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ABSTRACT Line-edge-roughness (LER) is one of undesirable process-induced random variation sources. 

LER is mostly occurred in the process of photo-lithography and etching, and it provokes random variation in 

performance of transistors such as metal oxide semiconductor field effect transistor (MOSFET), fin-shaped 

field effect transistor (FinFET), and gate-all-around field effect transistor (GAAFET). LER was 

analyzed/characterized with technology computer-aided design (TCAD), but it is fundamentally very time 

consuming. To tackle this issue, machine learning (ML)-based method is proposed in this work. LER 

parameters (i.e., amplitude, and correlation length X, Y) are provided as inputs. Then, artificial neural 

network (ANN) predicts 7-parameters [i.e., off-state leakage current (Ioff), saturation drain current (Idsat), 

linear drain current (Idlin), low drain current (Idlo), high drain current (Idhi), saturation threshold voltage (Vtsat), 

and linear threshold voltage (Vtlin)] which are usually used to evaluate the performance of FinFET. First, how 

datasets for training process of ANN were generated is explained. Next, the evaluation method for 

probabilistic problem is introduced. Finally, the architecture of ANN, training process and our new 

proposition is presented. It turned out that the prediction results (i.e., non-Gaussian distribution of device 

performance metrics) obtained from the ANN were very similar to that from TCAD in the respect of both 

qualitative and quantitative comparison.  

INDEX TERMS Line edge roughness, process-induced random variation, FinFET, machine learning, 

artificial neural network. 

I. INTRODUCTION 

Over the past a few decades, complementary metal oxide 

semiconductor (CMOS) technology has been evolved with  

advanced techniques such as stress engineering in 90 nm 

technology node [1], high-k/metal-gate (HK/MG) in 45 nm 

technology node [2], and three-dimensional advanced device 

structure in 22 nm technology node [3]. Those new 

techniques have enabled the physical dimension of metal 

oxide semiconductor field effect transistor (MOSFET) to be 

successfully scaled down, resulting in the improved 

functions of integrated circuit (IC) per cost. However, there 

still exists secondary effects in aggressively scaled 

MOSFETs, and they should be overcome. Especially, one of 

those challenges, i.e., process-induced random variation, 

which randomly cause variation in transistor performance  
FIGURE 1. A bird’s-eye view of FinFET with a three-dimensional line-edge-
roughness (LER) on its sidewall. LER parameters used in this example are 
as follows: Δ = 0.5 nm, Λx = 20 nm, Λy = 50 nm, α = 1, and Θ = 0. 
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metrics such as threshold voltage, on-state drive current, and 

off-state leakage current, become significant as CMOS 

technology is evolved [4]. The primary causes of process-

induced random variation can be classified as (i) line edge 

roughness (LER), (ii) random dopant fluctuation (RDF), and 

(iii) work function variation (WFV) [5]. Among them, 

because LER can affect the other random variation sources 

(i.e., RDF and WFV) by inducing the deformation of device 

structure [6], it would degrade the device performance more 

severely. With the most radical shift in device architecture at 

22 nm node, i.e., from planar bulk MOSFET to three-

dimensional fin-shaped field effect transistor (FinFET), the 

process-induced random variation becomes much more 

severe [7]. As expected that a more complicated device 

structure such as multiple bridge channel field effect 

transistor (MBCFET), stacked nano-wire FET, 

complementary FET (CFET) would be adopted at 3 nm node 

[8], understanding and analyzing the impact of LER on 

device performance is essential for designing variation-

robust silicon device [9]. 

To understand and quantify the impact of LER on device 

performance, TCAD has been used so far. TCAD simulation 

is, however, fundamentally very time-consuming. As another 

approach, compact model [10] has been used to overcome the 

time-inefficiency of using TCAD tools. However, the compact 

model for LER is still based on 2-D analysis, despite that 3-D 

analysis for LER is necessary [7]. As an alternative way to 

avoid those obstacles, we have focused on machine learning 

(ML)-based artificial neural network (ANN). Machine 

Learning technology has already been in spotlight in various 

fields such as geology, and biology [11-13]. Especially in 

semiconductor technologies,  a number of studies have been 

reported in many branches such as fabrication [14, 15], 

optimization [16], and modeling [17]. Following this trend, we 

suggested a ML-based ANN model in our previous work [18]. 

