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Abstract—In this paper, a sparse learning algorithm, proba-
bilistic classification vector machines (PCVMs), is proposed. We
analyze relevance vector machines (RVMs) for classification prob-
lems and observe that adopting the same prior for different classes
may lead to unstable solutions. In order to tackle this problem, a
signed and truncated Gaussian prior is adopted over every weight
in PCVMs, where the sign of prior is determined by the class label,
i.e., �1 or 1. The truncated Gaussian prior not only restricts
the sign of weights but also leads to a sparse estimation of weight
vectors, and thus controls the complexity of the model. In PCVMs,
the kernel parameters can be optimized simultaneously within
the training algorithm. The performance of PCVMs is extensively
evaluated on four synthetic data sets and 13 benchmark data sets
using three performance metrics, error rate (ERR), area under the
curve of receiver operating characteristic (AUC), and root mean
squared error (RMSE). We compare PCVMs with soft-margin
support vector machines (SVM����), hard-margin support vector
machines (SVM����), SVM with the kernel parameters optimized
by PCVMs (SVM	
��), relevance vector machines (RVMs),
and some other baseline classifiers. Through five replications of
twofold cross-validation test, i.e., 5 2 cross-validation test,
over single data sets and Friedman test with the corresponding
post-hoc test to compare these algorithms over multiple data sets,
we notice that PCVMs outperform other algorithms, including
SVM����, SVM����, RVM, and SVM	
�� , on most of the
data sets under the three metrics, especially under AUC. Our
results also reveal that the performance of SVM	
�� is slightly
better than SVM����, implying that the parameter optimization
algorithm in PCVMs is better than cross validation in terms of
performance and computational complexity. In this paper, we also
discuss the superiority of PCVMs’ formulation using maximum a
posteriori (MAP) analysis and margin analysis, which explain the
empirical success of PCVMs.

Index Terms—Bayesian classification, machine learning, proba-
bilistic classification model, support vector machine.

I. INTRODUCTION

I
N binary classification, we are given a set of input vec-

tors together with the corresponding class labels

, where . The goal is to infer a function

based on this training set. This can be done by choosing

a learning model which is controlled by some unknown

parameters , and “learning” these parameters from the given

training set. The obtained classifier is evaluated by its general-

ization ability, i.e., how accurately it performs on new data as-

sumed to follow the same distribution as the training data.
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Recently, the model, in which the prediction is ex-

pressed as a linear combination of basis functions , has

attracted much research interest [3], [26]

(1)

where the weight vector is parameter of

the model, is the bias, and

is the basis function vector, wherein is the parameter vector

of the basis function. The learning algorithm is to adjust the

parameters , , and to achieve a good

generalization ability.

Among the range of model (1), support vector machines

(SVMs) [27] are one of the most popular methods. SVMs make

predictions based on the function

(2)

where is the kernel

function and the weight vector is parameter of the model.

Note that the SVM predictor is not defined explicitly in this

form, rather (2) emerges implicitly as a consequence of the use

of the kernel function to define a dot-product in some notional

feature space.

The success of SVMs is attributed to the margin maximiza-

tion theory [27]. The formulation of SVMs maximizes the

margin between different classes, leading to a sparse model

depending on the training points that either lie on the margin or

on the wrong side of it.

Although an SVM performs well for a broad range of prac-

tical applications, and is widely regarded as the state-of-the-art

approach, it suffers from the following disadvantages.

• Nonprobabilistic but hard binary decisions do not provide

the uncertainty for predictions. The probabilistic predic-

tions are particularly crucial in classification problems

when posterior probabilities of class membership are

adapted to varying class priors and asymmetric misclas-

sification costs. The probabilistic predictions are also

important for decision making. Some postprocessing

techniques have been employed to transform the binary

outputs to probabilistic outputs for SVMs. For example,

Platt et al. [21] trained the parameters of an additional

sigmoid function to map the SVMs outputs into proba-

bilities. However, Tipping argued that these estimates are

unreliable [26].

• The number of support vectors grows linearly with the size

of the training set, which increases the computational com-

plexity when the problem becomes large. Some postpro-

cessing techniques are often required to reduce the com-

putational complexity [4] of SVMs.
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Fig. 1. Illustration of decision boundaries of RVM, PCVM, and SVM with
same kernel parameters for Synth data set. The vectors whose weights have
opposite signs are shown circled.

• Several parameters need to be tuned by cross validation.

The parameters, including the error/margin tradeoff pa-

rameter (a large corresponding to assigning a higher

penalty to errors) and the parameters of kernel function,

are crucial for the performance of SVMs. Optimization of

these parameters usually involves grid search by cross val-

idation, whose computation is extremely expensive. Once

the inappropriate range of search grid is adopted, the ob-

tained parameters do not work and we have to respecify the

search range and repeat the process.

In order to address these problems of SVMs, relevance

vector machines (RVMs) have been proposed [26] to produce

probabilistic predictions based on Bayesian techniques. RVMs

introduce a zero-mean Gaussian prior over every weight

and make use of Bayesian automatic relevance determination

(ARD) framework [17], [18] to obtain a sparse solution. As a

result of sparseness-inducing prior, posteriors of many weights

are sharply distributed around zero, hence these weights are

pruned and the model becomes sparse.

However, RVMs [26] adopt the zero-mean Gaussian prior

over weights for both positive and negative classes in classifi-

cation problems, hence some training points that belong to pos-

itive class may have negative weights and vice versa.

