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Abstract— Navigating an electrical wheelchair can be very
challenging due to its large size and limited maneuverability.
Additionally, target users often suffer from cognitive or physical
disabilities, which interfere with safe navigation. Therefore, a
robotic wheelchair that helps to drive can prove invaluable.
Such a wheelchair shares the control with its human operator.
Typically, robots excel in fine-motion control whereas users
want to remain in charge. Hence, the robot should focus its help
locally and let the user decide about global behavior. Further,
an effective robot should understand the navigation plans of its
user. It needs to consider the user’s abilities to avoid frustrating
the user with wrong assistance.

In order to address these requirements, we propose a
probabilistic framework to recognize local navigation plans
in a user-specific way. The framework infers navigation plans
online and provides a method to calibrate all model parameters
from real driving data. It fuses past local information with a
user-specific model to reason about how and where the user
intends to navigate. We illustrate the validity of our approach by
recognizing the local navigation plans of a spastic user driving
in a daily environment.

I. INTRODUCTION

Mobility enhancing technology, such as electrical

wheelchairs, is helping disabled and elderly people regain

their lost independence. Remaining independent clearly has

a positive impact on a person’s well-being and self-esteem.

Despite their benefits, electrical wheelchairs remain difficult

to control. Dangerous accidents with the environment and

other people occur frequently due to the large size of a typical

wheelchair. Therefore, many potential users are forbidden to

drive if they lack the necessary cognitive or physical skills.

Even able users find it difficult and tiresome to navigate

safely.

Improving wheeled mobility becomes possible by equip-

ping an electric wheelchair with sensors and computing to

assist during navigation. An important requirement of this

assistance is to let the user feel in control. Actually, the

robotic wheelchair shares the control with its operator. The

user profits from the precise and safe movement of the robot,

whereas the robot relies on the user for global planning and

coarse control.

A potential safety risk exists, though, when human and

robots collaborate. The robot might misunderstand its user

and drive into a wrong direction. This can happen if the robot

takes decisions without considering the user’s abilities and

needs. In order to avoid frustrating its user, the robot must

recognize navigation plans in a way that considers his or her

driving abilities. We model such plans as local trajectories

that the robot should execute. Further, to increase robustness,

the robot measures its confidence about the estimated plans

and bases its actions on this knowledge. While reasoning

about the probability of each plan, the robot considers

the user’s abilities explicitly. We refer to this process as

plan recognition or intention estimation interchangeably. The

robot ensures the user’s safety because it reasons about

collision-free trajectories that are also physically executable,

i.e. kinematically and dynamically feasible.

A. Overview and contributions

This paper describes a probabilistic approach, which com-

bines spatial and temporal user-specific information to infer

local navigation plans. We first detail the process of recogniz-

ing local plans in section II. Starting with an example, we il-

lustrate the complete procedure and highlight the challenges.

Then, we translate the problem of plan recognition into

a Dynamic Bayesian Network and explain our underlying

assumptions. Section III describes the procedure to learn the

plan recognition models from driving data. The experimental

section, section IV, applies the framework to recognize the

navigation plans of a spastic user driving a wheelchair in

a daily environment. Section V compares our approach to

related systems in literature.

The main contribution of the paper is to formulate local

plan recognition in a framework, which allows inference

and learning (section II and III). Further, recognizing local

navigation plans requires a procedure to link the past to

the present without any fixed global references. The crucial

insight is that recorded driving data can provide global

information, and, hence allow learning the required local

models (section III-A). We formalize this insight as a set

of soft probabilistic constraints (section III-C) that define

the solution to local plan recognition (section III-D). To

demonstrate the validity of our approach, we predict the local

navigation plans of a real wheelchair user in section IV.

II. LOCAL PLAN RECOGNITION

The following example illustrates the different aspects of

recognizing the navigation plan of a user. Let us assume that

the user starts from the position shown in the left side of

figure 1.
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1) Plan generation: The robot first generates all possible

user plans for a given situation (the plan library Ik). These

plans represent local navigation intents in an environment. In

practice it might be necessary to discretize, while preserving

a locally dense set.

2) User model: Next, the robot reasons about the user’s

abilities to determine the probability of each plan. Calcu-

lating the probability of docking at the table (estimating

the posterior) directly is more difficult than obtaining the

probability of the signals required to reach the table, when

the user has a plan to reach the table in mind. We call the

latter probability user model. Predicting user plans from user

signals is generally more difficult than the inverse, because

the user-plan space is higher dimensional. A sequence of

input signals generates a plan.

