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PROBABILISTIC AND DETERMINISTIC AVYERAGING
BY
N . H. BINGHAM AND CHARLES M. GOLDIE

ABSTRACT. Let {S,} be a random walk whose step distribution has positive mean p
and an absolutely continuous component. For any bounded measurable function f,
a Marcinkiewicz-Zygmund strong law in an r-quick version (a ‘Lai strong law’) is
proved for f(S,), assuming existence of a suitable higher moment of the step
distribution. This is extended to show n™ {2} AS;) — A w) dt} >0 (r-
quickly). These results remain true when the step distribution is lattice, provided f
is constant between lattice points. Certain intermediate results on renewal theory,
mixing, local limit theory, ladder height, and a strong law of Lai for mixing random
variables are of independent interest.

1. Introduction. Let X, X,, ... be independent identically distributed random
variables on some probability space (2, ¥, P), and write F, u, o for the distribu-
tion function, mean and variance of X,. Setting S, = X, + - - - +X,, S, =0, we
write P, P, for the laws of X, S,. One of the following assumptions, familiar in
the context of local limit theorems and decompositions of renewal measures, will
always be in force:

(LLT-I) Some %, has an absolutely continuous component.

(LLT-I') ¢ has an absolutely continuous component.

(LLT-II) @ is supported by the integers Z, and is not supported by any ideal kZ,
k> 1

Our results in the LLT-II case may be re-expressed for any lattice law &, by
suitable change of location and scale.

Throughout, let f be a real-valued bounded measurable function: sup|f(-)| < M.
Our concern is to link the limiting behaviour of f and f(S,). When LLT-II is in
force (S, supported by the integers), clearly f(S,) can be compared only with values
of f at integer points, and so we assume for that case without further comment that
fis constant on each interval [k, k + 1), & € Z. Using that convention, the strong
law for f(S,) given by Meilijson [30] may be stated as follows.

THEOREM A. Assume 0 < p < oo. Assume LLT-1 or LLT-11. Then

(1.1) n_’{ kél (S —j(;nf(p.x) dx} -0 a.s.
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454 N. H. BINGHAM AND C. M. GOLDIE

(In fact [30] assumes LLT-I' rather than LLT-I, but the proof extends to LLT-I
without trouble. For an alternative proof of the lattice case see Berbee [3, Proposi-
tion 6.2].) '

In this paper we extend Theorem A under extra moment conditions, proving a
Marcinkiewicz-Zygmund law by replacing n~' by n~?, for suitable a >3, in (1.1),
and strengthening the mode of convergence to the ‘r-quick’ convergence of
Strassen [44]. Our results are thus ‘r-quick versions of Marcinkiewicz-Zygmund
strong laws’, in the terminology of Lai’s important paper [27], one of whose results
we extend. In honour of [27] we put forward ‘Lai strong laws’ as an appropriate
and more concise label.

Recall ([44], [26]) that a sequence of random variables U, is said to tend to zero
r-quickly (r > 0) if for each ¢ > 0 the random variable sup{n > 1: |U,| > €} has
finite rth moment (by convention, sup & = 0). Such convergence implies a.s.
convergence. Define x* := max(x, 0), x~ = -min(x, 0).

THEOREM 1 (LAI STRONG LAW). Assume
(i) LLT-I' or LLT-11 holds;
() p >0, E{(X;*)} < oo for some | > 2, E{(X; )} < oo for some A > 2.
Choose a > max(3, (! — 1)), and then r such that
0 <r <min{(a -5\ a(l—1)—1}.
Then

(12) n—“él (A(S,) — Ef(S,)} >0, r-quickly.

Note the trade-off between the values of « and r; the smaller a, the stronger the
statement that n~°Z7 { (S,) — Ef(S,)} — 0, but then the smaller », and the
weaker the mode of convergence. The value a = 1 is always available. In the
nonlattice case the slight extra restriction of LLT-I’ is needed for technical reasons
(see §2.7). When F(0 + ) = 0, that is, X; > 0 a.s., condition LLT-I suffices.

THEOREM 2 (CONVERGENCE OF FIRST MOMENTS). Assume

(i) LLT-I or LLT-II;

(i) p > 0, E{]X,[**°} < oo for some § satisfying 0 <8 < 1.
Then for each € > 0,

(1.3) n! i Ef(S,) - n_lfnf(px) dx = o(n=%?*%), n—> .
k=1 0

Combining Theorems 1 and 2 we have

THEOREM 2’ (r-QUICK EQUICONVERGENCE). Assume

(1) LLT-I" or LLT-II;

(i) p > 0, and E{(X;*)} < o0, E{(X," "} < o0 for some | >2,\ > 2.
Choose « such that a > max(3, 2 — 3/, 2 — 3A) and then r such that 0 <r <
min{(a — A, a(/ — 1) — 1}. Then

(1.4) n_"[ é f(S,) — fnf(,u.x) dx} —0, r-quickly.
k=1 0
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PROBABILISTIC AND DETERMINISTIC AVERAGING 455

In the important special case when E(|X,|’) < co the parameter ranges in
Theorems 1 and 2’ reduce to « >%, 0<r<2a-—1.

We write

D fx)y—>c(C)asx—c
for the assertion that f converges to ¢ under the Cesaro summability method of
order 1. Probabilistic analogues of (I) are

(D) n~'ZY EAS,) — ¢

(1) n 7137 f(S,) — ¢ in probability;

V) n~'STAS,) > c as,;

V) n 12} A(S,) — ¢, r-quickly.
As f is bounded, I is equivalent to

n [ )y dx = () [ f) b e (neZ > w),
0 0

and hence (I) is equivalent to (IV) by Theorem A, if the conditions hold.
Integrating (1.1) gives the equivalence of (I) and (II), and then (III) is equivalent to
these assertions because (IV) implies (III) implies (II). We are led to the following
corollary of Theorems A and 1.

COROLLARY 1.1. Assume (1) LLT-I' or LLT-II; (ii) 0 < p < 0. Then (), (I1), (III)
and (IV) are equivalent. If, in addition, E(X,|**°) < oo for some § > O then, for
every r satisfying 0 < r < min(l + %8, 8), (V) is equivalent to (I)—(IV).

The behaviour of f(S,) when p = 0 or when no assumption is made about the
existence of p can be quite different from the above. For the latter case see
Meilijson [30, Result 2]). The u = 0 case is reviewed in §5.6 below. Pursuing the
g > 0 case further, it is natural to ask whether versions of the CLT (central limit
theorem) and LIL (law of the iterated logarithm) can be obtained. We leave these
questions open in the general case. In the special case & exponential ({S,}
Poisson) we give some results of this type below, but even here the results are less
clearcut than those above.

The proof of Theorem 1, which is lengthy, follows in §2; this is divided into
§2.1-§2.8 for convenience. The proofs of Theorems 2 and 2’ constitute §3. The
CLT and LIL for the Poisson case are discussed in §4. Various complements are in
§5.

The other principal results are

Theorem 3a, b (r-quick convergence in renewal theory),

Theorem 4 (strong mixing of backward recurrence times),

Theorem 5 (Lai strong law for uniformly bounded strong-mixing random varia-
bles),

Theorem 6 (absolute continuity of distribution of ladder height).

All these are in §2. In §3 the intermediate results are local limit theorems in
variation-norm terms, which may also be of independent interest.

A word on format: whereas theorems have global (consecutive) numberings as
above, lemmas, propositions, formulas etc. have local (decimal) numbering, by
section or subsection.
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456 N. H. BINGHAM AND C. M. GOLDIE

2. Proof of Theorem 1.

2.1. Outline and notation. Because of the length of the proof, we pause to describe
the method.

(a) In §2.8 we use ladder methods to reduce the general case to the ‘renewal-the-
oretic’ case where F(0 + ) = 0 (X, > 0 a.s.). When & has an absolutely continuous
component we need the ladder-height distributions to have the same property
(82.7). To preserve r-quickness, we use a result of Gut [17] on finiteness of
moments of ladder-heights and epochs, and a Lai strong law for certain martingale
difference sequences (§2.2).

