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Abstract. Understanding brain structure and function entails the in-
clusion of anatomical and functional information in a common space, in
order to study how these different informations relate to each other in a
population of subjects. In this paper, we revisit the parcellation model
and explicitly combine anatomical features, i.e. a segmentation of the
cortex into gyri, with a functional information under the form of several
cortical maps, which are used to further subdivide the gyri into func-
tionally consistent regions. A probabilistic model is introduced, and the
parcellation model is estimated using a Variational Bayes approach. The
number of regions in the model is validated based on cross-validation. It
is found that about 250 patches of cortex can be delineated both in the
left and right hemisphere based on this procedure.

1 Introduction

One of the main goals in neuroimaging is to study the structure-function re-
lations across subjects in order to better understand and characterize brain re-
gions. Parcelling the cortical surface is a particularly intuitive approach, because
it explicitly segments the cortex modules with an anatomical and functional def-
inition that is consistent at the population level.

Anatomical parcellation approaches typically define a coordinate system on
the cortical surface that represents the position of the main anatomical features
(identified sulci, curvature), and maps the cortex to a sphere [1,2]. Then the
cortical maps are further segmented into gyri, which are defined with respect to
the main sulci of the brain [3], or directly in the sulcus-based coordinate system
[4]. Although the selection and nomenclature of the gyri may vary across pub-
lications and softwares, the advantage of these approaches is that they provide
a relatively standard division of the cortex into regions; still this description is
quite coarse (30 to 60 regions), which limits its usefulness for defining functional
modules.

In order to more finely delineate cortical regions, functional information, ob-
tained using e.g. functional Magnetic Resonance Imaging (fMRI) data, provides
further insights, and can easily be compared across subjects. A few approaches
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have been proposed to identify reproducible functional activity areas among a
group of subjects. A method based on replicator dynamics was introduced [5] to
subdivide a pre-defined cortical region; coherent subdivisions were found across
subjects. In [6] a method based on spectral clustering performed the delineation
of homogeneous and connected regions which had similar position and functional
activity across subjects. Finally, a clustering of fMRI time courses was performed
in [7] to obtain subdivisions of the cortex. This provides a relatively coarse but
prior free and consistent parcellation of the cortex based on fMRI data only.
These approaches usually do not consider the anatomical information related
to the data or simply reduce it to the three-dimensional coordinate systems.
By contrast, it is important for interpretation purposes to relate functional in-
formation to anatomical structures [8,9]. Moreover, these approaches have not
addressed the question of model selection.

In this study, we propose a novel approach to combine anatomical parcellation
of the data into gyri and functional informations that further refines the par-
cellation. The final parcellation procedure is cast into a probabilistic framework
and the parameters of the model are identified using a Variational Bayes ap-
proach similar to [10]. Finally, cross-validation procedures are used to optimize
the number of components as in [11]. Starting from 47 initial anatomical parcels
(gyri), 254 and 229 anatomo-functional parcels are found in the left and right
hemisphere respectively in our dataset of 25 subjects.

2 Materials and Methods

2.1 Data Description and Pre-processing

Data was acquired from 25 subjects who performed a functional localizer pro-
tocol as described in [12]. The Brainvisa package was used to segment different
anatomical compartments from the T1 image of the brain of each subject, pro-
viding white and gray matter mesh, and segmenting the sulci [13]. This sequence
of treatments was applied systematically to all available brains and the quality
of resulting segmentation was checked and in some cases corrected to solve inter-
subject inconsistencies. Next, we used the method described in [2] to obtain a
surface-based coordinate system that takes into account the main sulci, and the
methods described in [4] to subdivide the cortical surface into gyri. The coordi-
nate system maps the cortex onto a sphere, and will thus be denoted as (θ, φ).

For all subjects a standard preprocessing of fMRI data (distortion correc-
tion, correction of differences in slice timing, motion correction and anatomo-
functional co-registration) was performed using the SPM5 software. Functional
images were then projected onto the gray/white interface using the method de-
scribed in [14]. Subsequently, on each functional dataset a GLM analysis was
carried out to obtain task-related activity maps for different contrasts of ex-
perimental conditions. In this work we are using nf = 4 contrasts: i) left versus
right button presses, ii) sentence listening versus sentence reading, iii) computa-
tion versus reading iv) reading versus passive checkerboard viewing. A schematic
flowchart of this processing sequence is shown in fig. 1 A.
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Fig. 1. Flowchart of the method. The part labeled A shows steps of pre-treatments up
to GLM and global parametrization of the cortical surface. In part B sub-division into
patches is obtained by probabilistic clustering algorithm.

