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Probabilistic Class Histogram Equalization
for Robust Speech Recognition

Youngjoo Suh, Mikyong Ji, and Hoirin Kim, Member, IEEE

Abstract—1In this letter, a probabilistic class histogram equaliza-
tion method is proposed to compensate for an acoustic mismatch
in noise robust speech recognition. The proposed method aims not
only to compensate for the acoustic mismatch between training and
test environments but also to reduce the limitations of the conven-
tional histogram equalization. It utilizes multiple class-specific ref-
erence and test cumulative distribution functions, classifies noisy
test features into their corresponding classes by means of soft clas-
sification with a Gaussian mixture model, and equalizes the fea-
tures by using their corresponding class-specific distributions. Ex-
periments on the Aurora 2 task confirm the superiority of the pro-
posed approach in acoustic feature compensation.

Index Terms—Feature compensation, histogram equalization,
probabilistic class, robust speech recognition.

I. INTRODUCTION

HE performance of automatic speech recognition (ASR)
Tsystems degrades severely when acoustic environments
between training and test data differ from each other. The main
cause of this acoustic mismatch is corruption by additive noise
and channel distortion [1]. In robust speech recognition, the
feature compensation approach has been widely employed
due to such advantages as low computational complexity and
effective performance improvement. Acoustic environments
corrupted by additive noise and channel distortion cause a non-
linear transformation in the feature spaces of the cepstrum or
log-spectrum [1]. For this reason, linear transformation-based
feature compensation methods such as cepstral mean normal-
ization [2] or cepstral mean and variance normalization [3]
have substantial limitations, even though they yield significant
performance improvement under noisy environments. Cur-
rently, piecewise linear approximation-based methods, such as
interacting multiple model (IMM) [4] and stereo-based piece-
wise linear compensation for environments (SPLICE) [5], are
the major approaches for coping with the nonlinear behavior of
the acoustic mismatch.

As another efficient approach, a histogram equalization
(HEQ) technique has been proposed. The basic idea of HEQ
is to convert the probability density function (PDF) of the test
features into that of the references [6]-[9]. Therefore, unlike
other methods, HEQ can compensate for the acoustic mismatch
by directly utilizing the nonlinear inverse transformation.
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Recent research has also shown that HEQ is quite effective in
preventing the performance degradation of ASR under noisy
environments [6], [7]. However, HEQ needs some fundamental
assumptions for its full performance. The first assumption is
that the acoustic mismatch should act as a monotonic transfor-
mation in the feature domain [7]. In other words, the ordering
information of acoustic classes, defined in the acoustic mod-
eling of speech recognition systems, along each feature axis
should not be altered by the acoustic mismatch. The second
is that distributions of acoustic classes, for both training and
test data, should be identical or similar to each other. When
any of these assumptions is not kept, the transformation by
HEQ tends to impair the class separability of features by con-
fusedly mapping to the regions of other classes. However, the
transformation caused by the corruption from additive noise or
channel distortion does not always guarantee the monotonic
transformation. In addition, test speech utterances may be too
short to make their acoustic class distributions identical or
similar to those of training data. As a result, it is difficult to take
full advantage of HEQ when the conventional HEQ is used to
compensate for the acoustic mismatch in noisy environments.

In this letter, we propose a probabilistic class HEQ not only
to compensate for the acoustic mismatch between the training
and test data but also to remedy the limitations of the conven-
tional HEQ. The proposed technique equalizes the test features
by using class-specific reference and test cumulative distribu-
tion functions (CDFs) where the required class information is
obtained from soft classification based on a Gaussian mixture
model (GMM).

II. CONVENTIONAL HISTOGRAM EQUALIZATION

For random reference variable x and test variable y, let Px ()
and Py (y) denote their corresponding PDFs. A transform func-
tion z = F(y) mapping Py (y) into Px(x) is given in [6], [7]
as

z = F(y) = CY'[Cy (v)] €]

where C'3' () is the inverse of reference CDF, C'x (), and
Cy (y) is the test CDF of random variable y.