However, it turned out that the ML-based ANN had limits, in 

that target performance metrics were assumed to follow multi-

variate Gaussian distribution only. This assumption would 

cause some inevitable errors. Moreover, the ANN model has 

its own intrinsic limit in estimating the other performance 

metrics such as Idlo, and Idhi (which, in real, do not follow 

Gaussian distribution). Therefore, we would like to develop 

and propose an upgraded ANN model with enhanced accuracy 

(note that this new ANN model can overcome the limit 

mentioned above).  

In this work, we show the way how FinFETs with LER are 

simulated as well as how those data are preprocessed for 

training process of ANN. Afterwards, the evaluation method 

used to assess the results of proposed work is introduced. 

Finally, it is shown how ANN was composed and built, 

including its geometrical structure, hyper parameters, and the 

process of grafting probability. 

 
II. DATA GENERATION 
A. TCAD SET-UP WITH LINE EDGE ROUGHNESS 

As done in the previous study [18], 3-D quasi atomistic 

model for line edge roughness was used [15]. Three 

parameters (i.e., Δ, Λx, and Λy) are used to describe and 

reconfigure LER profile. The physical meaning of those 

parameters are as follows [see Fig 2]:  

(i) Amplitude (Δ): it indicates the rms (root-mean-squared) 

value of surface roughness.   

(ii) Correlation length (Λ): it means how line edge is 

closely correlated with its neighboring edge. A larger Λ 

indicates a smoother line. 

 𝐴𝐶𝑉𝐹(𝑥, 𝑦) =  𝛥2 𝑒𝑥𝑝 [− {(𝑥𝑐𝑜𝑠𝛩 +𝑦𝑠𝑖𝑛𝛩)2𝛬𝑥2 + (−𝑥𝑐𝑜𝑠𝛩+𝑦𝑠𝑖𝑛𝛩)2𝛬𝑦2 }12]             (1) 

 

In Eq. (1), Λx and Λy are the correlation length along x-

direction and y-direction, respectively [see Fig. 1]. Θ 
indicates the relation between x-direction and y-direction. 

Using parameters mentioned above and two-dimensional 

auto covariance function (ACVF), we have simulated 

FinFET with MATLAB and TCAD Sentaurus Structure 

Editor and Device [19, 20]. The detailed steps how to create 

a rough sidewall surface of FinFET are provided in [18, 19]. 

Nominal device parameters of FinFET is summarized in 

Table I. Drift-diffusion simulation for the FinFETs with 

surface roughness are executed, using various models such 

as doping-dependent mobility model, thin-layer mobility 

model for carrier transport, the Shockley-Read-Hall (SRH) 

model for generation and recombination, high field 

TABLE I. NOMINAL DEVICE PARAMETERS OF FINFET [8]. 

Device design parameters 

Symbol Description Unit Value 

Lg Gate length nm 20 

Tox Equivalent oxide thickness nm 0.3 

Wfin Fin width nm 7 

Hfin Fin height nm 50 

VDD Power supply voltage V 0.7 

NS/D Source/drain doping concentration cm-3 1020 

NRCD Peak concentration of Punch-

through Stopper 

cm-3 2 x 1019 

 

(a)

 

(b)

 
FIGURE 2. Examples of roughness amplitude when (a) Λ = 10, and (b) Δ = 

0.5. 
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saturation model for velocity saturation, and a density-

gradient quantization model for quantum-mechanical effects.  

 
B. DATA COMPOSITION 

To train, validate, and test the ANN model that we have 

newly built up, two kinds of datasets were separately 

generated: (1) The first kind of dataset has 130 datasets. Each 

dataset contains the performance metrics of 50 different 

FinFETs, so that total 6,500 FinFETs are used in 130 datasets. 

70% of them are used as the training datasets, and the others 

are used as the validation datasets. (2) The second kind of 

dataset has 10 different datasets. Each dataset contains the 

performance metrics of 250 different FinFETs, so that total 

2,500 FinFETs are used in 10 datasets.  

The LER parameters are chosen in the range below:  

Amplitude (Δ): 0.1 nm ~ 0.8 nm 

Correlation length X (Λx): 10 nm ~ 100 nm 

Correlation length Y (Λy): 20 nm ~ 200 nm 

The reference parameter set (Δ = 0.5 nm, Λx = 20 nm, Λy = 

50 nm) is obtained, based on experimental results [21-24]. 

Then, the range is selected on the basis of the reference 

parameter set. Note that the performance metrics of transistor 

were extracted from simulated drain current versus gate 

voltage (Id-vs.-Vg) characteristic. The details on the device 

performance metrics are summarized in Table II. These 

metrics are extracted using the Sentaurus TCAD inspect [20]. 

