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Abstract: The provision of TotalCare® styled service offerings by original equipment manufac-
ture (OEM) suppliers of high-integrity assets is intended to provide improved levels of system
availability to the operator. A key element of such service offerings is the ability to minimize
unplanned equipment downtime, and the utilization of advanced diagnostic and prognostic
monitoring tools is a significant component in achieving this. Monitoring methods, founded on
novelty detection technologies, are now a well-established condition monitoring technique. This
approach is particularly appropriate for monitoring high-integrity plant where fault conditions
arise with extremely low levels of probability. The approach described in this article is to establish
empirically based models of normality that are guided by engineering knowledge and utilize key
features normally used by expert engineers. However, rather than consider generic modelling
approaches, it is proposed that application of models that adapt their sensitivity to the operation
of individual assets offer greater prognostic efficiency. This article demonstrates how this can be
achieved by considering asset-specific models that adapt the threshold of alerting in accordance
with the observed normal running of the plant.

Keywords: probabilistic, novelty detection, condition monitoring, health monitoring, aero
engines

1 INTRODUCTION

1.1 Overview of condition monitoring

The provision of services, such as TotalCare® and
power by the hour arrangements, are now regarded
as an essential element of delivering asset opera-
tion. The primary aim of these service contracts is to
increase availability of the product for all operational
requirements. Clearly, the ability to increase availabil-
ity requires a robust method of health monitoring. The
emphasis of this service is not to accurately diagnose
events as they occur, but rather to detect incipient
signs of problems long enough in advance such that
serious outages are avoided, with a minimal cost of
disruption (ideally zero). Modern aero engines are
designed to be extremely reliable, typically operating
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for many thousands of hours before requiring a major
overhaul. This poses a significant challenge in the
implementation of dependable health monitoring sys-
tems where design assumptions are made in the con-
text of an abundance of normal data. This is not unique
to the aviation industry. In many industrial sectors,
wide-scale usage of high-valued assets has led to the
development of various maintenance and condition
monitoring strategies. Condition-based maintenance
is now an established form of proactive maintenance
adopted by many OEM suppliers and operators of
high-integrity plant. It is considered to be an alterna-
tive to corrective maintenance, usually initiated when
a failure occurs, and conventional maintenance based
on a fixed operational time, which is triggered when
some measure of operational time at a given condi-
tion has reached a pre-defined level. A key aspect of
this type of monitoring is therefore its prognostic abil-
ity. If the detection horizon is so short that there is
insufficient time to plan relevant work scope within a
scheduled maintenance activity, then the likelihood is
that monitoring will consist of measuring operational
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time against a fixed limit and then invoking a pre-
defined set of maintenance actions. Hence, equipment
health monitoring is only applicable to a certain per-
centage of failure modes and an appropriate time lag
between inception and final failure must be present.
Moubray [1, 2] defined the concept of the P–F inter-
val as the time between the point at which a potential
failure can first be detected (P), and that of actual fail-
ure (F). Different monitoring approaches will provide
varying levels of P–F interval. The example in Fig. 1
indicates how such intervals could vary for different
methods used for monitoring bearing faults.

Three main factors influence the time at which a
potential failure can first be detected.

1. Ability of the sensor output to show a characteris-
tic change in response to the incipient event – this
should also extend to the conditioned signal that is
observed by the monitoring algorithm.

2. Sensitivity of the monitoring algorithm to detect the
change at the sensor output.

3. Any time lag in the entire monitoring system
between the signal change occurring at the sen-
sor element and the time at which a report to the
operator can be issued. This must also account
for any significant time involved in signal/data
transmission.

The objective of using advanced health monitoring
techniques is therefore to provide as much prognos-
tic capability as possible. Although this motivates the
entire design of a complete monitoring system, this
article will focus on different types of appropriate
monitoring algorithm. The method adopted must be
extremely robust in terms of its ability to accurately
detect incipient failures, but it is also important that
the false-positive detection rate is well understood and
kept to a minimum, since any reported abnormality
(genuine or otherwise) will generate additional work
scope and therefore cost. Trust in the detection abil-
ity is therefore dependent on avoiding no-fault-found

Fig. 1 Variation of P–F interval with various example
monitoring methods

outcomes (i.e. the result of a maintenance action
following a false-positive detection).

