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ABSTRACT

Cellular automata are binary lattices used for modeling complex dynamical systems. The
automaton evolves iteratively from one configuration to another, using some local transition
rule based on the number of ones in the neighborhood of each cell. With respect to the number
of cells allowed to change per iteration, we speak of either synchronous or asynchronous
automata. If randomness is involved to some degree in the transition rule, we speak of
probabilistic automata, otherwise they are called deterministic. With either type of cellular
automaton we are dealing with, the main theoretical challenge stays the same: starting from
an arbitrary initial configuration, predict (with highest accuracy) the end configuration. If the
automaton is deterministic, the outcome simplifies to one of two configurations, all zeros or all
ones. If the automaton is probabilistic, the whole process is modeled by a finite homogeneous
Markov chain, and the outcome is the corresponding stationary distribution. Based on our
previous results for the asynchronous case—connecting the probability of a configuration in
the stationary distribution to its number of zero-one borders—the article offers both nu-
merical and theoretical insight into the long-term behavior of synchronous cellular automata.

Key words: binary lattice; cellular automata; detailed balance equation; finite homogeneous

Markov chain; stationary distribution

1. INTRODUCTION

Cellular automata have been applied over time to model dynamical systems occurring in all range

of organized behavior, such as statistical physics, biology, medicine, ecology, and socioeconomic

interaction (Aristotelous and Durrett, 2014; Brännström and Sumpter, 2005; Clifford and Sudbury, 1973;

Freire et al., 2010; Griffeath and Moore, 2002; Levy and Requeijo, 2008; Nguyen et al., 2005; O’Sullivan and

Perry, 2009). They are a class of interacting particle systems, a paradigm for large dynamical systems

comprising numerous particles that are allowed to interact on certain local neighborhood rules. According to

Liggett, ‘‘The behavior of an interacting particle system depends in a rather sensitive way on the precise

nature of the interaction. Thus most of the research that has been done in this field dealt with certain types of

models in which the interaction is of a prescribed form. The unity of the subject comes not so much from the

generality of the theorems which are proved, but rather from the nature of the processes which are studied and

the types of problems which are posed about them’’ (Liggett, 2005).
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Rigorously, a cellular automaton is a finite binary lattice with values 0 and 1, subject of iterative

updating. In a totalistic automaton, transitions from 0 to 1 and vice versa are done locally, based only on the

number of ones in some fixed-length neighborhood of the cell to be updated. If all cells in the current

configuration are updated in the same time, the automaton is called synchronous; if only one cell is updated

per iteration, the automaton is asynchronous. Another differentiation is given by the degree of randomness

comprised by the automaton. If there is no randomness at all, the automaton is called deterministic—for

example, if we update the cells one by one, from left to right, and a particular cell flips according to the

majority of ones or zeros within its fixed-length neighborhood. But if the cell to be updated is chosen

randomly, and/or the local transition rule involves probabilities—allowing, for example, to a cell that is

currently 0 and has a majority of zeros in its neighborhood, to flip to 1 with a small probability—the

automaton is called probabilistic.

At least theoretically, the probabilistic cellular automata have higher generality, and due to the fact that

the current state of the automaton is solely responsible for the next state, they make the perfect candidate

for Markov chain modeling.

2. MARKOV CHAINS

As introduced in Iosifescu, 2007, finite homogeneous Markov chains are stochastic processes with finite set

of states S = f1‚ 2‚ . . . ‚ ng, where transition probabilities from one state to another depend only on the current

position. We denote the transition probability from state i to state j by pij and gather all these probabilities into

a square non-negative transition matrix P = (pij)i‚ j = 1‚ n. Since elements in each row sum to one, matrix P is

stochastic, and since the matrix does not change over time, the Markov chain is homogeneous.

To the reader’s convenience, we outline in the following the Markov chain prerequisites needed in our

study. For a thorough introduction to the theory, see, for example, monographs (Iosifescu, 2007; Parzen, 1999).

