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Abstract

This paper presents an approach to develop bidding agents that par-
ticipate in multiple alternative auctions, with the goal of obtaining an
item with a given probability. The approach consists of a prediction
method and a planning algorithm. The prediction method exploits the
history of past auctions in order to build probability functions captur-
ing the belief that a bid of a given price may win a given auction. The
planning algorithm computes a price, such that by sequentially bid-
ding in a subset of the relevant auctions, the agent can obtain the item
at that price with the desired probability. The approach addresses the
case where the auctions are for substitutive items with different val-
ues. Experimental results show that the approach increases the payoff
of their users and the welfare of the market.

1 Introduction

Following the rapid development of online marketplaces, trading practices
such as dynamic pricing, auctions, and exchanges, have gained considerable
momentum across a variety of product ranges. In this setting, the ability of
traders to rapidly gather and process market information and to take deci-
sions accordingly is becoming increasingly crucial to ensure market efficiency.
Specifically, the ability of buyers to find the best deal for a trade depends
on how many offers from alternative sellers they compare. On the other
hand, the ability of sellers to maximise their revenues depends on how many
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prospective buyers take their offers into account. Hence, the automation of
offer request and comparison within a dynamic environment is a common
requirement for all parties.

The work reported in this paper addresses the issue of automated bid
determination in online auctions. The paper describes an approach to develop
agents capable of participating in multiple sequential or concurrent auctions,
with the goal of winning exactly one of these auctions given the following
user parameters:

D : The deadline by which the item should be obtained.

M : The maximum (or limit) price that the agent can bid.

G : The eagerness, i.e. the minimum probability of obtaining the item by
the deadline.

The eagerness factor is a measure of the user’s risk attitude. A low
eagerness factor means that the user is willing to take the risk of not getting
the item by the deadline, if this can allow the bidding agent to find a better
price (risk-prone bidder). An eagerness factor close to 1 means that the user
wants to get the item by the deadline at any price below M (risk-averse
bidder). Note that we assume that the user derives no extra utility from
obtaining the item before the deadline: the item may be obtained at any
time before the deadline.

The auctions in which a bidding agent participates may run in several
auction houses. Each auction is assumed to be for a single unit of an item,
and to have a fixed deadline. Auctions satisfying these conditions include
First-Price Sealed-Bid (FPSB) auctions, Vickrey auctions, and fixed-deadline
English auctions with or without proxy bids.1 The approach also assumes
that the bid histories of past auctions (or at least the history of final prices)
are available. Many Web-based auction houses provide such histories. For
example, eBay provides several weeks of bid histories for each auction, while
Yahoo! keeps up to 3 months of history. In addition, auction aggregators
such as BidXS (www.bidxs.com) provide longer histories, although restricted
to the final prices.

The approach is based on a prediction method and a planning algorithm.
The prediction method exploits the history of past auctions in order to build
probability functions capturing the belief that a bid of a given price may win
a given auction. These probability functions are then used by the planning

1In a proxy bid [7], the user bids at the current quote, and authorises the auction house
to bid on its behalf up to a given amount. Subsequently, every time that a new bid is
placed, the auction house counter-bids on the user’s behalf up to the authorised amount.
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algorithm to compute the lowest price, such that by sequentially bidding in
a subset of the relevant auctions, the agent can obtain the item at that price
with a probability above the specified eagerness. In particular, the planning
algorithm detects and resolves incompatibilities between auctions. Two auc-
tions with equal or similar deadlines are considered to be incompatible, since
it is impossible to bid in one auction, wait until the outcome of this bid is
known (which could be at the end of that auction), and then bid in the other
auction. Given a set of mutually incompatible auctions, the planning algo-
rithm must choose one of them to the exclusion of the others. This choice is
done in a way to maximise the winning probability of the resulting plan.

The approach takes into account that auctions may be for substitutive
items with different values. The user of a bidding agent can specify a dif-
ferent valuation for each of the relevant auctions, and the agent uses this
information when determining in which auctions to bid and computing a
bidding price. Alternatively, the user can identify a number of attributes,
and specify his/her preferences through a multi-attribute utility function.

A series of experiments based on real datasets are reported, showing that
the use of the proposed approach increases the individual payoff (i.e. welfare)
of the traders, as well as the collective welfare of the market.

The rest of the paper is structured as follows. Section 2 describes the tech-
nical details of the approach, including the prediction and planning methods.
Section 3 describes a proof-of-concept implementation and summarises some
experimental results. Finally, Section 4 discusses related work, and Section 5
draws some conclusions.

2 Approach

In this section, we describe the lifecycle of a probabilistic bidding agent, as
well as the underlying prediction and planning methods. We first consider
the case where the agent participates in auctions for perfectly identical items.
We then discuss how the approach handles partial substitutes.

2.1 Overview

The bidding agent operates in 4 phases: preparation, planning, execution,
and revision.

Preparation phase In the preparation phase, the agent assists the user
in identifying a set of relevant auctions. Specifically, the user enters the
parameters of the bidding agent (maximum price, deadline, eagerness) as
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well as a description of the desired item in the form of a list of keywords.
Using this description, the agent queries the search engines of all the auction
houses that it knows, and displays the results. The user selects among all
the retrieved auctions, those in which the agent will be authorised to bid.
The selected auctions form what is subsequently called the set of relevant
auctions. By extension, the auction houses hosting relevant auctions form
the set of relevant auction houses.

For each relevant auction house, the agent gathers the bidding histories
of every past auction whose item description matches the list of keywords
provided by the user. These bidding histories are used by the prediction
method in order to build a function that given a bidding price, returns the
probability of winning an auction by bidding (up to) that price. Note that
the histories extracted from an auction house are only used to compute prob-
ability functions for the auctions taking place in that auction house. Thus,
auctions running in different auction houses may have completely different
probability functions.

During the preparation phase, the agent also conducts a series of tests to
estimate the average time that it takes to execute a transaction (e.g., to place
a bid or to get a quote) in each of the auction houses in which it is likely to
bid. The time that it takes to execute a transaction in an auction house a is
stored in a variable δa. The value of this variable is updated whenever the
agent interacts with the corresponding auction house.

Planning phase In the planning phase, the bidding agent selects a set of
auctions and a bidding price r (below the user’s maximum), such that the
probability of getting the desired item by bidding r in each of the selected
auctions is above the eagerness factor. The resulting bidding plan, is such
that any two selected auctions a1 and a2 have end times separated by at
least δa1 + δa2. In this way, it is always possible to bid in an auction, wait
until the end of that auction to know the outcome of the bid (by requesting
a quote), and then place a bid in the next auction.