1.2 Overview of existing condition monitoring
approaches

During the design stage of any high-integrity complex
machinery, emphasis is given to the understanding of
potential failure mechanisms. Depending on assessed
levels of the probability of failure and the estimated
severity of impact, the considered failure mode will
either be designed out of the physical product, or the
risk mitigated by in-service monitoring. This is a com-
mon approach adopted by many industrial sectors and
is known as failure mode effect and criticality analy-
sis (FMECA) [3, 4]. In the case of the aero gas-turbine
engine, the most significant modes to consider will be
possible bearing failure mechanisms, fatigue-induced
cracks in mechanical systems including combustors,
compressor/turbine blades and rotating assemblies,
potential secondary effects arising from foreign object
damage (for example, bird strike), and aerodynamic
instabilities such as fan flutter. As explained above,
for those areas where a short P–F interval is expected,
hard-life monitoring will be used as a measure of
the asset’s condition. However, the inherent reliabil-
ity and robustness of high-integrity plant (which can
typically operate for many thousands of hours before
requiring a major overhaul) makes it difficult to design
algorithms for detecting failure types with longer P–F
intervals. This is mainly due to examples of abnor-
mal behaviour being relatively few in comparison to
the quantity of normal examples. Consequently, con-
ventional fault-specific detection schemes are usu-
ally limited to identifying a small subset of known,
well-understood modes of failure.

Various attempts have been made to apply methods
for intelligent monitoring and fault diagnosis using
model-based and knowledge-based techniques [5, 6].
In addition, expert systems (consisting of if–then-type
rules) have been successfully used for the analysis of
blade vibration [7]. However, successful implemen-
tation of these methods can only be achieved when
domain-specific engineering knowledge is available
that can be expressed in a concise format for suit-
able representation in a computer program [8]. In
situations where physics-based models are either too
complex or not available, alternative methods need to
be considered.

Other statistically based techniques have been used
to monitor data to identify trends, usually focussing
on monitoring an observed parameter to determine
if it exceeds a predefined limit. Although based on
engineering judgement, such limits are often arbitrar-
ily set and are made to apply across all similar asset
platforms, despite potential inter-system variability.

The novelty detection paradigm for identification of
rare and unexpected features is now a well-established
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method and has been successfully demonstrated for
the detection of abnormalities in vibration-based
monitoring systems. Previous examples include auto-
matic analysis of vibration signatures during engine
pass-off testing [9, 10] and continuous monitoring of
shaft tracked-order vibration for signs of imbalance or
foreign object damage [11]. In both of these examples,
the model was constructed from normal data collected
from a number of engine examples, which therefore
was a generic model of engine behaviour. Examples of
this approach are now used for on-line monitoring of
the latest Trent family of engines.

Equivalent models, using summary data collected
from overhaul pass-off testing, have been extended to
offer insight into fleet-wide behaviour. This is made
possible by the integration of visualization techniques
that provide a two-dimensional (2D) view of com-
plex vibration data [12].Various approaches have been
investigated for establishing models of normality. Use
of neural networks for classification of novelty was
evaluated by Markou and Singh [13] by simulating
abnormal conditions using simulated artificial data.
This approach clearly makes bold assumptions about
the distribution of abnormal conditions and is likely to
prove extremely difficult to validate on high-integrity
applications. Statistically based methods involving
clustering and various implementations of principal
component analysis (PCA) have also been consid-
ered. Xue and Yan [14] employed techniques such as
use of the Mahalanobis distance in combination with
Gaussian mixture models to define a distribution of
expected residuals from training data, and hence pro-
vide estimates of novelty. Other approaches for novelty
detection include the use of dynamic modelling tech-
niques such as Kalman filters and Hidden Markov
Models. While these techniques are suitable for mod-
elling dynamical systems, the framework adopted by
the authors (of which a detailed technical account is
given in reference [15]) allows us to explicitly model
abnormal regions of feature space near the boundary
of normality. In addition, our adopted framework pro-
vides a mechanism for establishing such boundaries
of normality in a principled, automated manner based
on the observed data collected during the early stages
of asset operation. Later in this article, the concept
of adaptive models is discussed, which demonstrates
how asset-specific models provide an assessment of
novelty in an individual asset’s operation, rather than
an expected fleet-wide norm. This unique approach
is particularly advantageous, since experience shows
that from a group of engines of a similar design
type, a range of conditions can be observed for the
same operating criteria. For example, two indepen-
dent engines can both operate within design limits,
but exhibit different vibration levels for a given speed
condition. If the lower-running engine were then to
experience a 10 per cent increase in vibration, and
still fall within the predefined fleet limit, it would

be considered an uncharacteristic condition relative
to an engine-specific model. Hence, utilizing thresh-
old levels specific to the individual asset provides a
mechanism for early detection of novel conditions (i.e.
increased algorithmic sensitivity).