 
III. EVALUATION METHOD 

To quantitatively verify the distribution of values 

obtained from the new ANN model, we used earth-mover’s 
distance (EMD) score (or be referred to as Wasserstein 

metric in mathematics). The EMD score is used to measure 

how two probability distributions are different from each 

other [25]. The definition of the score is “The minimal 

amount of work needed to transform one distribution to 

another distribution”. The EMD score can be calculated 

following the steps below: 

Step I: Calculate the difference of cumulative 

distribution function (CDF) of TCAD datasets and ANN 

prediction datasets. 

Step II: Normalize the calculated value in Step I. 

In this work, we used Gaussian kernel density estimation 

(KDE) to estimate CDF of datasets. The EMD score is “0” 

when two distributions are exactly identical. 

 
IV. MODEL GENERATION 
A. MIXTURE-MULTIVARIATE NORMAL DISTRIBUTION 

Different from the previous study [10], the mixture of 

multivariate normal distributions (MVN) is used in this work. 

By using the mixture of MVNs, we can respond to many 

other unknown distribution shapes. It is trivial that 

performance metrics of transistor approximately follow 

Gaussian distribution [26], [27], [28]. However, triggered by 

many  non-ideal effects in transistors (i.e., short-channel 

effects [29]), there are some skewness, kurtosis, and/or non-

linear correlation in-between the performance metrics. 

Moreover, distribution shapes are also quite different, for 

each LER parameter. For those reasons, the mixture of 

MVNs was used to deal with the non-ideal cases. A 

conceptual diagram for the mixture of MVNs is shown in Fig. 

3. 

To determine the number of components (i.e., MVN 

distributions) used in generating the mixture of MVNs, an 

optimization was first done. Validation datasets were used in 

the training process, to find the best working model. In Fig. 

4, it can be noted that the validation loss was minimized with 

the number of components of 11 at 7,800 epochs. This means 

that the ANN model with 11 MVNs works best to describe 

the distribution of performance metrics. The optimized ANN 

with the mixture of MVNs has 3 neurons for the input layer, 

81 neurons for the first hidden layer, 162 neurons for the 

second hidden layer, 324 for the third hidden layer, and 324 

neurons for the output layer. This output neurons are 

 
 
FIGURE 4. Validation loss vs. the number of epochs, when the number of 
distribution used to mixture is varied from 9 to 13. 

 
 

FIGURE 3. Conceptual diagram for showing the mixture of multivariate 
normal distributions. 

TABLE II. PERFORMANCE METRICS. 

Symbol Description 

Ioff Id at Vg = 0 [V], Vd = 0.7 [V], Vs, Vb = 0 [V] 

Vtsat Vg at Id = 535 [nA], Vd = 0.7 [V], Vs, Vb = 0 [V] 

Vtlin Vg at Id = 535 [nA], Vd = 0.05 [V], Vs, Vb = 0 [V] 

Idsat Id at Vg = 0.7 [V], Vd = 0.7 [V], Vs, Vb = 0 [V] 
Idlin Id at Vg = 0.7 [V], Vd = 0.05 [V], Vs, Vb = 0 [V] 

Idlo Id at Vg = 0.35 [V], Vd = 0.7 [V], Vs, Vb = 0 [V] 

Idhi Id at Vg = 0.7 [V], Vd = 0.35 [V], Vs, Vb = 0 [V] 

Note that Id is the drain current, Vd is the drain voltage, Vs is the source 

voltage, Vb is the body voltage, and Vg is the gate voltage. 
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connected to probabilistic layer with the mixture of 

multivariate normal distribution, for the generation of power 

density function (PDF) of output variables (performance 

metrics). 

 
B. ANN FOR MEAN AND STANDARD DEVIATION 

Unlike the proposed ANN in the previous section, another 

simple ANN was built only for estimating mean and standard 

deviation. With this simple ANN, the performance metrics 

were standardized in the training process of ANN with the 

mixture of MVNs [see Fig. 5]. By using additional simple 

ANN, we can limit the role of ANN with the mixture of 

MVNs, to just estimate the shape of probability distribution. 

Thus, the time spent to train the ANN model can be largely 

reduced (see Table III). The simple ANN has 3 neurons for 

the input layer, 3 neurons for the first hidden layer, 7 neurons 

for the second hidden layer, 14 neurons for the third hidden 

layer, and 14 neurons for the output layer. To compare this 

work against the non-separated ANN (note that the ANN 

model can predict the mean, standard deviation, and the 

shape of distribution, at once), the same work mentioned in 

Part A was repeated to find the optimized ANN (i.e., the 

number of MVNs, training epochs, etc.). 