The problem of constructing a bidding plan can be formulated as follows.
Given the set Aa of relevant auctions, find:

• a set of auctions As ⊆ Aa, and

• a real number r ≤ M (corresponding to a bidding price)

such that:

• The end times of the auctions in As are non-conflicting, that is, for any
a1 and a2 ∈ As, |end(a2) − end(a1)| ≥ δa1 + δa2.
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• The probability that at least one of the selected bids succeeds (written
φ(As, r)) is greater than or equal to the eagerness, that is:

φ(As, r) = 1 −
∏

a∈As

(1 − Pa(r)) ≥ G

where Pa(r) is the probability that a bid of r will succeed in auction
a ∈ As.

• The bidding price r is the lowest one fulfilling the above two constraints.

Should there be no r fulfilling the above constraints, the bidding agent
turns back to the user requesting authorisation to either raise M (the limit
price) by the necessary amount, or to bid M in every auction in the bidding
plan even though this does not yield the minimum required winning proba-
bility. This latter option is actually equivalent to decreasing the eargerness
to that which can be achieved by making r = M . The agent can be config-
ured to automatically select one of the above two options without interacting
with the user.

Note that by choosing the same bidding price r for every auction, the
resulting bidding plan is not necessarily optimal in terms of expected utility.
Indeed, in the general case, the problem of finding a bidding plan that max-
imises the expected utility given a budget constraint (i.e. maximum bidding
price M) and an eagerness constraint (i.e. probability of winning at least
G) would be formulated as follows: Find a set of auctions As ⊆ Aa, and a
bidding price for each auction in As, ra ≤ M, a ∈ As, such that:

∀a1, a2 ∈ As xa1xa2|end(a2) − end(a1)| ≥ xa1xa2(δa1 + δa2)

and
1 −

∏

a∈Aa

(1 − xaPa(ra)) ≥ G

where xa is a 0/1 integer variable indicating whether auction a belongs in
As or not (i.e. xa = 1 if a ∈ As, 0 otherwise). The first of the above
constraint encodes the time compatibility constraints between the selected
auctions, whereas the second constraint encodes the eagerness requirement.
Given these constraints, the following objective function corresponding to
the expected utility of the selected plan needs to be maximised:

∑

a∈Aa

xa(M − ra)Pa(ra)
∏

a′∈Aa
end(a′)<end(a)

(1 − x′
aPa′(ra′))
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In other words, the expected utility of a plan is the sum of the expected
utilities for each auction in the plan. The expected utility for an auction is
the product of the payoff for that auction (i.e. limit price minus actual bid
price) times the probability of this payoff being obtained. The probability of
obtaining a payoff from an auction a is equal to the probability of winning
auction a times the probability of losing all the auctions scheduled before a,
since if one of these preceding auctions is won, the agent would not bid in
auction a.

The above constrained nonlinear optimisation problem is computation-
ally expensive to solve. Even if we assume that the probability functions
Pa are linear, the problem involves a nonlinear objective function of degree
2 × (|Aa| + 1) and a nonlinear constraint of degree 2 × |Aa| (the eagerness
constraint), in addition to the linear limit price constraints and the quadratic
compatibility constraints. Even worse, the problem involves 0/1 integer vari-
ables and therefore has to be solved using Integer Programming (IP), which
is NP-hard even when the constraints and objective function are linear [11].
In contrast, by taking the simplifying assumption that the same bidding price
r is bid in every auction, our approach achieves a low complexity bound of
O(|Aa|logM) as discussed in Section 2.3. In fact, what our approach does is
that, instead of computing the plan which maximises the expected utility, it
computes the plan which maximises the payoff to be obtained in the worst-
case execution of the plan. Indeed, for a given plan, the payoff is guaranteed
to be M − r if one of the auctions is won.

Execution phase In the execution phase, the bidding agent executes the
bidding plan by successively placing bids in each of the selected auctions,
until one of them is successful. In the case of FPSB auctions the bidding
agent places a bid of r minus the bid shaving factor.2. In the case of Vickrey
auctions and English auctions with proxy bidding, the agent places a proxy
bid of amount r. Finally, in the case of an English auction without proxy
bids, the agent will place a bid of amount r just before the auction closes,
since last-minute bidding is an optimal strategy in this context [10, 13]. This
latter technique can also be applied for Nth-price multi-unit English auctions:
the bidding agent places a last-minute bid for one unit at price r, provided
that r is greater than the Nth highest bid plus the minimum increment.

2Under the assumption of perfect rationality, it is an optimal strategy for a bidder in an
“isolated” FPSB auction to bid the maximum amount that (s)he intends to pay minus a
“bid shaving” factor which depends on the number of bidders in the auction [14]. Similar
“bid shaving” results exist for sequential auctions [19].
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Revision phase During the execution phase, the agent periodically searches
for new auctions matching the user’s item description, as well as for up-to-
date quotes from the auctions in the bidding plan. Based on this infor-
mation, the agent performs a plan revision under either of the following
circumstances:

1. The user decides to insert a new auction into the relevant set.

2. The current quote in one of the auctions in the bidding plan raises
above r, in which case it is no longer possible to bid r in that auction.

3. The probability of winning given the remaining portion of the bidding
plan (i.e. given the set of remaining auctions) drops below the revision
threshold which is defined as the eagerness multiplied by the revision
factor discussed below. This can occur either because the number of
remaining auctions has significantly decreased since the time that the
plan was constructed, or because the current quotes in the remanining
auctions have increased, which has the effect of decreasing the proba-
bility of winning in each of these auctions with a bid of r.

The revision factor is a configuration parameter of the bidding agent.
It is a real number between 0 and 1. A revision factor equal to 1 means
that the revision threshold is equal to the eagerness, which in turn means
the agent will perform a plan revision after every auction to ensure that
the probability of winning is equal to the eagerness throughout the bidding
process.3 A revision factor equal to zero implies that the revision threshold
is equal to zero, which in turn means that no plan revision will occur due
to the revision threshold being broken, although a plan revision may still be
triggered in response to the first or the second revision events outlined above.

The need for the revision factor stems from the fact that there are two
possible interpretations of the concept of eagerness. The first interpretation
is that an eagerness factor G means that the user wishes to have a probability
G of winning at each time point during the bidding process (even when most
auctions have already been lost). A second interpretation is that an eagerness
factor G means that the user wishes to have a probability G of winning when
looking at the bidding process as a whole (from beginning to end). Either
interpretation can be captured by setting the revision factor to one or to zero
respectively. Intermediate behaviours can be achieved by setting the revision
factor to another number.

3Note that in this case the bidding plan does not need to be computed entirely, but only
the first auction in the plan needs to be determined, since a revision will occur immediately
after this auction (if it is lost).
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Should a plan revision be required, the agent updates the set of relevant
auctions and the bidding histories according to any new data, and re-enters
the planning phase. Once a new bidding plan is computed, the agent re-
turns to the execution phase. Although the algorithms used in the execution
phase are efficient, it may happen that during the planning phase following
a revision event, the deadlines of some of the ongoing auctions expire. If the
agent detects that this can occur, it will place a bid in the auctions which are
about to expire, without waiting for the plan re-computations to complete.