1.3 Article overview

Having justified the use of novelty detection for health
monitoring, this article provides examples based on
robust modelling techniques that offer reliable nov-
elty alerts. The approach underpinning the use of
these techniques is based on the novelty detection
framework proposed in reference [15].

Section 2 provides an introduction to the proposed
methodology of novelty detection in the context of
equipment health monitoring of high-integrity plant.
The initial step in this framework addresses vari-
ous examples of feature extraction techniques and is
explained in section 2.2.

Data visualization is the next major step in the pro-
cess of deriving models of normality, and is essential
in gaining an understanding of the underlying struc-
ture of the data. Methods such as PCA, Sammon’s
mapping and NeuroScale are all viable techniques,
each of which can be used in combination with
other statistical and signal processing methods to
gain insight into the data. In this article, discussion is
restricted to model creation, and the reader is referred
to other works on visualization techniques for further
reading [16, 17].

Methods of characterizing normality within an
empirically derived model are then discussed in
section 2.3. The final phase of the novelty detection
framework is described in section 2.4, which addresses
the critical area of defining novelty thresholds in a
principled manner using an extension of extreme
value statistics. A key benefit of this method is the
ability to automatically derive thresholds that pro-
vide engine-specific limits. It is therefore the view
of the authors that encapsulating this extension of
extreme value statistics within our novelty detection
framework offers a unique and robust mechanism
for developing such capability within engine-health
monitoring applications.

Case study examples are described in section 3, with
a discussion of key results in section 4. Finally, conclu-
sions and an outline of future work are presented in
section 5.

2 METHODOLOGY

2.1 Introduction to novelty detection

The concept of novelty detection is based on the
premise that a bounded model of normality can be
constructed. It is usual for the model to be derived
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from data-driven methods (for example, neural
networks, statistical clustering, etc.) using data col-
lected from observations representing normal system
operation. Newly observed data can then be tested
against this model in order to determine their rela-
tive novelty.

Traditional approaches typically assess the dis-
tance of each new observation from the model (in
a Euclidean sense), classifying data as abnormal if
they exceed some threshold defined on that distance.
The more a point exceeds the defined boundary of
normality, the greater its measure of novelty. A more
principled and less heuristic approach is to assume
a probabilistic, generative model of normality, which
can be established from density estimation techniques
to obtain an estimate of the underlying data distri-
bution [16]. A threshold can then be defined on the
resultant probability distribution to define a region of
normality within areas of data space. This approach
allows novelty to be expressed in terms of the probabil-
ity of observing data that do not belong to the derived
distribution.

The following factors are therefore key considera-
tions for the construction of robust models of nor-
mality and are discussed in subsequent sections of
this article.

1. Availability of representative data that accurately
characterize normal operation. This will not consist
of the raw signals measured by sensors, for which
the same assumption must apply, but will instead
relate to key diagnostic indicators (features) that
can be extracted from the raw data.

2. Appropriate model selection. As already mentioned
above, many techniques are available, such as those
described in reference [15].

3. Derivation of a robust novelty threshold. This
reflects the expected boundary of normality (in
probabilistic terms) and will be used in the gen-
eration of alerts if new data exceed its value. It
is therefore important that this threshold is well
defined and understood, since if it is too sensitive
then there will be a risk of false-positives alerts.
Conversely, if the threshold is too insensitive then
there is a risk of a false-negative condition in which
abnormal data remain undetected.

2.2 Feature extraction

As already indicated, a key consideration in the detec-
tion of novelty lies with the ability to detect subtle
changes in the conditioned signal that relate to incip-
ient events. Clearly, it is important that appropriate
signal conditioning is utilized so that relevant features
can be extracted from the sensor data.

Often, prior knowledge of the system being mon-
itored provides a useful guide for feature selection.
Where systems involve rotating machinery, vibration is

often a key discriminator between normal and abnor-
mal behaviour. Civil gas-turbine engines are com-
prised of two or more rotating shafts. This gives rise
to vibration excitation, which is transmitted through
the mechanical structure of the engine and hence
can be monitored as carcass vibration using stan-
dard case-mounted accelerometers. Additional aero-
dynamic and combustion effects will also be reflected
in the measured vibration signal. Additional sensors
(for example microphones, strain gauges, etc.) can also
provide an indication of vibration content.