(b) §§2.3-2.6 are aimed at proving the special case of Theorem 1 in which
F(0 + ) = 0. Under this assumption, S, increases and ¥, = max{n: S, <t} isa
renewal process. Write Y, = 2,  _;.n f(S)). Then the results of §2.3 on r-quick
convergence for renewal processes are used to show (1.1) equivalent to

n
n~*> (Y, — EY,) >0, r-quickly.
1

Setting ¥, = o{N,: 0 < u < ¢}, the results of §2.2 show that this is equivalent to

n
n=* X {E(Y|%_,) — EY,} -0, r-quickly.
1

Let B, .= t — S(&,) be the spent lifetime (backward recurrence time) at time ¢ > 0.
We show that the above can be rewritten as n™ *27 { g (B, _) — Eg(B;_,)} -0
r-quickly for certain uniformly bounded nonrandom functions g,.

(c) In §2.4 we prove that { B, } is strong-mixing (in the sense of Rosenblatt [37]),
whence so is { g,(B;_,)}. In §2.5 we prove a Lai strong law for uniformly bounded
strong-mixing (but not necessarily stationary) sequences of random variables.
Combining these results, the proof when F(0 + ) = 0 is completed in §2.6.

(d) We note that {S,} itself cannot be strong-mixing, a counterexample being
given in §5.2. It is this which necessitates the renewal-theoretic route outlined
above, so as to be able to exploit the key Theorem 5 (below).

To avoid complicated suffices we shall, for a stochastic process Z, change at will
between notations such as Z(¢), Z,.

2.2. Lemmas on r-quick convergence.

Lemma 2.2.1. If U, -0, r-quickly, and U, — 0, r'-quickly, then U, + U, — 0,
(r N\ r')-quickly.

We leave the proof as an exercise.
LeEMMA 2.2.2. For r > 0, U, — 0, r-quickly if and only if
o0
f t"lP(sup |U,| > e) dt < oo foralle >0.
0 k>t

PRrOOF. See Lai [27, Lemma 4], Chow and Lai [9, p. 63].

LEMMA 2.2.3. Assume the martingale difference sequence {£,} satisfies E(|§,") <
M,n=12, ..., where M and v > 2 are constants. Then for every a, r satisfying
a>3,0<r<(a— 3w n 2] -0, r-quickly.
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PROBABILISTIC AND DETERMINISTIC AVERAGING 457
ProoF. For some constant K = K,
n
E(lz gkly) < Kn”/2’ n= 1’ 2’ L]
1

by orthogonality for » = 2 and by [43, Theorem 3.7.8(i)] for » > 2. Then

k k v
P( max [ & 2§ > (E”a)v)
k=1,...,n | 1

=1,..., n

> en"‘) = P( max
k=1

< (e "E(1S) 51 )

by Doob’s inequality [15, p. 314}, since |27 £|” is a nonnegative L, submartingale.
Thus

>

The result follows by [27, Lemma 4].

2.3. Renewal theory. Assume F(0 + ) = 0 throughout this subsection. Defining N,
as in §2.1, and extending the definition of r-quick convergence to a continuous
time parameter in the obvious way, we consider the r-quick convergence to zero of
t7 N, fora > 1,0or t=*(N, — t/p), for a < 1. In the former case much more than
r-quick convergence is true, without conditions:

g

o0 o0
> n’_lP(k max > en“) <3 n""Yen*)"Kn*/? < o0.
ne=1 = 1

THEOREM 3a. For each a > 1, € > O the random variable
T, =sup{t>0:17*N, > ¢}
has tail behaviour
(2.3.1) P(T,, >1) <ae™®, allt >0,

Jfor some positive constants a(«a, €), b(a, €). Hence t~*N, — O r-quickly for every r.

PROOF. Let [-] denote integer part. On the event {7,, > ¢} we have N, > eu® for
some u > t; hence S(eu®] + 1) < u and so S, < (k/¢)'/* where k = [eu®] + 1 >
et®. We truncate as follows. Define m = E(X, A1), X, =2m — (X, A1), S, =
X{+ -+ +X,. Then

n

2nm — S, = min(X,,1)<S,, n=12....

1
Hence, still on the event {T,, > ¢}, we have for some k > e* that S; > 2mk —
(k/¢€)'/*, and the latter will be at least km provided ¢t > (em)~ /=D, So for all
such ¢,
(2.32) P(T,, > 1) < P(S; > mk forsome k >et*) < 2 P(S{ > mk).

k>et®

Because the X, are i.i.d. with |X;| < 1, EX] = 0, we may use Prohorov’s exponen-
tial bound. Set v = var X|. By [43, Theorem 5.2.2(ii)],

P(S; > mn) < exp{ —;mn arcsinh(3m/v)} = e,
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458 N. H. BINGHAM AND C. M. GOLDIE

where K > 0 since m > 0. From (2.3.2),
P(T,, > 1) < (1 - e ®) lexp{ —K([er*] + 1)}
< (1 — e %) exp(— Ket®),

as required. The constant @ can be adjusted so that (2.3.1) applies also for
t < (em)” /@D,

THEOREM 3b. Let m, a, I be any constants satisfying %< a<l,la>1,m>0.
Then

(2.3.3) t=%(N, —t/m)—>0, (la — 1)-quickly as t - o
if and only if
(2.34) E(X{) < o0 and EX,=m.

PrOOF. By Lemma 2.2.2, (2.3.3) is equivalent to
[eo]
(2.3.5) f u""zP(sup {T%N, —t/m| > e) du < oo, alle > 0.
0 tou
By Theorem 3 of Baum and Katz[1], (2.3.4) is equivalent to
o0
(2.3.6) [ u'=2p(sup k|S, — km| > ¢) du < o0, alle > 0.
0 k>u
By suitable rescaling, we may assume without loss of generality that m in (2.3.5)
and (2.3.6) is 1, lattice considerations being irrelevant here. To prove (2.3.5) and
(2.3.6) equivalent, the same proof works in each direction. This is because {N,}
and {S,} are essentially inverses of each other: S, =sup{s: N, <n}, N, =
max{n: S, < t}, and there are only minor complications because of the step-func-
tion nature of the sample paths. We therefore prove only that (2.3.6) implies (2.3.5).
Fix ¢ > 0. Then
o0
f u’“‘zP(sup 7N, — 1| > e) du
0

tru

(2.37) < f°° w'e=2P(sup |¢~IN, — 1| >1) du
0

tou

[o o]
+f u’“‘zP(sup t~%|N, — t| > & sup |t7'N, — 1] <%) du.
0

tou topu
If 1~ N, > 3/2 then S(37/2] + 1) < t and so S, < 2k/3 where k = [31/2] + 1 >
3u/2. On the other hand if r~'N, <1 then Sit/214+1 > tand so S > 2(k — 1) where
k =[31] + 1 >;u. In this case we further have S, > 4k /3 so long asu > 6. So

[~}
f u"’“zP(sup [t7IN, — 1| >%) du
0

tou

6 o0
<f u""2 gy +f u’“‘ZP( sup k7 YS, — k| > %) du
0 0 k>u/2

oo

<6V (la — 1) + 2’“"[ u"""zP( sup k7S, — k| > %) du
0 k>u

<61/ (la = 1) + 2’ﬂ—'f

0
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PROBABILISTIC AND DETERMINISTIC AVERAGING 459

by (2.3.6) (with m = 1). As for the other term on the right of (2.3.7), if v %|N,, — v
> for some v > u and |t ~'N, — 1} <3 for all # > u then |N, — v| > &(3)*NZ and
N, > ju. Setting k = N, we find S, < v < S;,, so that one of the inequalities

|k = Sl > e(2)°k% |k — Sy} > e(3) ke
must hold. Also k > N, > 1u. Thus
f ule= 2P(supt “IN, — t| > ¢, sup [eoIN, — 1) <2 )
0

t>u

" uk-2p k=olk - S| > 3“)
<f (ki‘ff;z k= 5.1 > o3)") a

+j; ule= 2P(ks:‘;;2 k=% k — Sl > e(2)° )du

= 2Ia—l *® ula—ZP( sup k'_] k— S| >¢ 2 a) du
j(; sup | %l (3)
0 [:3
+21a—1f ula—ZP( sup K™%k — S, 4| > 8(%) )du'
0 k>u

By (2.3.6) the first term on the right above is finite, and the second term also by
trivial modifications. Thus everything in (2.3.7) is finite, which gives (2.3.5).

