
Probabilistic Cause-of-death Assignment using Verbal Autopsies
Tyler H. McCormick 1, Zehang Li 1, Clara Calvert 2, Amelia C. Crampin 2,3, Kathleen Kahn 4, and Samuel J. Clark 1,3,4

1University of Washington, 2London School of Hygiene and Tropical Medicine, 3ALPHA Network, London, 4INDEPTH Network, Ghana

Introduction

• Fewer than one-third of deaths worldwide
are assigned a cause [1].

• Verbal autopsy (VA) used to assess cause of
death and estimate cause-specific mortality
fraction (CSMF).

• Interview with caregivers/relatives→ data
describing the signs and symptoms leading
up to the death.

Figure 1: Map of countries (gray shading) in which VA methods
are applied. Fottrell & Byass, 2010

Automated VA methods

Learn connections between symptoms and
causes using:
Gold standard data
• Multiple methods proposed by The Institute

for Health Metrics and Evaluation (IHME)
such as Tariff [2].

• Early work by King and Lu [3].

Expert inputs
• InterVA [4]: widely used and also supported

by the WHO.
• Information from physicians in the form of

ranked lists of signs and symptoms
associated with each cause of death.

Problem: Uncertainties exist in
• population cause distribution (C)
• individual symptoms (S)
• physician provided relationships (Ps|c)
• physician coded causes (G)
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InSilicoVA

• Idea: Quantify uncertainties at all levels.
• Goals of inference:

• yi ∈ {1, ..., C}: cause for death i;
• ~π = {π1, ..., πC}: population CSMF.

• Data with noise:
•~si: signs/symptoms for death i;
• Ps|c: ranking matrix of conditional

probabilities, i.e., “A+”, “A”, ...

Model specification

• Population CSMFs:

πc = exp θc/ ∑
c

exp θc

θc ∼ Normal(µ, σ2)

• Individual symptoms given causes:

sij|yi = c ∼ Bernoulli(P(sij|yi = c))
• Individual causes of death given CSMF:

yi|π1, ..., πC ∼ Multinomial(π1, ..., πC)

• Truncated Beta prior for ranked Ps|c:

PL(s|c) ∼ Beta(αs|c, M− αs|c)

PL(s|c) ∈ (PL(s|c)−1, PL(s|c)+1)

• Computation Posterior not available in closed
form. Obtain samples using MCMC where
most steps have conjugate priors; ~π is
sampled with a Metropolis-Hastings step.

Figure 2: Sketch of the InSilicoVA algorithm in MCMC.
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Figure 3: Gold Standard data: Performance comparison of
multiple methods using the Population Health Medical Research
Consortium (PHMRC) dataset [5]. InSilicoVA demonstrates sub-
stantial performance improvements.

Physician coding

• Some surveys reviewed by physicians.
• Each death coded by multiple physicians,

each assign a cause.
• Certain level of physician bias is inevitable.

Two-stage model

I. Debias physicians’ tendencies [6]
II. Use the broad categories of debiased cause

distribution: Zi = {zi1, ..., ziG}

P(yi|π, Si, Zi) =
G

∑
g=1

P(yi|π, ηi = g)P(ηi = g|Zi)

where ηi is the latent indicator for category
assignments.
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Figure 4: Physician bias: Each matrix represents a single physi-
cian coding verbal autopsy deaths from the Karonga HDSS. The
shading of each cell corresponds to the propensity of the physician
to assign the cell’s column when the row is the true cause.
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• InSilicoVA classifies more deaths to causes
labeled in various “other” groups.

• Including physician coding reduces “other
infectious disease” and increases “other
NCD”.

Conclusion

• Probabilistic framework for using VA data to
infer individual cause of death and
population CSMF.

• Quantifying uncertainty in both levels.
• Incorporate multiple types of outside

information, in particular physician codes.
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