Key features, extracted from the frequency domain,
can then be used for identifying signs of engine abnor-
mality. For example, out-of-balance shaft conditions
can be detected by observing changes in the ampli-
tude profile extracted from the fundamental rotational
frequency (the first tracked-order component) of the
shaft as it is accelerated and decelerated. Other shaft-
order components are also of interest (for example,
0.5× fundamental frequency, 1.5× fundamental fre-
quency, and other multiples) as these can reveal
events relating to blade rubs, foreign object impact,
blade cracks, and even certain aerodynamic insta-
bilities on a given blade row. Problems relating to
bearing assemblies can also be detected by the obser-
vation of side-band components around harmonic
tracked-order components.

Monitoring signals from within the gas path (for
example, pressures, temperatures, etc.) can also yield
features that provide useful measures of deterioration
and incipient signs of failure. The output from the
model is then used as a novelty score, which increases
with increasing system abnormality. In section 2.4, it is
shown that this is expressed in terms of a meaningful
probability.

2.3 Density estimation

We have assumed a fixed, underlying generative model
of normality, which, in the investigation described by
this article, is provided using Parzen windows [18] to
estimate the unconditional probability density p(x) of
normal training data. This method places an identical
Gaussian kernel K (x) on each of the N training data,
where each kernel has width σ , and where the resultant
data density is defined to be

p(x) = 1
Nσ D

N∑
i=1

K
(

x − μi

σ

)

for kernel

K (x) = 1
(2π)D/2

exp
(

−1
2

x2

)

where the data are D-dimensional, and where the ith
kernel is centred at μi.
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Typically, the value of σ is set to ensure a com-
promise between underfitting and overfitting the
training data.

2.4 Principled setting of novelty thresholds

In order to classify data xi as either normal or abnor-
mal, we define a decision boundary H on P(x), the
integrated form of p(x), such that xi is classified nor-
mal if P(xi) < H , else xi is classified abnormal, where P
is defined to be the probability mass enclosed by p(x).
We term this decision boundary the novelty threshold.

Previous work [15] has shown that extreme value
theory (EVT) [19] can be used to set novelty thresh-
olds on Gaussian kernels, which characterizes the
expected distribution of extreme values generated
from an underlying normal distribution – effectively
modelling the tails of that distribution. The novelty
threshold corresponding to P(x) = H occurs at some
radius r from the Gaussian kernel

r = σ√
2 ln m

[
2 ln m − ln(− ln H ) − ln ln m + ln(4π)

2

]

which corresponds to an equivalent threshold, p(r).
Here, EVT provides a probability distribution describ-
ing where the maximum of m values drawn from the
model of normality are expected to lie. The above
equation integrates this probability distribution, pro-
viding a threshold such that the maximum of those
m values will lie within the novelty threshold with
probability H .

3 DATA

3.1 Introduction to data

The probabilistic modelling approach for novelty
detection is illustrated using aero gas-turbine vibra-
tion measurements. Transducers mounted on the
engine case measure the broadband vibration signal
during flight, which is processed by an engine health
monitoring (EHM) system, transforming it into ampli-
tude versus frequency spectra five times per second.

Software modules (known as feature detectors) pro-
cess this data in order to monitor individual engine
parameters. It is the resulting outputs from these mod-
ules, or feature detector scores, which are used as input
features in our modelling approach. It is then possible
to compare new scores (obtained from further system
operation) to the model to determine if the condition
of the engine is abnormal.

Two datasets are described in this work. Example A
is an engine that suffered fan liner damage and exam-
ple B is an engine where a compressor blade failed. In
both cases there were no significant precursors to the
fault detected using existing EHM systems. For each
example, there are 7 days of flight test data available
leading up to the time of failure.

The objective of the investigation described by this
article is to show that it is possible to construct a model
using data from early in the life of the engine, in order
to demonstrate increased novelty in tests immediately
leading up to each failure.

3.2 Construction of models

For the purpose of this investigation, we focus on the
following data types: the fundamental Tracked Order
(TO), which is a measure of vibration amplitude at the
frequency of engine shaft rotation; the fractional and
multiple TOs associated with a set of common shaft
harmonics; the residual energy (i.e. the energy in the
signal that is not already attributed to one of the TOs);
and the broadband energy in the range 0–1 kHz.

The score produced by each feature detector corre-
sponding to one of these parameters is median filtered,
and truncated so that only data acquired above the idle
speed of the engine are retained. Data are partitioned
such that the operation relating to the three main sub-
systems of the engine are grouped separately, leading
to three distinct sets of models.

