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Abstract

Supervisedand unsupervisedlearningmethodshave tradi-
tionally focusedon dataconsistingof independentinstances
of asingletype.However, many real-world domainsarebest
describedby relationalmodelsin whichinstancesof multiple
typesarerelatedto eachotherin complex ways. For exam-
ple, in a scientificpaperdomain,papersarerelatedto each
othervia citation,andarealsorelatedto theirauthors.In this
case,thelabelof oneentity (e.g.,thetopicof thepaper)is of-
tencorrelatedwith thelabelsof relatedentities.Weproposea
generalclassof modelsfor classificationandclusteringin re-
lationaldomainsthatcaptureprobabilisticdependenciesbe-
tweenrelatedinstances.We show how to learnsuchmodels
efficiently from data. We presentempirical resultson two
realworld datasets.Our experimentsin a transductiveclas-
sificationsettingindicatethat accuracy canbe significantly
improved by modelingrelationaldependencies.Our algo-
rithm automaticallyinducesa very naturalbehavior, where
our knowledgeaboutone instancehelpsus classify related
ones,which in turn help us classifyothers. In an unsuper-
visedsetting,our modelsproducedcoherentclusterswith a
verynaturalinterpretation,evenfor instancetypesthatdonot
have any attributes.

1 Intr oduction
Most supervisedandunsupervisedlearningmethodsassume
thatdatainstancesareindependentandidenticallydistributed
(IID). Numerousclassificationand clustering approaches
have been designedto work on such “flat” data, where
eachdatainstanceis a fixed-lengthvector of attribute val-
ues(see[Dudaet al., 2000] for a survey). However, many
real-world datasetsaremuchricherin structure,involving in-
stancesof multipletypesthatarerelatedto eachother. Hyper-
text is oneexample,wherewebpagesareconnectedby links.
Anotherexampleis a domainof scientificpapers,wherepa-
persarerelatedto eachothervia citation,andarealsorelated
to their authors. The IID assumptionis clearly violated for
two paperswritten by the sameauthoror two paperslinked
by citation,which arelikely to havethesametopic.

Recently, there has beena growing interest in learning
techniquesfor more richly structureddatasets. Relational
links betweeninstancesprovide a unique sourceof infor-
mation that has beenproved useful for both classification
andclusteringin thehypertext domain[SlatteryandCraven,

1998;Kleinberg, 1998]. Intuitively, relationallearningmeth-
odsattemptto useour knowledgeaboutoneobjectto reach
conclusionsaboutother, relatedobjects. For example,we
would like to propagateinformationaboutthe topic of a pa-
per � to papersthat it cites. These,in turn, would propagate
informationto papersthatthey cite. Wewouldalsoliketo use
informationabout� ’s topic to helpusreachconclusionabout
the researchareaof � ’s author, andaboutthe topicsof other
paperswrittenby thatauthor.

Several authors have proposedrelational classification
methodsalongthelinesof this “influencepropagation”idea.
Neville andJensen[2000] presentan iterativeclassification
algorithmwhich essentiallyimplementsthis processexactly,
by iteratively assigninglabelsto test instancesthe classifier
is confidentabout,andusingtheselabelsto classifyrelated
instances.SlatteryandMitchell [2000] proposean iterative
algorithm called FOIL-HUBS for the problem of classify-
ing web pages,e.g.,asbelongingto a university studentor
not. However, noneof theseapproachesproposesa single
coherentmodelof the correlationsbetweendifferentrelated
instances.Hencethey areforcedto provideapurelyprocedu-
ral approach,wheretheresultsof differentclassificationsteps
or algorithmsarecombinedwithout aunifying principle.

In clustering, the emphasisso far has been on dyadic
data,suchas word-documentco-occurrence[Hofmannand
Puzicha,1999], documentcitations[CohnandChang,2000],
web links [CohnandHofmann,2001;Kleinberg, 1998], and
geneexpressiondata.Kleinberg’s“HubsandAuthorities”al-
gorithmexploits the link structureto definea mutually rein-
forcing relationshipbetweenhubandauthoritypages,where
a goodhubpagepointsto many goodauthoritiesanda good
authoritypageis pointedto by many goodhubs.