Note that if the revision factor is greater than zero, the bidding price r

is likely to increase during the bidding process. Specifically, the agent will
start with a low bidding price, and it will increase it as needed in order to
maintain the probability of winning above the revision threshold.

2.2 Prediction methods

We propose two methods that a bidding agent can use to construct a prob-
ability function given the bidding histories of past auctions. Both methods
operate differently in the case of FPSB, than they do in Vickrey and English
auctions. This is because in an FPSB auction, the final price of an auc-
tion reflects the valuation of the highest bidder (after factoring bid shaving),
whereas in a Vickrey or in an English auction, the final price reflects the
valuation of the second highest bidder.

2.2.1 The case of FPSB auctions

The first prediction method, namely the histogram method, is based on the
idea that at the beginning of an auction, and assuming a zero reservation
price, the probability of winning with a bid of z, is equal to the number of
times that the agent would have won had it bid z in each of the past auctions,
divided by the total number of past auctions. As the auction progresses, this
probability is adjusted in such a way that when the current quote is greater
than z, the probability of winning with a bid of z is zero.

Formally, we define the histogram of final prices of an auction type, to
be the function that maps a real number x, to the number of past auctions
of that type (same item, same auction house) whose final price was exactly
x. The final price of an auction a with no bids and zero reservation price,
is then modelled as a random variable fpa whose probability distribution,
written P (fpa = x), is equal to the histogram of final prices of the relevant
auction type, modified to include the bid shaving factor, and scaled down so
that its total mass is 1. The probability of winning an auction with a bid of
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z assuming a null reservation price, is given by the cumulative version of this
distribution, that is:

P (fpa ≤ z) =
∑

0≤x≤z

P (fpa = x)

given an appropriate discretisation of the interval [0, z]. For example, if the
sequence of observed final prices (after including the bid shaving factor) is
[22, 20, 25], the cumulative distribution at the beginning of an auction is:

Pa(z) = P (fpa ≤ z) =















1 for z ≥ 25
0.66 for 22 ≤ z < 25
0.33 for 20 ≤ z < 22
0 for z < 20

In the case of an auction a with quote q > 0 (which is determined by the
reservation price and the public bids), the probability of winning with a bid
of z is:

Pa(z) = P (fpa ≤ z | fpa ≥ q) =
P (fpa ≤ z ∧ fpa ≥ q)

P (fpa ≥ q)
=

∑

q≤x≤z P (fpa = x)
∑

x≥q P (fpa = x)

In particular, Pa(z) = 0 if z < q, and if z > q, the probability of the final
price being equal to z decreases as z approaches q.

The histogram method has three drawbacks. First, the complexity of
the computation of the value of the cumulative distribution is dependent
on the size of the history. Given that the bidding agent heavily uses this
function, this creates some computational overhead when large histories are
involved. Second, the histogram method assumes that the probability of
winning remains constant between two observed final prices. This is counter-
intuitive since one would expect that a higher bid always leads to a higher
probability of winning. Third, the method is inapplicable if the current quote
of an auction is greater than all the final prices of past auctions, since the
denominator of the above formula is then equal to zero. Intuitively, the
histogram method is unable to extrapolate the probability of winning an
auction if its current quote has never been observed in the past. To avoid
these two latter drawbacks, linear interpolation could be applied between
every two consecutive points in the cumulative histogram distribution. In
the above example, this would mean that Pa(z) would linearly increase from
0 for z = 0 to 0.33 for z = 20, then continue to increase with a different
slope for 20 ≤ z ≤ 22, and so on. Although this solves the above issues with
a small additional computational overhead, one could argue whether linear
interpolation provides an appropriate way of approximating the underlying
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probability distribution, or whether more appropriate approximations could
be sought, with the same or even less computational overhead.

The normal method is an alternative to the histogram method, which
avoids its drawbacks at the price of a more restricted scope of applicability.
Assuming that the number of past auctions is large enough (more than 50),
if the final prices of these auctions follow a normal distribution with mean
µ and standard deviation σ, then the random variable fpa can be given the
normal distribution N(µ, σ). The probability of winning with a bid z in an
auction a with no bids and zero reservation price, is then given by the value
at z of the corresponding cumulative normal distribution:

Pa(z) = P (fpa ≤ z) =
1√
2πσ

∫

z−µ
σ

−∞

e−x2/2dx

Meanwhile, if the current quote q of an auction a is greater than zero, the
probability of winning this auction with a bid of z is:

Pa(z) = P (fpa ≤ z | fpa ≥ q) =
P (fpa ≤ z ∧ fpa ≥ q)

P (fpa ≥ q)
=

∫

z−µ
σ

q−µ
σ

e−x2/2dx
∫ ∞

q−µ
σ

e−x2/2dx

Many fast algorithms for approximating the integrals appearing in these
formulae as well as their inverses are described in [18]. The complexity of
these algorithms is only dependent on the required precision, not on the size
of the dataset from which µ and σ are derived. Hence, the normal method
can scale up to large sets of past auctions.

In support of the applicability of the normal method, it can be argued
that the final prices of a set of auctions for a given item are likely to follow
a normal distribution, since the item has a more or less well-known value,
around which most of the auctions should finish. An analysis conducted
over datasets extracted from eBay and Yahoo! (two of these datasets are
described in Section 3) was performed to validate this claim. The final prices
of 4 histories of auctions were tested for normality using the D’Agostino-
Pearson test [5]. The results were consistently positive for all prefixes of
more than 50 elements of these histories.

More generally, any method for estimating probability distributions of
real random variables given a set of observed values could be used for esti-
mating the final prices of future auctions. The histogram method, and its
variant using linear interpolation, are just simple examples of such meth-
ods. In the case of long histories of auctions, (e.g. several months) a method
that takes into account data aging could be more appropriate. Other meth-
ods which have been experimentally shown to provide good estimations with
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small amounts of seed data have been proposed in [15]. These methods
work under the assumption that the observed values are drawn from iden-
tical independent distributions: a reasonable assumption in the context of
auction-based markets.

2.2.2 The case of English and Vickrey auctions

In the case of FPSB auctions, the prediction methods assume that the prob-
ability of winning with a given bid can be derived from the final prices of
past auctions. This is valid since in FPSB auctions, the final price of an
auction (after factoring bid shaving and assuming that bidders are rational)
is equal to the maximum price that the highest bidder was willing to pay, so
that the final prices observed in an auction’s bid history can be directly used
to predict up to how much will bidders bid in future auctions.