Definition 2.1.

� A state i is called absorbing if pii = 1; that is, an absorbing state is never left once it is entered.
� A stochastic matrix P is called primitive if there is a positive integer t such that Pt is positive—that is,

all entries in Pt are strictly positive.
� A stochastic matrix is called stable if all its rows are identical.
� Let p(0) be a probability vector. If p(0) is the initial probability distribution of the Markov chain with

transition matrix P, then the distribution after t steps is p(t), with p(t)0 = p(0)0Pt, for all t ‡ 1. If p0 = p0P,

then p is called stationary distribution.
� A sufficient condition for p to be the stationary distribution of P is the detailed balance equation:

pij pi = pji pj for all i‚ j: (1)

As pointed out in Parzen (1999), there are three main topics of interest while examining a Markov chain:

i) The short-term, time-dependent behavior—to find the transition probability matrix of a given process.

ii) The long-term, steady-state behavior—to determine conditions under which the existence of sta-

tionary distribution p is guaranteed, and to find that distribution, if possible.

iii) The analysis of first hitting time (absorption time): to study the length of time it takes the chain to

pass from one set of states to another, or to enter a predefined target set.

All the above topics are of interest for cellular automata. So far, analysis has focused only on (and), yet the

study of absorption time is considered by the authors of the article as an important future research direction,

especially in relation to the density classification task of synchronous automata.

Theorem 2.2. Let P be a primitive transition matrix. Then Pt converges as t /N to a positive stable

stochastic matrix PN = 1p0, and the rate of approach to the limit is geometric. Moreover, the limit dis-

tribution p = p(0)0PN has the following properties:

� is unique regardless of the initial distribution p(0);
� has positive entries on all components;
� is also the unique stationary distribution of the associated Markov chain.
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An important exception from the primitive transition matrix case in Theorem 2.2 is when the Markov chain

exhibits one or more absorbing states. Such situations occur frequently in synchronous cellular automata

with the extreme configurations all zeros and all ones, which are the only two states of the automaton that

cannot be left once they are entered. In this case, the automaton will eventually reach one of the two

absorbing states, so there are only two questions to be posed:

i) Can we predict the final state of the automaton, based on the initial state?

ii) What is the journey time between the initial state and the absorbing one?

3. ASYNCHRONOUS

As introduced in Section 1, there are two nonoverlapping classifications of cellular automata. One refers

to the number of cells to be updated per time step, which can be either one (in the asynchronous case) or all

(synchronous). The second refers to the updating mechanism itself, which can be either probabilistic or

deterministic. As for the synchronous/asynchronous dichotomy, a hidden goal of this article is to break the

wall between these two classes by showing that synchronous automata—at least some variants of them—

behave in the long term exactly like their asynchronous counterparts!

Let us describe the Markov chain model of a probabilistic One-dimensional (1D) asynchronous cellular

automaton, as introduced in Agapie et al. (2004). Consider an N-length binary string, with values 0 and 1,

allowed to change at most one cell per iteration. At one time step, each cell has probability 1/N to be selected

for a flip. Once selected, the local probability of flipping a cell further depends on its value and on the values

of the other (L - 1) cells within its neighborhood. In Table 1 the local transition probabilities to 1 are

depicted, while the local transition probabilities to 0 are to be calculated from the same table by turning the

probability column upside down. Namely, if the probability of flipping to 1 from a neighborhood with k ones

is ck, the probability of flipping to 0 under the same circumstances is set to (1 - ck), with ck 2 (0‚ 1) for all k.

Nota bene, the transition 1 / 1 is also considered a flip. In the last row of Table 1, the number of ones in

the neighborhood is L, so the central cell is obviously 1. Then the cell stays 1 with probability (1 - c0), or

flips to 0 with complementary probability c0. We assume circular connections such that the left neighbor of

the first cell is the Nth cell.