Thesetechniquescan be viewed as relational clustering
methodsfor oneor two “types” of instances(e.g.,webpages,
documentsandwords),with a singlerelationbetweenthem
(e.g.,hyperlinks,word occurrence).However, we would like
to modelricherstructurespresentin many realworld domains
with multiple typesof instancesand complex relationships
betweenthem.For example,in amovie databasetheinstance
typesmight be movies,actors,directors,andproducers.In-
stancesof the sametype may alsobe directly related. In a
scientific paperdatabase,a paperis describedby its set of
wordsandits relationsto thepapersit cites(aswell asto the
authorswho wroteit). We would like to identify, for eachin-
stancetype, sub-populations(or segments)of instancesthat
aresimilar in boththeir attributesandtheir relationsto other



instances.
In� this paper, we proposea generalclassof generative

probabilisticmodelsfor classificationandclusteringin rela-
tional data. The key to our approachis the useof a single
probabilisticmodelfor theentiredatabasethatcapturesinter-
actionsbetweeninstancesin thedomain.Our work buildson
theframework of ProbabilisticRelationalModels(PRMs)of
Koller andPfeffer [1998] thatextendBayesiannetworksto a
relationalsetting.PRMsprovidea languagethatallowsusto
captureprobabilisticdependenciesbetweenrelatedinstances
in a coherentway. In particular, we useit to allow depen-
denciesbetweentheclassvariablesof relatedinstances,pro-
viding a principledmechanismfor propagatinginformation
betweenthem.

Like all generative probabilisticmodels,our modelsac-
commodatethe entire spectrumbetweenpurely supervised
classificationandpurely unsupervisedclustering. Thus,we
canlearnfrom datawheresomeinstanceshave a classlabel
andotherdo not. We canalsodealwith caseswhereone(or
more)of the instancetypesdoesnot have an observedclass
attribute by introducinga new latentclassvariableto repre-
sentthe (unobserved) cluster. Note that, in relationalmod-
els, it is often impossibleto segmentthedatainto a training
andtestsetthatareindependentof eachothersincethetrain-
ing and test instancesmay be interconnected.Using naive
randomsamplingto selecttraininginstancesis very likely to
sever links betweeninstancesin thetrainingandtestsetdata.
Wecircumventthisdifficulty by usingatransductivelearning
setting,whereweusethetestdata,albeitwithoutthelabels,in
thetrainingphase.Hence,evenif all theinstancetypeshave
observedclassattributes,thetrainingphaseinvolveslearning
with latentvariables.

We provide an approximateEM algorithm for learning
suchPRMswith latentvariablesfrom a relationaldatabase.
This task is quite complex: Our modelsinducea complex
webof dependenciesbetweenthelatentvariablesof all of the
entitiesin thedata,renderingstandardapproachesintractable.
Weprovideanefficientapproximatealgorithmthatscaleslin-
early with the numberof instances,andthuscanbe applied
to largedatasets.

We presentexperimentalresultsfor our approachon two
domains: a datasetof scientific papersand authorsand a
databaseof movies, actorsanddirectors. Our classification
experimentsshow that the relationalinformationprovidesa
substantialboostin accuracy. Applied to a clusteringtask,
we show that our methodsareable to exploit the relational
structureandfind coherentclusterseven for instancetypes
thatdo not haveany attributes.

2 Generative modelsfor relational data
Probabilisticclassificationand clusteringare often viewed
from a generative perspective as a densityestimationtask.
Data instancesare assumedto be independentand identi-
cally distributed(IID) samplesfrom a mixture modeldistri-
bution. Each instancebelongsto exactly one of � classes
or clusters. In clustering,a latent classrandomvariableis
associatedwith the instanceto indicate its cluster. Other
attributes of an instanceare then assumedto be samples

from a distribution associatedwith its class. A simple yet
powerful modeloften usedfor this distribution is the Naive
Bayesmodel. In the Naive Bayesmodel, the attributesof
eachinstanceare assumedto be conditionally independent
given the classvariable. Although this independenceas-
sumption is often unrealistic, this model has nevertheless
provento be robustandeffective for classificationandclus-
teringacrossawiderangeof applications[Dudaetal., 2000;
CheesemanandStutz,1995]. Both classificationandcluster-
ing involve estimationof the parametersof the Naive Bayes
model;however, clusteringis significantlymoredifficult due
to thepresenceof latentvariables.

The IID assumptionmadeby thesestandardclassification
andclusteringmodelsis inappropriatein rich relationaldo-
mains, wheredifferent instancesare relatedto eachother,
andarethereforelikely to be correlated.In this section,we
describea probabilisticmodelfor classificationandcluster-
ing in relationaldomains,whereentitiesarerelatedto each
other. Our constructionutilizes the framework of proba-
bilistic relational models(PRMs)[Koller andPfeffer, 1998;
Friedmanet al., 1999].

2.1 Probabilistic Relational Models
A PRM is a templatefor a probabilitydistribution over a re-
lationaldatabaseof a givenschema.It specifiesprobabilistic
modelsfor differentclassesof entities,includingprobabilis-
tic dependenciesbetweenrelatedobjects.Givena setof in-
stancesand relationsbetweenthem, a PRM definesa joint
probabilitydistributionover theattributesof theinstances.