In the case of a Vickrey or in English auction however, the final price of
an auction does not reflect the limit price that the highest bidder was willing
to pay (i.e. his/her valuation), but rather the limit price of the second highest
bidder. If the prediction methods described above were applied directly to a
history of final prices of Vickrey and/or English auctions, the result would
be that the bidding agent would be competing against the second highest
bidders, rather than against the highest ones. In order to make the prediction
methods previously described applicable to Vickrey and English auctions, we
need to map a set of bidding histories of Vickrey or English auctions, into
an equivalent set of bidding histories of FPSB auctions. This means that
we need to extrapolate how much the highest bidder was willing to pay in
an auction, knowing how much the second highest bidder (and perhaps also
other lower bidders) was/were willing to pay.

We propose the following simple extrapolation technique. First, the bid-
ding histories of all the past auctions are considered in turn, and for each of
them, a set of known valuations is extracted. The highest bid in a Vickrey
auction or in an English-Proxy auction is taken as being the known valu-
ation of the second highest bidder of that auction. The same holds in an
English auction without proxy bids, provided that there are no last minute
bids (i.e. no auction sniping). Indeed, in the absence of last minute bids,
one can assume that the second highest bidder had the time to outbid the
highest bidder, but did not do so because (s)he had reached his valuation.
Similarly, it is possible under some conditions to deduce the valuation of the
third highest bidder, and so for the lower bidders.

Next, the set of known valuations of all the past auctions are merged
together to yield a single collection of values, from which a probability dis-
tribution is built using either a histogram method, a normal method, or
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any other appropriate statistical technique. In any case, the resulting dis-
tribution, subsequently written Dv, takes as input a price, and returns the
probability that there is at least one bidder willing to bid that price for the
desired item.

Finally, for each auction a in the set of past auctions, a series of random
numbers are drawn according to distribution Dv, until one of these numbers
is greater than the observed final price of auction a. This number is then
taken to be the valuation of the highest bidder, which would have been
the auction’s final price had the auction been FPSB and has every bidder
bid his/her valuation. By applying this procedure to each past auction in
turn, a history of “extrapolated” final prices is built. This extrapolated
history is used to build a new probability distribution using the methods
previously described in the setting of FPSB auctions. In other words, an
extrapolated history built from a set of Vickrey or English auctions, is taken
to be equivalent to a history of final prices of FPSB auctions.

This method for extrapolating the history of final prices of English and
Vickrey auctions is not unique. Extrapolation techniques based on other dis-
tributions than the normal one can be designed. However, the experimental
results discussed in Section 3 show that the proposed method produces a
probability distribution that, when used by a probabilitistic bidding agent,
yields appropriate estimations.

2.3 Planning algorithms

The decision problem that the bidding agent faces during its planning phase
(see Section 2.1), is that of finding the lowest r such that there exists a set
of relevant auctions As, such that φ(As, r) ≥ G. By observing that for any
auction a, the function Pa is monotonically increasing, we deduce that φ(A, x)
is also monotonically increasing on its second argument. Hence, searching
the lowest r such that φ(As, r) ≥ G can be done through a binary search.
At each step during this search, a given r is considered. An optimisation
algorithm BestPlan outlined below is then applied to retrieve the subset
As ⊆ Aa such that φ(As, r) is maximal. If the resulting φ(As, r) is between
G and G + ǫ (ǫ being the precision at which the minimal r is computed),
then the search stops. Otherwise, if φ(As, r) > G + ǫ (resp. φ(As, r) < G),
a new iteration is performed with a smaller (resp. greater) r as per the
binary search principle. The number of iterations required to minimise r is
logarithmic on the size of the range of r, which is M

ǫ
. At each iteration,

the algorithm BestPlan is called once. Thus, the complexity of the planning
algorithm is O(log(M

ǫ
) × complexity(BestPlan)).

Given a bidding price r, the problem of retrieving the subset As ⊆ Aa with
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maximal φ(As, r), can be mapped into a graph optimisation problem. Each
auction is mapped into a node of a graph. The node representing auction
a is labeled with the probability of losing auction a by bidding r, that is:
1−Pa(r). An edge is drawn between two nodes representing auctions a1 and
a2 iff a1 and a2 are compatible, that is:

|end(a2) − end(a1)| ≥ δa1 + δa2.

where δa1 (δa2) is the connection time to auction a1 (a2), as discussed in
section 2.1.

The edge goes from the auction with the earliest end time to that with the
latest end time. Given this graph, the problem of retrieving a set of mutually
compatible auctions such that the probability of losing all of them (with a bid
of r) is minimal, is equivalent to the critical path problem [4]. Specifically,
the problem is that of finding the path in the graph which minimises the
product of the labels of the nodes. The classical critical path algorithm has
a complexity linear on the number of nodes plus the number of edges. In the
problem at hand, the number of nodes is equal to the number of auctions,
while the number of edges is (in the worst case) quadratic on the number
of auctions. Hence, the complexity of the resulting BestPlan algorithm is
O(|Aa|2). More details about this algorithm can be found in [6].

An alternative algorithm with linear complexity can be devised in the
case where all the auctions are equally reachable (i.e. they all have the same
δa). In this situation, the following property holds:

∀a1, a2, a3 ∈ Aa end(a3) ≥ end(a2) ≥ end(a1) ∧ a3 compatible with a2

⇒ a3 compatible with a1

Given this property, it is possible to find the best plan as follows. The set
Aa, sorted by end times, is scanned once. At each step, the best predecessor
of the currently considered auction is incrementally computed. Specifically,
the best predecessor of the current auction is either the best predecessor
of the previous auction, or one of the auctions which are compatible with
the current auction and not compatible with the previous auction. This
incremental computation takes constant time when amortised over the whole
set of iterations. For example, consider Table 1. Assuming that δa = 1 for all
auctions, the best path for this set of auctions is the sequence [1, 2, 5, 6] and
the associated probability of winning is 1−(1−0.8)2×(1−0.9)2 = .9996. This
path can be found by sequentially scanning the sequence of auctions sorted
by end times. When auction 4 is reached, the choice between bidding in
auctions 2 and 3 (which are incompatible) is made. Similarly, when auction
6 is reached, the choice between auctions 4 and 5 is made. The resulting
linear-complexity algorithm BestPlan′ is given in appendix A.
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Table 1: Sample array of auctions with end times and probability of winning.

Auction # 1 2 3 4 5 6
End Time 4 7 8 11 12 14
Win Probability .8 .8 .7 .8 .9 .9

2.4 The case of partial substitutes

Hitherto, we have assumed that the user values all the auctioned items in
the same way. In reality however, it is often the case that the characteristics
of the items sold in an auction house differ from one auction to another,
even when the items belong to the same category. For example, two auctions
might both concern new mobile phones of a given brand and model. However,
in one of the auctions, the phone is locked to a given network (e.g., AT&T),
while in the other it is unlocked. Or in one auction, the phone comes with
a 1-year warranty, while in the other there is no warranty. As a result,
the user might be willing to pay more in one of the auctions than (s)he
would in the other, although winning any of the two auctions satisfies his/her
requirements. Two items which are considered to be substitutive by the user,
but have different values, are said to be partial substitutes. Our proposal
handles partial substitutes in either of two ways: through price differentiation
or through utility differentiation. Both approaches assume that the user’s
value function is linear: a very frequent assumption in the area of preference
modelling for comparative shopping [17].