If we turn now from local to global transition probabilities, the components of transition matrix P, notice

first that the Markov chain comprises 2N states–all the possible binary strings of length N. Let i be an arbitrary

state (configuration). Then the asynchronous model will have exactly (N + 1) positive entries in each row; for

an arbitrary row i, nonzero probabilities carry only states that differ from configuration i on maximum one cell.

The positive off-diagonal entries pij are of type (1/N)ck, respectively (1/N)(1 - ck) depending on the 0/1

value of the cell in configuration i that must be flipped in order to obtain configuration j. The diagonal term

is defined as 1 minus all off-diagonal entries in the row, and is strictly positive, provided all local transition

probabilities in Table 1 are in (0, 1). We have the following simple result.

Lemma 3.1. The transition matrix of the 1D asynchronous automaton is primitive.

Lemma 3.1 and Theorem 2.2 ensure the existence of a limit distribution for the transition matrix associated

to the asynchronous cellular automaton, which is also the unique stationary distribution of the respective

Markov chain.

Table 1. Local Transition Probability to 1, Neighborhood Size L, L Odd

No. of ones in the neighborhood Probability

0 c0

..

. ..
.

(L - 1)/2 c(L - 1)/2

(L + 1)/2 1 - c(L - 1)/2

..

. ..
.

L 1 - c0
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Our previous work in the field concentrated on finding the analytical formula of the stationary distribution

for 1D up to 3D asynchronous cellular automata (Agapie, 2010; Agapie and Aus der Fuenten, 2008; Agapie

et al. 2004), respectively on connecting our findings to the existent results from the Ising and exponential

voter model (Agapie et al., 2010). The main results of the quoted articles are presented in the following.

We start with the case of an asynchronous automaton with neighborhood three, formed by the cell to be

updated and its left and right neighbors. There are two Markov chain parameters in this case; we renote them e

and a, so Table 1 simplifies to only four rows, corresponding to probabilities e, a, (1 - a), and (1 - e).

The theorem below shows that probabilities in the stationary distribution exhibit a class property, related

to the number of borders within the configuration.

Definition 3.2. A border occurs between two different successive cells, namely (0, 1) or (1, 0). We

denote by b(i) the total number of borders within configuration i.

Theorem 3.3. The stationary distribution of P is given by p, where

pi =
1

Z

�

1 - a

� �1
2
b(i)

(2)

and Z is a normalization factor.

The computation of Z leads to a combinatorial problem, easily solved in the case of neighborhood three by

the following.

Lemma 3.4. The number of configurations with 2k borders is 2C2k
N , for all k = 0‚ [N=2].

In the case of the five-neighborhood asynchronous automaton, we get one more parameter, say b, and two

more active rows in Table 1, corresponding to probabilities b and (1 - b), see Table 2.

Yet, the extrapolation of the simple expression (2) can not be done without a further condition on e, a,

and b. This amounts to setting up the local transition probabilities such that the Markov chain satisfies the

so-called detailed balance equation.

A refinement of the notion of border is needed.

Definition 3.5. A k-border occurs between two different cells situated at distance k from each other.

For example, in 001 we have a 2-border between the first and third cells and a 1-border between the second

and third cells.

Theorem 3.6. If the following holds

� =
a2(1 - a)

(1 - b)2
‚ (3)

then the stationary distribution of P is given by p, where

pi =
1

Z

a
1 - b

� �1
2
[b1(i) + b2(i)]

(4)

and Z is a normalization factor.

An analogous of Lemma 3.4 is also valid.

Table 2. Local Transition Probabilities, L = 5

No. of ones in the

neighborhood Transition Probability to 1 Transition probability to 0

0 e 1 - e

1 a 1 - a
2 b 1 - b
3 1 - b b
4 1 - a a
5 1 - e e
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Lemma 3.7. The number of configurations with b order-1 borders and t order-2 borders is

2 C
b - t=2
b � Ct=2 - 1

N - b - 1 + C
b - t=2
b - 1 � C

t=2
N - b

� �
: (5)

4. SYNCHRONOUS SIMULATION

We test now—by means of computer simulation—whether the analytical formula of stationary distri-

bution proved for asynchronous automata fits also the synchronous case. By definition, in a synchronous

automaton all cells may change during a single iteration. Two different ways of doing that are considered.