This formulation might result in the situation that the decision of

RVMs is based on some untrustful vectors, and thus is sensitive

to the kernel parameter. Figs. 1 and 2 illustrate this phenomenon

in RVMs.

Fig. 2. Illustration of decision boundaries of RVM, PCVM, and SVM with
same kernel parameters for Banana data set. The vectors whose weights have
opposite signs are shown circled.

The source code of RVM is directly downloaded from Tip-

ping’s website.1 We utilize Ripley’s Synth data set2 and Rätsch’s

Banana data set3 in Figs. 1 and 2. The Synth data were generated

from mixtures of two Gaussians by Ripley [24], with the classes

overlapping to the extent that the Bayesian error is around 8%.

Banana is generated by Rätsch [23] with more complicated deci-

sion boundaries. In Rätsch’s implementation, there are 100 folds

in the Banana data set and Fig. 2 is based on the first fold. In both

figures, the Gaussian radial basis function (RBF) has been used

for SVMs and RVMs.

According to these figures, RVMs often utilize the vectors

with opposite signs even with well-selected kernel parameters.

Assume that “ ” stands for positive class and “ ” stands for

negative class. In the first subfigure of Fig. 1, RVMs assign a

negative weight to a positive vector that is in the heart of a pos-

itive area. Intuitively, it is unstable to trust this negative weight

on the positive vector. When the kernel parameter is changed a

little, in Fig. 1 from 0.5 to 0.3, RVMs utilize much more redun-

dant vectors (243 out of 250, where almost half are with opposite

weights) than SVMs and thus overfit the noise. The results are

similar in Fig. 2.

Compared with RVMs, PCVMs and SVMs are more robust

with respect to kernel parameters. PCVMs and SVMs always

assign positive/negative vectors with positive/negative weights.

1http://www.miketipping.com/

2http://www.stats.ox.ac.uk/pub/PRNN/

3http://ida.first.fraunhofer.de/projects/bench/benchmarks.htm
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This principle is implemented in SVMs by enforcing the La-

grange multipliers to be nonnegative. In (2), the weight vector

is defined as , where ’s are nonneg-

ative Lagrange multipliers and are the class labels.

It means that must have the same sign (some are zero)

as the corresponding .

However, as a probabilistic classification model, RVMs do

not follow this principle and adopt a zero mean Gaussian for

both classes, which facilitates the integral computation but re-

sults in suboptimal results.

In order to address this problem of RVMs and propose an

appropriate probabilistic model for classification problems, this

paper proposes a probabilistic algorithm, probabilistic classifi-

cation vector machines (PCVMs), which introduces different

priors over weights for training points belonging to different

classes, i.e., the nonnegative, left-truncated Gaussian for the

positive class and the nonpositive, right-truncated

Gaussian for the negative class . PCVMs also imple-

ment a parameter optimization procedure for kernel parameters

in the training algorithm, which is proven to be effective in prac-

tice. As the integral is intractable in probabilistic inference with

the truncated Gaussian prior, a closed-form expectation–maxi-

mization (EM) is used to get a maximum a posteriori (MAP)

estimation of parameters.

Our approach not only addresses the issues concerned with

SVMs, but also provides the following advantages. (1) Being

a probabilistic model, the approach produces the probabilistic

outputs for new test points. (2) The procedure for optimizing

kernel parameters in the EM algorithm is effective and avoids

the computationally expensive grid search by cross validation.

(3) Because of the sparseness-inducing prior, the model gen-

erates adequate sparseness in the estimation of weight vector.

The sparseness controls the complexity and reduces the compu-

tational complexity in the test stage.

The rest of this paper is organized as follows. Section II pro-

poses the probabilistic classification vector machine algorithm,

followed by experimental results and analysis in Section III.

Section IV discusses the formulation of PCVMs by MAP anal-

ysis and margin analysis. Finally, Section V concludes the paper

and presents some future work.

II. PROBABILISTIC CLASSIFICATION VECTOR MACHINE

In this section, we will present the model specification for

classification problems in Section II-A, then the prior over

weight vectors will be discussed in Section II-B. Section II-C

presents the detailed EM procedures for probabilistic classifi-

cation vector machines.

A. Model Specification

Consider two-class classification and a data set of

input–target training pairs , where .

In order to map linear outputs to binary outputs, a link func-

tion should be chosen to allow a steep and smooth transition

between two classes. This paper uses the probit link function

Fig. 3. Truncated Gaussian prior over weight vector �. (a) When � � ��,
��� �� � is a nonpositive, right-truncated Gaussian prior. (b) When � � ��,
��� �� � is a nonnegative, left-truncated Gaussian prior.

where is the Gaussian cumulative distribution function.

We use the probit link function because the probit link can be

obtained from a simple latent variable model by the EM algo-

rithm [19]. After incorporating the probit link function with the

kernel method, the model becomes

(3)

B. Prior Over Weights

As discussed in Sections I, a truncated Gaussian prior is in-

troduced for each weight and a zero-mean Gaussian prior is

adopted for the bias

where is the inverse variance of normal distribution,

is a truncated Gaussian function, and is

the inverse variance. When , the truncated prior is a

nonnegative, left-truncated Gaussian, and when , the

prior is a nonpositive, right-truncated Gaussian. This can be

formalized in (4) and illustrated in Fig. 3

if

if .
(4)

In part A of the Appendix, we also discuss the model with hi-

erarchical hyperpriors over and and present the probability

by incorporating the hyperpriors over and .