Intention A
“Exit-room”

A C

A B C

Belief

Intentions
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user input
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Intention C
“Dock-at-table”

Intention B
“Switch-on-ligths”

Fig. 1. The left side of the figure shows the wheelchair and three potential
destinations. The user model is represented on the right. Darker colors
indicate the region where user inputs are more likely for a given intention.

Normally, the user controls an electric wheelchair with

a joystick-like device, where the vertical axis changes the

linear speed and the horizontal axis controls the angular

speed. The user model in figure 1 is a probability distribution

in the space of linear and angular speeds rather than in the

space of possible user plans. Reasoning about navigation

plans given user inputs becomes possible by considering

what inputs a user would produce for each plan. For instance,

docking at the table in figure 1 requires inputs along the

vertical axis, whereas leaving the room yields inputs in the

shaded area on the right half-plane.

3) Temporal reasoning: The information available to the

robot from the user model is quite limited. In figure 1 the

robot would be unable to disambiguate intentions B and C.

Hence, it becomes essential to consider past driving behavior.

Relating past driving to the present means to link past

plans to current plans in order to initialize their probabilities.

If the robot recomputes all plans to new local destinations

each time it moves, then it needs to connect past plans to the

present without employing their destinations as fixed anchor

points. Figure 2 shows why this can be difficult. Connecting

plans whose end destinations remain closest can fail. In

figure 2 trajectories advancing forwards would be linked to

plans leading backwards.

The robot discards global references in order to provide

richer assistance, since the plans can be denser locally.

However, it must accept additional uncertainty as a price

for enhanced navigation. Absolute certainty when linking

past and present plans is only possible if their goal locations

remain fixed.

Fig. 2. Connecting past and present driving without global references.

A. Representation of user plans

The purpose of our probabilistic plan recognition frame-

work is to recognize all possible user navigation intents, to

estimate the uncertainty on these intents, and to make the

estimation adaptive to the specific user that is interacting

with the robot. In order to realize this, a representation

of user intents is chosen that is different from previous

approaches, which nearly all represent intents in terms of

specific assistance algorithms such as follow-corridor or

avoid-obstacle.

User intentions or user plans i can be generically described

as a certain goal twist that the user wishes to achieve at a

certain goal pose. The trajectory that the user has in mind

to achieve this goal pose and goal velocity is also part of

the intention representation. It is imperative to consider the

trajectory as part of the user plan since a user can reach the

same goal pose in a myriad ways.

Any intention can be modeled with this representation in

a precise way, to any place in the robot’s environment close

by or far away.

B. Probabilistic model

In order to reason about the intentions of its user, the robot

calculates the posterior probability of a set of navigation

hypotheses, ik ∈ Ik, given past driving behavior H0:k and

the present input of the user, uk. Bayes’ rule inverts the

estimation of this posterior by combining a user-specific

likelihood, puser (·), with a prior probability, pk−1(·), as

follows:

posterior over user plans
︷ ︸︸ ︷

pk (ik|uk,H0:k) =

user model
︷ ︸︸ ︷

puser (uk|ik,H0:k) ·

prior over user plans
︷ ︸︸ ︷

pk−1 (ik|H0:k) ·η
(1)

where η normalizes the posterior distribution. The history

H0:k includes all previous user inputs up to time k − 1,

the sequence of robot actions a0:k, the sequence of robot

positions, x0:k, and any external sensor readings, z0:k.

The user model, puser , quantifies how much information

the input uk reveals about the user’s hidden navigation plan.

The prior, pk−1, in equation (1) represents the temporal

component of plan recognition. Hypotheses, which are linked

across time, inherit posterior probability.

C. Probabilistic dynamics

We assume that the user has plan i0 in mind when

she starts interacting with the robot. However, she only
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communicates her intentions through an input device, which

produces input u0. The robot observes u0 and moves to pose

x1 in the environment after executing action a1. When the

robot changes its pose after executing action a1, the user

adapts by devising a new plan i1, which results in user

interface signal u1, and so forth.