2.4, Strong mixing of backward recurrence times. Again F(0 + ) = 0 is assumed
throughout this subsection. Analogously to the backward recurrence time B, =
— S(V,) we write F, .= S(N, + 1) — ¢ (¢t > 0) for the forward recurrence time or
remaining lifetime.

A sequence of random variables {U,} is called (Rosenblatt) strong mixing with
mixing coefficients pd0 if for m, n=0,1,...,C€0o(lUy...,U,) D€
0( m+n m+n+l’ e ),

(24.1) |P(C 0 D) — P(C)P(D)| < p

THEOREM 4. Assume LLT-1 or LLT-1I, and suppose E(X}) < oo for some | > 2.
Then { B,} is strong mixing, with mixing coefficients p, = O(n~¢~D),

Our proof depends on the following lemma.

LEMMA 2.4.1. Under the conditions of Theorem 4, there exists a constant ¢ such

that, for all m,n =0,1,..., D € 6(B,.» Bpynsr---) x €10, 3n] (with x an
integer in the lattice case),
(242) |P(D|F,, = x) — P(D)| < cn™ 7D,

Proor. First assume LLT-1. Write %, B> for the Borel o-fields in R, R®. Then
(243) D = {w ( +n(w) Bm+n+1(w) . ) € DO}
for some D® € B>, The transition probablhty

o>y, E) = P(( itnt 1> Branaz o) € EIBm+n = y)’

(244) y>0,E € B,
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460 N. H. BINGHAM AND C. M. GOLDIE

is well defined. Write U = £ F® for the renewal function, A(x) == 1 — F(x) for
the tail of F. Given F, = x < n, the conditional distribution of B, , is just the

unconditional distribution of B, _ ; hence (see e.g. [35, p. 168])

n

(245) P(B,,, € E|F, = x) =f FO)Un—x—d), EE€B,x<n
E

The sequence {By, ..., B,, F,., B, .. Bysn+1> - - - } is Markovian, whence
(246) P(D|F, = x) = ff O(y, d)F())U(n — x — &), x<n.
{(v,z)eD®}
We define
(24.7) PD%= | Oy, W F(y)u™' &
{(». D%}

(the integral of (2.4.4) with respect to the stationary distribution of {B,,,,}). Now
use the decomposition of the renewal measure in Stone [42]: thus U = U, + U,
where U, is a finite measure with finite [/]th order moment pf;;, and U, has a
continuous density p satisfying p(x) = 1/u + r(x)/u? + o(x "l as x — oo, where
r(x) = [ (y — x)F(dy) for x > 0. Since E(X') < o0,

r(x) < fwyp(dy) < x—(/—l)fxwy/F(@) = o(x~U-D),

So p(x) = 1/ + o(x~Y~Y). In our case U vanishes on (— oo, 0), so we may take
Uy(— o0, 0) = 0 and set :

(2.4.8) p(x) =1/p + q(x), x ER,
where
(2.4.9) g(x)=-1/p (x<0), x"7lg(x) 50 (x> o0).

Fix x € [0, 1 n]. From (2.4.6)-(2.4.8),
P(D|F, = x) — P(D°)

24.10 B
( ) =ff _ Q(y, dZ)F(y){Uz(n—x—d);)+q(n_ x___y) dy}
{(»,»€D%}

Write i, = E(X)):
0< ff{(y, 7)€DY O EFOIUn = x = &) <f0 Lw
=f0n F(y)Uyn — x — &)
(2.4.11) gfnﬂ Uz(n—x~ajl)+f(n/4)fn_x Uyfn — x — &)
0 n/4

< Uy[n/4, ) + f(n/4)U2[0, )

< (4/")[”#’[11 + (4/”)1H1U2[0, ).
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PROBABILISTIC AND DETERMINISTIC AVERAGING 461

On the other hand, writing ¢, = sup,~q |t'7'q(¢)|, ¢, := sup,cg |g(?)|, both finite
by (2.4.9) and continuity,

ff Oy, da)F(y)g(n — x — y) dy
{(»»»€ D%}

<J T FO)lan — x — ) &
<f " E(p)@/m) T (n = x — y)a(n — x — y)| dy
(24.12) + 7 FOla(n —x ~ )l &
n/4
-1 n/4 = ©
< (4/n)"'q fo Fy) & + g fn WO
<@/n"qon+a, [ (x = n/4)F(dx)
n/4

< (@4/n) 'gon + 4/n) ' ug,.
From (2.4.10)-(2.4.12), we thus have
(2.4.13) |P(D|F,, = x) — P(D%| <ic'n ¢V

for some constant ¢’. Now
(2.4.14) P(B,,,, € E) =f FO))WUm+n—d), EE€B,
E

so from (24.4), P(D) = [[(,, neps L0 dz)F(y)U(m + n — dy), which is the
same as the result of formally replacing n — x by m + n on the right of (2.4.6). The
steps from (2.4.6) to (2.4.13) may be repeated for (2.4.14), whence

|P(D) — P(D%)| <3c’'n~ U1,

Using (2.4.13), the proof of (2.4.2) is complete under LLT-I.

The lattice case is similar but simpler. Take x, y integers and replace dy in (2.4.7)
by counting measure. For the renewal sequence u, = U({n}) (n =0, 1,...), use
u, = 1/p + o(n"Y"") (Stone [41], Karlin [23]) in place of the Stone decomposition
above.

ProOF OF THEOREM 4. Take cases LLT-I1/1I together. Denote by C, the event
CN{F,<3n}, and let C°€ B, ,, be the Borel set such that C = {w:
(Bo(w), . . ., B,(w)) € C°). Write the joint law of (B, ..., B,) as R(db), b =
(bg . - . » b,). Given B,, = b, > 0, the conditional distribution of F,, is

P(F, € A|B,, = b,) =f F(b, + dx)/F(b,), AE€R,b, >0.
So
P(C)PD) = D) [ [ "2 ( F(b,, + dx)/ F(b,)} R(db),

RGN D)= fo"/z P(D|F, = x){ F(b, + dx)/ F(b,)} R(db).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



462 N. H. BINGHAM AND C. M. GOLDIE

Subtract and use the lemma:
|P(C, n D) — P(C,)P(D)| < cn_(l_')f f"/z {F(bm + dx)/F_(bm)}R(db)
c® Jo

<en~UTDP(C,) < en¢Th,

To remove the truncation of F, , use

P(C n D)= P(C,n D)+ P(C N {F,>3in}n D),
P(C) = P(C,) + P(C n {F, >3in}),
obtaining
|P(C n D) = P(C)P(D)]

(2.4.15) <|P(C,n D) — P(C,)P(D)| + 2P(F,, > %n)

<en UD 4 2P(Fm >%n).

To estimate the last term, we use P(F,, >in) = [7 F(%n + m — x)U(dx). In case
LLT-I, this gives by Stone’s decomposition (setting p, = sup,,,, p(f) < )

P(F,, >1in) =f0m F(in + m — x)Uy(dx) +/Om F(in+ m — x)p(x) dx
< F(%n)UZ[O, 0) +poj;/2 F(x) dx

< ‘u,(?,/n)IUZ[O, ©) + Po(z/”)l~l.“-1 <en” 7D,

where ¢, does not depend on m or n; similarly in the lattice case. Combining with
(2.4.15), the conclusion of Theorem 4 follows.

2.5. A Lai strong law for uniformly bounded strong mixing random variables. The
purpose of this subsection is to prove r-quick convergence to zero of
(m + - +n,)/n® where the 5, are uniformly bounded strong-mixing random
variables. The proof is a modification of that of [27, Theorem 2}, in which we drop
Lai’s stationarity assumption but strengthen his moment assumptions to uniform
boundedness. At the expense of some complication, we could have weakened
uniform boundedness to a suitable uniform integrability condition.

Note that if {U,, U,, ...} is any strong-mixing sequence and g,: R >R are
uniformly bounded measurable functions then { g,(U,), g,(U,), . . . } is a uniformly
bounded strong-mixing sequence with the same (or better) mixing coefficients (for

o(g (U, - - ., 8(U)) C o(Uy, ..., Uy, etc)).

THEOREM 5. Let my, My, - . . be strong mixing with mixing coefficients p, = o(n= %
for some 8 > 1, and assume |n,| < M for all k, where M is constant. Let a, p be any
real numbers satisfying a >3, 8 >p > 1/a. If a < 1 assume Ev, =0 for all k.
Then

(n, + -+ +m,)/n%>0, (pa — 1)-quickly.