Relational Schema. A relational schemadescribesat-
tributes and relations of a set of instance types � ����	��

�
����
������

. Eachtype
�

is associatedwith a setof at-
tributes ��� ��� . Eachtype

�
is also associatedwith a set� � ��� of typedbinaryrelations��� ��
�� � . We associateeach

relation � with the type
�

of its first argument,allowing us
to usetherelationasa set-valuedfunction,whosevalue ! � �
is the setof instances"$# � relatedto an instance! . For
example,for anactor % , % �Roleis thesetof moviesin which
theactorhasappeared.

In certain cases,relationsmight have attributes of their
own. For example,the “Role” relationmight be associated
with the attribute Credit-Order, which indicatesthe ranking
of theactorin thecredits.We canintroduceanexplicit type
correspondingto the relation. In this case,a relationobject
is itself relatedto bothof its arguments.For example,if one
of therole objectsis “Meryl Streepin Sophie’sChoice”,this
roleobjectwouldberelatedto theactorobject“Meryl Streep”
andthemovie object“Sophie’sChoice”.By definition,these
relationsaremany-to-one.It will beusefulto distinguishbe-
tweenentity types(suchas &('*),+.-(/ or 0 -*132 ' ), and relation
types(suchas 4�-65 ' ).

An instantiation7 specifiesthesetof objectsin eachtype,
the relationsthat hold betweenthem,and the valuesof the
attributesfor all of the objects. A skeleton 8 specifiesonly
theobjectsandtherelations.We will use 89� ��� to denotethe
setof objectsof type

�
.

Probabilistic Model. A probabilisticrelationalmodel :
specifiesa probabilitydistribution overa setof instantiations7 of therelationalschema.More precisely, a PRM is a tem-
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Figure1: (a)Model for IMDB domain;(b) Model for Coradomain;(c) Fragmentof unrollednetwork for Coramodel.

plate,which is instantiatedfor differentskeletons8 . There-
sult of this instantiationis a probabilisticmodelover a setof
randomvariablescorrespondingto all of theattributesof all
of theobjectsin theskeleton.We canview a PRM asa com-
pactwayof representingaBayesiannetwork for any skeleton
over this schema.

A PRM consistsof a qualitative dependency structure,p ,
andthe parametersassociatedwith it, q6r . The dependency
structureis definedby associatingwith eachattribute

��� s
a

setof parentsPa� ��� st� . Eachparentof
��� s

hasthe form
of either

�u� v
or
��� � � v for �w# � � ��� . (PRMsalsoallow

dependenciesalongchainsof relations,but we have chosen
to omit thosefor simplicity of presentation.)

For a givenskeleton 8 , the PRM structureinducesanun-
rolled Bayesiannetwork over therandomvariables! � s . For
everyobject !x#y89� ��� , ! � s dependsprobabilisticallyonpar-
entsof the form ! � v or ! � � � v . Note that if � is not single-
valued,then ! � � � v is actuallya setof randomvariables,one
for each "z#{! � � . We addressthis problemby interpreting
thedependenceof

�u� s
on
��� � � v asdependenceon anag-

gregatefunction(e.g.,modeormean)of themultisetof values
of thesevariables(seebelow).

Thequantitativepartof thePRM specifiestheparameteri-
zationof themodel.Givenasetof parentsfor anattribute,we
candefinea local probability modelby associatingwith it a
conditionalprobabilitydistribution(CPD). For eachattribute
wehaveaCPDthatspecifies|�� ��� s~} Pa� ��� st��� . Whenone
of the parentsis of the form

�u� � � v and � is many-valued,
theCPDrepresentsthedependenceonthevalueof theaggre-
gate. TheCPD for

��� s
is usedfor ! � s in theunrollednet-

work, for every ! in
�

. Thus,theCPDfor
��� s

is repeated
many timesin thenetwork.