The Dynamic Bayesian Network (DBN) [1], [2] in figure 3

represents the robot’s state estimation problem graphically. It

models the probabilistic relations between random variables,

which the robot can observe or has to estimate, and it also

incorporates the flow of time from left to right in the model.

hidden
planik-1 ik ik+1

ak-1 ak ak+1

uk-1 uk uk+1

i0 i1

a1

u0 u1

xk-1 xk xk+1x0 x1
observed
pose
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signals
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actions
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Fig. 3. This Dynamic Bayesian Network (DBN) represents the evolution
of user plans during navigation. The robot tracks this evolution in order
to understand how the user interacts with the wheelchair. A random
variable is represented inside a circle or node, which is either shaded for
observed variables or uncolored for hidden variables. The complete Dynamic
Bayesian Network represents a factorization of the joint probability over
all variables present in the model. Each individual factor is a conditional
probability of a child node conditioned on its parent nodes, as specified by
the direction of the edges. Therefore, directed edges indicate probabilistic
dependencies between variables.

In human-robot navigation the evolution of user plans

governs the time scale of the robot’s DBN. The robot needs

to query its sources of information, i.e. its external sensors z,

the user signals u, the localization x and map-building M

capabilities at the bandwidth of the user. For the experiments

with a continuous user interface in section IV we chose

a sampling period of ∆Tsampling = 0.3 s. This value

is inspired by the review of human reaction times during

breaking and steering cited in [3]. Under ideal conditions,

when the driver reacts to expected events, a lower bound of

reaction times ranges from 0.70s to 0.75s.

In the DBN of figure 3, we assume that actions a are

marginally independent, i.e. they are independent of any

other variable. Although the robot might choose its actions

depending on estimated user intentions, it must assume that

this causal link is unknown to the user. The user ignores

what the robot knows about her plans. Instead, she only

reacts to the consequences of the displacement. These actions

could also have been chosen randomly and the user would

react in the same way for the same sequence of observed

displacements.

The following sections explain each component of the

DBN further, namely the user model (section II-D) and the

plan process function (section II-E). Section II-G introduces

the generic algorithm to calculate the posterior over user

plans, bel(ik), in function of the user model and the plan

process probabilities.

D. User model

We model how a user converts navigation plans into inputs

to the robot in order to understand how and where she

intends to drive. The input of the user depends directly

on her intentions. Relations to any other quantity, such as

robot actions or the robot’s location, are always mediated

through the user’s plan, which the user adapts to her current

circumstances. We model this dependency by a probabilistic

user model that corresponds to the likelihood of observed

signal uk if the user has plan ik in mind.

user model: puser (uk | ik) (2)

Note that the user model needs to be adapted to every user

interface and to every user. It is the personalized component

of the framework, which enables intuitive and user-specific

driving assistance. Our probabilistic user model quantifies

the inherent uncertainty related to driving. For instance,

users execute maneuvers imperfectly or drive differently

every time. Further, the model also considers the uncertainty

stemming from modeling errors or simplifications.

E. Plan process function

The plan process function in the DBN of figure 3 reflects

how the user adapts her plans in response to actions that

change the position of the robot. We assume that the user

changes her plan ik−1 to plan ik starting from position xk

after observing the effects of action ak. This plan transition

is mirrored by the robot in order to understand how the user’s

plans are evolving.

Formally, plan transitions are modeled by a plan process

function, which consists of two parts. The first component

adapts all previous user plans at time k− 1, Ik−1, to trajec-

tories Ik starting from position xk. The second component

initializes the probability of the new set of trajectories at time

k. This initialization relies on the plan process probability,

which serves to calculate a prior over user plans:

plan process probability: pppf (ik | ik−1,ak,xk,M) (3)

Equation (3) makes the dependence of the plan process

probability on current pose xk and the extended map M

explicit. This extended map M summarizes all available

information about an environment (e.g. a-priori maps, online

constructed maps and the history of sensor readings z0:k).

In practice, the dependency on map M and pose xk implies

that each user plan ik considers obstacles in the environment

and starts from the robot’s current pose.



pre-print: c○IEEE International Conference on Robotics and Automation (ICRA 2013), Karlsruhe, Germany.

F. Differences user model and plan process function

It is important to highlight the difference between the plan

process probability and the user model. The plan process

probability quantifies how information from the past propa-

gates to the present without reference to the user’s current

input uk. As a consequence, the plan process probability is

largely independent of a particular user. Instead, it reflects

how robot actions influence probability assignments to the

plan library, Ik. On the other hand, the user model is user-

specific. It is a probabilistic model of how a particular user

translates her plans into inputs for the robot. The user model

corrects the prior over user plans, which originates from

the plan process probability, by incorporating user-specific

knowledge.