In the price differentiation approach, the user specifies a limit price for
each relevant auction. The agent uses these limit prices to compute relative
valuations between the auctions. For example, if the user specifies a limit
price of 100 in auction A1, and 80 in auction A2, A2 is said to have a relative
valuation of 80% with respect to A1. Consequently, the agent will prefer
bidding $70 in A1 rather than bidding $60 in A2 (since 0.8 × 70 ≤ 60), but
it will prefer bidding $60 in A2, rather than $80 in A1 (since 60 ≤ 0.8× 80).
More generally, given a set of relevant auctions A1, . . . An with limit prices
M1, . . . ,Mn, the agent computes a set of proportionality factors W1, . . . Wn,
such that Wi = Mi

max(M1,...,Mn)
. The proportionality factor Wi of auction Ai is

the relative importance of Ai with respect to the auction(s) with the highest
limit price. During the planning phase, whenever the algorithm BestPlan (or
BestPlan′) would consider the possibility of placing a bid of x in an auction
Ai, the algorithm considers instead the possibility of placing a bid of x×Wi

(line 6 of algorithm BestPlan′, appendix A). As a result, higher bidding prices
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are considered for auctions with higher limit prices. Accordingly, during the
execution phase, if the bidding price computed during the planning phase is
r, the agent places a bid of r × Wi in auction Ai.

The utility differentiation approach is based on Multi-Attribute Utility
Theory (MAUT). Concretely, the user identifies a set of criteria for comparing
auctions (e.g., price, quality, seller’s reputation, and warranty), and specifies
a weight for each criterion (e.g., 50% for the price, 20% for the quality, 20% for
the seller’s reputation, 10% for the warranty). Next, for each relevant auction
and for each criterion (except the price), the user manually or through some
automated method provides a score: a rating of the auctioned item with
respect to the considered criterion. Finally, the user specifies the limit price
that (s)he is willing to bid in any auction (called M).

Given all the scores and weights, the agent computes for each auction Ai,
a utility ex price Ui =

∑

wj × sj, where wj denotes the weight of criterion
Cj, and sj denotes the score given to criterion Cj in auction Ai (the sum
is done over all the criteria except the price). The limit price Mi to pay in
auction Ai is defined as:

Mi = M × (1 − (1 − wp) × (Umax − Ui))

where wp is the weight given by the user to the price (thus 1 − wp is the
weight given to all the other criteria), and Umax is the maximum element
in the set {U1, . . . Un}. In particular, for an auction with maximal utility
ex price, the limit price is M . For an auction with non-maximal utility ex
price, the limit price is lower than M by an amount proportional to the
difference between the highest valuation ex price, and the valuation ex price
of that auction. The weight given by the user to the price (i.e. wp) acts as a
gearing factor in this proportionality: the lower wp, the higher the amount
that will be taken off from M to determine the limit price of an auction with
non-maximal utility.

Once the set of limit prices {M1, . . . Mn} of each auction has been com-
puted, the bidding agent applies the price differentiation approach (see above).

3 Experiments

In order to validate the benefits of the probabilistic bidding approach, we
conducted a series of experiments in which a number of probabilistic bidding
agents, and a number of bidding agents implementing a simple approach,
were put together in a simulated auction market.
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3.1 Elements of the experimental setup

Seed data. Datasets obtained from eBay were used as a “seed” to create
simulated auctions. Specifically, two sets of bidding histories were collected.
The first dataset contained 300 auctions for new PalmVx PDAs over the
period 17 June 2001 – 15 July 2001. The second dataset contained 100
auctions for new Nokia 8260 cellular phones over the period 13 June 2001 –
31 July 2001. The choice of the datasets was motivated by the high number
of overlapping auctions that they contained.

Control Bidder. A control bidding agent (also called a control bidder) is a
simple agent that simulates the presence of a human bidder in one auction. A
control bidder is assigned a limit price, and it places a (proxy) bid with this
price at some point during its lifecycle. The limit price of a control bidder
is generated randomly based on the seed data. Specifically, the average and
standard deviation of the final prices of the auctions in the seed data are
used to build a random number generator with a normal distribution, and
this generator is used to assign limit prices to control bidders. The adjective
“control” comes from the fact that the set of control bidders acts as a “control
group” with respect to which the performance of the probabilistic bidders (see
below) is measured.

A major difference between a control bidder and a human bidder is that
when a human bidder loses an auction, (s)he is likely to place a bid in an-
other auction later. This behaviour can be taken into account by having a
consistent number of control bidders in every auction, the assumption being
that N control bidders assigned to N auctions simulate the behaviour of a
human that places successive bids in these N auctions.

Probabilistic Bidder. An agent implementing the approach proposed in
this paper. A probabilistic bidder has a limit price, an eagerness, and a dead-
line. The normal prediction method and the optimised planning algorithm
were used. The revision factor was set to zero, meaning that we took the
interpretation in which a probabilistic bidder with eagerness G has a prob-
ability G of winning when looking at the bidding process as a whole. Also,
all items were considered to be identical (no partial substitutes). Simulating
a marketplace with partial substitutes is a subject for a separate work.

Auction House. A software package providing the functionality of an online
auction house such as creating an auction, processing a bid, providing a
quote, or providing the history of past auctions for a given item. All these
functionalities were encapsulated in a Java package designed to work as an
RMI server.
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Simulated Auctions. A simulated auction runs within an auction house.
In the experiments, there was a one-to-one correspondence between a “real”
auction recorded in the seed data, and a simulated auction. The period of
time during which a simulated auction ran was obtained by scaling down and
offsetting the period of time during which the corresponding “real” auction
occurred. All simulated auctions were English with proxy bidding.

Simulation. A simulation is a set of simulated auctions in which control
bidders and probabilistic bidders compete to obtain a given type of item. A
simulation involves the following steps:

1. The creation and initialisation of an auction house and a number of
simulated auctions. Each simulated auction is generated from a real
auction as recorded in a dataset.

2. The creation of a number of control bidders for each auction.

3. The creation of a number of probabilistic bidders in the middle of the
simulation. The percentage of auctions that are allowed to complete
before creating a given probabilistic bidder is called the agent’s creation
time.

Accordingly, the main parameters of a simulation are:

• dataset: the seed data.

• numControls: number of control bidders competing in each auction.

In addition, each probabilistic bidding agent in a simulation is given the
following parameters:

• limitPrice: the agent’s limit price.

• eagerness: the agent’s eagerness

• creationTime: the agent’s creation time. The agent will start bidding
as soon as possible after its creation time, and until the end of the
simulation (which acts as its deadline). In the experiments, we set the
creation time to be equal to 0.5, so that when the probabilistic bidder(s)
enter the market, there are enough bid histories on which they can rely.