2.2 Local Coordinates and Distances

In this section we derive a coordinate system adapted to the representation of
a gyrus which closely approximates the spherical coordinate system that de-
scribes cortical topography. Let (θ, φ) be this system of spherical coordinates.
The distance between two nodes p1(θ1, φ1) and p2(θ2, φ2) is given by:

dS(p1, p2) = arccos{cos(θ1 − θ2) + (cos(φ1 − φ2)− 1) sin(θ1) sin(θ2)} (1)

Since it is convenient to work neither with this non-Euclidean metric nor
with three-dimensional coordinates, we create a new local coordinate system
that respects the relation (1), by using a multi-dimensional scaling algorithm:
Given a matrix DS of squared distances between any pairs of points on a gyrus,
we find the two-dimensional embedding x = (x1, x2) that minimally distorts DS

in the least-square sense: x = argminχ∈G2‖D̄S−χT χ‖2, where D̄S is the matrix
DS after centering, and G2 is the set of two-dimensional functions defined on
the gyrus. The solution is simply provided by a singular value decomposition
of DS , because the gyrus has a trivial topology. Importantly, this computation
can be done across subjects, so that all the subjects are finally in the same local
coordinate system, which is quasi isometric to the spherical coordinate system.

2.3 Probabilistic Parcellation of the Data

A probabilistic clustering algorithm is used to parcel the data into functionally
homogeneous and spatially coherent regions (flowchart shown in fig. 1 B). This
algorithm is based on a Bayesian formulation of the problem and the estimation
rests on a Variational Bayes approximation similar to [10]. Let {xi}i=1..I be a
set of 2D coordinates that represent the position of cortical sites, and let Y =
{yi}i=1..I be nf -dimensional vectors that represent the functional activity related
to these sites. Let K > 0 be the number of components of the probabilistic model
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and let (wik)i=1..I,k=1..K denote the prior probability that the site i belongs to
component k ∈ [1..K]. Let Θ = (θk)k=1..K be the set of parameters of the
normal densities that represent the functional information related to the classes.
The likelihood of the observation is thus

p(Y |Θ) =
I∏

i=1

(
K∑

k=1

wikN (yi|θk)

)
, (2)

which would be a standard Gaussian Mixture Model if the loadings wik were
functions of k only. Here wik are a function of xi, a constant scalar γ, and a set
of two-dimensional coordinates T = (τk)k=1..K that describe the position of the
clusters on the cortex, which are given a Gaussian prior:

wik(xi, T ) =
exp(− ‖xi−τk‖2

2γ2 )
∑K

l=1 exp(− ‖xi−τl‖2

2γ2 )
(3)

p(T ) =
K∏

k=1

N (τk; u0
k, Λ0) (4)

The posterior of the parameters is thus

p(Θ, T |, Y ) =
I∏

i=1

(
K∑

k=1

wik(xi, T )N (yi|θk)

)
p(Θ)p(T ) (5)

As in [10], we use an empirical Bayes approach where the spatial and functional
parameters are treated independently and a point estimate of Θ is used instead
of its full density. We now proceed with the estimation of the posterior p(T |Y, Θ),
which is the complex part of the problem; to simplify notations, the dependence
on Θ will be omitted. The complex dependence of the posterior on T prevents
straightforward estimation of the parameters, hence we use a variational Bayes
(VB) approximation. The VB approach relies on the observation that

log p(Y ) = F + KL =
∫

q(T |Y ) log
p(Y, T )
q(T |Y )

dT +
∫

q(T |Y ) log
q(T |Y )
p(T |Y )

dT (6)

where F stands for the variational free energy and KL is the Kullback-Leibler
divergence between the approximate and the true posterior and q(T |Y ) is called
the variational density. The minimization of KL is thus equivalent to the maxi-
mization of F . As a classical approximation, the positions τk are assumed to be
jointly independent and normally distributed.

q(T |Y ) =
K∏

k=1

N (τk; uk, Λk) (7)

The maximization of the free energy of the probabilistic model with respect
to the variables τk yields

q(τk|Y ) = exp
(
〈log (p(T , Y |γ))〉q(τl|Y ),l �=k

)
(8)
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Due to its complex dependence on T , the joint distribution log(p(T , Y )) =
log (p(T )) + log (p(Y |T )) is approximated using a second-order Taylor expan-
sion of − log (p(Y |T )) around its mode:

− log (p(Y |T )) = f(T ) ≈ f(u) + (T − u)T h +
1
2
(T − u)T J(T − u) (9)

where f represents the dependence of the model on T implied by Eqs. (2,3), h
and J represent the gradient and Hessian of f , and are derived from Eq. (2).
Given this approximation, it is possible to perform the update in Eq. (8). After
some algebra, the update rules of the parameters in Eq. (7) are (at iteration j):

Λ
(j)
k ← (Λ−1

0 + J−1
k,k)−1, u

(j)
k ← Λ

(j)
k

(
Λ−1

0 u0
k + J−1

k,ku
(j−1)
k − hk

)
(10)

where Jk,k is the sub-matrix of J related to τk and hk is the kth component of
the gradient h. Using a standard empirical Bayes approach, the parameters of
the classes Θ are optimized using the current estimate of T (this is simply the M-
step of an EM algorithm), Θ = argmaxθ p(Y |θ, T ), see Eq. (2). The estimations
of T and Θ are alternated. Finally, the prior mean and variance on the position
((u0

k)k∈[1..K], Λ0) are obtained through an initial clustering of the data that does
not take into account the functional information.