PROOF. Set V=0, V, =7, + - -+ +1,,n > 1. When a > 1 we have |EV, /n®|
< Mn'~* - 0; hence the result of the theorem is equivalent to the same statement
for r.v.s centred at expectations. So we centre at expectations, and henceforth
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assume En, = 0 for all k. By [27, Lemma 4] it suffices to prove

(2.5.1) E nPe 2P( _max |Vl > en"‘) < o foralle > 0.
n=1  J=L... n
Choose 8 satisfying 0 < 8 < 1 — p/8; then since p, = O(n %) we have
o0
(252) > n7lp, < oo,
n=1

where n’ = [n*!~9)]. Take a positive integer k such that

(25.3) kQ2a — 1) > pa — 1.
Fix e > 0. We denote V; = n; ., + + - - + ;. Define
c,(¢) = sup P(. max |V, || >en°‘) <L
r=0,1,... Jj=L....n
For fixed n, r define 7, = inf{ J= 1|V, >; yen®/k}. Pick integers », i satisfying
O0<v<k-—-2and1<i<n Assummg nis large enough for n®® > 2kM /e, we
know that

(2.5.4) _max AVvicijl <3 sen®/k.
Jj=1..., n
If r, = i then
(2.5.5) L m | | <jen®/k.
Jj=1...,

If also it is the case that

(2.5.6) ~ max | ric14mgl <en*(1 = (v + 1)/k)
J=1...,

then it follows from (2.5.4)—(2.5.6), by addition, that

(25.7) j=l’ml}1ia_xl+n/+n [V, ;| <en*(1 — »/k).

Hence if 7, = i, the negation of (2.5.7) implies the negation of (2.5.6), and in
particular

{7, =i, max |V, > en*(1 = v/k)}
Jj=1 n

C {fr, =i, max |V, iy, |>en*(1—(+ 1)/k)}
n
Therefore

P(j_llnax AV > en(1 ~ v/k))

.....

n
<> P(q-, =i, max |Vr+i—l+n’,j| 2en*(1 — (v + 1)/k))
jm] Jj=1,..., n

By strong mixing, the latter sum is at most

n
2 P(Tr = i)P(jsllllaX l r+i— 1+n,/' > en"‘(l - (V + 1)/k)) + npn’

=1  My=L...,

< P(r, < n)e,(e(1 — (» + 1) /k)) + np,
<c,(2e/k) c,(e(l — (v + 1)/K)) + np,.
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Substituting into (2.5.8) and taking the supremum over r gives

c,(e(1 = v/k)) < c(3e/k)- c,(e(1 — (v + 1)/K)) + np,.
This holdsfor» =0, 1, ..., kK — 2, whence

e(e) < {e(Le/K)) T cule/ k) + nk — D)p,.

Clearly c,(¢) is nonincreasing in €, so we conclude

(25.9) c,(e) < {Cn(%e/k)}k + nkp,.
Now by Ibragimov [19, Lemma 1.2}, |[E(yn,, )| < 4M?p, i=1,2,..., j=
0, 1,... (where p, = 1), whence by Serfling [38, Corollary A2],

E{(_max 1))’} < 8Mn(og,2m)* S .

,,,,,

Chebychev’s inequality gives
P( _max [V, > %en"‘/k) < Kn'~2(log,(2n))?
1= n

for K = 32(kM /e)’Z,; p;, and so ¢,(3 ¢/ k) < Kn'~?*(log,(2n))>. From (2.5.9),

cu() < K*n~@2=Dk(log,(2m))** + nkp,,
and so 3{° n”*~2,(e) < oo on applying (2.5.2) and (2.5.3). From this the definition
of ¢,(¢) yields (2.5.1).

2.6. The case F(0 + ) = 0. This subsection is devoted to proving Theorem 1
under the extra assumption F(0 + ) = 0. Under that assumption, A in the statement
of the theorem can be taken as + o0, so r has to satisfy only 0 <r <a(/ — 1) — 1.
Further, in the nonlattice case it will be evident that condition LLT-I suffices,
rather than that & itself should have to have an absolutely continuous component.

Define N,, B,, F, as in §§2.1, 2.4, and again write %, == o(N,: 0 < u <1).
(Actually we need %, only for integer n. As N, = 0, %, = {J, 2}.) Defining Y, as
in §2.1, we see that {Y,, %,} is an adapted sequence, so that {Y, —
E(Y,|%,_,), §,} is a martingale difference sequence. Further, the conditional
distribution of F,_, given %, _, involves only B, _;:

P(F,_, >x|%,_\) = F(B,_, + x)/F(B,_)) as,x >0,
(recall F:= 1— F), from which it follows that E(Y,|F,_,) = g,(B,_,) 8., n =

1,2,..., for certain measurable functions, g, g5, - . . . The first lemma concerns
these functions. Recall U :== T2 F™, sup|f(-)| < M.

Lemma 2.6.1. |g (b)) <K MU(1) < 0 forall b > 0,n=1,2,....
Proor.

18,(b) =}E( S ASJIB,, = b)‘
N,_|<k<N,
< ME(Nn - Nn—lan—l = b)

= ME(E(Nn - Nn—lan—l)an—l = b)
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Conditional on F,_,, N, — N,_, is at most N, the number of renewals in the time
interval [n — 1 + F,_;, n + F,_,]. Since N{ has the same distribution as N, + 1,
with mean U(1), the lemma follows.

LEMMA 2.6.2. Fix r, a satisfying a > %, O0<r<a(l—1)— 1. Then

(2.6.1) n~*> (Y, — EY,) >0, r-quickly.
1

PrOOF. Pick » > max(2, r/(a — 3)). As in the previous proof, |Y,| < MN{;
hence E(|Y,") < M’E{(N, + 1)’}. It is well known that N, has all moments finite
(cf. e.g. [35, p. 155]), so we have sup, E(|Y,") < «. Using Lemma 2.6.1 and
Minkowski’s inequality it follows that

sup E(lY, — g,(B,_))") < o0.

Further, Y, — g,(B,_,) is a martingale difference sequence; hence by Lemma 2.2.3,

n

(2.6.2) n=*> {Y, — g(By_))} =0, r-quickly.
1

On the other hand, consider the sequence g (B,_,) — Eg.(B,_ ), k=12,...,
which is uniformly bounded by 2M U(1), and centred at expectations. By Theorem
4, {B,_,){ is strong mixing with mixing coefficients p, = O(n~“~Y); hence so is
the sequence g, (B,_,) — Eg.(B,_,)- By Theorem S, since r = pa — 1 where / — 1
>p>1/a

n

(2.6.3) "_ag {8(Bi_1) — Egi(B,_))} =0, r-quickly.

However Eg,(B._,) = E(E(Y,|%,_,)) = EY,, and on inserting this into (2.6.3),
and combining with (2.6.2) using Lemma 2.2.1, the result follows.
PROOF OF THEOREM 1 (WHEN F(0 + ) = 0). We can write (2.6.1) as
{ N(n) N(n)
n-«

(2.6.9) 21 f(S) — E 2 f(Sk)} —0, r-quickly,

recalling that N(n) is an alternative notation for N,. We prove

N(m) [n/u]
(2.6.5) n“"{ ; S, - ; f(Sk)] -0, r-quickly,
and
N(nm) [n/p}
(2.6.6) n_"‘E[ ; f(S,) - ? f(Sk)} -0.

The convergence in (2.6.6) may be considered as r-quick convergence of degenerate
r.v.s; hence (2.6.4)—(2.6.6) together imply (1.1), using Lemma 2.2.1.

To prove (2.6.5) note that
N(n) (n/n]
nT 2 AS) - X ASH < MnT(N, — n/pl + 1)

1 1
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and the latter tends to zero (Ja — 1)-quickly for % < a < 1, co-quickly for a > 1, so
r-quickly in either case since r < la — 1.

For (2.6.6), since o> = var X, < co we have EN, = U(t) — | = t/u+ O) [16,
I, XIII (12.2) and II, XI (3.1)), and also var N, ~ o% /> [16, II, X1.10, Example 13].
Thus

N(m) (/]
n“’E{ 2 f(S) - Z f(Sk)} S Mn=(E|N, — n/u| + 1)

1

< Mn~*(E|N, — EN,| + |EN, — n/y| + 1)
< Mn_"{(var N)'? + 0(1)}
= Mn={(o%n/p3)'"*(1 + o(1)) + O(1)} >0

since & > 3. The result follows.