Simulation Bundle. a group of simulations with identical parameters.
The number of simulations composing a bundle is given by the parameter
numSims. In addition to this parameter, a simulation bundle has exactly the
same parameters as a single simulation.

17



3.2 Claims, experiments, and results

Claim 1 (Correctness) The percentage of times that a probabilistic bidder
succeeds to obtain an item is equal to its eagerness.

To validate this claim, we conducted an experiment consisting of 14 sim-
ulation bundles: each one designed to measure the percentage of wins of one
probabilistic bidder with a given eagerness. The eagerness was varied be-
tween 30% and 95% at steps of 5%. The other parameters of the simulation
bundles were: –numSims 50 –dataset PalmVx –numControls 3 –limitPrice
300 –creationTime 0.5.4 For this experiment, the limit price of the proba-
bilistic bidders was 10 standard deviations above the average winning price,
so that there was little risk that the agent failed due to an insufficient limit
price.
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Figure 1: Results of the experiments for claim 1. Each point denotes the
percentage of times that the probabilistic bidder won in a simulation bundle.
The straight line is the linear regression of the plotted points.

The expected result was that the percentage of wins is equal to the ea-
gerness. The linear regression of the experimental results supports the claim
(Figure 1): it shows an almost perfect correlation between an increase in
eagerness and an increase in the percentage of wins.

Interestingly, the fact that the bidding histories of English auctions are ad-
justed before being used to compute a probability function (see Section 2.2.2),
plays a crucial role in ensuring that the percentage of wins is equal to the
eagerness. We conducted the same experiment as above without adjusting
the bidding histories. The result was that the percentage of wins was consis-
tently lower than the eagerness, meaning that the expectations of the user
were not fulfilled.

4We also run the same experiment with creationTime = 0.4 and 0.6 and obtained
similar results. In fact, the creation time is only there to ensure that there are sufficient
bid histories before the probabilistic bidders enter the market.
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We also conducted experiments to observe the correlation between the
average winning price of the probabilistic bidder and its eagerness. The
results show an increase of the price paid by the probabilistic bidder as the
eagerness is increased (Figure 2).
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Figure 2: Variation of a probabilistic bidder’s bid price with increasing ea-
gerness.

Claim 2 (Increased Payoff) Probabilistic bidders pay less than control
bidders, especially in competitive environments. In other words, probabilistic
bidders increase the payoff of their users.

To validate this claim, we conducted an experiment consisting of 7 sim-
ulation bundles: each testing the performance of one probabilistic bidder
competing against control bidders in an increasingly competitive market.
The number of control bidders per auction was varied from 2 to 8. The para-
meters passed to the simulations included: –dataset PalmVx –numSims 50
–eagerness 0.9 –creationTime 0.5.

The expected results were (i) that the increasing competition raises the
average final price of the auctions, and (ii) that despite the increased compe-
tition the probabilistic bidder tends to keep its bidding price low. The actual
experimental results (Figure 3) clearly match these expectations. Other ex-
periments with different eagerness yielded similar results.

Claim 3 (Increased Welfare) The welfare of the market increases with the
number of probabilistic bidders.

The market welfare is a measure of the “quality” of the allocation between
buyers and sellers resulting from the auctioning process. It is defined as the
sum of the welfares of the bidders plus the sum of welfares of the sellers. The
welfare of a seller is in turn defined as the difference between the price at
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Figure 3: Results of the experiments for claim 2. Each pair of columns show
the average price paid per simulation bundle. The left columns correspond to
the probabilistic bidders’ average winning price; the right columns correspond
to the control bidders’ average winning price.

which (s)he actually sells its item, and his/her reservation price. The welfare
of a bidder (whether probabilistic or control) is the difference between his/her
limit price, and the price actually paid. If a bidder does not win any auction,
it does not contribute to the market welfare. A similar remark applies for
sellers whose auctions are not won by any bidder.

This claim was validated through an experiment consisting of 11 simu-
lation bundles with increasing numbers of probabilistic bidders. Each time
that a probabilistic bidder was added, one control bidder was removed. The
parameters passed to this set of simulations included: –dataset PalmVx –
numSims 30 –numControls 3 –eagerness 0.9 –creationTime 0.5. The limit
prices of the probabilistic bidders were set in the same way as those of the
winning control bidders, as opposed to what was done in claims 1 and 2
where the limit price of probabilistic bidders was considerably higher than
that of control bidders. As a result, the contribution of a probabilistic bidder
to the market welfare is comparable to the contribution of a control bidder,
except for the fact that probabilistic bidders are likely to pay less than control
bidders (see Claim 2).

The expected result was that the market welfare will increase as more
probabilistic bidders are introduced. The results of the experiment (Fig-
ure 4) validate the claim by showing an increase of the market welfare as new
probabilistic bidders are introduced. When adding 10 probabilistic bidders
into a market containing 300 auctions and 900 control bidders, the welfare
increased by 2.35% (1.95% due to an increase in the welfare of the sellers,
and 0.4% due to an increase in the welfare of the buyers).

Other experiments conducted with different eagerness (70%, 80%, 99.99%)
yielded a similar result: the overall welfare increases by between 0.23% and
0.25% for every added probabilistic bidding agent (2.3% to 2.5% welfare in-
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Figure 4: Results of the experiments for claim 3. Each point represents the
market welfare for one simulation bundle. The straight line represents the
linear regression on these points. The eagerness of all probabilistic bidders
is set to 90%.

crease after 10 probabilistic bidding agents are added). In the experiments
with 70% eagerness the increase in the welfare of the buyers is more no-
ticeable, while in the experiments with 99.99% eagerness the welfare of the
buyers remains virtually constant. In this latter case, the increase in the
overall welfare is entirely due to the increase in the welfare of the sellers.

The above results can be explained by observing that when a control bid-
der with a low valuation wins an auction as an effect of chance, it contributes
less to the overall welfare than a probabilistic bidder with a higher valuation
would do if it won the same auction. In other words, the fact that probabilis-
tic bidders participate in as many auctions as they can, makes them likely
to contribute to an increase in the overall welfare by “stealing” auctions that
would otherwise go to bidders with lower valuations. In addition, when sev-
eral probabilistic bidders compete in the same auctions, the market becomes
more competitive. This in turn has a positive effect on the welfare of the
sellers who get better prices than they would in the absence of probabilistic
bidders.

The observed increase in welfare is therefore explained by the “system-
atic” approach adopted by probabilistic bidders: a characteristic that is inde-
pendent of the eagerness factor. Even probabilistic bidders with an eagerness
of 99.99%, which tend to select bidding prices r close to their maximum M

from the very beginning of their lifespan, contribute to an increase in the
overall welfare by pushing the final prices up, thereby increasing the sell-
ers’ welfare while keeping the buyers’ welfare constant. When the eagerness
factor of the probabilistic bidders is smaller (e.g. 70%), an increase in the
buyers’ welfare can also be observed, since some probabilistic bidders win
auctions with prices r well below their valuation M , thereby contributing
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M − r price units to the buyers’ welfare.