Aggregates. Thereare many possiblechoicesof aggre-
gationoperatorto allow dependencieson a setof variables.
An obvious choicefor categorical variablesis the modeag-
gregate,which computesthe mostcommonvalueof its par-
ents. More precisely, considersomevariable

�
whosepar-

ents ��� �J� � �
�
�.� � �
we wish to aggregateinto a single

variable
s

. Let thedomainof each
���

be
��� � 
��
���

��*�R�

, and
note that

s
hasthe samedomain. The effect of the mode

aggregatoris asfollows: We definea distribution |�� ��}6� � �
for each� ; givena multisetof valuesfor

� � 
��
�
��
�� �
, weuse

thedistribution |�� ��}R�3�?� for thevalue
�3�

which is themost

commonin thismultiset.
The modeaggregatoris not very sensitive to the distribu-

tion of valuesof its parents;for example, it cannotdiffer-
entiatebetweena highly skewed anda fairly uniform setof
valuesthat have the samemost frequentvalue. An aggre-
gatethat betterreflectsthe valuedistribution is a stochastic
modeaggregator. In this case,we still definea set of dis-
tributions |�� ��}H� � �

, but the effect of the aggregatoris that|�� ��}�� � 
��
�
�

�� � �
is a weightedaverage of thesedistribu-

tions, wherethe weight of
�3�

is the frequency of this value
within

� � 

�
����
�� �
. We accomplishthis behavior by using

an aggregatevariable
s � Stochastic-Mode� �	��

�
���

.���(� ,

definedasfollows. Theaggregatevariablealsotakeson val-
uesin

��� � 
��
����
��*�=�
. Let �o���n� � bethenumberof variables

���
that take on thevalue

� � . Thenwe define |�� s � � � } � � �� � �n� �.��� . It is easyto verify that this aggregatorhasexactly
thedesiredeffect.

We note that this aggregatecanalsobe viewed asa ran-
domizedselectornodethat choosesone of its parentsuni-
formly at randomandtakeson its value.Oneappealingcon-
sequenceis that,likemin or max,thestochasticmodelcanbe
decomposedto allow its representationasaCPDto scalelin-
earlywith thenumberof parents.We simply decomposethe
aggregatein acascadingbinarytree.Thefirst layercomputes
aggregatesof disjoint pairs, with eachaggregaterandomly
selectingthe valueof oneof its parents;the following layer
repeatstheprocedurefor disjointpairsof resultsfrom thefirst
layer, andsoon. (This constructioncanalsobe extendedto
caseswherethenumberof variablesis not a power of � ; we
omit detailsfor lackof space.)

2.2 Classificationand clustering models
We usethe PRM framework as the basisof our modelsfor
relationalclassificationandclustering.As in the“flat” prob-
abilistic generativeapproaches,our approachis basedon the
useof a specialvariableto representtheclassor thecluster.
This variableis the standard“class” variablein the classifi-
cation task. As usual,we deal with the clusteringtask by
introducinga new latentclassvariable.Thus,for eachentity
class

�
we havea designatedattribute

�����
in ��� ��� .

As in flat classificationand clustering,we definethe at-
tributesof

�
to dependon theclassvariable.For simplicity,

we choosetheNaive Bayesdependency modelfor theother
attributes: For eachattribute

��� s
, the only parentof

��� s



is
��� �

. Note that we have only definedclassattributesfor
entity� types. We connectthe attributesof relation typesto
the classattributesof the two associatedentity types. Thus,
for example,anattributesuchasCredit-Order in therelation
class 4�-65 ' will dependon the classattributesof ���T�l-R) and0�-31*2 ' . Note that, as the dependencein this caseis single-
valuedby definition, no aggregatesarenecessary. Most in-
terestingly, we also allow direct dependencebetweenclass
attributesof relatedentities.Thus,for example,we couldal-
low a dependenceof 0�-31*2 ' ��� on ���T�l-R) ��� , or vice versa.In
thiscase,astherelationis many-to-many, weuseaggregates,
asdescribedabove.

Fig. 1(a) shows a simple model for a movie dataset,
extracted from the Internet Movie Database (IMDB)
(www.imdb.com). We seethat “Role” is both a classon
its own, aswell asdefiningtherelationbetweenmoviesand
actors.We havechosen,in this case,not to have theattribute4�-(5 ' �Credit-Order dependon the classof movies, but only
of actors.Fig. 1(b) shows a modelfor a domainof scientific
papersandauthors,derived from the Coradataset[McCal-
lum et al., 2000] (cora.whizbang.com). In this case,
we seethat the “Cites” relationconnectstwo objectsof the
sametype. We havechosento make theclassattributeof the
cited paperdependon the classattribute of the citing paper.
Note that this dependency appearscyclic at the type level.
However, recall that this model is only a template,which is
instantiatedfor particularskeletonsto producean unrolled
network; Fig. 1(c) shows a fragmentof sucha network. If
we do not have “citation cycles” in thedomain,thenthis un-
rolled network is acyclic, and the PRM inducesa coherent
probabilitymodelover therandomvariablesof theskeleton.
(See[Friedmanet al., 1999] for moredetails.)