For each of these engine subsystem models, the
preprocessed feature detector scores are combined to
form a feature vector for each sample. A typical feature
vector is of the form:

[Fundamental TO; 2nd harmonic TO; 3rd harmonic
TO; 4th harmonic TO; 5th harmonic TO; 1.5th
harmonic TO; residual energy; broadband]

Once a set of feature vectors has been constructed,
each element is component-wise normalized [17] in

Fig. 2 NeuroScale projection of model training cen-
tres for the Fan liner loss example. The training
data are partitioned into four, corresponding to
four speed subranges, each represented by 500
prototype feature vectors generated from three
flights of normal operation. Speed subranges are
labelled S1–S4 in ascending order
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order to approximately equalize the dynamic ranges
of the outputs of the various feature detectors.

Practical experience shows that the vibration
response of an aero engine will vary according to
the regime of the flight. For example, scores gener-
ated during cruise (i.e. steady state) will differ from
those obtained during a high-power manoeuvre such
as takeoff. In order to provide discrimination between
various modes of aircraft operation, the training data
for each engine subsystem are partitioned into four
subsets according to a partitioning of the speed range
into quartile subranges. Each of the four subsets

of data is used to construct a separate model of
normality.

Another pertinent observation regarding the data
is that a disproportionate amount of time is spent
during cruise conditions, compared to other engine
speeds. When constructing a model, the selected data
are filtered to ensure that feature vectors insufficiently
different in speed to the previous feature vector are not
retained. This step prevents the model being over-fit to
cruise conditions.

Data used to construct each model of normality
are also used to train a projection function (used to

Fig. 3 NeuroScale plot of new data against model (left) and associated novelty score against novelty
threshold (right) for flights occurring after the training period for the fan liner loss event.
In the NeuroScale plots, the model prototypes are plotted in black, while new test data are
plotted in grey. The earliest flight is shown in the top row and the latest flight on the bottom
row
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display the high-dimensional feature vectors in 2D).
This mapping from high-dimensional feature vector
space into 2D is achieved through the use of a Neu-
roScale mapping [20]. In this approach, a radial basis
function neural network is trained using normal data
to give a mapping into 2D, which seeks to make the
Euclidean distances between pairs of image patterns
in the 2-D visualization space as close as possible to
the Euclidean distances between the corresponding
pair of patterns from the original higher-dimensional
space. Further description of the NeuroScale method
for reducing high-dimensional data into 2D for visual-
ization is deferred to [20].

The NeuroScale algorithm is trained using a set of
prototype feature vectors that are generated by apply-
ing the k-means clustering algorithm on the full set of
feature vectors gathered to train each model, generat-
ing a subset of cluster centres in the high-dimensional
space. The same centres are used to train a Parzen
window estimator as described in section 2.3.

4 RESULTS

In this section we present NeuroScale visualizations
of training and test data, and compute novelty scores
for test data in order to determine if the abnormal
behaviour can be detected before the point of failure.
This analysis is carried out for both of the example
datasets introduced in section 3.1.

4.1 Example a – fan liner loss

Seven flight tests were available culminating in the loss
of fan liner material from this engine. The first three
tests were grouped together to form a training set, and
the visualizations in Fig. 2 show that the four sets of k =
500 prototypes (each corresponding to a different sub-
range of engine speeds) cluster together within their
respective speed subranges. Axes for NeuroScale plots
are unitless, but we have found that data representing

a period of prolonged normal operation will cluster
within ±10 in both x and y directions for this particular
application.

This initial visualization is vital in order to confirm
that the training data are indeed representative of the
same engine condition.

We will focus on the first of the four models with the
techniques, discussion being directly applicable to the
other three models.

The visualizations in the left-hand column of Fig. 3
show a clear drift away from the model centres (plot-
ted in black) over the course of three flights (each
plotted in grey). A novelty score is computed for each
feature vector using the method described in section
2.4. Note that the novelty score for feature vector x
is defined to be −logep(x), which will take high val-
ues for data occurring with a low probability. The
novelty threshold is shown in each novelty plot, and
while the novelty scores for the first test lie below this
value, the subsequent flights exceed the threshold by
a significant margin.

This demonstrates the prognostic capabilities of the
scheme with detection of abnormal engine condition
achieved 2 days prior to the failure event.

4.2 Example b – blade failure

Again for this second example, only seven tests are
available. Data from the first five tests were pooled
in order to populate the training set across the full
speed range of the engine. In this example, more tests
are required for training purposes as the tests them-
selves are much shorter in length and contain less
vibration data.