4 Related work

Commercial bidding tools

Auction aggregators such as BidXS, BidFind (www.bidfind.com), and Auc-
tionBeagle (www.auctionbeagle.com) address the issue of searching auctions
for a given type of item across multiple auction houses. In BidXS for exam-
ple, a user enters a list of keywords, a time-frame, and a price range, and the
web site retrieves ongoing auctions running in a number of auctions houses,
that match the specified criteria. The resulting pages contain a list of auc-
tions with their descriptions, end times and current quotes. This list can be
refreshed to obtain up-to-date quotes.

In association with StrongNumbers, BidXS also provides a service through
which users can retrieve the prices of past transactions for a given item. This
service lists a large set of items arranged by categories and provides for each
of these items, a histogram of transaction prices. Based on these histograms,
the service recommends a “fair value” for each item. This service partially
addresses the “how much” part of the bid planning aspect.

Automated bid placement in Internet auction houses is currently limited
to proxy bidding in English auctions. In proxy bidding, the user discloses to
the auction house the maximum amount that (s)he is willing to bid in an
auction. Subsequently, each time that the user is overbid, the system places
a bid on the user’s behalf up to the authorised amount. Proxy bidding allows
a user to continuously hold the maximum bid in an auction. However, it does
not allow a user to hold the maximum bid in one among a set of alternative
auctions, which is the subject of this article.

Another form of automated bid placement has been offered for many years
by auction sniping services such as PhantomBidder (www.phantombidder.
com), Cricket Sniper (www.cricketsniper.com), and AuctionStealer (www.
auctionstealer.com). Using these services, a user can schedule a bid to be
placed in a given auction a few seconds before its closing time. If the holder
of the highest bid has not placed a proxy bid higher than his/her current bid,
such a last-minute bid allows a trader to win the auction at a lower price
than what a normal competition would allow.

PhantomBidder also offers a “Group Bidding” service. Using this service,
the user can mark a number of auctions as belonging to the same group. Once
a group has been formed, the user instructs the server to sequentially bid in
each of the auctions in the group with the goal of winning one of them. The
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price at which the service will bid is set by the user on an auction-by-auction
basis. The service automatically places bids at the right moment using its
auction sniping technique and using proxy bidding where available. As soon
as one of the bids succeeds, the service stops and sends a notification to the
user. Group bidding differs from our approach in several ways. First, in group
bidding, the user must detect and resolve potential conflicts between auction
deadlines, whereas in our approach this is done by the bidding agent. Second,
in group bidding the user must manually factor in his/her attitude towards
risk when determining that bidding price for each auction (each bidding price
must be entered manually). In our approach on the other hand, the user
just sets a maximum price and an eagerness factor, and the bidding agent
determines by how much the maximum price should be discounted in order to
take into account the user’s risk attitude. In addition, this “price discount”
is revised at runtime as new quotes are received, whereas in group bidding
all revisions must be carried out manually by the user. To summarise, group
bidding can be seen as a particular case of our approach, with an eagerness
close to 1, no automated resolution of deadline conflicts, and no automated
processing of histories of past auctions.

Research on automated bidding

Garcia et al. [8] consider the issue of designing strategies based on fuzzy
heuristics for agents bidding in series of Dutch auctions occurring in strict
sequence. In contrast, our proposal deals with fixed-deadline auctions (Eng-
lish, FPSB and Vickrey) with potentially overlapping or nearly-overlapping
end times. In addition, the approach of [8] aims at maximising the expected
utility irrespective of the winning probability, whereas our approach aims at
ensuring a given minimum probability of winning (eagerness), and is there-
fore able to capture other risk attitudes than the risk-neutral one.

Preist et al. [12] propose an algorithm for agents that participate in si-
multaneous multi-unit English auctions with the goal of obtaining N units
of an item. In this algorithm, the agent starts by placing bids in the auctions
with the lowest price. Each time that some of these bids are beaten, the
agent replaces them with a new set of bids with the lowest incremental price.
In this way, the agent holds N bids at any time. The authors tackle the
case where auctions have different deadlines by introducing a probabilistic
decision-making model that determines when an agent should bid in an auc-
tion which is about to close, instead of bidding in an auction that closes later.
Preist et al.’s approach differs from ours in at least three ways. First, we con-
sider single-unit auctions instead of multi-unit auctions. Second, in [12] there
is no equivalent of the concept of eagerness: The agent tries to maximise its
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chances of winning by systematically replacing lost bids with new ones at a
higher price. Finally, our approach considers the issue of nearly-overlapping
end times, whereas [12] assumes that the auctions finish either exactly at the
same time, or have end times such that it is possible to bid in one auction,
wait for the reply, and then bid in the next auction.

Anthony et al. [1] explore an approach to build agents for bidding in
English, Dutch, and Vickrey auctions. Agents base their decisions upon 4
parameters: (i) the user’s deadline, (ii) the number of auctions, (iii) the
desire to bargain, and (iv) the desperateness for obtaining the item. For
each parameter, a bidding tactic is defined: a formula which determines how
much to bid as a function of the parameter’s value. A strategy is obtained by
combining these 4 tactics using relative weights provided by the user. Instead
of considering maximal bidding plans as in our approach, the agents in [1]
locally decide where to bid next. Thus, an agent may behave desperately
even if the user expressed a preference for a gradual behaviour. Indeed, if
the agent places a bid in an auction whose end time is far, and if this bid
is rejected at the last moment, the agent may be forced to place desperate
bids to meet the user’s deadline. Meanwhile, bidding in a series of auctions
with earlier end times, before bidding in the auction with a later one, would
allow the agent to increase its desperateness gradually. Another advantage
of our approach over that of [1], is that the user can specify the desired
eagerness, whereas in [1] the user has to tune the values and weights of
the “desperateness” and the “desire to bargain”, in order to express his/her
eagerness.

Byde [3] describes a dynamic programming approach to design algorithms
for agents that participate in multiple English auctions. This approach can
be instantiated to capture both greedy and optimal strategies (in terms of
expected returns). Unfortunately, the algorithm implementing the optimal
strategy is computationally intractable, making it inapplicable to sets of
relevant auctions with more than a dozen elements. In addition, the proposed
strategies are not applicable to English auctions with fixed deadlines. The
auctions considered in [3] are round-based : the quote is raised at each round
by the auctioneer, and the bidders indicate synchronously whether they stay
in the auction or not. This type of English auction is also considered in
Bansal & Garg [2], where it is proven that a simple truth-telling strategy
leads to Nash equilibrium.