G. Probabilistic computations in plan recognition

The Dynamic Bayesian Network of figure 3 entails a

series of conditional independence assumptions, which were

explained in the preceding sections. They allow a recursive

formulation of the plan recognition probability in equa-

tion (1), consisting of a time-update and a measurement-

update steps.

posterior belief: bel(ik) ≡ ppost(ik | u0:k,a1:k,x0:k,M)

(4a)

time-update: pprior (ik | u0:k−1,a1:k,x0:k,M)

=
∑

ik−1

pppf (ik | ik−1,ak,xk,M) · bel(ik−1) (4b)

measurement-update:

bel(ik) =
puser (uk | ik) · pprior (ik | u0:k−1,a1:k,x0:k,M)

pnorm(uk | u0:k−1,a1:k,x0:k,M)
(4c)

III. LEARNING THE MODELS OF LOCAL PLAN

RECOGNITION

This section describes our approach to learn the plan pro-

cess probability and the user model from driving examples.

A. Learning the plan process probability

Only global knowledge allows absolute certainty when

linking past plans to the present. This key insight opens a

way to acquire a local plan process probability. Figure 4

shows the essence of the method. During calibration the

complete trajectory of the robot represents a source of global

knowledge. At each sampling step k, different user plans of

the plan library Ik resemble the future path of the robot

xk:end to varying extents. Actually, each user plan ik is a

potential future trajectory and can therefore be compared to

the actual future trajectory of the robot with the benefit of

hindsight.

The comparison between user plans and the robot’s future

path is independent of a particular user, or of where and how

a particular user really intended to navigate. It is merely a

comparison between potential and actual future navigation

k-1

k
k+1

Ik+1Ik

Ik-1

a b

c

a
b

c

a

b

c

Fig. 4. Plan process probability for local trajectories calibrated with the
robot’s future path. The bold trajectory represents the path of the robot. At
each time step, a set of local trajectories I emanates from the robot. Similar
trajectories to the robot’s path inherit probability across time.

outcomes, i.e. between user plans Ik and the truly executed

future robot trajectory xk:end .

In order to calculate the plan process probability, it seems

reasonable to assume that equivalent user plans in terms of

future path of the robot should inherit probability from their

ancestors from previous times. Next we introduce a metric

to measure the resemblance between trajectories.

B. Resemblance between trajectories

1) Hausdorff distance: If P and Q are curves, then the

Hausdorff distance is defined as:

dHD(P,Q) = max{~δ(P,Q), ~δ(Q,P)} (5a)

~δ(P,Q) = sup
x∈P

inf
y∈Q

d(x,y) (5b)

where ~δ(P,Q) is the directed Hausdorff distance and d(x,y)
is a secondary point-metric. The Hausdorff metric measures

the maximal displacement, which is possible when travelling

on the shortest path from one trajectory to the other. Besides

the brute-force approach of comparing all points pair-wise,

an algorithm exists to compute the metric in linear time for

any Lp point distance [4].

2) Pose metrics: It remains to define an appropriate

metric to compare points of a user plan and the robot’s

future trajectory. Normally, the Hausdorff metric assumes a

point-particle motion model. Then, the Euclidean distance

is a proper measure of metric displacement between curves.

However, this assumption is unreasonable for a robot that can

turn on-the-spot. Its point displacement can be zero although

it has turned. The local plan process function should also

consider such type of motions.

Martinez and Duffy [5] propose a frame-invariant metric

to compare rigid body motion that is well-defined. Let νB
be the set of poses of rigid body B, and let B1 and B2 be

two poses, then a metric to measure the distance from B1 to

B2 is:

dMD1
(B1, B2) = ‖δM‖ = max

Q∈B
‖δQ‖ = max

Q∈B
‖rQ1 − rQ2‖

(6)
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where ‖·‖ is the standard Euclidean norm and δQ is the

displacement vector of an arbitrary point of the finite rigid

body B, which at configuration B1 is located at rQ1 and

at configuration B2 at rQ2. δM represents the displacement

of the point farthest away from the screw axis defining the

motion. This point is not necessarily unique, but its norm is.