C. EM Algorithm

This section details the derivation of the EM algorithm. An

EM algorithm [7] is a general algorithm for MAP estimation

where the data are incomplete or the likelihood/prior function

involves latent variables. EM iteratively alternates between per-

forming an expectation (E) step and a maximization (M) step.

In practice, derivation of equations in E and M steps needs to
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be performed for different problems. In the following, we detail

the model specification and the EM steps.

We follow the standard probabilistic formulation and assume

that is corrupted by an additive random noise ,

where . According to the probit link model, if

, , and if

, . We can obtain the probit mode

as follows:

(5)

is a latent variable because is an unobservable

variable. If the value of were known, the likeli-

hood of could be given by the standard probabilistic

formulation: .

Consider the matrix ,

where and vector

, then we obtain

where is the -dimension all-1 vector.

In order to obtain the complete log-posterior of

and , and are also regarded as latent variables.

Therefore, the latent variables in our formulation are:

, ,

and the scalar .

The log-posterior is given as follows:

(6)

where is a diagonal matrix .

1) Expectation Step: After obtaining the log-posterior, the

expectation step, noted as a function, can be obtained by the

following formula (refer to part B of the Appendix for detail):

(7)

where ,

, and .

2) Maximization Step: In the maximization step, the partial

derivatives with respect to , , and each can be given by

analyzing the derivative of (7)

(8)

(9)

(10)

where represents elementwise Hadamard matrix

multiplication.

In general, the joint maximization of with respect to , ,

and cannot be performed analytically. However, we can ana-

lytically obtain the optimal and by solving and

, and then plug and into . Maximiza-

tion with respect to can be handled by any standard methods.

This paper uses a simple conjugate gradient algorithm to obtain

the optimal values of .

By setting and , the update rules of

and can be analytically obtained

(11)

(12)

The pseudocode of PCVM can be summarized by

Algorithm 1.

Algorithm 1: Probabilistic Classification Vector Machines

1: Input: is the training set;

is the kernel type; is the kernel parameter; is

the maximal iteration; is the initialization

vector; and is the threshold value to determine

whether the algorithm converges.

2: Output: The weight vector , bias , and the updated

kernel parameter .

3: ;

4: ;

5: for to do

6: ;

7: ;

8: ;

9: ,

;

10: ;

11: if then

12: break;

13: else

14: continue;

15: end if

16: end for

Algorithm 1 includes the following major steps.

1) Initialize the weight vector with an initialization vector

and generate an indicator vector to indicate

which elements are nonzero in (lines 3 and 4).

2) Compute the kernel matrix (line 6).

3) Update the weight vector according to (11) (line 7).

4) Update the bias according to (12) (line 8).

5) Update the kernel parameter according to (10) (line 9).

6) Update the indicator vector (line 10).

7) Compare the new and old weight vectors and to

see whether the algorithm converges. If so, terminate the

algorithm. Otherwise, jump to step (b) and continue the

loop (lines 11–15).
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In the above algorithm, to avoid numerical singularity, we use

an indicator vector to indicate which elements of the weight

vector are to be set to zero4 and prune the corresponding

columns of . As explained by Tipping [26, App. B.1, p. 235],

even though in theory the matrix is positive defi-

nite, it may become numerically singular when some of the di-

agonal elements in matrix tend towards large values. In this

case, we thus prune the corresponding basis function from the

model at that point (i.e., by deleting the appropriate column from

) to avoid ill-conditioning. Such a procedure of pruning basis

functions has also been adopted, e.g., in [12]. More details can

be found in part C of the Appendix.

Part C of the Appendix presents some minor modifications to

and for a stable numerical computation in practice.

III. EXPERIMENTAL STUDIES

First, we present experimental results of PCVMs, SVMs, and

RVMs on four synthetic data sets in order to understand the

behaviors of these algorithms. Second, we carry out extensive

experiments on 13 benchmark data sets using three performance

metrics: the error rate (ERR), the area under the curve of receiver

operating characteristic (AUC), and the root mean squared error

(RMSE). Finally, we present detailed statistical tests including

five replications of twofold cross-validation test, i.e., 5 2

cv test [1], over the single data set and Friedman test [14]

with the corresponding post-hoc tests over multiple data sets for

multiple classifiers.

A. Synthetic Data Sets

In the first experiment, we compare PCVMs, soft-margin

SVMs [3], and RVMs [26] on four synthetic data sets. In order

to facilitate further reference, each data set will be named

according to its characteristics. Spiral can only be separated by

highly nonlinear decision boundaries. Overlap comes from two

Gaussian distributions with equal covariance, and is expected

to be separated by a linear plane. Bumpy comes from two equal

Gaussians but being rotated by 90 , and quadratic boundaries

are required. Relevance represents a case where only one

dimension of the data is relevant to separating the data.

This experiment employs a Gaussian RBF kernel as the basis

function

(13)

where is the width of a Gaussian kernel.

The parameters of SVMs including the regularization param-

eter and the kernel parameter are selected by grid search

with tenfold cross validation.5 The kernel parameter of RVMs

is selected by tenfold cross validation.

Although PCVMs could optimize the kernel parameter by

maximizing the expectation, the EM algorithm is sensitive to

4The elements � of� whose corresponding values of � become large.