2.4 Optimizing the Model

Two main parameters of the model need to be optimized, namely K, which
represents the number of components needed in the mixture model, and γ, which
controls the strength of the spatial information (see Eq. (3)). In order to have an
interpretable procedure, and to avoid any confounding effect of the choice of the
prior parameters, we proceed by cross-validation on the subjects data: For each
subject s ∈ {1, .., S}, we estimate the parameters (T , Θ) by pulling the data
from all the subjects of the cohort but s, and then assess the goodness of fit of
the resulting model on the data of s using Eq. (2). We do so for various choices of
K and γ and select the best one according the maximal average cross-validated
likelihood criterion. Let K� be the best value for K.

We noticed that the dependence on γ -at least within a reasonable range of
values- is not dramatic i.e. it is smooth and has a mild impact on K�, so that
the results on the optimality of K� are not artefactual in that sense.

3 Results

To test our algorithm, we simulated different sets of five constant patches added
with noise, within a square region, with a learning and a test set. γ and K� were
optimized using our method and the algorithm used in [11]. This was repeated
100 times. Row A in fig. 2 shows i) a typical input of the simulation experiment,
ii) a typical and approximately correct partition into five regions, iii) the values
of K� across 100 simulations, the corresponding values of K� with the algorithm
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Fig. 2. A Validation of our approach on simulated data: i) example of a simulated
dataset ii) resulting parcellation iii) histogram of K� for 100 random draws iv) idem
with the method of [11]. B Sub-division on the frontal-ventral gyrus. Two larges patches
have characteristic limit on the crest of the gyrus. C Pattern of patches on the opercular
section of the Broca’s area. In these five subjects, the relative position of the regions
is remarkably stable. D Functional information related to the different parcels of C.
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[11]. Our algorithm finds much more frequently the correct solution than the
other, which typically overestimates K.

Using a maximum a posteriori partition of the data, the individual meshes
can be labelled according to the spatial model. The resulting parcels are clearly
interpretable through both the gyrus that contains them and the functional
activity that characterizes the parcel.

The parcellation is also geometrically consistent across subjects: On the frontal-
ventral gyrus (in fig. 2 B) we identify the border between two large patches clearly
on the crest of the gyrus and the small third patch is always on the same end of the
gyrus. On the opercular section of the Broca’s area (fig. 2 C), four distinct patches
are positioned in the same patchwork pattern, and are characterized functionally
in fig 2. For instance, subregion 4 has a more asymmetric activity in the motor task,
and is more involved in the auditory task, while subregion 2 is more involved in
the computation task, and minimally involved in reading and listening sentences;
subregions 1 and 3 have intermediate behaviour between these two cases. Alto-
gether, the number of regions found in the model is 254 in the left cortex and 229
in the right cortex.

4 Discussion

We have shown that by combining anatomical and functional information on the
cortical surface it is possible to identify the structure of the brain anatomo-
functional partitioning on three hierarchical levels: Lobe⇒ Gyrus⇒ Functional
patch/region.With respect to previous anatomo-functional parcellation [5,6,7,11],
this clarifies the definition of the entities found by this approach. The last level di-
vision is provided by functional data, which means that the parcellationultimately
describes some local gradient of functional information within a given anatomical
gyrus. This approach is intended to provide useful insights in the organisation of
brain functional topography. A related observation is that in most of the cases the
limits between patches occur at the crest line of the gyri (typically on the top of
the gyri). Deciding whether this is an intrinsic feature of functional anatomy or an
effect of functional data projection deserves further investigation.

Ultimately, the optimal number of subdivisions per gyri is related to the across-
subjects consistency of the functional features used to perform the subdivision,
hence functional variability at the population-level. A compromise is thus found
between a large number of small parcels that do not generalize well across sub-
jects, and a coarse parcellation into a few subregions that is not sufficient to de-
scribe the available functional information. Based on 25 subjects, our algorithm
provided a subdivision into 254 regions on the left hemisphere, and 229 on the right
hemisphere. It is comparable, and somewhat finer than what was found using 3D
parcellation [11] (about 500 regions for the entire brain). However, the present
approach is based on a more appropriate probabilistic model, and the former did
not use explicit anatomical information. Moreover, the number of regions clearly
depends on the available functional information, and will probably be further re-
fined in the future. These results also depends strongly on the correction of the EPI
distortion and precise anatomo-functional co-registration. Misfits shift functional
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data in individual subjects and might introduce significant bias. Interestingly, the
left/right asymmetry in this number indicates that more information is available
to segment brain regions in the left hemisphere, which coincides with the fact that
reading is known to yield a much wider activation network on the left cortex in
average. Future improvements of the method include a hierarchical model for the
functional information related to the components in Eq. (2), which will better ac-
count for the inter-individual variability. Moreover, some simplifying hypotheses
in our estimation procedure may be bypassed in the future.

Accumulating knowledge on the spatial localization of functional activity in
various experimental contexts is an important challenge for neuroimaging. In
this work we have merged different functional and anatomical informations into
a coherent probabilistic framework and inferred an optimized parcellation of the
cortex, which could thus be a basis for future anatomo-functional atlases.
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