Sync 1: Draw a shadow configuration, filled in with the new values obtained for each cell by applying the updating

rule; once completed, the shadow replaces the current configuration.

Sync 2: From left to right, update all the cells in the configuration using the local updating rule.

The difference is the following: In Sync 2 the new value of a cell contributes to the local updating of its

right neighbor(s), while in Sync 1 it does not. In this respect, one might say that Sync 2 is closer to an

asynchronous cellular automaton than Sync 1. A variant of Sync 2 with random pick of the cell to be

updated was also tested, with similar results.

As a general rule while performing computer tests, we start from an arbitrary configuration, run the cellular

automaton for n iterations, then register the next n iterations for the (empirical) stationary distribution.

Consider first the three-neighborhood automaton and Formula (2) for the theoretical distribution, with

scaling factor Z computed by Lemma 3.4. The parameters of the automaton are set to e = 0.2, a = 0.4, and

N = 10, for which the theoretical findings on asynchronous automata induce the following partition on the

set of 210 possible configurations, with respect to the number of borders: {0, 2, 4, 6, 8, 10}.

We enforced this partition on the synchronous automata as well, by assuming that configurations sharing

the same number of borders have the same probability in the stationary distribution. Next, we calculated the

probabilities for Sync 1 respectively Sync 2 by summing up the relative occurrence frequencies (within the

n limit configurations) of all configurations belonging to a particular class. The magnitude of n has no

substantial influence on these findings—n ranging between 104 and 106 provided similar results.

As one can notice from Figure 1, this reasoning works perfectly with synchronous automaton Sync 2 but

not so good with Sync 1. The difference goes beyond the graphical incongruence: not only that Sync 1

histograms depart from those of asynchronous automaton (Theory) on each class, but as a matter of fact

Sync 1 does not exhibit the class property with respect to the number of borders at all!

The conclusion of the three-neighborhood computer simulation is straightforward. The border-based

exponential formula of the stationary distribution from Section 3 extrapolates to synchronous automata of

type Sync 2, but not to Sync 1. Before giving a rigorous proof to this conjecture, we check it also on the

five-neighborhood case.

A first set of tests for neighborhood five was performed by mirroring the simulation above, considering

the same variants of synchronous automata, Sync 1 and Sync 2, each of fixed length N = 10 and a set of

local probabilities obeying the law (3): (e, a, b) = (0.0(8), 0.2, 0.4). Partitioning the state space with respect

to the number of borders is not as straightforward as before, requiring a technical result (to improve

readability, proof is omitted).

Lemma 4.1. The partition induced by formula (5) on the neighborhood five automaton with length

N = 10 is given in Table 3.

Even if the classes in the partition differ from the previous case, the results stay the same: the empirical

stationary distribution of automaton Sync 2 fits the theoretical distribution of the asynchronous case (4),

while the empirical distribution of Sync 1 departs significantly from that. As before, the numerical results

Table 3. Partition of States for Synchronous Automaton, L = 5, N = 10

Order-1 plus order-2 borders 0 4 6 8 10 12 14

No. of configurations 2 20 90 170 372 320 50
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are not influenced by the magnitude of n, ranging from 104 to 106. The inadvertence of the border-based

partition is demonstrated once more in case of Sync 1, so we can drop this automaton from the list of

extrapolation candidates and concentrate on Sync 2 instead.