5The ranges of cross-validation search for SVM are � � ��� �� � � � � ����
and � � ����� ���� � � � � ��� (the data has been normalized to unit standard
deviation) in both synthetic data sets and benchmark data sets. The same search
range � � ��������� � � � � ��� has been used for RVM in both synthetic data
sets and benchmark data sets.

Fig. 4. Comparison of classification of synthetic data sets using an RBF kernel.
Two classes are shown as pluses and circles. The separating lines are obtained
by projecting test data over a grid. Dark, dashed, and dotted–dashed lines are
obtained by PCVMs, RVMs, and SVMs, respectively. Kernel and regulariza-
tion parameters for SVMs and RVMs are obtained by tenfold cross validation,
whereas the parameters of PCVMs are obtained by an EM algorithm. (a) Spiral.
(b) Overlap. (c) Bumpy. (d) Relevance.

the initialization point and might get stuck in local maxima. In

order to avoid the local maxima, we choose different initializa-

tion points to run multiple times and choose the best one using

cross validation. This model selection procedure is carried out

by training each data set with five different initial values of .

From the resulting solutions (five per data set), we select the ini-

tialization point that produces minimal test errors.

In Fig. 4, we present the decision boundaries of three algo-

rithms. We can observe a similar performance of PCVMs and

SVMs in the case of Spiral. RVMs cannot obtain the correct de-

cision boundary due to the highly nonlinear data set. The failure

indicates that the prior of RVMs produces excessive sparseness

in the outer part of data, leading the boundary biasing towards

outer circle and hence producing errors. PCVMs perform well

because they generate adequate sparseness in both inner and

outer circles from the truncated prior.

It is encouraging to observe that PCVMs give more accurate

results in the rest of the cases. PCVMs produce almost linear

decision boundary in Overlap and RVMs give analogously

curving decision boundary, whereas SVMs overfit.6 In Bumpy,

PCVMs and RVMs give similar quadratic solutions, with

PCVMs having the smoothest boundary and SVMs having the

localized boundary. Finally, all the algorithms provide accu-

rate results for Relevance, with PCVMs giving the smoothest

solution.

The results of PCVMs are promising on these four synthetic

data sets. PCVMs not only handle the data sets with a pre-

dominating linear or quadratic decision boundary, e.g., Overlap

6With a large radius parameter, SVM can generate a linear boundary. How-
ever, due to the small data size, tenfold cross validation selects a smaller radius
with smaller CV error.
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and Bumpy, but also being applied to the highly nonlinear data

sets, e.g., Spiral and the data sets with redundant features, e.g.,

Relevance.

B. Benchmark Data Sets

In order to evaluate the performance of PCVMs further, we

compare different algorithms on 13 well-known benchmark

problems. These algorithms are soft-margin SVMs (SVM )

[3], hard-margin SVMs (SVM ) [3], SVMs whose kernel

parameters are optimized by PCVMs (SVM ), relevance

vector machines (RVMs) [26], and PCVMs. We report the

algorithm SVM since it provides the opportunity to test

whether the kernel parameter, optimized by PCVMs, works for

SVMs as well. This methodology to optimize the parameters

of these models will be presented below.

In order to compare with some baseline methods, we also

examine the performance of linear/quadratic discriminant anal-

ysis (LDA/QDA), one-nearest neighbor (1NN) and -nearest

neighbor ( NN), where the number of nearest neighbors is

selected by the parameter selection methodology (where is

selected from ).

This paper uses the data sets, which have been preprocessed

and organized by Rätsch et al.7 to do binary classification tests.

These data sets include one synthetic set (Banana) along with

12 other real-world data sets from the University of California

at Irvine (UCI) [20] and DELVE.8 The characteristics of the data

set are summarized in Table II.

The main difference between the original and Rätsch’s data

is that Rätsch converted every problem into binary classes

and randomly partitioned every data set into 100 training and

testing instances (Splice and Image have only 20 splits in the

Rätsch’s implementation and we generate additional 80 splits

by random sampling to make our experiments consistent). In

addition, every instance was input-normalized dimensionwise

to have zero mean and unit standard deviation.

The ERR, the AUC, and the RMSE represent three most

often used metrics, which represent threshold metric, proba-

bility metric, and rank metric, respectively [5]. In our paper, we

will use the three performance metrics for binary classification

problems.

The procedure of parameter optimization follows Rätsch’s

methodology [23], which trains the algorithm with each can-

didate parameter on the first five training partitions of a given

data set and selects the model parameters to be the median over

those five estimates.

In the case of SVM , we train soft-margin SVMs with a

parametrical grid with different combinations of the kernel pa-

rameter and the regularization parameter , on the first five

realizations of the training data and then select the median of

the resulting parameters.

The same methodology is applied to SVM , SVM ,

RVMs, and NN. The only difference among them is that they

need to optimize different parameters. For SVM and RVMs,

we need to optimize the kernel width parameter . SVM

adopts the optimized kernel parameter by PCVMs and so it only

7http://www.ida.first.fraunhofer.de/projects/bench/benchmarks.htm

8http://www.cs.toronto.edu/~delve/data/datasets.html

needs to optimize . For NN, the number of nearest neighbors

is selected by this methodology as well.

The PCVM has only one parameter , which can be automat-

ically optimized in the training process. However, as we know,

the EM algorithm is prone to converge to local maxima. The

usual approach to avoid the local maxima is to run the EM al-

gorithm multiple times from different initialization points and

choose the best one based on cross-validation error rate.

