last equality follows from the positive definiteness of Wp. 2

Proof of Theorem 4.5. It remains to show the claim about the Jacobian of Ψ.
Let us make yet another definition in the lifted setting. For Q ∈ Σ̂ we define the direction

ν̂(Q) ∈ TQO(n) and the map Ψ̂: Σ̂× R→ O(n) via

ν̂(Q) := Q ·N, Ψ̂(Q, t) = expQ(arctan t · ν̂(Q)),

where N ∈ Skewn is, as usual, defined in (6.2). Abbreviating ρ := arctan t, we obtain
from (6.3) that the map Ψ̂ is given by Ψ̂(Q, t) = Q · Qρ, where Qρ was defined in (6.3).
Furthermore, denoting Π̃ := ΠΣ × idR, we get the following commutative diagram

Σ̂× R O(n)

Σm × R Grn,m

Ψ̂

Ψ

Π̃ Π . (7.15)

We will compute the derivative DΨ via the lifting DΨ̂ in the following way. Let W ∈ Σm

and let Q = (p, Q̄, ν(p)) ∈ Σ̂ be a lifting of W , i.e., W = ΠΣ(Q). For (ξ, ṫ) ∈ T(W,t)(Σm×R), let

ξ̂ ∈ TQΣ̂ be a lifting of ξ, i.e., ξ = DΠΣ

(
ξ̂
)
. Using the relations displayed in the commutative

diagram (7.15), we get

DΨ(ξ, ṫ) = DΨ(DΠ̃(ξ̂, ṫ))
(7.15)

= DΠ(DΨ̂(ξ̂, ṫ)). (7.16)
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From the explicit form Ψ̂(Q, t) = Q · Qρ, taking into account ρ = arctan t, dρ
dt = (1 + t2)−1,

and d
dρQρ = QρN (cf. (6.3)), we get

D(Q,t)Ψ̂(0, 1) = (1 + t2)−1 ·Q ·Qρ ·N.

Using (7.16), we thus have

D(W,t)Ψ(0, 1) = DΠ((1 + t2)−1 ·Q ·Qρ ·N)

(6.7)
= (1 + t2)−1 · [Q ·Qρ, N ] . (7.17)

It remains to compute the derivative of Ψ in the first component.
Taking into account the orthogonal decomposition TWΣm = T vWΣm ⊕ T hWΣm, cf. Corol-

lary 7.4, we first consider the vertical space T vWΣm. By (7.12) every element ξ ∈ T vWΣm is

of the form ξ = [Q,Ev(X)] for some X ∈ R(n−m−1)×(m−1). Furthermore, a lifting ξ̂ of ξ is
given by ξ̂ = Q · Ev(X), as DΠΣ([Q,Ev(X)]) = Q · Ev(X), cf. (6.7). As for fixed ρ, the map
Q 7→ Q ·Qρ is linear, we obtain from Ψ̂(Q, t) = Q ·Qρ

D(Q,t)Ψ̂
(
ξ̂, 0
)

= Q · Ev(X) ·Qρ
(∗)
= Q ·Qρ · Ev(X),

where the equality (∗) follows from the fact that Qρ only acts on the first and the last columns
or rows. This implies via (7.16) and (6.7)

D(W,t)Ψ(ξ, 0) = [Q ·Qρ , π(Ev(X))] = [Q ·Qρ , Ev(X)] , (7.18)

where, as usual, π : Skewn → Skewn denotes the orthogonal projection.
As for the horizontal space, any element ζ ∈ T vWΣm is of the form ζ = [Q,Eh(a)] for some

a ∈ Rn−2, cf. (7.12). A lifting ζ̂ of ζ is given by ζ = Q · Êh(a), as

DΠΣ(ζ̂)
(6.7)
= [Q, π(Êh(a))]

(7.11)
= [Q,Eh(a)] = ζ.

We thus get from Ψ̂(Q, t) = Q ·Qρ

D(Q,t)Ψ̂
(
ζ̂, 0
)

= Q · Êh(a) ·Qρ = Q ·Qρ ·QTρ · Êh(a) ·Qρ.