One of the critical problems in HEQ is the reliable estima-
tion of reference and test CDFs. In speech recognition applica-
tions, reference CDFs can be estimated quite reliably by com-
puting cumulative histograms with a large amount of training
data. However, when short utterances are used as test data, the
length of each utterance may be insufficient for a reliable esti-
mation. In these test environments, the test CDF estimation be-
comes much more important. When the number of estimation
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samples is small, the order-statistic-based CDF estimation is
known to be more accurate than the cumulative histogram-based
method, and its brief description is given as follows [6], [8].

Let us define a sequence S consisting of N frames of a certain
test feature component as

S:{y17y27"'7yn7"'7yN} (2)

where v, is the test feature component at the nth frame.
The order statistics of (2) can be represented as

yr) < Yre) < Syre) < S Yy 3

where 7'(r) denotes the original frame index of feature compo-
nent Y7, in which its rank is 7 when the elements of sequence
S are sorted in ascending order.

The order-statistic-based direct estimate of the test CDF is
given as

A R(yn) — 0.5
Cy (yn) = (?/ ])V “)
where R(yy,) denotes the rank of y,, ranging from 1 to N.
An estimate of the reference feature component by the con-
ventional HEQ given test feature component ¥,, is then obtained
as

®)

i = O[Oy (ya)] = CF' [M} ,

N

III. CLASS HISTOGRAM EQUALIZATION

The proposed approach to reducing both acoustic mismatches
and the limitations of the conventional HEQ consists of utilizing
multiple class-specific CDFs at both reference and test sides.
From the viewpoint of utilizing class information, the class HEQ
(CHEQ) has two approaches: hard-CHEQ using vector quanti-
zation [10] and probabilistic or soft-CHEQ based on a GMM as
follows.

A. Hard-CHEQ

In this class-based approach, reliably assigning class infor-
mation to each feature component is a prerequisite condition for
ensuring the effectiveness of CHEQ. In most HEQ methods, the
equalization is performed on a feature component basis for more
reliable estimation of the distributions with limited amounts of
sample data [9]. However, acoustic class modeling or feature pa-
rameterization in current ASR is usually processed on a vector
basis. For this reason, the acoustic class information utilized in
each feature component is extracted on a feature vector basis as
follows.

Let us define test feature vector V,, consisting of K -dimen-
sional components at time frame n as

., T
Vi=[y" 4 0 4P g (6)
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where yr(lk)

transpose.
Then, acoustic class index ¢ assigned to noisy test feature
vector V,, by hard classification can be obtained as

is the kth test feature component, and 7" stands for

i = arg'mind(f/n,zi), 1<i< Iy @)

2

where d(-,-) denotes the Mahalanobis distance measure, z;
stands for the centroid vector of the ith hard-class by the
k-means algorithm [1], Iy is the number of hard-classes, and
V,, is the histogram equalized version of V,, by the conventional
HEQ in order to reduce the adverse noise effects in classifica-
tion [10] and is given as

Vo= [0 32 .27
= |oxt (O () o5t (6v (u?))
o5 (O ()] ®)

An estimate of the reference feature component by the hard-
CHEQ given test feature component y,, is then defined as

. _ A _ R- (yn) — 0.5
_ 1 N _ 1 7
©)
y(4n) and R; () denote the hard-class-based test
CDF estimate and the rank of y,, at the ith hard-class, respec-

tively. In addition, C;IlX +(*) and N; represent the inverse of

where ' H,Y(

P

hard-class-based reference CDF, C, x(3)("), obtained by the
cumulative histogram computed from the training data, and the
number of frames at the sth hard-class, respectively.

B. Soft-CHEQ

It is more reasonable to assume that a feature vector belongs
to a number of acoustic classes than only a single dominant class
as in the hard-CHEQ. In this way, a more generalized form of
CHEQ is derived by using a soft-class concept, where the rela-
tion between the given feature vector and each acoustic class is
determined probabilistically by using a GMM-based posterior
probability. Given conventional HEQ-based transformed fea-
ture vector V,,, the posterior probability of soft-class w; is de-
fined by

A

aiN (Vy; pis 2i)

P(w; | V,)) = - - (10)
> N (Vi fom, )
m=1

where Is denotes the number of soft-classes, a; represents
the mixture component weight for the th soft-class, and
N (Vn; i, ;) is the K -dimensional normal distribution with
mean vector 4; and covariance matrix Y; at the sth soft-class.
By using the idea of CHEQ in (9) and taking into account
the probabilistic relations to all soft-classes, an estimate of the
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reference feature component by soft-CHEQ given test feature
component ¥, is defined by