In case the motion is a pure translation, all displacements are

equal and any point can be chosen to calculate the metric.

C. Distance likelihood

It is still necessary to quantify what the resemblance

of a certain plan ik to the robot’s future path means in

probabilistic terms, and what this information implies for the

temporal evolution of user plans. This information represents

domain knowledge, which we elicit from the properties of

the problem. The Bayesian formulation of plan recognition

of section II allows to fuse such subjective information with

other sources of uncertain knowledge in a probabilistically

sound way.

Let dk = [d1, . . . , dm]T be the observed distances of

all user plans at time k to the robot’s future trajectory. If

the user intends to follow the robot’s future trajectory, she

will have a plan resembling the future trajectory. Therefore,

each distance dj offers an uncertain measurement of the

likelihood of each plan ik. We can define the following

distance likelihood, which relates distance measurements dk

to the plan library Ik.

distance likelihood: pdist(dk | Ik) (7)

The distance likelihood should decrease in function of

distance, as far-away plans are less likely to correspond to

the robot’s future path. Equation (8) defines the functional

form of a candidate distance likelihood.

pcos(d | ik) =
1 + cos

(

π d−dmin

dmax−dmin

)

κcos(dmax , dmin)
(8)

where κcos(dmax , dmin) is a normaliser that ensures that

the likelihood obeys the laws of probability. The likelihood

is defined over the range of distances [dmin , dmax ] for the

observed robot trajectory.

The rationale behind introducing a distance likelihood

is to reduce the amount of data needed to calibrate the

plan process probability. Normally, in order to calculate a

probabilistic model of plan transitions, one would require

sufficient data about all possible transitions. The distance

likelihood can reduce the amount of training data because

information spreads from observed transitions to unobserved

transitions between plans.

D. Calibration of the plan process function

The distance likelihood imposes soft probabilistic con-

straints on the user’s true intention, which is hidden for

the robot. Therefore, the distance likelihood is a type of

uncertain evidence called virtual evidence [6]. It only offers

direct, albeit uncertain, information about the user’s plan

ik. This information can propagate inside the Dynamic

Bayesian Network of figure 3 to learn the parameters of

local plan recognition. These parameters are the plan process

probability, and if the user interface is discrete, also the user

model. User models for continuous interfaces are discussed

in the next section.

Please note that the distance likelihood is only available

during training, when the robot’s full trajectory is known. In

operation, the robot lacks access to its future path.

We compute the solution for the plan process probability

as the Maximum A Posteriori (MAP) distribution obtained

by the Expectation Maximisation (EM) algorithm [7]. The

exact procedure for a Bayesian Network is described in [8].

In broad terms, during the Expectation (E) step the expected

sufficient statistics of each component distribution of the

Bayesian Network are calculated by propagating evidence

with, for instance, the Junction Tree Algorithm [9]. Then, in

the Maximization step (M), the expected sufficient statistics

are assumed to be the actual statistics, which allow to

compute each component’s MAP distribution.

The MAP distribution allows placing a prior on the learn-

ing procedure, which makes unobserved data still possible. If

the robot were using the Maximum Likelihood plan process

probability, unobserved plan transition during training would

remain impossible in operation.

E. Learning the user model

If the user interface is continuous, which is approximately

true for conventional wheelchair joysticks, it is possible to

extract a continuous probabilistic mapping from user plans to

user inputs. In [10] we propose a learning framework based

on Gaussian Process Regression [11], which predicts user

inputs in function of continuous user plans.

Conventional joysticks consist of two independently con-

trollable axes that define the linear and angular speeds

respectively. Therefore, it is interesting to split the user

model puser into two components, one for the linear speed

and another one for the angular input. Such factorisation

follows from the product rule in probability and is stated

in equation (9).

puser (uk|ik) = puser (v
u
k |ω

u
k , ik) · puser (ω

u
k |ik) (9)

Each component in equation (9) defines a probability

distribution over user inputs vuk and ωu
k , which we represent

as a Gaussian Process, GPv or GPω .

vuk ∼ GPv (0, covv(ik, ω
u
k )) (10a)

ωu
k ∼ GPω (0, covω(ik)) (10b)

where ∼ denotes that the user input is distributed according

to a specific GP with covariance function covv(·) or covω(·).
The mean function of the Gaussian Process is zero for

normalized training data.