This implies via (7.16) and (6.7)

D(W,t)Ψ(ζ, 0) =
[
Q ·Qρ , π

(
QTρ · Êh(a) ·Qρ

)]
. (7.19)

To finish the computation, note that we have for a, b ∈ Rn−2

QTρ ·

 0 −aT 0

a 0 −b
0 bT 0

 ·Qρ =

 0 −caT − sbT 0

ca+ sb 0 sa− cb
0 − saT + cbT 0

 , (7.20)
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where we use the abbreviations s := sin(ρ) and c := cos(ρ). Using the decompositions a =(
a1
a2

)
, b =

(
b1
b2

)
with a1, b1 ∈ Rm−1, a2, b2 ∈ Rn−m−1, we obtain

π

QTρ
 0 −aT 0

a 0 −b
0 bT 0

Qρ


(7.20)

=


0

−caT2 − sbT2 0

0 sa1 − cb1
ca2 + sb2 0

0
0 − saT1 + cbT1

 . (7.21)

Combining (7.21) with the formula in (7.19), we get an explicit formula for the derivative of Ψ
on the horizontal space.

To summarize the results from (7.17), (7.18), and (7.19), let us define Wρ := Π(Q · Qρ),
and set

T 1
Wρ

:= DΨ(0× R), T 2
Wρ

:= DΨ(T vWΣm × 0), T 3
Wρ

:= DΨ(T hWΣm × 0).

Recall the orthogonal decomposition Skewn = RN ⊕ imEv ⊕ imEh, cf. (7.10). This implies
the orthogonal decomposition

TWρ Grn,m = T 1
Wρ
⊕ T 2

Wρ
⊕ T 3

Wρ
.

Furthermore, the corresponding restrictions of DΨ yield a dilation by the factor (1 + t2)−1

between 0×R and T 1
Wρ

(cf. (7.17)), an isometry between T vWΣm× 0 and T 2
Wρ

(cf. (7.18)), and

a nontrivial linear map DΨ between T hWΣm × 0 and T 3
Wρ

(cf. (7.19), (7.21)). This implies

ndet(D(W,t)Ψ) = (1 + t2)−1 · | detDΨ|. (7.22)

We determine now | detDΨ|.
We consider the following commutative diagram defining the linear map µ : Rn−2 → Rn−2:

T hWΣm × 0 T 3
Wρ

Rn−2 R(m−1)+(n−m−1)

DΨ

β ◦ Eh β ◦ α

µ

,

where β : Skewn → T hWΣm, U 7→ [Q,U ], and α : Rn−2 → Skewn as defined in (7.8). As α, β
are isometries, we obtain

| detDΨ| = |det(β ◦ Eh)−1| · | detµ| = | detEh|−1 · | detµ| (7.13)
= detY (Wp)

−1 · | detµ|. (7.23)

As for the linear map µ, we obtain from (7.21) that µ has the transformation matrix(
cΛ1 − sIm−1 cΛ2

sΛ3 cIn−m−1 + sΛ4

)
, as

(
b1
b2

)
=

(
Λ1 Λ2

Λ3 Λ4

)
·
(
a1

a2

)
and(

cΛ1 − sIm−1 cΛ2

sΛ3 cIn−m−1 + sΛ4

)
·
(
a1

a2

)
=

(
−sa1 + cb1
ca2 + sb2

)
.
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Using that s
c = tan ρ = t and c = cos ρ = 1/