Figure 4 shows the NeuroScale visualization and
novelty scores associated with the highest speed sub-
range for the day prior to the failure.

It is clear that the operation of the engine is signifi-
cantly different from that of the learned model and the
threshold exceedance would suggest that the engine

Fig. 4 NeuroScale plot of new data against model (left) and associated novelty score against novelty
threshold (right) for the flight prior to the blade failure event. In the NeuroScale plot, the
model prototypes are plotted in black, while the new test data are plotted in grey
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should be examined for damage at this point. With-
out such prognostic tools available at the time, the
engine was left on the aircraft and suffered a blade
failure during the next flight.

5 CONCLUSIONS

This article has demonstrated the effectiveness of a
principled approach to developing modelling tech-
niques for visualization of complex engine health data
and deriving asset-specific thresholds for early detec-
tion of abnormalities. Two case studies have been
presented (that is, fan liner loss and blade failure),
which highlight how these techniques can be used
to provide early signs of incipient failure; usually in
situations where prognostic capability was previously
unavailable. Retrospective analysis of the Fan Liner
Loss data demonstrated 2-day prior warning of the
impending failure. Similar prognostic behaviour was
demonstrated in the analysis from the blade failure
example, where indications of problems were high-
lighted the day prior to actual failure. These results
demonstrate a significant increase in the ability to
determine abnormal engine operation in comparison
with conventional techniques, which detected only
the final engine event itself.

Additionally, experience has also shown that these
methods offer a generic capability for identifying
abnormality in a range of other fault scenarios. For
example, in the detection of combustor injector block-
age, foreign object damage, crack propagation in
rotating assemblies, and aerodynamic instabilities [8].

The authors consider that the successful application
of these methods lies with the use of relevant features
extracted from observed data, founded on domain
expert knowledge, in combination with appropri-
ate model selection and the principled, automatic
definition of model boundaries.

This offers the advantage of requiring minimal
expert intervention both in initial model construc-
tion, and, more importantly, with subsequent analy-
sis of data where model exceedances directly relate
problems to specific sensor/engine fault locations.
However, their disadvantage lies with the initial arbi-
trary partitioning of training data over different engine
speeds and flight conditions. Although to date, this
has had negligible impact on results, there is scope
for utilizing an approach in the selection of training
data that more closely corresponds to actual engine
operational regimes.

Although this article has concentrated on actual
modelling techniques, the introduction identified
some important business-related issues. These were
concerned primarily with reliability of detection
and effective prognostic capability, both of which
directly influence costs associated with subsequent
work-scope activity in the event of a fault being

identified. Therefore, prior to adopting any new health
monitoring technique, it is important that any costs
associated with its implementation can be quantified
(such as, ‘What is the likely cost of false alerts versus
likely savings generated as a result of improved prog-
nostic ability?’). Hence, the main benefit of applying
the described modelling methods within the frame-
work of extreme value statistics is that information
relating to sensitivity and specificity of the detector
[21] can be defined in support of the above business
concerns where expected false-positive rates can be
quantified in advance of deployment.

5.1 Future work

The detection techniques discussed above have con-
centrated on vibration features as prime indicators
of engine condition. Many aspects of what has been
presented in this article are now being incorporated
within the service support of the latest Trent family
of engines. However, it is recognized that other indi-
cators of engine condition are also available. Engine
performance signals are currently trend monitored
using conventional off-line analysis methods. Fur-
ther work will therefore investigate potential benefits
of applying the above methods to these data both
for on- and off-line analysis. This is likely to involve
extending the idea of using extreme value statistics to
multi-parametric data. As already indicated in the pre-
vious subsection, further work will also consider more
robust heuristic methods for automatic partitioning
of engine speed and flight phase data for training and
modelling purposes.

So far, in the application of the modelling methods
described by this article, it has been possible to use
either the entire dataset obtained from engine testing,
or invoke some simple sampling regime. However, as
the complexity of monitoring systems grows, and with
the volume of generated engine health data continu-
ing to increase, there will be a point at which certain
techniques will not scale and more efficient sampling
strategies will be required. For example, Sammon’s
mapping technique requires approximately 4n2 bytes
of memory when projecting n feature vectors, irre-
spective of the dimensionality of those vectors. Hence,
even a modest 100 000 observations will require 40
Gbytes of working memory. Therefore, techniques
similar to those described in reference [22] will require
development so that existing modelling techniques
can make effective use of very large datasets.
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