When learning the parameters of the Gaussian Process

GPv or GPω it is necessary to calculate a ground truth

plan iGT
k . We employ the same metric of section III-B to

obtain the plan with lowest distance to the actually executed
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trajectory and use this plan to train the Gaussian Processes.

An important requirement for learning is that all user plans

are sufficiently represented during training, i.e. that each plan

is executed several times.

IV. EXPERIMENTAL RESULTS

The experiments have been conducted in a home-like

environment at iRv/ vilans in Hoensbroek, The Netherlands

(cf. figure 6(a) for a map of the environment). We collected

two datasets on two different days. One dataset will be

employed for training the models and the other to evaluate

their performance.

The training dataset lasts about 9 minutes during which the

user had to solve different navigation tasks. In the test data

the user drives for 5 minutes performing similar maneuvers

in the same environment.

No driving assistance was provided since the purpose of

the experiment is to study the user’s driving style. Typical

maneuvers include most of the situations encountered in

daily-life such as such as driving forwards, crossing narrow

openings, turning at different radii, and also executing more

complex trajectories to reach far-away poses in the environ-

ment. Collisions with the environment happened occasion-

ally.

A. Description of the user

Figure 5(a) shows the user participating in experiments

within the EU-funded MOVEMENT project [12]. The user,

who was 19 at the time of the experiments, is a female

presenting symptoms of spastic quadriplegia1. As a conse-

quence of her condition, she was incapable of steering a

conventional electrical wheelchair safely. During the exper-

iments, collisions, especially in narrow locations, abounded.

She clearly fits the profile of users who currently are not

prescribed power wheelchairs and could benefit enormously

from navigation assistance.

B. Plan Generation

The robot constructs a collision-free local plan library by

considering the latest sensor data and the position within

an a-priori map of the environment (provided the robot is

well localized). Efficient collision checking is possible for a

large number of paths by employing pre-computed look-up

tables [14]2. Map features and perceived obstacles are placed

inside this pre-computed grid when updating the set of local

paths. Figure 5(b) shows an example of local plans, adapted

to dynamic obstacles at the robot’s current location.

1Spasticity generally results from damage to the part of the brain
that controls voluntary movement. It may also occur when the nerves
traveling from the brain down to the spinal cord have been damaged [13].
Quadriplegia means that it affects all limbs.

2All collision-free trajectories of a plan library with 144 plans are
calculated in about 20− 30ms on an Intel Core Duo Processor @2.6GHz

and 4GB of RAM.

(a) Spastic user [10]
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(b) Local plans adapted to the objects in the
environment

Fig. 5. Snapshot of the navigation experiments at iRv/vilans.

C. Results plan recognition

In this section we describe the results of recognizing the

local navigation plans of a spastic user. We combine a user-

specific driver model with past driving behavior. The user

model for the maneuver in 6(a) is shown in figure 6(b)

and the posterior in figure 6(c). The solid line in the

probability plots represents ground-truth according to the

metric discussed in section III-B. The robot is able to reduce

the uncertainty of the user model by including past driving

information.

Our performance benchmark is the concentration of prob-

ability mass around ground-truth. Visual inspection shows

reasonable convergence, which increases from the user model

to the posterior. In order to quantify the convergence, we

use the Kullback Leibler divergences KL(p(ik)||U(ik))
and KL(p(ik)||qGT (ik)). The first divergence measures the

difference between p(ik) and a uniform distribution over

plans, U(ik). Higher values imply a more informative distri-

bution p(ik). Conversely, KL(p(ik)||qGT (ik)) quantifies the

spread around ground truth and lower values are better. We

choose qGT (ik) as a normalized, integer-valued, Gaussian

that is centered on ground-truth and has a standard deviation

of 8 plans.

TABLE I

ANALYSIS OF CONVERGENCE TO GROUND TRUTH

distribution KL(p(ik)||U(ik)) KL(p(ik)||qGT (ik))
user model 1.06± 0.38 14.92± 5.55
posterior 2.12± 0.56 3.80± 1.27

In table I, the first value represents the mean and

the second one standard deviation. To put the values of

KL(p(ik)||U(ik)) in perspective, a Gaussian with mean 72
and standard deviation 17 has KL(Nint(72; 17)||U(ik)) =
1.04, and if σ = 8, then KL(Nint(72; 8)||U(ik)) = 2.12.