√
1 + t2, we obtain

detµ = det

(
cΛ1 − sIm−1 cΛ2

sΛ3 cIn−m−1 + sΛ4

)
= cn−2 · det

(
Λ1 + tIm−1 Λ2

−tΛ3 In−m−1 − tΛ4

)
= (1 + t2)−(n−2)/2 · chY (Wp,−t),

where the last equality is a consequence of (4.3). From (7.22) and (7.23) we thus get

ndet(D(W,t)Ψ) = (1 + t2)−1 · |detµ|
detY Wp

= (1 + t2)−n/2 · | chY (Wp,−t)|
detY Wp

,

which finishes the proof of Theorem 4.5. 2

A Averaging the twisted characteristic polynomial
↓

Recall the setting of Section 4.2. Let A ∈ Rk×k and ϕ : Rk → Rk, x 7→ Ax. Using the notation
ch`(A, t) = chY0(ϕ, t), where Y0 = R` × 0, we have

E
Y

[chY (ϕ, t)] = E
Q

[
ch`(Q

T AQ, t)
]
. (A.1)

(The reason is that QY0 ∈ Grk,` is uniform random when Q ∈ O(k) uniformly chosen at
random.) This equality allows to prove Theorem 4.4 with basic matrix calculus. The main ↑
idea is to use the multilinearity of the determinant and the invariance of the coefficients σi(A)
under similarity transformations, to show that the coefficients of E[ch`(Q

T AQ, t)] are linear
combinations of the σi(A). We then compute the coefficients of these linear combinations by
choosing for A scalar multiples of the identity matrix.

In the following, we use the notation [k] := {1, . . . , k}, and we denote by
(

[k]
i

)
the set of all

i-element subsets of [k]. For A ∈ Rk×k and J ∈
(

[k]
i

)
, we denote by pmJ(A) := det(AJ) the

Jth principal minor of A, where AJ denotes the submatrix of A obtained by selecting the rows
and columns of A whose indices lie in J . It is well-known (cf. for example [28, Thm. 1.2.12])
that σi(A) is the sum of all principal minors of A of size i, i.e.,

σi(A) =
∑

J∈([k]
i )

pmJ(A) . (A.2)

For 0 ≤ ` ≤ k, the `th leading principal minor lpm`(A) := pm[`](A) is defined as the principal
minor for J = [`]. Note that lpm`(A) = detR`×0(ϕ).

Lemma A.1. Let A ∈ Rk×k, and Q ∈ O(k) be chosen uniformly at random. Then, for all

J ∈
([k]
`

)
, we have

E
Q

[
pmJ(QTAQ)

]
= E

Q

[
lpm`(Q

TAQ)
]

=
1(
k
`

)σ`(A) .
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Proof. For the first equality let J = {j1, . . . , j`}, j1 < . . . < j`, and let π be any permutation
of [k] such that π(i) = ji for all i = 1, . . . , `. If Mπ denotes the permutation matrix correspond-
ing to π, i.e., Mπei = eπ(i), then AJ = (MT

π AMπ)[`], and therefore pmJ(A) = lpm`(M
T
π AMπ).

This implies

E
Q

[
pmJ(QTAQ)

]
= E

Q

[
lpm`(M

T
π Q

TAQMπ)
]

= E
Q

[
lpm`(Q

TAQ)
]
,

where we have used the fact that right multiplication by the fixed element Mπ leaves the
uniform distribution on O(k) invariant. This implies

E
Q

[
lpm`(Q

TAQ)
]

=
1(
k
`

) ∑
J∈([k]

` )

E
Q

[
pmJ(QTAQ)

]
=

1(
k
`

) · E
Q

[ ∑
J∈([k]

` )

pmJ(QTAQ)
]

(A.2)
=

1(
k
`

) · E
Q

[
σ`(Q

TAQ)
]

=
1(
k
`

)σ`(A) . 2

Proof of Theorem 4.4. The statement (4.4) follows from (A.1) and Lemma A.1.
For proving (4.5), we start with a general observation. By multilinearity, we write the

determinant of a matrix with columns v1, . . . , vi−1, vi + α · ei, vi+1, . . . , vn in the form

det(v1, . . . , vi−1, vi+α ·ei, vi+1, . . . , vn) = det(v1, . . . , vn)+α ·det(v1, . . . , vi−1, ei, vi+1, . . . , vn).