To select the best initialization point of PCVMs, we try to

follow the same procedure. We train a PCVMs model with dif-

ferent initializations (eight initializations9 in this paper) over the

first five training folds of each data set. Hence, we obtain an

array of parameters of dimensions 8 5 where the rows are the

initializations and the columns are the folds. For each column,

we select the results that give the smallest test error, so that the

array reduces from 40 to only five elements. Then, we select the

median over those parameters.

Table I reports the performance of these algorithms on the 13

benchmark data sets with ERR, AUC, and 1-RMSE. According

to that table, the PCVM performs very well in terms of three

different metrics. For example, under the ERR metric, it is ob-

served that the PCVM outperforms all other methods in six out

of 13 data sets, comes second in three cases, and third in the

remaining four. The PCVM performs extremely well under the

AUC metric, with the first place in ten cases and the second

in the remaining three. Even when the PCVM fails under other

metrics on one of the data sets, e.g., Cancer or Titanic, it can

still win under the AUC metric. Although the RVM uses the

Bayesian ARD framework, it seems that adopting the same prior

for different classes leads to suboptimal results.

The experimental results for the three variants of SVMs are

also enlightening.

The soft-margin SVM is consistently better than the

hard-margin SVM under the ERR and AUC metrics. Under

the RMSE metric, the hard-margin SVM is slightly better than

(or almost as good as) the soft-margin SVM on two data sets:

Image and Thyroid.

In most cases, the SVM is worse than or comparable to

the corresponding PCVM; it achieves similar or better perfor-

mance than the soft-margin SVM. This indicates that the opti-

mized kernel parameter by the PCVM works well for the SVM.

Our results indicate that the PCVM procedure performs better

than cross validation, even when it comes to fitting the SVM

kernel parameters.

The baseline algorithms, 1NN, NN, and LDA/QDA, only

perform well on one or two data sets. In all other cases, they fail

to compete with PCVM and SVMs, especially under the AUC

metric.

Another interesting point is that the PCVM achieves better

performance by employing only a few of the data points, which

is illustrated in Table III.

According to Table III, the number of support vectors for

SVM grows almost linearly with the number of training points,

while the RVM consistently uses much fewer data points. The

9The RVM and SVM solutions are supplied as two initialization, in which
the zero weights and reverse signed weights in RVM are replaced with small
random values to avoid being pruned in the first learning step. The other six
initializations are performed randomly.
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TABLE I
COMPARISON OF 1NN, �NN, LDA, QDA, SVM , SVM , SVM , RVM, AND PCVM ON 13 BENCHMARK DATA SETS, BY PERCENT ERROR, AUC,

(1-RMSE), AND (STANDARD DEVIATION). THESE RESULTS ARE THE AVERAGE OF 100 RUNS ON THE DATA SETS

TABLE II
SUMMARY OF 13 BENCHMARK DATA SETS

PCVM employs more vectors than the RVM but much fewer

than SVM. This observation goes in accordance with the for-

mulation. In the RVM, the weights could reach zero from both

sides because of the symmetrical zero-mean Gaussian, whereas

the weights in PCVMs could only converge to zero from one

side because of the truncated Gaussian prior. It is worth noting

that the PCVM has better performance than the RVM according

to Table I.

C. Statistical Comparisons on Single Data Sets

In order to compare the PCVM with other algorithms in

a sound statistical context, we perform the statistical test for

paired classifiers, e.g., PCVM versus SVM and PCVM

versus RVM, on each single data set. We will carry out statis-

tical tests on these three metrics and provide the win–loss–tie

summary for these metrics. The threshold of the statistical tests

is set to be 0.05.

Although test has been used in most of the literatures to

conduct statistical tests, it has been criticized for its type I/II

error and low power for a long time [9]. Dietterich [9] analyzes

five statistical tests and proposes a new test, five replications of

twofold cross-validation test, i.e., 5 2 cv test, which has a

low type I error and a reasonable power [9].

However, 5 2 cv test takes the statistics from only one

fold as the numerator and may vary depending on factors that

should not affect the test. Alpaydin [1] improved 5 2 cv test

by combining multiple statistics to get a more robust test, 5 2

cv test, which has a lower type I error and a higher power. In

this paper, we compare algorithms using 5 2 cv test [1].

In the 5 2 cv test, five replications of twofold cross-val-

idation have been conducted. In each replication, the data set is

divided into two equal-sized sets. is the difference between

the error rates of the two classifiers on fold of replica-

tion . The average on replication is

, and the estimated variance is

.

The 5 2 cv test combines the results of the ten statistics

as the numerator, which makes the test more robust. Al-

paydin [1] pointed out that the following statistics:

(14)

is approximately distributed with ten and five degrees of

freedom, , and used this statistics to conduct the 5 2

cv test.

Table IV gives the win–loss–tie summary of the 5 2 cv

test based on 13 benchmark data sets. The significance tests

show that SVM is close to the PCVM under the RMSE

metric; and SVM wins three times and loses four times.

This situation occurs for SVM as well. SVM wins three

times and loses five times under RMSE.

However, under the other two metrics, the differences be-

tween SVM SVM and the PCVM are greater. 1)
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TABLE III
COMPARISON OF SVM , SVM , SVM , RVM, AND PCVM ON 13 BENCHMARK DATA SETS, BY NUMBER OF VECTORS AND STANDARD DEVIATION.