 
C. TRAINING METHODOLOGY 

The weight matrices and bias vectors of ANN model are 

updated for the given/specified number of iterations. These 

matrices and vectors determine the output of ANN model. 

The probabilistic layer attached to output neurons returns the 

PDF of variables while training process. Thus, conventional 

mean-squared error cannot be used as loss function. Instead, 

“Negative log likelihood” (Negloglik) was used as a loss 

function [see Eq. (2)]. The training process is executed to 

minimize this loss function. That is, training ANN becomes 

the process of Maximum Likelihood Estimation (MLE) [30].  

      𝑁𝑒𝑔𝑙𝑜𝑔𝑙𝑖𝑘(𝑃, 𝑄)  =  − ∑ 𝑃(𝑥)𝑙𝑜𝑔𝑄(𝑥)𝑥            (2) 

 

In Eq. (2), P(x) and Q(x) denotes the PDF of observation and 

hypothesis, respectively. 

Using Adam Optimizer [31], the training process was 

executed for 14,880 epochs (84 sec) for mean and standard 

deviation of ANN model and 7,800 epochs (101 sec) for the 

mixture of MVNs ANN model. Both models are trained with 

the learning rate of 10-4, and then optimized to prevent the 

occurrence of over-fitting by using validation datasets. 

ReLU was used as the activation function for both models. 

Note that the ANN model was built using the Tensorflow 2.0 

and Tensorflow-probability python library [32, 33]. 

 
V. RESULTS AND EVALUATION 

Based on the PDF determined by the mixture of MVNs, 

the standardized prediction data was randomly extracted. 

Then, these standardized values are recovered with the 

predicted mean and standard deviation to the original scale 

(see Fig. 5).  

Fig. 6 shows the comparison between the previous work, 

non-separated ANN, and this work, for a given LER of Δ = 
0.505 nm, Λx = 48.62 nm, Λy = 67.99 nm. As shown in Fig. 

5(a, b), previous work with plain MVN cannot predict 

metrics with non-linear correlation, skewness and kurtosis. 

On the other hand, ANN with mixture of MVN [see Fig. 6(c-

f)] successfully predicts skewness, kurtosis, and non-linear 

correlation, which is distinctly different from plain MVN. 

EMD score also proves that prediction accuracy is highly 

improved (0.0170 vs 0.00928). As shown in Fig. 6(c-f), there 

is no significant performance degradation between non-

separated ANN model and this work, in spite of huge time 

saving (1412 sec to 185 sec) [see Table III]. 

The pair plots for Δ = 0.505 nm, Λx = 48.62 nm, Λy = 

67.99 nm, and Δ = 0.690 nm, Λx = 85.09 nm, Λy = 80.98 nm 

are shown in [See Fig. 7 and Fig. 8]. We can notify that 

distribution for each parameter (a diagonal line) and 

correlation between parameters (the rest except for a 

diagonal line) are well predicted.  

Table IV shows the EMD score comparison of 

performance metric. In the respect of quantitative analysis, it 

is shown that this work shows quite similar performance with 

non-separated ANN, when the amplitude of LER profile is 

around 0.5 or 0.6. However, it shows enhanced performance 

in a wider range than the non-separated ANN model. This 

work not only predicts the mean and standard deviation at a 

high level with the additional simple ANN, but also shows 

higher consistency for specific points such as the tail of 

distribution by using the mixture of MVNs. 
 

TABLE III. TIME SPENT TO TRAIN ANN MODEL. 

Model Time 

Previous study [10] 
776 sec (for Ioff, Idsat, Vtsat, and SS) 

1191 sec (for Ioff, Idlin, Idsat, Idlo, Idhi, Vtlin and Vtsat) 

Non-separated 

ANN 
1412 sec 

This work 
185 sec (84 sec for mean and standard deviation 

+ 101 sec for mixture of MVN) 

 

FIGURE 5. The flow chart how to build/train/test the ANN model. 
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VI. CONCLUSION 

We have proposed newly developed ANN models with 

enhanced accuracy. A ML-based model [14] was first 

suggested to estimate LER-induced random variation, and its 

simulation time was shorter than using compact models. 