Table I confirms that the posterior converges better to

ground truth compared to the user model. However, we

believe a moderate level of noise is necessary to avoid an

overconfident posterior, which is occasionally wrong. For a
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more extensive analysis of the maneuver, please refer to [15].

V. RELATED WORK

A. Navigation assistance

Most assistive robots, such as wheelchairs, robotic guides

or walking aids share the control with the user through

task-related assistance behaviors. The robot helps to avoid

obstacles, dock at tables or traverse doorways [16], [17].

Other approaches rely on environment properties to define

the most appropriate navigation assistance, such as outdoor

versus indoor [18], cluttered versus open, or dynamic versus

static [19].

Due to the broad definition of assistance, the behaviors

still need to estimate the actual navigation plan of the user.

It remains the responsibility of the shared controller to decide

whether an obstacle should be avoided to the left or to the

right, and this estimation is often implicit. In contrast, we

propose an explicit estimation of the navigation plans of the

user, which considers the user’s abilities and needs.

An important difference of our probabilistic framework,

is that besides environmental information and user signals,

we quantify the inherent uncertainty of driving. Users drive

differently every time and the actual navigation plan is

hidden for the robot. The framework merges past beliefs

regarding user plans with new evidence from user signals.

B. History of the framework

The problem of plan recognition in the context of human-

robot wheelchair navigation was first proposed by Demeester

et al. [20]. The authors demonstrated how to recognize the

user’s intention to drive to a goal location. In this early work,

user intentions were simply end poses to be reached at an

end velocity. Later work [21], [22] recognized the need to

include also the user’s plan to reach a goal location in the

intention representation, as users might reach the same goal

location in different ways.

The framework evolved further by representing user plans

as local trajectories, since immediate assistance should rely

primarily on local information and global maps are not

always available. In [10] Hüntemann et al. describe a learning

technique to acquire user models based on local trajectories

for arbitrary driving styles. This work extends the results

of [10] by completing the process of plan recognition for

local trajectories.

C. Other frameworks of plan recognition

The field of plan recognition originated in the domain

of story understanding. Schmidt et al. [23] define plan

recognition as the process of identifying the goals of an

agent together with the plan to achieve those goals. Kautz

and Allen [24] apply deductive inference on a plan library

to identify the intention of an agent. However, their system

disregards the plans’ prior probabilities. Unlikely hypotheses

and very probable plans might explain equally well a set

of observations. In order to overcome this shortcoming,

Charniak and Goldman [25] propose a system for natural

story understanding, which relies on incrementally con-

structed Bayesian Networks. This system lacks a procedure

to learn the parameters of the model in the domain. Dynamic

Bayesian Networks have also been applied to adventure

games [26].

Although plan recognition has a long history, each ap-

plication requires different domain-specific models. The de-

signer needs to identify the set of valid plans, which the

system should recognize robustly. Further, a procedure to

calibrate the parameters of the chosen model is essential.

The main contribution of this paper is to describe a complete

framework to recognize navigation plans and to make this

recognition adaptive to each user.

Approaches that are comparable to our probabilistic frame-

work can be found in the analysis of motion behaviors by
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Bennewitz et al. [27] and Glover et al. [28]. In contrast to

our framework, however, they disregard user inputs while

predicting the motion of humans. Further, they assume

implicitly that users can go everywhere autonomously.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we propose a probabilistic framework to

recognize local navigation plans. The framework combines

present and past information with user-specific driving be-

havior to derive a probabilistic estimate of the user’s navi-

gation plans.

We have shown the importance of employing local tra-

jectories as navigation intents, which offer rich collision

information and allow the user to drive anywhere. In order

to recognize the user’s navigation plans, it was necessary to

connect past user intentions to present plans in absence of

global references.

The paper also proposes a probabilistic framework to learn

the components of local plan recognition, namely the user

model and the plan process function. The former quantifies

how a user transforms mental plans into inputs to the robot,

whereas the plan process function models how user plans

evolve in response to robot actions. The user model is

learned via Gaussian Process Regression. The plan process

function is calibrated in a Dynamic Bayesian Network by a

probabilistic distance likelihood. This likelihood is a domain-

specific function that models how much information the

distance between user plans and the actual robot trajectory

provides about the user’s hidden intention.

Future work will compare driver models of users with

different abilities. We are also planning to integrate the

recognition of local navigation plans with a framework to

share the control with the user.
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