THESE RESULTS ARE THE AVERAGE OF 100 RUNS ON THE DATA SETS

TABLE IV
5� 2 cv � TEST FOR 13 DATA SETS. FOR EACH METRIC, THE FIRST LINE IS THE WIN–LOSS–TIE SUMMARY OF THE ALGORITHM AGAINST THE PCVM BASED ON

THE MEAN VALUE. THE SECOND ROW GIVES THE STATISTICAL SIGNIFICANCE WIN–LOSS–TIE SUMMARY BASED ON 13 BENCHMARK DATA SETS

SVM wins two times and loses seven times under ERR

and never wins under AUC. 2) SVM wins once and loses

eight times under ERR and never wins under AUC. The RVM

does not seem to perform well under the ERR metric since it

never wins. Under other metrics, RVM seems to be comparable

to the SVM .

The performance of SVM is not competitive against the

PCVM. It only wins twice under the RMSE metric. The exper-

imental results also reveal that these baseline algorithms under-

perform significantly against other algorithms.

This section has presented the statistical tests over single data

sets. The next section will present the statistical comparisons

over multiple data sets and analyze the reasons why the PCVM

performs better than other algorithms.

D. Statistical Comparisons Over Multiple Data Sets

In the previous section, we have conducted the statistical tests

on single data sets. It is difficult to statistically compare these

algorithms based on multiple data sets, since the differences

among these classifiers are significant for some data sets but not

for other data sets.

In general, counting the number of times an algorithm per-

forms better, worse, or equal to the others is a common ap-

proach. Some authors prefer to count only significant wins and

losses, where the significance is determined using a statistical

test on each data set, for example, Dietterich’s 5 2 cv test

[9]. However, this statement is not reliable since it puts an arbi-

trary threshold of 0.05 or 0.10 on what counts and what does not

for each data set. This can be shown by a simple scenario [8].

Suppose that we compare two algorithms on 1000 dif-

ferent data sets. In each and every case, algorithm A is

better than algorithm B, but the difference is never signifi-

cant. It is true that for each single case, the difference be-

tween the two algorithms can be attributed to a random

chance, but how likely is it that one algorithm is just lucky

in all 1000 out of 1000 independent experiments?

Statistical tests on multiple data sets for multiple algorithms

are preferred for comparing different algorithms over multiple

data sets. In order to conduct statistical tests over multiple data

sets, we perform the Friedman test [13], [14] with the corre-

sponding post-hoc tests. The Friedman test is a nonparametric

equivalence of the repeated-measures analysis of variance

(ANOVA) under the null hypothesis that all the algorithms are

equivalent and so their ranks should be equal. This paper uses an

improved Friedman test proposed by Iman and Davenport [15].

The Friedman test is carried out to test whether all the algo-

rithms are equivalent. If the test result rejecting the null hypoth-

esis, i.e., these algorithms are equivalent, we can proceed to a

post-hoc test. The power of the post-hoc test is much greater

when all classifiers are compared with a control classifier and

not among themselves. We do not need to make pairwise com-

parisons when we in fact only test whether a newly proposed

method is better than the existing ones.

Based on this point, we would like to choose the PCVM as

the control classifier to be compared with. Since the baseline

classification algorithms are not comparable to SVMs, RVMs,

and PCVMs, this section will analyze only four algorithms:

SVM , SVM , SVM , and RVMs against the control

classifier PCVM.

The Bonferroni–Dunn test [10] is used as post-hoc tests when

all classifiers are compared to the control classifier. The per-

formance of pairwise classifiers is significantly different if the
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TABLE V
THE MEAN RANK OF THESE ALGORITHMS UNDER THE THREE METRICS: ERR, AUC, AND RMSE

TABLE VI
FRIEDMAN TESTS WITH THE CORRESPONDING POST-HOC TESTS, BONFERRONI–DUNN, TO COMPARE CLASSIFIERS FOR MULTIPLE DATA SETS. THE THRESHOLD IS

����, AND � � �����

corresponding average ranks10 differ by at least the critical dif-

ference

(15)

where is the number of algorithms, is the number of data

sets, and critical values can be found in [8]. For example,

when , , where the subscript is the

threshold value.

Table V lists the mean rank of these algorithms under the three

metrics: ERR, AUC, and 1-RMSE. Table VI gives the Friedman

test results. Since we employ the same threshold for all

three metrics, the critical difference , where

and , is the same for these metrics. Several observations

can be made from our results.

First, under the ERR metric, the differences between PCVM

versus SVM and PCVM versus RVM are greater than the

critical difference, so the differences are significant, which

means the PCVM is significantly better than SVM and

RVM in this case. The difference between PCVM and SVM

is just below the critical difference, which seems to suggest

that SVM is likely to be different from PCVM. We could

not detect any significant difference between SVM and

PCVM. The correct statistical statement would be that the

experimental data are not sufficient to reach any conclusion

regarding the difference between PCVM and SVM .

Second, the PCVM significantly outperforms all other algo-

rithms under the AUC metric. Since AUC metric requires rel-

ative accurate scores to discriminate positive and negative in-

stances [11], PCVMs succeed by generating the probabilistic

outputs. Another reason is that AUC is insensitive to the class

skew/distribution [11] and some data sets used in this paper are

imbalanced. In this way, PCVMs perform well on these skewed

data sets by considering different priors for different classes and

thus have better scores under the AUC metric.