Herein, compared against the previous ML-based model [14], 

the newly proposed ANN models have shortened the 

simulation time by ~ 6 times (from 1,191 seconds to 185 

seconds). Especially, non-Gaussian features of device 

performance metrics’ distribution (i.e., skewness, kurtosis, 

and non-linear correlation) are successfully predicted while 

TABLE IV. COMPARISON OF EMD SCORE BETWEEN THIS WORK AND NON-SEPARATED ANN MODEL. 

Test 

dataset 

LER Parameters 
Model 

EMD Score 

amp(Δ) corx(ξx) cory(ξy) Ioff Idsat  Idlin  Idlo Idhi Vtsat Vtlin Total 

#1 0.625 17.01 173.86 
This work 0.0218 0.0129 0.0174 0.0257 0.0131 0.0188 0.0194 0.129 

Non-separated 0.0205 0.0194 0.0207 0.0248 0.0185 0.0194 0.0186 0.142 

#2 0.557 80.92 80.57 
This work 0.00645 0.0114 0.0102 0.00755 0.0120 0.00576 0.00551 0.0590 

Non-separated 0.00765 0.00692 0.0124 0.00826 0.00740 0.00712 0.00631 0.0561 

#3 0.505 48.62 67.99 
This work 0.00501 0.00857 0.0111 0.00712 0.00928 0.00601 0.00496 0.0520 

Non-separated 0.00527 0.00695 0.0123 0.00621 0.00785 0.00526 0.00516 0.0491 

#4 0.560 25.43 69.40 
This work 0.0132 0.0113 0.00684 0.0163 0.0107 0.0141 0.0127 0.0853 

Non-separated 0.00871 0.00511 0.00563 0.0126 0.00507 0.00911 0.00800 0.0543 

#5 0.637 69.149 65.33 
This work 0.00830 0.0128 0.0102 0.0103 0.0136 0.00808 0.00789 0.0714 

Non-separated 0.00789 0.0111 0.0115 0.0101 0.0113 0.00791 0.00731 0.0672 

#6 0.730 89.39 195.62 
This work 0.00805 0.00546 0.00772 0.0103 0.00524 0.00789 0.00671 0.0514 

Non-separated 0.0157 0.0129 0.0146 0.0170 0.0120 0.0125 0.0108 0.0960 

#7 0.153 23.32 51.25 
This work 0.00287 0.00136 0.00348 0.00339 0.00139 0.00284 0.00274 0.0181 

Non-separated 0.00288 0.00597 0.00713 0.00407 0.00596 0.00267 0.00244 0.0311 

#8 0.690 85.09 80.98 
This work 0.00785 0.0102 0.00740 0.00757 0.0108 0.00838 0.00805 0.0603 

Non-separated 0.0105 0.0109 0.0133 0.0108 0.0107 0.00957 0.00880 0.0749 

#9 0.259 78.12 28.08 
This work 0.00859 0.00582 0.00552 0.00992 0.00497 0.00677 0.00603 0.0476 

Non-separated 0.00461 0.00318 0.00513 0.00504 0.00327 0.00375 0.00317 0.0281 

#10 0.141 96.71 186.68 
This work 0.00255 0.00558 0.00526 0.00342 0.00524 0.00231 0.00161 0.0260 

Non-separated 0.00274 0.00438 0.00331 0.00388 0.00422 0.00246 0.00278 0.0237 

 

(a) 

 

(c) 

 

(e) 

 
(b) 

 

(d) 

 

(f) 

 
FIGURE 6. Histograms of (a, b) previous work, (c, d) non-separated model, and (e, f) this work. EMD score of (b), (d), and (f) is 0.0170, 0.00785, and 
0.00928, respectively. 
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the previous ML model only did with a shape of Gaussian 

distribution and linear correlation. Thus, the accuracy of the 

ANN model is significantly improved in the respect of both 

quantitative and qualitative comparisons. Especially, we 

extend the prediction target from 4 parameters (Ioff, Idsat, Vtsat, 

and SS) to 7 parameters (Ioff, Idsat, Idlin, Idlo, Idhi, Vtsat, and Vtlin). 

This enables simulating electrical behavior of transistor as 

well as DC behavior of digital circuit blocks such as SRAM 

bit cell [34]. This work can pave a new road to analyzing the 

impact of LER, and thereby, to timely design the process 

integration for integrated circuits. 

 
 
FIGURE 7. Pair plot of performance metrics for (a) Δ = 0.505 nm, Λx = 48.62 nm, Λy = 67.99 nm. 
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FIGURE 8. Pair plot of performance metrics Δ = 0.690 nm, Λx = 85.09 nm, Λy = 80.98 nm. 
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