A second set of tests for neighborhood five was performed on Sync 2, with two different local probability

settings. We compared the empirical distribution obtained for local probabilities (e, a, b) = (0.0(8), 0.2, 0.4)

against the one obtained for an arbitrary set of parameters, for example (e, a, b) = (0.2, 0.3, 0.4). As we can

notice in Figure 2, the automaton with parameters given by (3) stays close to the theoretical distribution,

while the one with arbitrary parameter setting is driven away—needless to say, other arbitrary settings

yielded the same behavior. It is worth mentioning that, in case of synchronous automaton Sync 2, relation

(3) does not imply detailed balance equation for the corresponding Markov transition matrix. That will be

explained in the next section in more detail.

5. SYNCHRONOUS THEORY

Computer simulations have done their part, indicating that the stationary distribution of synchronous

automaton Sync 2 obeys formula (4) of the asynchronous case, if and only if local probabilities e, a, and b
fulfill the special relation (3). That requires rigorous proof, provided in the following. As we expect the

conjecture to be true for either three-, or five-neighborhood automata, we consider here the most complex

situation, neighborhood five, and show that Theorem 3.6 is still valid.

To this end, we start by pointing out the differences, with respect to Markov chain modeling, between the

two types of automata: synchronous and asynchronous. Even if local transitions are governed by the same

rule—table 3—global transition matrix P is no longer sparse in the synchronous case. As Sync 2 is allowed

to move between any two configurations in a single step, all entries in P are now positive, yet they are

nothing like the positive entries of P described in Section 3.

Moreover, detailed balance equation (1)—essential to the proof of Theorem 3.6 in the asynchronous

case—does not hold for synchronous automaton Sync 2. In order to see that, consider as i and j the

configurations 10000 and 11111, respectively. According to (10), b1(i) = b2(i) = 2 and b1(j) = b2(j) = 0, so

0

0.1

0.2

0.3

0.4

0.5

0.6

0 2 4 6 8 10

Theory
Sync 1
Sync 2

FIG. 1. Stationary distribution for three-neighborhood synchronous automata, n = 106.
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pi =
1

Z

a
1 - b

� �2

‚ pj =
1

Z
: (6)

From Table 2, we compute transition probabilities pij and pji as

pij = a2 b(1 - b)(1 - a)‚ pji = (1 - �)� a b(1 - b)‚ (7)

which gives by straightforward multiplication

pijpi =
1

Z

a
1 - b

� �2
a2 b(1 - b)(1 - a)‚ pjipj =

1

Z
(1 - �)� a b(1 - b): (8)

The application of (1) and (9) leads to a = 1 - e; not true in general. Thus, the detailed balance equation is

not fulfilled.

Theorem 5.1. If the following holds

� =
a2(1 - a)

(1 - b)2
‚ (9)

then the stationary distribution of synchronous automaton Sync 2 is given by p

pi =
1

Z

a
1 - b

� �1
2
[b1(i) + b2(i)]

(10)

with Z a normalization factor.

Proof. As detailed balance equation is no longer valid, one needs to show that p0 = p0P, for stationary

distribution p given by (10) and transition matrix P of cellular automaton Sync 2. Namely, we need to prove that

pi =
X

j

pjpji‚ for any configuration i: (11)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 4 6 8 10 12 14

Theory
Arbitrary
Equation

FIG. 2. Stationary distribution for five-neighborhood synchronous automata Sync 2.
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To improve readability, we confine to the case N = 5. A higher length automaton would not add difficulty

to the proof, but only increase exponentially the dimension of transition matrix, the number of versions of

equation (11) to be verified, and the number of terms in the sum at the right-hand side of each equation.

For N = 5 we have 25 possible configurations, so one needs to verify 32 versions of (11). Only one case

will be demonstrated below, the one corresponding to configuration i = all ones. Proof is the same for any

other configuration.

For i = 11111 we have pi = 1/Z, and as 1/Z occurs in all pj from the right-hand sum of (11), it will cancel

out from both sides. We need to consider each of the 32 configurations leading to i and, for each such

configuration j, calculate the product pjpji or the respective sum of products. We group the configurations

with respect to the number of ones, and to shifting invariance.