Third, under the RMSE metric, only the differences between

PCVM and SVM /RVM are significant. Since the differ-

10We rank these algorithms based on the metric on each data set and record
the ranking of each algorithm as 1, 2, and so on. Average ranks are assigned in
case of ties. The average rank of one algorithm is obtained by averaging over
all of data sets. Refer to Table V for the mean rank of these algorithms under
different metrics.

ences between PCVM and SVM SVM are smaller

than the critical difference, we cannot draw any conclusion

about the difference between PCVM versus SVM and

PCVM versus SVM under the RMSE metric in our

experimental settings.

There are three major reasons why the PCVM performs better

than others.

1) PCVM generates adequate robustness and sparseness be-

cause of the truncated Gaussian priors. These priors control

the model complexity by including appropriate sparseness,

and thus improve the model generalization.

2) As AUC prefers probabilistic outputs than hard decisions

and it is insensitive to class skewness, the PCVM pro-

vides probabilistic outputs to assess the uncertainty for the

predictions and performs well on these skewed data sets,

which explains why the PCVM is so good under the AUC

metric. Although the RVM also provides probabilistic out-

puts, it adopts an improper prior over weights and thus

leads to inferior results.

3) The PCVM incorporates an efficient parameter optimiza-

tion procedure based on probabilistic inference and the

EM algorithm. This procedure not only saves the effort

to do cross-validation grid search but also improves the

performance.

E. Algorithm Complexity

Both classical SVMs algorithms and PCVMs have a time

complexity of , where is the number of training

points, but the computational complexity of SVMs can be

reduced to approximately for sequential minimal

optimization (SMO)-like algorithms [16], which breaks the

large quadratic programming (QP) problem into a series of

smallest possible QP problems.

In PCVMs, the update rules of and involve inversion of

a matrix. The Cholesky decomposition is used in the practical

implementation of the inversion to avoid numerical instability,

which has the computational complexity and memory

storage , where is the number of nonzero basis func-

tions and .

This computational complexity leads to longer training times

and larger memory usage. However, because of the sparseness-

inducing prior and quick convergence of the EM algorithm,
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TABLE VII
RUNNING TIME OF THE PCVM, SVM , RVM, LDA, QDA, 1NN, AND �NN ON 13 DATA SETS IN SECONDS. RESULTS ARE AVERAGED OVER 100 RUNS

TABLE VIII
THE MEAN RANK OF COMPUTATIONAL TIME

PCVMs prune the basis functions rapidly from at ini-

tialization to a small size for most problems. Also, this disad-

vantage of PCVMs is offset by the lack of need to perform cross

validation over parameters, such as and kernel parameter in

SVMs.

Table VII shows the average running time of PCVMs,

SVM ,11 RVMs, LDA, QDA, 1NN, NN on 13 data sets

in seconds. Results are averaged over 100 runs. Note that

in Table VII, we do not record the cross-validation time for

SVM and RMVs, but the running time of NN includes the

time to perform tenfold cross validation .

We rank these algorithms based on the computational time on

each data set and record the ranking of each algorithm as 1, 2,

and so on. Note that average ranks are assigned in case of ties.

The average rank of one algorithm is obtained by averaging

over all of data sets. Refer to Table VIII for the mean rank of

these algorithms. The computational environment is Windows

XP with Intel Core 2 Duo 1.66G CPU and 2-GB RAM. A

MATLAB support vector machine toolbox [6] has been used to

implement an SVM, in which SMO algorithm is implemented

by C++ MEX files. This is the reason why SVM always runs

faster than RVM and PCVM. The source code of RVM is

obtained from Tipping’s website.12 PCVM is implemented in

MATLAB.

IV. SOME THEORETICAL DISCUSSIONS ON PCVMS

According to the experimental results, PCVMs outperform

RVMs and SVMs on most of the data sets. Section I presented

some intuitive explanations for using truncated Gaussian prior

in PCVMs. This section will discuss the reasons why PCVMs

are better in our experiments using MAP analysis and margin

analysis.

A. MAP Analysis

In Bayesian inference, the posterior of and is obtained

by maximizing the product of likelihood and prior

, where is the parameter of the prior and

is the parameter of the prior . Since two kinds of likelihoods,

11Since the running time of SVM and SVM is similar to that of
SVM , we only record the running time of SVM .

12http://www.miketipping.com/

Bernoulli likelihood and Gaussian likelihood, are often used in

classification settings, we analyze these two cases, respectively.

1) Bernoulli Likelihood: Bernoulli likelihood is defined as

follows:

where , is the target probability,

, and is obtained by .

We make the common choice of a zero-mean Gaussian prior

distribution over and

(16)

where is a diagonal matrix and and

, are inverse variance of the Gaussian distribution.

As the posterior and are proportional to the product of

likelihood and prior , the MAP solution

is equivalent to maximizing the following function:

(17)

Taking the negative logarithm of (17), the maximum poste-

rior is obtained as the solution to the following minimization

problem:

The optimal solution of can be obtained as follows:

(18)

2) Gaussian Likelihood: The Gaussian likelihood is obtained

as
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where is the inverse variance of , .

We take the same Gaussian prior (16) as in the previous case.

The maximization of posterior is equivalent to minimizing the

following optimization problem:

where , , and the optimization problem only

depends on these ratios and . The optimal

can be obtained as follows:

(19)
All of the link functions, including sigmoid link or probit link,

are monotonically increasing functions, and thus the slope is

positive, meaning the function . According to

(18) and (19), , , and are all nonnegative.