We canalsouselatentvariablemodelsto representdyadic
clustering.Consider, for example,a domainwherewe have
peopleand movies, and a relation betweenthem that cor-
respondsto a personrating a movie. In this case,we will
have a class��-*�l' , correspondingto therelation,with theat-
tribute Rating representingthe actualrating given. This at-
tribute will dependon the clusterattributesof both 0�-31*2 '
and &('*),+.-(/ , leadingnaturallyto atwo-sidedclusteringmodel.
However, our approachis flexible enoughto accommodatea
muchrichermodel,e.g.,wherewe alsohave otherattributes
of person,andperhapsanentirerelationalmodelfor movies,
suchasshown in Fig. 1(a). Our approachwill take all of this
information into considerationwhen constructingthe clus-
ters.

3 Learning the models

Wenow show how welearnourmodelsfrom data.Our train-
ing set � consistsof apartialinstantiationof theschema,one
whereeverythingexcept the valuesof someor all the class
attributesis given. We canview this dataasa single large
“mega-instance”of themodel,with a largenumberof miss-
ing values.Notethatwecannotview thedataasasetof inde-
pendentinstancescorrespondingto theobjectsin themodel.
In our setting,we typically assumethat the structureof our
latent variablemodel is given, as describedin Section2.2.
Thus,our taskis parameterestimation.

3.1 Parameter estimation
In thiscase,weassumethatwearegiventheprobabilisticde-
pendency structurep , andneedonly estimatetheparametersq r , i.e., theCPDsof theattributes.A standardapproachis to
usemaximumlikelihood(ML) estimation,i.e., to find q6r that
maximize |��n� } q�r � .

If we hada completeinstantiation7 , the likelihoodfunc-
tion hasauniqueglobalmaximum.Themaximumlikelihood
parameterscanbe foundvery easilysimply by countingoc-
currencesin thedata.Recallthatall of theobjectsin thesame
classsharethesameCPD.Thus,to estimatetheparameterfor|�� �u� s~} Pa� ��� st��� , wesimplyconsiderall objects! of class�

, andcountthenumberof timesthateachcombination
��
.�

that ! � s andits parentsjointly take. Thesecountsareknown
assufficientstatistics. See[Friedmanetal., 1999] for details.

The caseof incompletedata is substantiallymore com-
plex. In this case,the likelihood function hasmultiple lo-
cal maxima, and no generalmethodexists for finding the
global maximum. The ExpectationMaximization(EM) al-
gorithm [Dempsteret al., 1977], provides an approachfor
finding a local maximumof the likelihood function. Start-
ing from aninitial guessq��Y�¡  for theparameters,EM iterates
thefollowing two steps.TheE-stepcomputesthedistribution
overtheunobservedvariablesgiventheobserveddataandthe
currentestimateof the parameters.Letting ¢ be the setof
unobservedclustervariables,we compute|��?¢ } � 
 q£�Y¤?¥ �   � ,
from which it cancomputetheexpectedsufficient statistics:

N ¦¨§ ©«ª ��
.�£¬ � ­®3¯*° � ¦  
|��n! � s � �±} Pa�n! � s²� � �³
 � 
 q �´¤?¥ �   �

To computethe posteriordistribution over the hiddenvari-
ables,we mustrun inferenceover themodel.TheM-stepre-
estimatesthe parametersby maximizingthe likelihoodwith
respectto thedistributioncomputedin theE-step.µ ¦¨§ ©¶�· ¸ � N ¦¨§ © ª ��
.�£¬¹ ¶ N ¦¨§ © ª ��
.�£¬
3.2 Belief Propagationfor E step
To performtheE step,we needto computetheposteriordis-
tribution over the unobservedvariablesgivenour data. This
inferenceis over theunrollednetwork definedin Section2.2.
We cannotdecomposethis taskinto separateinferencetasks
over the objectsin the model,asthey areall correlated.(In
somecases,theunrollednetwork mayhaveseveralconnected
componentsthat canbe treatedseparately;however, it will
generallycontainoneor morelargeconnectedcomponents.)

In general,theunrollednetwork canbefairly complex, in-
volving many objectsthat are relatedin variousways. (In
our experiments,the networks involve tensof thousandsof
nodes.) Exact inferenceover thesenetworks is clearly im-
practical,sowe mustresortto approximateinference.There
is awidevarietyof approximationschemesfor Bayesiannet-
works.For variousreasons(someof which aredescribedbe-
low), we choseto usebelief propagation. Belief Propaga-
tion (BP) is a local messagepassingalgorithmintroducedby
Pearl[Pearl,1988]. It is guaranteedto convergeto the cor-
rectmarginalprobabilitiesfor eachnodeonly for singlycon-
nectedBayesiannetworks. However, empiricalresults[Mur-
phy andWeiss,1999] show thatit oftenconvergesin general



networks,andwhenit does,themarginalsareagoodapprox-
imationº to the correctposteriors. (WhenBP doesnot con-
verge, themarginalsfor somenodescanbe very inaccurate.
This happensvery rarelyin our experimentsanddoesnot af-
fect convergenceof EM.)