2.7. Ladder-height distributions. We return to the framework of §1, with no
special assumptions. Set L, = min{k: S, > 0} and define 4 := = n~'P(S, < 0).
Then L, is proper and has finite expectation if and only if 4 < oo [16, I1, p. 416],
and in that case EL, = e“. A sufficient condition is that 0 < EX, < oo [16, 11, p.
397].

THEOREM 6. Assume A < oo. If F has an absolutely continuous component then so
does G, the d f. of S(L,) = S, .

ProOF. Denote the Borel sets on (0, «0) by % *. Denote the measures on (R, B)
induced by F and its absolutely continuous component by », », respectively. If the
support of »_ intersects (0, co) then immediately

VB € %, P(S(L,) € B) » P(X, € B) > v(B),
so G has a nontrivial absolutely continuous component. We therefore assume from

now on that the support of », is contained in (— oo, 0]. Absolute continuity means
that

(2.7.1) ».(B) = f w(x)dx, allBE B,
B

for some nonnegative measurable function w. By assumption », has a positive total
mass, so there is a set of positive measure on which w > 0. By modifying w on a set
of zero measure if need be, we may take it that there exists an open interval
(—b, —a), with 0 < @ < b, in which w > 0. The modification preserves (2.7.1).
Since 4 < oo, F has some point of increase x, > 0, that is, »(x, — ¢, x5, + €) > 0
for all ¢ > 0. We may find positive integers j, k such that the point x, =
(2j + Dxy/(2k) is contained in (a, b). So —b<~x,<—a and kx;=(j + 3)%o.
Set e =3x,/(k +j+ 1). Let », denote the restriction of », to the interval
(—x, — & —x; + &) and let », denote the restriction of » to the interval (x; — &,
Xxg + €). Both v, and », have their total masses positive. Denote by E the event that
X, E(—x;—¢ —x;te)fori=1,...,kand X, €(xg— &, xg+ ¢e)fori=k +
l,...,k +j+ 1. On E the path of the sequence {S,}§ has downward jumps at
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n=1,...,k, thenupward jumpsatn =k + 1,..., k +j + 1; further,
Sevj <k(=x;+ €) + j(xo + &) = (k + j)e — 3%, <O,

Seaje1 > k(=x; =€)+ (j+ 1)(xo — &) = —(k +j + 1)e +3x, > 0.
Thus on the event E, S(L,) = S;,,,,- Soforevery B € 7,
(272)  P(S(L)) € B) > P(E N {Sk4j41 € B}) > (vP « Y+ V)(B).
The convolution »® x »“*Y has support contained in (0, c0), has positive total
mass, and is absolutely continuous since »,, is. By (2.7.2) the distribution of S(L,)
has a nontrivial absolutely continuous component, as claimed.

Note. We need this theorem only to ensure that the distribution of first ladder-
height satisfies LLT-1. Whether this weaker conclusion follows from the weaker
condition that & satisfies LLT-I is an open question.

2.8. Proof of Theorem 1. Fix r and a satisfying the inequalities specified in the
theorem. Define strict ladder epochs

Ly=0, L, =min{k:k >L,_,,S(k)>S(L,_))}, n=12....

These are a.s. finite stopping times. Define the interladder times as M, = L, ~
L,_,k=1,2,....Weshall use the fact (cf. [10, p. 136]) that the random vectors
(28.1) (M, X(L,_, + 1), X(L,_, +2),...,X(L)), k=12,...,

are iid. Setting S; = S(L,), k=0,1,..., X, =8 —-8§_,=2, ., X, it
follows that the random vectors (M, X;), k =1,2,..., areiid. Since M, = L,,
X; = S(L,), a result of Gut [17, Theorem 2.1] gives E(M}) < oo, E((X}])) < .
Gut proves also the converse assertion, which shows in the present context that our

moment assumptions on X;", X;” are necessary for these conclusions. We define
Ry=0,R =2, _c [S)k=12....
LeMMa 2.8.1. n™ 27 (R, — ER,) — 0, r-quickly.
ProoFr. Define the pre- L, o-algebra by
8, ={BEJ:Bn{L,=k}€oa(X,,....,X, ), k=0,1,...1}.
Then {R,, 6,}& is an adapted sequence and R, — E(R,|S,_,) is a martingale
difference sequence. The conditional expectation may be written

M,

E(R|S,_) = E( 21 AS(Ly_y) + X(Ly_y + D+ - - - +X(L, +j))ng—1)

and by (2.8.1) this evaluates as g(S(L,_,)) where the function g is defined by
g(s) = EZM fs + ), s € R. Note that | g(s)| < MEM, = Me* < oo, where A
=3 n"'P(S, < 0) as in §2.7. So g is a bounded measurable function on R.

Next, |R,| < MM,, so

E(|R) < M*E(M}) = M*E(M}) < oo.
The martingale difference sequence R, — g(S;_,) therefore satisfies the conditions
of Lemma 2.2.3 with » = A, whence

(2.8.2) n=*> {R, — g(S{_,)} =0, r-quickly.
1
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Now’S; = = X/ where the X; are i.i.d. with E((X])) < o0, and the d.f. G of X]
satisfies G(0 + ) = 0. If F is lattice then obviously so is G, while if F has an
absolutely continuous component then so does G by Theorem 6. Thus the result of
§2.6—the special-case proof of Theorem 1—applies, and since r < a(l/ — 1) — 1
we conclude

n‘“i {8(S;) — Eg(S{)} =0, r-quickly.
So
w3 (g(S{) — Ba(si )

n—

1
n

a n—1
(2.8.3) = (=) =-n S (85D — Es(s)
— 0, r-quickly.

However, Eg(S{_,) = E(E(R,|S,_,)) = ER,. Substituting into (2.8.3), then com-
bining with (2.8.2) using Lemma 2.2.1, the present lemma foliows.
ProOF OF THEOREM 1. The conclusion of Lemma 2.8.1 may be written

L, L,
(2.8.4) n_"‘{ ? (S, — E$ f(Sk)] —0, r-quickly.
We prove

L, [ne?}
(2.8.5) n_“{ ; AS,) — ; f(Sk)} —0, r-quickly,
and

L, [re?]

(2.8.6) n‘“E{ ; f(S,) — ? f(Sk)} — 0.

Note the similarity to (2.6.4)—(2.6.6). Just as in that proof, (2.8.4)—(2.8.6) may be
combined, using Lemma 2.2.1, to give

[re?]

n-¢ ; {A(S,) — Ef(S,)} =0, r-quickly,

and it is straightforward—using the uniform boundedness of the summands—to
deduce (1.1).

To prove (2.8.5), note that the absolute value of its left-hand side is at most
n~°M(1 + |L, — ne?|). Since L, = M, + - - - + M, where the M, are i.i.d. with
EM, = e*, E(M}) < o, the Lai strong law [26, (6.5)] yields n~*(L, — net) —»0
(Aa — 1)-quickly. But r < Aa — 1A < Aa — 1, so the same is true r-quickly, which
gives (2.8.5). To prove (2.8.6) the same second-moment argument as was used for
(2.6.6) is applicable. Theorem 1 is proved.
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3. Proofs of Theorems 2 and 2'. Define S, = S(7) == Sy, fort > 0. Let W(z) = W,
be a Wiener process with mean p and variance o%. For T > 0 define

Ay = T“fOTf(pt) dt,  ppo= T“forf(S,) dt, = T—lforf(W,) dr.

We prove Theorem 2 by showing E(py — v7) = o(T ~%?*¢) and Ev, — A, =
o(T~1/2*#), T — . The notation, and the idea of using »,, come from papers of
Davydov (e.g. [12], [13]). As does Davydov, we proceed by proving equiconver-
gence of the variation-norm distance between relevant distributions. Our work
differs from his in that we need the rate of convergence rather than just conver-
gence itself; however only for univariate distributions.

For a signed measure » on the Borel algebra % in R, define the variation norm
by ||»|| = /g |?| (dx). The following properties will be needed.