Case 1: 00000 / 11111

pjpji = � a b(1 - b)(1 - a): (12)

Case 2: {10000, 01000, 00100, 00010, 00001} / 11111

X
pjpji =

a
1 - b

� �2

a b(1 - b)(1 - a)[a + b + 1 - b + 1 - a + 1 - �]: (13)

Case 3: {11000, 01100, 00110, 00011, 10001} / 11111

X
pjpji =

a
1 - b

� �3

b(1 - b)(1 - a)�

[b2 + (1 - b)2 + (1 - a)2 + (1 - �)2 + b(1 - �)]:
(14)

Case 4: {10100, 01010, 00101, 10010, 01001} / 11111

X
pjpji =

a
1 - b

� �3

b(1 - b)(1 - a)�

[b(1 - b) + (1 - b)(1 - a) + (1 - a)(1 - �) + b(1 - a) + (1 - b)(1 - �)]:
(15)

Case 5: {11100, 01110, 00111, 10011, 11001} / 11111

X
pjpji =

a
1 - b

� �3

(1 - b)(1 - a)�

[(1 - b)3 + (1 - a)3 + (1 - �)3 + (1 - b)(1 - �)2 + (1 - b)2(1 - �)]:
(16)

Case 6: {11010, 01101, 10110, 01011, 10101} / 11111

X
pjpji =

a
1 - b

� �3

(1 - b)(1 - a)2�

[(1 - b)2 + (1 - a)(1 - �) + (1 - b)(1 - a) + (1 - �)2 + (1 - b)(1 - �)]:
(17)

Case 7: {11110, 01111, 10111, 11011, 11101} / 11111

X
pjpji =

a
1 - b

� �2

(1 - a)�

[(1 - a)4 + (1 - �)4 + (1 - a)(1 - �)3 + (1 - a)2(1 - �)2 + (1 - a)3(1 - �)]:
(18)

Case 8: {11111} / 11111

pjpji = (1 - �)5: (19)

Summing up (12)–(19) and imposing condition (9) on the resulting sum gives 1, which is exactly the value

of pi modulo 1/Z. -

Needless to say, Lemma 3.7 is still valid for synchronous case Sync 2, as it has nothing to do with the

dynamic updating rule of the automaton.
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6. CONCLUSION

In stochastic processes, predictability usually takes the form of a probability distribution governing the

long-term behavior of the system under consideration. If one can prove an analytic formula for the

stationary distribution, the problem is solved. Unfortunately, such cases are rare, and the study of cellular

automata illustrates the situation perfectly. Previous work of the authors (Agapie, 2010; Agapie and Aus

der Fuenten, 2008; Agapie et al., 2004) has found the stationary distribution of asynchronous automaton in

closed exponential form, function of the number of borders within the configuration. The aim of the present

article was to test the extrapolation of the analytical formula onto synchronous automata.

As is usually the case in complex dynamical systems, computer simulation provided significant insight

into the system’s long-term behavior, opening the way for rigorous mathematical proof. Out of two

different synchronous automata subjected to numerical tests, one showed good resemblance with the

analytical formula, while the other diverged significantly. We focused on the one that tested positive and

proved that the stationary distribution obeys the same dependency on the sum of order-1 and order-2

borders as the asynchronous automaton, even if the detailed balance equation is no longer fulfilled.

The problem of finding an analytical formula for the synchronous automaton that updates all the cells in

the same time—Sync 1 in Section 4—still remains open. Unfortunately, numerical simulations in that case

do not indicate a grouping effect on configurations within the stationary distribution, at least not with

respect to their number of borders, making the extrapolation of formula (10) intractable.

Besides seeking further extrapolation of the stationary distribution formula, an important research di-

rection would be the stochastic analysis of absorption time—see for example, Agapie (2013) and O’Sullivan

and Perry (2009)—for either synchronous or asynchronous automata converging to the extreme configu-

ration all zeros and all ones.
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