We provide a brief outline of onevariantof BP, referring
to [Murphy andWeiss,1999] for moredetails. Considera
Bayesiannetwork oversomesetof nodes(which in our case
would be thevariables! � s ). We first convert thegraphinto
a family graph, with a node » � for eachvariable

���
in the

BN, containing
� �

andits parents.Two nodesareconnected
if they have somevariablein common. The CPD of

���
is

associatedwith » � . Let ¼ � representthefactordefinedby the
CPD;i.e., if » � containsthevariables

�u
.� � 

���
��
.�H�
, then ¼ �

is a functionfrom thedomainsof thesevariablesto ª ½ 

¾
¬ . We
alsodefine ¿ � to be a factorover

���
that encompassesour

evidenceabout
���

: ¿ � � ���?�«ÀÁ¾ if
���

is not observed. If we
observe

� � �w! , we have that ¿ � �n! � � ¾ and ½ elsewhere.
Our posteriordistribution is then Â�Ã � ¼ �¨Ä Ã � ¿ � , where Â
is a normalizingconstant.

The belief propagationalgorithmis now very simple. At
eachiteration,all thefamily nodessimultaneouslysendmes-
sageto all others,asfollows:Å � ���n» ��Æ »Ç� ��È Â�­É�Ê ¥ É*Ë ¼

� ¿ � Ì� ¯*Í � �  ?¥ÏÎ �¡Ð
Å �T�

where Â is a (different)normalizingconstantand ÑÒ�n� � is the
setof familiesthat areneighborsof » � in the family graph.
At any point in thealgorithm,ourmarginaldistributionabout
any family » � is Ó � �ÔÂ�¼ � ¿ � Ã � ¯*Í � �   Å �T� . This processis
repeateduntil thebeliefsconverge.

After convergence,the Ó � give us the marginal distribu-
tion overeachof thefamiliesin theunrollednetwork. These
marginalsarepreciselywhatwe needfor thecomputationof
theexpectedsufficientstatistics.

We notethat occasionallyBP doesnot converge; to alle-
viate this problem,we start the EM algorithmfrom several
different startingpoints (initial guesses).As our resultsin
Section5 show, this approachworkswell in practice.

4 Influencepropagationover relations
Amongthestrongmotivationsfor usinga relationalmodelis
its ability to modeldependenciesbetweenrelatedinstances.
As describedin theintroduction,we would like to propagate
information aboutone object to help us reachconclusions
aboutother, relatedobjects. Recently, several papershave
proposeda processalong the lines of this “influence prop-
agation” idea. Neville andJensen[2000] proposean itera-
tive classificationalgorithm which builds a classifierbased
on a fully observedrelationaltrainingset; theclassifieruses
both baseattributesandmore relationalattributes(e.g., the
numberof relatedentitiesof a given type). It thenusesthis
classifieron a testsetwherethebaseattributesareobserved,
but theclassvariablesarenot. Thoseinstancesthatareclas-
sified with high confidencearetemporarilylabeledwith the
predictedclass;theclassificationalgorithmis thenrerun,with
theadditionalinformation.Theprocessrepeatsseveraltimes.
Theclassificationaccuracy is shown to improvesubstantially
astheprocessiterates.

SlatteryandMitchell [2000] proposeanapplicationof this
ideato theproblemof classifyingwebpages,e.g.,asbelong-
ing to a universitystudentor not. They first train a classifier
on a set of labeleddocuments,anduseit to classify docu-
mentsin the testset. To classifymoredocumentsin the test
set, they suggestcombiningthe classificationof the testset
pagesandthe relationalstructureof the testset. As a moti-
vatingexample,they describea scenariowherethereexistsa
pagethatpointsto severalotherpages,someof which were
classifiedasstudenthomepages.Theirapproachtriesto iden-
tify this pageasa studentdirectorypage,andconcludethat
otherpagesto which it pointsarealsomorelikely to bestu-
dentpages.They show thatclassificationaccuracy improves
by exploiting therelationalstructure.