(a) For probability measures »,, »,, part of the result known as Scheffé’s lemma
gives

9= 2all = 5 [ 19(x) = w(@)] = sup((B) ~ »(B): B E B).

The supremum is attained on some 4* € B. If », v, have densities A,, h, then one
may identify 4 * with (for instance) {x: h;(x) > hy(x)}.

(b) Variation norm is preserved under isomorphism of the measure space
R, B, »).

(c) Let ®*° denote the d.f., and ¢*® the density, of the normal distribution of
mean a and variance b, and write ® := ®%!, ¢ := ¢%!. Symbols for d.f.s are also to
denote the corresponding Lebesgue-Stieltjes measures. Then

@' — || = O(e), ej0;  [|®%' 7 — @] = O(e'/?), el
(Evaluate the variation norms by integrating the difference of the densities over the
region where that of (say) ® is the greater.)

Write F,, ®, for the d.f.s of S,, W, respectively. Proposition 3.1 below establishes
the variation-norm closeness of F, and ®,, and Proposition 3.2 deduces that Ep,
and Ev; are close. The assumption p > 0 is superfluous for these results and will
not be used. In the lattice case it is convenient (cf. Davydov [12, p. 440]) to work
with a random variable S, + U instead of with S,, where U is uniformly distributed
on [0, 1], independent of §,. Because of our standing assumption in the lattice case
that f is constant on each interval [k, & + 1), we have f(S)) = (S, + U) as. Let G,
denote the d.f. of S, + U.

PROPOSITION 3.1. Assume E(|X,|**®) < oo for some 8 with 0 <8 < 1. If 9
satisfies LLT-I then

(3.1) |F, — @, = O(t~%/?), ! —> ®,
while if 9 satisfies LLT-11 then, for every 8 satisfying 0 < 8 < 8§,
(32) |G, — @, = O(t™%?), - wm.
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Proor. Assume LLT-I. We may write F, = H, + J, where H,, J, are improper
d.f.s (nondecreasing functions that tend to 0 at — o0) with H, absolutely continu-
ous and J, singular. By LLT-1, J, (c0) < I for some m. Write b := (J,(c0))"/™ < 1.
For n > 1 writt n=km +r, 0<r <m; then F, = (F)?® s F =
(H, + J,)® + F, so that J, the singular component of F,, is a component of
J® » F, whence

J,(0) < (J(0))* < (J (o)) ™7 < b = O(n =7,
But ||F, — @,| = ||F, — ™| < ||H, — ®""|| + J,(c0), and ||H, — ™" =
O(n~%? by Sirazhdinov and Mamatov [39, Theorem 2]. Thus [|F, — ®,| =

O(n=%?). Taking any ¢t > 0 and writing n = [f], the conclusion (3.1) follows on
writing

|F: = @l =|£, — o™
< ” Fn _ (an.,noz” + “(I)ny,noz _ (an,loZ” +||q)np.,wz _ (I)lp.,toz”
and applying (b) and (¢) above to the last terms.
Turning to the lattice case, we shall show that

(33) |G, — @™ = 0(n=%?), n— o,

whence the conclusion (3.2) follows exactly as in the last step of the proof of (3.1).
The d.f. G, is absolutely continuous and its density g, may be taken as g,(x) =
P(S,= k), k <x <k+ 1,k €Z. So (3.3) is equivalent to

G4 I a0 = ¢ ()] dx = 0(n~*72),

By [20, Theorem 4.5.3], for § < 1,
sup |on'/*P(S, = k) — ¢((k — np)/ (on'/?))| = O(n™%/?),
kez
and since ¢(-) has a bounded derivative we deduce
sup |on'/%g,(x) — o((x — nu)/ (an'/?))|= O(n™%/2),
x€R
that is, A, == sup, g on"/?g,(x) — ¢""'(x)] = O(n~%?). This extends to the
case 8 = 1, using Petrov [32, Theorem 16, p. 207]. The rest of the proof is an
extension of that in [20, pp. 124—125]. Define E == {x: |x — np| < on'/2A1+¢/8};
then

(35) [ 18(x) = 9™ (x)] dx < 289/ = O(n /3.
E

On the other hand since ®(— x) + 1 — ®(x) = o(exp(— 3 x?)) we have

¢np.‘noz(x) dx

¢(—A;1+9/6) +1 - (I)(A;l+9/8)
(3.6) R\E

0(" —0/2),
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whence

L g dx =1 - fE g.(x) dx

- [ de [ ax) - om(] o

= O(n~?%?).
Combining this with (3.5) and (3.6) we obtain (3.4), and hence (3.2).

ReMARK. The above-mentioned theorem of Petrov may be used directly to prove
(3.2) for the case § = 1, and indeed it gives a strengthened version in which 8 = 4.
The result is presumably true in general with #§ = §, but the weaker form given
suffices here.

PROPOSITION 3.2. Under the conditions of Theorem 2, for every ¢ > 0,

3.7 E(pr — vp) = o(T7%%%%), T oo,
Proor. Take ¢ with 0 <& < § and set § = § — ¢; then by Proposition 3.1 we

may choose a constant C large enough so that under LLT-I, || F, — &,|| < Ct™%/2,
all 1 > 0, while under LLT-I1, |G, — &,|| < Ct™*/2, all t > 0. Now under LLT-I,

By = )| =| [ ELS(S5) — f(W2))
= [ [ S(P(Sn € dx) — P(OWy, € d)) du
< Mfol f:o |P(Sy, € dx) — P(Wy, € dx)| du
= M [ 2, ~ @] i
< 2Mf0‘ C(Tu) ™" du = O(T /%) = o T ~#/2+),

When @ is lattice the same calculations are valid, with Sy, + U, Gy, replacing Sy,
F,, respectively. This proves (3.7).

We turn now to the convergence to zero of Ev, — Ar. Let ¢ be uniformly
distributed over {0, 1], independent of the process { W,},5,,. Observe that A, may be
considered as Ef(uT§) whereas Evy equals Ef( W(T$)). This motivates the follow-
ing result. In an earlier version of the paper we proved a multidimensional version
(see §5.4 below).

PROPOSITION 3.3. Assume p. > 0, 0> < co. With ¢ as above, let Ky, £, denote the
distributions of uT§, W(T§) respectively. Then for every ¢ > 0,

(3.8) |87 — Hp|| = o(T/2%e), T — 0.
PROOF. Set B, := (W, — pt)/0, so that {B,},,, is standard Brownian motion,

and £, is the distribution of u7¢ + oB(T¢). Applying a common scale transforma-
tion and using remark (b) we have

(3.9) €7 = Hal =197 — O
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where 9N is the uniform distribution on [0, 1] and 9, is the distribution of
£+ o(pT) 'B(T$). Using the scale property of Brownian motion, 9 is also the
distribution of £ + B(¢/T’), where T’ = u’T /o> Thus 9 has probability density

(310) sp(x) = [" @my/T) 2 exp(=3(x =0T /y} &, x€ER

Fix x > 0. The integrand in (3.10), as a function of y, defines a probability
density on R*, indeed one of the ‘random walk’ densities [21, p. 149]. So if the
integral in (3.10) were extended to the interval (0, o0), its value would be 1; hence
its actual value is less. Thus the density of 9N is greater than that of 9, on the
interval (0, 1), and not elsewhere, whence the vanation-norm distance evaluates as

190 = = [l sl dx = P+ BE/T) € (O, 1),

Fix e satisfying 0 < & < 1. Now

P(£ + B(£/T’) & (0, 1)) < P(£ < T—l/2+e/2) + P(§ > 1 - T—1/2+e/2)
+P(|B(¢/T)| > T~1/2*</?)
< 2T—1/2+s/2 + P(,B(I/T/)l > T—l/2+e/2)
(since |B(1/ T")| is stochastically larger than |B(§/T")|)
=27V 4 (= (/o) T + 1 — ®((/0)T*/?).
Since ®(—x) =1 — ®(x) is asymptotically smaller than any power of x we
conclude that the final right-hand side above is o( T ~'/2*¢), which with (3.9) and
(3.10) gives the result.

PrOOF OF THEOREM 2. Since Ev, — Ay = E{ fAW(T¥§) — f(uT$)) it is easy to
show Ev, — A; = o(T ~'/?*¢) by the method used to prove (3.7). With (3.7) the
conclusion follows.