The study of sequential auctions for substitutes has recently drawn sig-
nificant attention in the areas of game theory, econometrics, and machine
learning. For example, an analytical study of the equilibrium properties of
forward-looking bidders in sequential English auctions can be found in [22].
The major conclusions is that bidders should bid less when there are several
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sequential English auctions for “substitutive” goods, than they would do if
the auctions were held in isolation. Experimental evidence from eBay and
Amazon is provided showing that bidders actually apply this idea in prac-
tice. Our bidding approach provides a tool to automate this forward-looking
process.

[23] on the other hand studies how agents bidding in sequential FPSB
auctions can learn by observing the behaviour of the other bidders (assum-
ing complete information revelation). This points out to the fact that our
approach could be improved by taking into account not only the history of
bid prices, but also the identity of the bidders.

Another recent treatment of the problem of bidding in multiple Eng-
lish auctions is [16]. Conducted in parallel with ours, this work describes a
method for computing a bid price given a minimum required probability of
winning (i.e. the equivalent of our eagerness factor). It also provides hints
for dealing with partial substitutes. However, [16] implicitly assumes that all
the auctions are compatible, i.e. no two auctions terminate simultaneously
or have end times close to each other. In contrast, this is a central aspect
of our approach. Moreover, the computational aspects of the preparation
and planning phases are skirted in [16]. The author only suggests the use
of numerical integration methods to compute the optimal bid (without con-
sidering the computational cost), and does not discuss how the probability
distributions can be (efficiently) computed. In addition, no experimental re-
sults are reported in [16] which would allow one to observe an increase in
payoffs when using the proposed approach.

The first Trading Agent Competition (TAC) [9] involved agents compet-
ing to buy goods in an online marketplace. The scenario of the competition
involved a set of simultaneously terminating auctions for hotel rooms, in
which the agents bid to obtain rooms that they had to package with flight
and entertainment tickets in such a way as to maximise a set of utility func-
tions. This scenario differs from ours in that the auctions all terminate
simultaneously, whereas our approach handles auctions which possibly over-
lap, but do not necessarily terminate at the same time. The scenarios of the
second and third TACs [21] were modified to include auctions terminating at
different times. However, the closing times of the auctions were not conflict-
ing, which again differs from the scenario addressed in this paper. On the
other hand, the TAC scenarios included a packaging problem which induced
a complementarity relationship between auctions. This aspect increases the
complexity of the bidding strategies when compared to those for bidding in
alternative auctions.
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5 Conclusion

We presented an approach to develop bidding agents that participate in a
number of single-unit auctions, with the goal of winning exactly one of them
with a given level of probability (eagerness), and before a deadline. A bidding
agent’s behaviour is based on a prediction method and a planning algorithm.
The prediction method estimates the probability of winning an auction with
a given bid. The planning algorithm determines where and how much to
bid, in such a way as to ensure that the probability of winning an auction
is above the eagerness. We described two prediction methods: one for small
datasets, and the other for larger datasets exhibiting a normal distribution.
Similarly, we presented two planning algorithms: a quadratic one (in terms
of the number of relevant auctions) that works in all cases, and a linear
one that only applies when all the auction houses are equally reachable in
terms of communication time (i.e. same value of δa for all auctions). We
also sketched two approaches to deal with partial substitutes: one based on
differentiated pricing (each item is given a different limit price), and one
based on differentiated utilities (each item is given a different score with
respect to a set of weighted criteria). Finally, through an implementation
and a set of experiments, we validated the feasibility and correctness of the
approach (i.e. that it effectively achieves the desired probability of winning)
and evaluated its benefits both to the bidders that use it, and to the market
as a whole.

The proposed approach could be extended by developing more sophis-
ticated prediction methods that would exploit not only the history of final
prices, but all the other information available about past auctions, such as
the set of bidders, the times at which each bid was placed (in particular
whether last-minute bids occur frequently), the popularity of the auctions
previously conducted by a given seller, etc. By exploiting all this informa-
tion, the agent may then be able to predict more accurately the probability
of winning an ongoing auction at a given price.
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A Linear best plan computation

The following algorithm computes the best set of auctions in which to bid,
given a bidding price r. It assumes that the time that it takes to get a quote
or place a bid (written δa) is the same across all auctions. Auctions are
represented as integers.

Algorithm 1 BestPlan′

Input

numAuctions: integer /* (positive) number of auctions */
end: array [1 .. numAuctions] of integer /* end(i) = end time of auction i;

∀i ∀j, 1 ≤ j ≤ i < numAuctions ⇒ end(i) ≥ end(j) */
r: integer /* the price to bid in each auction */
P1, P2, . . . , PnumAuctions : Probability functions
δ: integer /* time required to know the outcome of an auction and then bid in

another auction; δ = 2 × δa */

Local variables

current: integer /* between 1 and numAuctions + 1 */
latest: integer /* between 0 and numAuctions - 1 */
best, i : integer /* between 0 and numAuctions */
path : list of integers
Pred: array [1 .. numAuctions] of integer
/* Pred(i) = best predecessor of auction i */
Prob: array [0 .. numAuctions] of float
/* Prob(i) = Probability of losing when taking the best path leading to i */

Output

- a list of integers between 1 and numAuctions /*the best plan */
- a float /* probability of winning an auction */

Procedure

1. current := 1; /* current auction */
2. latest := 0; /* latest auction compatible with current auction */
3. best := 0; /* auction compatible with current one with lowest value for Prob */
4. Prob(best) := 1.0;
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5. repeat

/* Invariants at this point:
- for all 0 < i < current, Prob(i) and Pred(i) are already initialised
- latest > 0 ⇒ latest is compatible with current
- best > 0 ⇒ best is compatible with current */

6. Prob(current) := (1 - Pi(r)) * Prob(best);
7. Pred(current) := best;
8. current++;
9. while end(current) - end(latest + 1) ≥ δ

10. do latest++;
11. if Prob(latest) ≤ Prob(best) then best := latest fi

12. od

13. until current > numAuctions;
/* Since the auctions between latest+1 and numAuctions have no successors, the

best path ends with an auction within the range [latest + 1, numAuctions];
the best auction within this range is computed as follows: */

14. best := latest + 1;
15. for i := latest + 2 to numAuctions
16. do if Prob(i) ≤ Prob(best) then best := i fi

17. od;
/* construction of the best path */

18. path := [];
19. i := best;
20. while i 6= 0
21. do path := path + [i];
22. i := Pred(i)
23. od;
24. output(path, 1 - Prob(best))

The complexity of algorithm BestPlan′ is linear on the number of auc-
tions. The repeat-until loop is performed as many times as there are auctions
(numAuctions). The while-loop inside the repeat-until will not have more
than numAuctions - 1 iterations overall: it typically performs zero or one
iteration for each iteration of the repeat-until. It should be noted though,
that the algorithm assumes the list of auctions to be sorted on their end
times. Also, this analysis does not take into account the complexity of the
invocations to the probability functions Pi(r) – line 6 of the algorithm.
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