Using this repeatedly, we obtain

det(A+ diag(α1, . . . , αn)) =
∑
J⊆[k]

pmJ(A) ·
∏

i∈[k]\J

αi . (A.3)

By (4.3) we can express the twisted characteristic polynomial as

ch`(A, t) = tk−` · det(A+ diag(−t, . . . ,−t, 1/t, . . . , 1/t)) .

Applying (A.3), we expand this to obtain

ch`(A, t) =
∑
J⊆[k]

(−1)c1(J) · pmJ(A) · tc2(J) , (A.4)

where c1, c2 : 2[k] → N are some integer valued functions on the power set of [k]. Averaging
the twisted characteristic polynomial with the help of Lemma A.1 yields

E
Q

[
ch`(Q

TAQ, t)
]

=
∑
J⊆[k]

(−1)c1(J) · E
Q

[
pmJ(QTAQ)

]
· tc2(J)

=
∑
J⊆[k]

(−1)c1(J)(
k
|J |
) · σ|J |(A)tc2(J) =

k∑
i,j=0

d̃ij · σk−j(A) · tk−i ,

for some rational constants d̃ij . It remains to prove that the d̃ij coincide with the dij defined
in Theorem 4.4.
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λ

µ

j i

Figure 1: Illustration of the change of summation in (A.5) (k = 8, ` = 5).

To compute the d̃ij , we choose A = sIk. Then, ch`(sIk, t) = (s − t)` · (1 + st)k−`. Since

σk−j(sIk) =
(
k
j

)
sk−j , and QT sIkQ = sIk, we get

(s− t)` · (1 + st)k−` = ch`(sIk, t) = E
Q

[
ch`(Q

T sIkQ, t)
]

=
k∑

i,j=0

d̃ij

(
k

j

)
sk−jtk−i .

Let us expand the first term:

(s− t)` · (1 + st)k−` =

(∑̀
λ=0

(
`

λ

)
(−1)`−λsλt`−λ

)
·

k−∑̀
µ=0

(
k − `
µ

)
sµtµ


=
∑̀
λ=0

k−∑̀
µ=0

(−1)`−λ
(
`

λ

)(
k − `
µ

)
sλ+µt`−λ+µ (A.5)

i=k−`+λ−µ
j=k−λ−µ

=

k∑
i,j=0

i+j+`≡0
(mod 2)

(−1)
i−j
2
− `

2

(
`

i−j
2 + `

2

)(
k − `

k − i+j+`
2

)
sk−jtk−i,

where again we interpret
(
n
m

)
= 0 if m < 0 or m > n, i.e., the above summation over i, j

in fact only runs over the rectangle determined by the inequalities 0 ≤ i−j
2 + `

2 ≤ ` and

0 ≤ k − i+j+`
2 ≤ k − `. (See Figure 1 for an illustration of the change of summation.) Note

that the reverse substitution is given by λ = i−j+`
2 and µ = k − i+j+`

2 .
Comparing the coefficients of the above two expressions for (s − t)` · (1 + st)k−` reveals

that indeed d̃ij = dij as defined in Theorem 4.4. This completes the proof of (4.5)
For the last claim (4.6) in Theorem 4.4, we define the positive characteristic polynomial

ch+
` (A, t) = det

(
A1 + tI` A2

tA3 tA4 + Ik−`

)
by replacing −t by t in (4.3). By the same reasoning as for (A.4), we get

ch+
` (A, t) =

∑
J⊆[k]

pmJ(A) · tc2(J) , (A.6)

39



with the same function c2 : 2[k] → N as in (A.4). Moreover, by arguing as in the proof of (4.5)
before, we show that

E
Q

[
ch+
` (QTAQ, t)

]
=

k∑
i,j=0

|dij | · σk−j(A) · tk−i . (A.7)

Now assume that A is positive semidefinite. Then each of its principal minor is nonnegative,
i.e., pmJ(A) ≥ 0 for all J ⊆ [k]. Therefore, if t ≥ 0, we get from (A.4) and (A.6)∣∣∣ ch`(A, t)∣∣∣ =

∣∣∣ ∑
J⊆[k]

(−1)c1(J) · pmJ(A) · tc2(J)
∣∣∣ ≤ ∑

J⊆[k]

pmJ(A) · tc2(J) = ch+
` (A, t) .