PROOF OF THEOREM 2'. For 2 </ < 3 we have 2 — 1/ > (/ — 1)~". Hence any
value of a satisfying the conditions of Theorem 2 will satisfy that in Theorem 1
also. Set & = min(/, A, 3) — 2; then the condition of Theorem 2 reduces to
a > 1 — 18. Further, E(|X,[**®) < o0, so Theorem 2 applies and we may take ¢ in
Theorem 2tobea — 1 + %8. Then Theorem 2 becomes

{Ez fisy- | f(ux)dX}—>0,
1 0
which with Theorem 1 yields (1.4) as required.

4. The Poisson case. Consider the special case where & is an exponential
distribution, of parameter 1 say. Then max{k: S, <t} gives a Poisson process of
rate 1.

We note first a simple self-contained proof of the equivalence of statements (I)
and (IV) in §1 (cf. Corollary 1.1) for this case. First,

4.1) n“E’: f(S,) —»c as.(n— o)
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is equivalent to

N(t)
4.2) N7'Y A(S)—c as. (t— »),
1
as the successive values of the two left-hand sides coincide. Next,
Y, = > AS,) = > AS)
N(n—1)<k<N(n) n—1<8§<n

is the sum of the f-values at the Poisson epochs in the time interval (n — 1, n]. By
independence of the Poisson point process over disjoint time intervals, the Y, are
independent. By the strong law, N,/t -1 (1 - o0) as.; hence (4.1), (4.2) are
equivalent to

(4.3) n71> Y, »c as. (n— ).
1

Recall M := sup|f(-)] < oo; then |Y,] < M(N, — N,_)), var ¥, < M?,
=® n~2var Y, < co. So by a result of Kolomogorov [43, p. 165],

n 1> (Y, — EY,) >0 as.(n— o).
1
So (4.1)-(4.3) are equivalent to
(4.9) n'> EY,»c (n—>»).
1

But, conditional on m Poisson points falling in (n — 1, n], these are independently
uniformly distributed over (n — 1, n], so

EY, =3 (7/m)m[” fd=][" f

Thus (4.4) is f(-) — ¢ (C,), as required.
The same method yields a CLT for £(S,). We assume that (3 { A»)}*> &y = [5f*
— oo (n - ). By the method used to calculate E£Y,, or by generating functions,

k kN3 k
var ¥, = ; E{(%. - )}= 3,
. fk—lf { , '/I;—lf fk-lf
Now |2 3| < M3 f? = o({f2£*}*/?) so we have Liapounov’s condition for the Y.
By Liapounov’s theorem,

(fo"fz)"/z(z': Y, —fo"f)i ® (n>w),
or
n \-1/2 N(m n
(45) (['7) { 3 S0 [ f}—d»‘b.

By the strong law, S,/n—1 as., and N(S,) = n. To replace n by S, we use
Anscombe’s method for random time-changes, of which [4, Theorem 17.1] is a
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formulation suitable for our case of independent nonidentically distributed sum-

mands. Thus
(L“”ﬁ) {me»—f“”}_>o

If we assume further

(4.6) lim inf n—'f"ﬁ >0
0

n—oo

then |[§™ 2/ f2 — 1| < Mn~'S, — n| - n/f3 f* -0 as.; hence we may replace
[3 f2 by fo f2 in the above to obtain

() {Eﬂarjﬂf}ﬁq

the CLT for F(S,) (note the random centring).
Again, assuming (4.6), Petrov’s LIL [43, Corollary 5.2.3] yields

2 n
lim sup {Zf f*- log logf fz} 2 (Y, —EY) =1 as,
1

or
4.7) llglasgp {2f f? log Ing f2} {Né') AS,) —f f] a.s.

Consider for simplicity the important special case where f is the indicator
function I, of some fixed set A C R; then f? = f. We also assume f(+) = f(-) > ¢
(C)), that is, |4 N (0, n)} ~ cn as n — oo, where | - | denotes Lebesgue measure.
Then (4.6) demands ¢ > 0. Now
N(n)

(4.8) nV D L(S) — 2 LS| < nT VAN, — nl.
1 1

By the CLT of renewal theory [16, II, XI, §5], n /3N, — n) converges to
normality, so the left-hand side of (4.8) is stochastically bounded. Also

n_'/2[|A n (0, n)| — i P(S, € A)]
(49) N(n)
= ”*I/ZE{ 2 f(S,) - 2 f(Sk)} = 0(1)

as in the proof of (2.6.9) above. Combining (4.5), (4.8) and (4.9), we merely obtain
the conclusion that

(4.10) "'/22 {L,(S) — P(S, € A)}, n=12 ..., is tight.
Similarly, (4.5) and (4.8) alone yield that

@11y V2 S 1(S) —|4n (0 n)|}, n=12 ..., istight.
1
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Whether one can obtain both convergence in law as in (4.5), and deterministic
centring as in (4.10), (4.11), remains open.
Returning to (4.7)

n—oo

N(n)
lim sup (2¢n log log n)_l/z{ > L(S) —14n (O, n)|} =1 as,
1
and

(2n log log n)~'/?

N(n) n
( 21 - 21 )IA(Sk)

< 1i1:1 sup (2n log log n)_'/2|N,l —n=1 as,
by the LIL of renewal theory. Hence
limnsup (2n log log n)"'/z{z': L(S,) =4 n (O, n)|} <1+ c'? as,
the LIL for 1,(S,). Alternatively, using (4.9),

limsup (2n loglog n)™'*3 {1,(S,) — P(S, € A)} <1+ /2 as.
n 1

5. Complements.

5.1. When strong mixing (‘weak ¢-mixing’) [43, p. 212] is strengthened to
¢-mixing, stronger convergence results often follow. It may be of interest to know
that this can happen in Theorem 4 only if the tail F of F decreases exponentially
and in a somewhat regular way.

THEOREM. Under the conditions of Theorem 4, { B,} is ¢-mixing if and only if there
exist constants ¢ > 0, C such that

F(x + y) < Ce™?F(x), x,y > 0.

Then the ¢-mixing coefficients satisfy p, = O(e™%") as n — oo, for some § > 0.

The condition on F is equivalent to %(x) = F(log x) having negative upper
Matuszewska index ag (Bingham and Goldie [7, II]). The proof (omitted) uses
‘geometric ergodicity’ results of Stone [42] in the density case, Kingman [24] in the
lattice case.

5.2. Were {S,} itself strong-mixing, the use of backward recurrence times could
have been avoided altogether in §2. To see that S, := 37 X, is not strong mixing
(for any iid. random variables X, of finite variance) consider the events
C, = {S, <mu}, where p = EX,. It is easy to see that as m — co with n fixed,
P(C,\ C,,.,)—0; hence

P(Cm N Cm+n) - P(Cm)P(Cm+n)_)% -3 3=3

2 2 4°
So p, in (2.4.1) is at least %, and the requirement that p, — 0 is violated.
5.3. While Theorem A requires only a finite first moment for X, all our results
need a finite moment of order greater than 2. Thus it ‘should’ be possible to reduce
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our stipulated moment orders by 1. However, to do so is not possible by our
method of backward recurrence times, as we shall show, and on the other hand we
do not think it is at present feasible to extend Meilijson’s methods to the Marcin-
ciewicz-Zygmund cases where 3 < a < 1 (it no longer suffices to approximate f
uniformly by simple functions, for instance). The problem of proving the Marcin-
ciewicz-Zygmund law for f(S,) under the ‘right’ moment assumptions remains
open.

The reason why our methods need at least second moments finite is because of
the mixing properties of the backward recurrence times. As # — oo the distribution
of B, converges to its stationary distribution, that with density p~'F(-) on R*.
Hence

|P(B, <1,B,,,>n+1)— P(B, <1)P(B,,,>n+1)]

= P(B, < D)P(Byy, >n+ D)o [ p ' Fxyax [© w7 'F() &b
4] n+1
as m — oo with n fixed. Thus the mixing coefficient p, in Theorem 4 is at least
cf®, n'F(y) dv, where ¢ = [} u™'"F(x) dx > 0. If E(X]) < oo but E(X!**) = o
then p, = O(n~ ") but p, # O(n~"Y"1*9). So the loss of one moment order
occurs unavoidably at this point, the rate of r-quickness in Theorem 5 being best
possible in relation to the order of the p,,.