Neither of theseapproachesproposesa single coherent
modelof the dependenciesbetweenrelatedobjectsandthus
combinedifferentclassificationstepsor algorithmswithouta
unifying principle.Ourapproachachievestheinfluenceprop-
agationeffect throughtheprobabilisticinfluencesinducedby
the unrolledBayesiannetwork over the instancesin our do-
main. For example,in theCoradomain,our network models
correlationsbetweenthetopicsof papersthatciteeachother.
Thus,our beliefsaboutthe topic of onepaperwill influence
our beliefsaboutthe topic of its relatedpapers.In general,
probabilisticinfluence“flows” throughactivepathsin theun-
rollednetwork,allowingbeliefsaboutoneclusterto influence
othersto whichit is related(directlyor indirectly). Moreover,
theuseof belief propagationimplementsthis effect directly.
By propagatinga local messagefrom onefamily to another
in the family graphnetwork, the algorithm propagatesour
beliefsaboutonevariableto othervariablesto which it is di-
rectly connected.We demonstratethis propertyin the next
section.

Thisspreadinginfluenceis particularlyusefulin ourframe-
work due to the applicationof the EM algorithm. The EM
algorithmconstructsa sequenceof models,usingtheproba-
bilities derivedfrom thebelief propagationalgorithmto train
a new model. Hence,we not only useour probabilisticin-
ferenceprocessto spreadthe information in the relational
structure,we thenusethe resultsto constructa betterclas-
sifier, which in turn allows us to obtain even betterresults,
etc. Froma differentperspective, we areusingthe structure
in the test setnot only to provide betterclassifications,but
alsoto learna betterclassifier. As we show below, this pro-
cessresultsin substantialimprovementsin accuracy over the
iterationsof EM. Wenotethatthisbootstrappingability arises
verynaturallyin theprobabilisticframework, whereit is also
associatedwith compellingconvergenceguarantees.

5 Experiments
We evaluatedour methodon theCoraandIMDB datasets.

Cora. The structureof the Cora dataset,and the model
we used,areshown in Fig. 1(b,c). For our experiments,we
selecteda subsetof 4187 papersfrom the MachineLearn-
ing category, alongwith 1454of their authors.Thesepapers
areclassifiedinto seven topics: ProbablisticMethods,Neu-
ral networks,ReinforcementLearning,RuleLearning,Case-
Based,andTheory.
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Figure2: (a)Comparisonof classificationaccuracies;(b) Influencepropagationin BP; (c) Accuracy improvementin EM.

We evaluatedthe ability of our algorithmto usethe rela-
tional structureto aid in classification. We took our entire
dataset, andhid the classificationsfor all but a fraction of
the papers.We thenconstructedour modelbasedon all of
this data,including the documentswhosetopicswereunob-
served. The resultingmodel wasusedto classify the topic
for thetestdocuments.In effect,we areperforminga typeof
transduction, wherethetestsetis alsousedto train themodel
(albeitwithout theclasslabels).

To investigatehow our methodbenefitsfrom exploiting
the relational structure,we consideredfour different mod-
els which vary in the amountof relationalinformationthey
use. Thebaselinemodeldoesnot userelationalinformation
at all. It is a standardmultinomialNaive Bayesmodel(NB)
over the setof words (bagof wordsmodel) in the abstract.
The full model (AC) was shown in Fig. 1(b); it makesuse
of both the authorsandcitations. The othertwo modelsare
fragmentsof AC: modelA incorporatesonly theauthorinfor-
mation(eliminatingthecitationrelationfrom themodel),and
modelC only citations. All four modelsweretrainedusing
EM; modelNB was trainedusingexact EM andthe others
usingouralgorithmof Section3. We initializedtheCPDsfor
the word attributesusingthe CPDsin a Naive Bayesmodel
thatwastrainedonly on theobservedportionof thedataset.
All modelswereinitializedwith thesameCPDs.

We variedthe percentageof labeledpapers,rangingfrom
10% to 60%. For eachdifferent percentage,we testedthe
classificationaccuracy over five randomtraining/testsplits.
Theresultsareshown in Fig. 2(a). Eachpoint is theaverage
of theaccuracy onthefiveruns,andtheerrorbarscorrespond
to the standarderror. As can be seen,incorporatingmore
relationaldependenciessignificantly improvesclassification
accuracy. Both A andC outperformthebaselinemodel,and
thecombinedmodelAC achievesby far thehighestaccuracy.