Is
Fsa = Y Pi | Va)C5ke [Csvi(w)] (D)
=1

where C s,v'(i)(Yn) denotes the test CDF estimate at the ith soft-
class computed as

R(yn)_l N N
Z:l P(wi | VT(T‘)) + 0.5P(wi | Vn)

Csy iy (yn) = -

M=

r=1

12)

The reference CDF estimate at the sth soft-class is similarly

obtained by accumulating the posterior probabilities of the cor-
responding reference histogram bins.

C. Class-Tying

According to the CHEQ scheme, the nonmonotonic transfor-
mation and distribution mismatch of acoustic classes can be ef-
fectively reduced by using a larger number of acoustic classes,
provided reliable acoustic classification is possible. However,
the classification accuracy is inevitably degraded in noisy en-
vironments. In this condition, increasing the number of classes
further deteriorates the classification accuracy due to increased
class candidates. For these reasons, the effectiveness of CHEQ
increases to a certain number of classes, and then it tends to de-
crease. Therefore, classification accuracy plays a critical role in
CHEQ. When the number of classes cannot be increased arbi-
trarily, one possible way to improve classification accuracy is to
model each class in more detail through the union of a number
of small classes rather than by a large coarse class. In this sense,
the class-tying technique is employed such that the jth tied-class
for the given 2th untied-class in the hard-CHEQ is obtained as

J= argmind(z;,Z;), 1<j<Jy
J

(13)

where Z; represents the centroid vector of the jth tied-hard-
class computed from those of all untied-hard-classes defined in
(7), and .Jg is the number of tied-hard-classes.

By using (9) and (13), an estimate of the reference feature
component by the tied-hard-CHEQ given test feature compo-
nent ¥, is defined as

Tarn = CI;IT’X@[CHT,YG)(%)]

_ot(Bil) 205
HT,X(j) N

J

(14)

where C w7,y () (Yn) and R;(y,) denote the test CDF estimate

and the rank of feature component y,, at the j’th tied-hard-class,

respectively. C;I; xG) (-) and N ; represent the inverse of tied-

hard-class reference CDF, C'yy 1 (5 (), obtained by the cumu-
lative histogram computed from all training data of the feature
components, and the number of frames at the 5’th tied-hard-class,
respectively.

In the tied-soft-CHEQ), the jsth tied-class for the given ¢th
untied-class is obtained by using a symmetric version of the
Kullback-Leibler distance measure between the two Gaussian
PDFs [11] as

js = arg min {t?“ (EiZ;l) +ir (ijfl) - 2K
J

+tr [(E;l + Ej_l) (ui — U])(’U,L — Uj)T] }
1<j<Js 15)
where U; and XJ; represent the mean vector and covariance ma-
trix of the jth tied-soft-class, respectively. Jg is the number of
tied-soft-classes, and ¢r(-) stands for the trace of a matrix.
By using (11) and (15), an estimate of the reference feature
component by the tied-soft-CHEQ given test feature component
Yp, 1s defined as

i’ST,n = ZP((UJ' | Vn)ngl,’X(]) [C’STY(])(yn)} (16)

where OST7;f(j)(yn) denotes a test CDF estimate of feature
component y,, at the jth tied-soft-class, and C_;% X() (+) repre-
sents the inverse of tied-soft-class reference CDF, Csr x () (),
obtained by the cumulative histogram computed from the
training data of feature components at the jth tied-soft-class.
With a formulation similar to (12), each estimate of the test CDF
is obtained by using the posterior probability of tied-soft-class
w; given Vn, which is defined as

Z alN(Vn, i, Zi)
i1€]5

Js ~
> > N (Vs iy X4)

m=1iEm

P(w; | V) = (17)