Taking into account (A.7) completes the proof of Theorem 4.4. 2

B Proof of some technical estimations

Recall that the symbol is used to mark simple estimates, which are easily checked with a
computer algebra system.

Proof of Lemma 5.3. (1) We make a case distinction by the parity of `. Using Γ(x + 1) =
x · Γ(x), we get for odd `

Γ(m+`+1
2 )

Γ(m2 )
=

`−1
2∏

a=0

(m
2

+ a
)
≤ m

2
·
(
m+ `− 1

2

) `−1
2

≤
√
m

2
·
(
m+ `

2

) `
2

.

Using additionally Γ(x+ 1
2) <

√
x · Γ(x), we get for even `

Γ(m+`+1
2 )

Γ(m2 )
=

`
2
−1∏
a=0

(
m+ 1

2
+ a

)
·

Γ(m+1
2 )

Γ(m2 )
<

(
m+ `

2

) `
2

·
√
m

2
.

(2) As for the second estimate, we distinguish the cases i ≥ 2k and i ≤ 2k. From 0 ≤ k ≤
m− 1 and 0 ≤ i− k ≤ n−m− 1 we get

1 ≤ m− k + i− k ≤ n− 1 ,

1 ≤ n− (m− k + i− k) ≤ n− 1 .

For i ≥ 2k we thus get(
m+ i− 2k

n−m− i+ 2k

) i−2k
2

≤ (n− 1)
i−2k

2 < n
i
2 ,

and for i ≤ 2k

(
m+ i− 2k

n−m− i+ 2k

) i−2k
2

=

(
n−m+ 2k − i
m− 2k + i

) 2k−i
2

≤ (n− 1)
2k−i

2 < n
i
2 .
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(3) The I-functions have been estimated in [10, Lemma 2.2] in the following way. Let
ε := sin(α) = 1

t . For i < n− 2

In,n−2−i(α) =

∫ α

0
cos(ρ)n−2−i · sin(ρ)i dρ ≤ εi+1

i+ 1
,

and for i = n− 2, assuming n ≥ 3,

In,0(α) =

∫ α

0
sin(ρ)n−2 dρ ≤ On−1 · εn−1

2On−2
=

√
π

2
·

Γ(n−1
2 )

Γ(n2 )
· εn−1 <

√
π

2(n− 2)
· εn−1 .

With these estimates we get

n−2∑
i=0

(
n− 2

i

)
· n

i
2 · In,n−2−i(α)

≤
n−2∑
i=0

(
n− 2

i

)
· n

i
2 · ε

i+1

i+ 1
+

(√
π

2(n− 2)
− 1

n− 1

)
· εn−1 · n

n−2
2

< ε ·

(
n−2∑
i=0

(
n− 2

i

)
· n

i
2 · εi +

1.4√
n
· εn−2 · n

n−2
2

)

= ε ·

((
1 +
√
n · ε

)n−2
+ 1.4 · εn−2 · n

n−3
2

)
.

For ε < n−
3
2 we thus get

n−2∑
i=0

(
n− 2

i

)
· n

i
2 · In,n−2−i(α) < ε ·

((
1 +

1

n

)n−2

︸ ︷︷ ︸
<exp(1)

+1.4 · n
3
2
−n

)
< 3 · ε .

Similarly we derive

n−2∑
i=0

(
n− 2

i

)
· In,n−2−i(α) < ε ·

(
(1 + ε)n−2 +

1.4√
n
· εn−2

)
.

For ε < 1
m we thus get

n−2∑
i=0

(
n− 2

i

)
· In,n−2−i(α) < ε ·

((
1 +

1

m

)n−2

+
1.4√

n ·mn−2

)
< ε · exp

( n
m

)
. 2
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