As discussedin Section 4, the local messagepassing
of loopy belief propagation(BP) resemblesthe processof
“spreading”theinfluenceof beliefsfor aparticularinstanceto
its relatedinstances.For example,supposepaper! citessev-
eral labeledpapers.Uponinitialization,we havesomeinitial
belief aboutthe topic of ! from its wordsalone. However,
after the first iteration, this belief will be updatedto reflect
thelabelsof thepapersit cites,andis likely to becomemore
peakedaroundasinglevalue,increasingtheconfidencein ! ’s

topic. In thefollowing iteration,unlabeledpapersthatcite !
(aswell asunlabeledpapersthat ! cites)will be updatedto
reflectthe increasedconfidenceaboutthe topic of ! , andso
on. To measurethis effect, we examinethe belief stateof
thetopicvariableof theunlabeledpapersafterevery iteration
of loopy belief propagation.For every iteration, we report
thefractionof variableswhosetopic canbedeterminedwith
highconfidence,i.e.,whosebelieffor asingletopicis abovea
thresholdof ½ � Õ . Fig. 2(b) showsseveralseriesof thesemea-
surementson a datasetwith 10%labeledpapers.The series
show BP iterationsperformedwithin thefirst, third andsev-
enthiterationof EM. Eachseriesshowsagradualincreaseof
thefractionof paperswhosetopicswe areconfidentin. The
accuracy on thosehigh-confidencepapersis fairly constant
overtheiterations— around0.7,0.735,and0.74for thefirst,
third andseventhiterationof EM, respectively.

Loopy belief propagationis anapproximationto theinfer-
encerequiredfor the E stepof EM. Although loopy BP is
not guaranteedto converge, in our experiments,it generally
convergesto a solutionwhich is goodenoughto allow EM
to make progress. Indeed,Fig. 2(c) shows that the classi-
ficationaccuracy improvesfor every EM iteration. This fig-
urealsodemonstratestheperformanceimprovementobtained
from bootstrappingthe resultsof iterative classification,as
discussedin Section4.

IMDB. Theattributesandrelationsin theIMDB database,
andthelatentvariablemodelweused,areshown in areshown
in Fig. 1(a); theGenre attributeactuallyrefersto a setof 18
binary attributes(action,comedy, . . . ). Note thatactorsand
directorshavealmostnodescriptiveattributesandhencecan-
not beclusteredmeaningfullywithout consideringtheir rela-
tions.Weselectedasubsetof thisdatabasethatcontains1138
movies,2446actors,and734 directors. In Fig. 5, we show
two exampleclustersfor eachclass,listing several highest
confidencemembersof theclusters.

In general,clustersfor movies consistof movies of pre-
dominantlyof a particulargenre,time periodandpopularity.
For example,thefirst movie clustershown canbelabeledas
classicmusicalsandchildren’sfilms. Thesecondclustercor-
respondsroughly to action/adventure/sci-fimovies. In our
model, the clustersfor actorsanddirectorsarerelationalin
nature,sincethey are inducedby the movie attributes. For
example,thefirst clusterof actorsconsistsprimarily of action
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movie actorsandthesecondof actorswho primarily play in
dramas.Similarly for directors,the first clustercorresponds
to directorsof dramasandwhile the secondto directorsof
popularactionandadventurefilms.

6 Discussionand Conclusions
Many real-world domainshave a rich relational structure,
with complex websof interactingentities: the web; papers
andauthors;biomedicaldatasets;andmore. Traditionalma-
chinelearningalgorithmsignorethisrich relationalstructure,
flatteningit into asetof IID attributevectors.Recently, how-
ever, therehasbeengrowing interestin learningmethodsthat
exploit therelationalstructureof thedomain.

In this paper, we provide a generalmethodfor classifica-
tion andclusteringin richly structureddatawith instancesand
relations.Ourapproachhascoherentprobabilisticsemantics,
allowing us to build on powerful tools for probabilisticrea-
soningand learning. Our algorithmusesan effective com-
binationof thesetechniquesto provide linear scalingin the
numberof instances;it canthusbeappliedto very largedo-
mains.

We have shown in a transductiontask that the relational
informationallows us to achieve substantiallybetteraccura-
cies than a standard“flat” classificationscheme. We have
also shown anecdotallythat our algorithm constructsinter-
estingclustersbasedon relationalinformation. Finally, our
approachinducesa compellingbehavior uniqueto relational
settings:Becauseinstancesarenot independent,information
aboutsomeinstancescanbeusedto reachconclusionsabout
others. Our approachis the first to provide a formal frame-
work for this behavior.

Therearemany interestingextensionsto this work. Most
obvious is the problem of model selection. In this paper,
we have usedpredeterminedmodels,both the edgesin the
dependency model and the numberof clustersof eachla-
tent classattribute. Our framework allows us to incorporate
into our modelsa greatdeal of prior knowledgeabout the
semanticsof the underlyingdomains. However, when do-
main expertiseis lacking,automaticmodelconstructionbe-
comescrucial.We canextendour approachusingtechniques
for modelselectionin Bayesiannetworks [Friedman,1998;
CheesemanandStutz,1995], allowing ourlearningalgorithm
to selectthemodelstructurethatbestsuitsthedata.
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