5.4. A multidimensional version of Proposition 3.3 is as follows. Fix k£ > 1 and
let§,, ..., £ be each uniformly distributed over [0, 1], independently of each other
and of { W,},5,. Recall that { W,} is a Wiener process of mean p and variance 0.

THEOREM. Assume p > 0, 0> < 0. Let K, denote the distribution in R* of
(uTE,, ..., uTE) and let £ denote the distribution of (W(T§)), ..., W(TE)).
Then for every € > 0,

187 = Hrl = o(T71/2), T oo,

(Define variation norms as in R, by ||7|| = /g« |#|(dx), for a signed measure v
on the Borel sets of RX.) The proof is an extension of that of Proposition 3.3, using
order statistics.

5.5. The methods of the paper allow a generalisation to the case of a random
bounded function f, in place of the fixed bounded f considered so far. For instance,
in the LLT-II case (S, integer valued), suppose one has a sequence of uniformly
bounded random variables Z,, Z,,..., independent of each other and of
{S,}n>0 Then if P satisfies the conditions of Theorem 2’ we can obtain, for r, a as
in that theorem,

n [en]
n_"‘[ 2 Z, —p ' X EZk} —0, r-quickly.
k=1 k=1

To proceed generally, suppose we have a family {2, } of probability distributions
on R, where x ranges over the union of the supports of all the %¥,. The supports of
all the & are contained in some fixed finite interval [— M, M], M < oo, and we
write m(x) for the mean of the distribution £, . When x takes only integer values
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(the LLT-II case) we set m(x) := m(k) for k < x <k + 1. Random variables V,

V,, ... are obtained as follows: given (S, S5 ...) = (s}, 5, ...) the random
variables V;, V,,... are to be (conditionally) independent, with ¥, having
probability distribution E’Zsk, for k=1,2,.... Theorems 1, 2 and 2’ remain in

force, their conclusions (1.2), (1.3) and (1.4) becoming respectively

(1.2) n=* > {V,— EV,} >0, r-quickly,
k=1
(1.3) n~'> EV, - n"fn m(ux) dx = o(n=%2%¢),  n oo,
k=1 0

(1.4) n—a{ > —fn m( px) dx} —0, r-quickly.
k=1 Y

To extend the proofs to this setting it suffices to augment the filtrations {%,} and
{8,} in §2 and to take an extra expectation with respect to the relevant 2,
distribution in §3. Thus define
G, =0{N, Vy:0<u<t}, Y, = > v
N1 <J <N

in §2.1, and in §3 define V, == Vi, Ap = T~ 'f3 m(u) dt, pr = T[TV, dt,
vy = T~'(T V, dt, where conditional on { W,},5, V, has distribution 2w, only the
expectation being needed.

5.6. For any i.i.d. random variables X, X,, ..., without moment assumptions,
the Hewitt-Savage zero-one law shows that any almost-sure limit of 7~ '3] f(S,)
must be degenerate. By the usual subsequence argument, any in-probability limit of
n~'37 f(S,) is also degenerate. But there is no general conclusion possible about
degeneracy of limit /aws, for by Theorem A there are only degenerate limit laws
possible under the conditions of that theorem, whereas the following result of
Davydov and Ibragimov gives nondegenerate limit laws in a wide variety of p = 0
cases.

THEOREM B. Assume (i) LLT-I or LLT-II; (ii) u = 0 and 6 < . Then

(2) [14] Ef(S,) — ¢ (n > ) if and only if 2x) ™' [~ (¥) &y — ¢ (x > 0);

®) (12] if x~'[5 /() & —>p, x 2, f(¥)dy > q (x> ), then n~'Z§ f(S,)
converges in law, as n — oo, to pX + q(1 — X), where X has the arcsine distribution
on [0, 1};

(c) (13, §6) if f vanishes on (—o0,0) and n~'Z{ f(S,) converges in law, then
lim__  x~'f5 f(y) dv exists.

Note that when f vanishes on (— 00, 0), Theorem B gives the equivalence of

Jfx)—p (Cp), x > 0,

Ef(S,) —-)%p, n— oo,

n~ 132 f(S,) converges in law,
and that the limit law is then pX, with X as above. This special case does not imply
the theorem. But when p > 0, by contrast, the limit behaviour of f(S,) involves f
only at + 00, so it is then no essential loss to assume f vanishes on (— o0, 0). When
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¢ > 0 we know by Corollary 1.1 that Cesaro convergence of f is equivalent to
Cesaro convergence of Ef(S,), which is weaker than convergence of Ef(S,). What,
then, is the property of f equivalent to convergence of Ef(S,)? The answer is in the
next result. Indicate convergence under the Borel summability method by (B) and
under the Euler method of parameter p by (E,) (see e.g. [18]).

THEOREM C (BINGHAM [S]; SEE ALSO [6]). Assume (i) LLT-I or LLT-II; (ii) & > O,
02 < 0, and that f vanishes on (— o, 0). Then the following are equivalent:

Ef(S,) - ¢ (n— );

(e x)"HIreVE f(y) dy — ¢ (x — o0) for some (all) € > 0;

xTUEfO)d = c+ o(x VY + xS e(y) dy, e(x) > 0 as x - o0;

f(n) - ¢ (B) [lattice case only];

Sf(n) > ¢ (E,) for some (all) p € (0, 1) [lattice case only].

5.7. Many results are known on limit behaviour of functions f(S,) of random
walks or Markov chains {S,}, in a variety of contexts. Thus, in the driftless case
g = 0 of Theorem A, {S,} is attracted (without centring) to a Brownian motion,
and the limiting arcsine law is generated by this Brownian motion (cf. Billingsley
[4]). The general theme of convergence of functions of random walks, etc., to the
corresponding functions of limiting diffusions has been treated by many authors;
cf. Skorohod and Slobodenyuk [40] (who obtain parts of Theorem A), Portenko
and Prokopenko [34], Kulini¢ [25], Taraskin [46]. Baxter and Brosamler {2] consider
a.s. limits of f§ f(X,) ds for diffusions X on compact metric spaces.

For integrable f, the a.s. convergence of n~'37 f(S,) is dealt with by Kallianpur
and Robbins [22], and one can also handle it by random ergodic theorems (cf. e.g.
Révész [36]).

When (S, } is a recurrent Markov chain one may be able to handle { f(S,)} by
using the regenerative property at returns to a recurrent state (the ‘Doblin trick’: cf.
Chung [11], Stout [43, p. 325)).

Functions of certain weakly dependent random variables have been treated,
under suitable mixing assumptions, etc., by Philipp and Stout [33], McLeish [29].
Functions of strongly dependent Gaussian sequences are considered by Taqqu [45]
and Lai and Stout [28].

5.8. The strong law (in, say, the form (I) iff (IV) in Corollary 1.1) amounts
formally to using the ordinary strong law S, /k — p a.s. to pass from n~'Z} f(S,)
—cas. to n” '} f(w) dy — c. Analytically, this type of operation resembles the
second consistency theorem for Riesz (typical) means (see e.g. Chandrasekharan
and Minakshisundaram [8]). From a numerical analysis viewpoint, this is a proce-
dure of Monte Carlo type. Suppose, for instance, we know a bounded function f of
continuous argument is Cesaro-summable to ¢, and we wish to calculate ¢ numeri-
cally. An alternative to using the approximation x~'[j f ~c¢ for large x and
numerical integration would be to simulate a random walk S, and use n~'Z7 f(S,)
~ ¢ for large n (cf. e.g. Niederreiter [31]). More generally, for any bounded
measurable f, Theorem 2’ shows that the value of [j f( ut) d¢ can be approximated
with error o(n®) by summing the values of f at the n simulated points S, ..., S,.
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In the same vein, 2§ flk + U,) (U, independent and uniform on [0, 1]) is easily
seen to have as good convergence properties as X7 f(S,) (cf. e.g. Petrov [32,
Theorem 12 p. 272]; r-quickness results follow from our Theorem 5).

NOTE ADDED IN PROOF. Perhaps the best interpretation, told us by I. Meilijson
(unpublished), is in terms of random quality control. The probability p of an article
being defective is to be estimated. Taking f := I,, with D C N the set of defectives,
one can sample at the instants of a random walk {S,)}, and then n~ 'S} I,(S,) is a
strongly consistent estimator for p, with error o(n' ™).
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