IV. EXPERIMENTAL RESULTS

In the performance evaluation, the Aurora 2 database con-
verted from the TI-DIGITS database is used. Only clean con-
dition training is used in the experiments. Test sets A and B,
each containing four kinds of additive noise, and test set C, con-
taminated by two kinds of additive noise and different channel
distortion (MIRS), are chosen for the test. The 39-dimensional
MEFCC-based feature vectors, each consisting of 12 MFCCs,
log energy, and their first and second derivatives, are used in
the recognition experiments. These are extracted with a frame
length of 25 ms and an interval of 10 ms. Hidden Markov model
(HMM)-based speech recognizers are used where each digit-
based HMM consists of 16 states and each state has three mix-
ture components. Diagonal covariance matrices are used in the
HMM and GMM. The number of histogram bins in the refer-
ence CDFs was empirically chosen as 64 for both the conven-
tional HEQ and CHEQ. The equalization was conducted on all
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Fig. 1. Recognition results of hard or soft-CHEQ with or without the class-
tying technique for various numbers of classes on the Aurora 2 task (averaged
between 0 and 20 dB SNRs for test sets A, B, and C).

of the 39-dimensional MFCCs for both the training and test data
on an utterance-by-utterance basis after estimating the reference
CDFs from the training data.

Fig. 1 shows the recognition results by the CHEQ method
with respect to various numbers of classes ranging from 1 (i.e.,
the conventional HEQ case) to 14 when hard or soft classifica-
tion is used alone or in combination with the class-tying tech-
nique. The results represent average word error rates (WERS)
for the noisy speech data between 0 and 20 dB signal-to-noise
ratios (SNRs) of the three test sets as suggested by the Aurora
Group. In the experiments of tied-class cases, the corresponding
untied-classes are empirically chosen to be between 20 and 120
untied-classes. In this figure, we observe that CHEQ provides
significant improvements over the conventional HEQ when the
number of classes exceeds two. In addition, the figure illustrates
that the proper number of classes yielding the best performance
is six to eight. For more than this number of classes, the recogni-
tion accuracy tends to deteriorate due to degrading classification
accuracy in noisy environments.

Table I shows the recognition results in terms of WER for the
clean and noisy data of test sets A, B, and C obtained by MFCC,
HEQ, and CHEQ, respectively, where hard or soft classifica-
tion is used with or without class-tying. The table shows that
the CHEQ techniques produce outstanding improvements over
MEFCC with error reductions ranging from 60.13% to 62.27%
and substantial improvement over the conventional HEQ with
error reductions between 17.51% and 21.92% on noisy speech
data, although they yield some degradation on clean speech
data. Moreover, soft-CHEQ provides meaningful performance
improvement over hard-CHEQ, and the class-tying technique
yields additional improvement for both hard and soft-CHEQ
approaches on noisy speech data. In robust speech recognition,
more emphasis is usually put on the results of the noisy speech
data. In this sense, we can conclude from the results that the pro-
posed CHEQ provides consistent effectiveness in compensating
for the acoustic mismatch in noisy environments for speech
recognition applications.
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TABLE I
COMPARISONS OF WORD ERROR RATES (%) OF HEQ-BASED FEATURE
COMPENSATION TECHNIQUES ON THE AURORA 2 TASK (NOISY RESULTS ARE
AVERAGED BETWEEN 0 AND 20 dB SNRS)

Test Sets MFCC | HEQ Hard-CHEQ Soft-CHEQ
Untied Tied Untied Tied
A Clean 1.06 1.01 1.73 1.34 1.53 1.44
Noisy 38.88 19.34 15.96 15.44 15.53 15.05
B Clean 1.06 1.01 1.73 1.34 1.53 1.44
Noisy 4443 18.24 15.44 15.14 15.05 14.71
c Clean 1.01 1.10 1.74 1.33 1.39 1.43
Noisy 33.32 21.46 16.90 16.51 16.45 15.96
Avg. Clean 1.05 1.03 1.73 1.34 1.50 1.44
Noisy 39.99 19.32 15.94 15.53 15.52 15.10

V. CONCLUSION

In this letter, we propose a new feature compensation ap-
proach called a probabilistic CHEQ method that can alleviate
the fundamental limitations of the conventional HEQ in re-
ducing the acoustic mismatch for robust speech recognition.
Class information is obtained by using GMM-based soft clas-
sification. The class-tying technique is additionally employed
to provide higher classification accuracy. Compared to the
conventional HEQ and hard-CHEQ, the probabilistic CHEQ
yielded improved speech recognition accuracy in noisy envi-
ronments.
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