If we have a sparse model and a localized basis function

(such as Gaussian used in this paper), then the expression for

will be dominated by the term and the sign of

will follow that of . Since the bound of the link

function and the is mapped from by the

equation , will have the same sign (or zero)

as .

B. Margin Analysis

The superiority of PCVMs’ formulation can be analyzed by

the concept of margin. Margin is first used by SVMs to en-

large the distance between the positive and negative classes.

Then, Breiman [2] defined the margin for single points and used

margin to analyze boosting algorithms. Other work on margin

includes an explanation of Adaboost as boosting the margin [25]

and construction of the soft-margin Adaboost [23].

In this paper, we follow the most common definition of

margin [23], [25] for an input–output pair by

where and , , and

denotes the number of training patterns. The margin at is

positive if the correct class label of the pattern is predicted. As

the positivity of the margin value increases, the decision stability

becomes larger. Moreover, as , . In

the following, we analyze the Bernoulli likelihood and Gaussian

likelihood, respectively.

1) Bernoulli Likelihood:

a) Gaussian Prior formulation: The optimal solution of

is obtained by (18).

b) PCVM formulation: PCVMs incorporate a truncated

Gaussian prior. Therefore, the maximum posterior is obtained

as the solution to the following minimization problem:

subject to

Therefore, we construct the Lagrange

by introducing Lagrange multipliers . The

optimal weight is obtained by solving the Lagrange problem

(20)

where and .

Based on the definition of margin, the margins for any point

with Gaussian priors and truncated priors are presented as

follows:

where the transformation is to map the

output to the desired range

According to (18) and (20), as all the link functions are mono-

tonically increasing function and the matrix , the dif-

ference between the margins is decided by the term on the

right-hand side of (20). will be satisfied

with a localized basis function (such as Gaussian function) in

a sparse model.

2) Gaussian Likelihood: The maximum of the posterior is

obtained as the solution to the following minimization problem

in PCVMs:

subject to

Therefore, one constructs the Lagrange

by introducing Lagrange multipliers . The

optimal weight vector is obtained by solving the Lagrange

problem
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Following the same analysis as adopted in the previous sec-

tion, PCVMs are better than RVMs in terms of margin with a

localized basis function (such as Gaussian function used in

this paper) in a sparse model.

C. Summary

This section analyzes the formulation of PCVMs using MAP

analysis and margin analysis. Both analysis indicate that dif-

ferent truncated priors for different classes used in PCVMs are

better than Gaussian priors in a sparse model with a localized

basis function. This theoretical observation explains well the

empirical success of PCVMs in this paper and strengthens the

significance of this algorithm.

V. CONCLUSION

In this paper, a probabilistic algorithm, probabilistic classifi-

cation vector machines (PCVMs), has been proposed for classi-

fication problems. The paper analyzes RVMs for classification

problems and observes that adopting the same prior for different

classes may lead to unstable solutions.

In order to tackle this problem, a signed and truncated

Gaussian prior is adopted over every weight, where the sign of

the prior is determined by the class label. Our algorithm benefits

from the prior because it not only introduces the sparsity but also

restricts the sign of every weight, which is suitable for classifica-

tion problems. An efficient procedure for parameter optimization

has been incorporated in the EM algorithm for PCVMs.

We have conducted a comprehensive study of PCVMs on

four synthetic data sets and 13 benchmark problems under three

performance metrics to explore the characteristics of PCVMs,

SVMs, RVMs, and other algorithms. In order to compare these

classifiers, several kinds of statistical tests have been done. The

5 2 cv test [1] is used to compare paired classifiers on

single data sets. To compare classifiers on multiple data sets, the

Friedman test with the corresponding post-hoc test has been used

to statistically compare these classifiers over multiple data sets.

Our results confirm that the PCVM performs very well on

these data sets under all three metrics, especially under AUC.

For the RVM, it appears that adopting the same prior from

regression for classification problems leads to suboptimal

results under ERR, AUC, and RMSE. The difference between

the PCVM and the RVM shows that adopting truncated priors

for different classes is beneficial.

This paper also discusses PCVMs using MAP analysis

and margin analysis. Both analyses indicate that truncated

priors in PCVMs are better than common Gaussian priors in a

sparse model with a localized basis function. This theoretical

finding explains well the empirical success of PCVMs and also

strengthens the significance of this algorithm.

In general, we could conclude that the PCVM is a sparse

learning algorithm that addresses the substantial drawbacks of

SVMs without degrading the generalization performance. The

PCVM provides probabilistic outputs to assess the uncertainty

for the predictions and performs well on the skewed data sets,

which are the reasons why the PCVM is so good under the AUC

metric. The PCVM also incorporates an efficient parameter op-

timization procedure, not only saving the effort to do cross-val-

idation grid search but also improving the performance. The

interesting point here is that the PCVM-optimized parameter

works for SVMs as well, providing an alternative to the usual

parameter selection method for SVMs. The number of basis

functions in PCVMs does not grow linearly with the number

of training points, leading to simpler and easier to understand

models.

The computational complexity of PCVMs is , where

is the number of nonzero basis functions and . Be-

cause of the sparseness-inducing priors and fast converging EM

algorithm, PCVMs prune the basis functions rapidly for most

problems. The computation time of PCVMs is further reduced

by their efficient parameter optimization procedure.

Future work for this study includes a more in-depth study of

methods to tackle the local maxima problem in EM algorithm

and reduction of computational complexity on large data sets.

APPENDIX

A. Further Details of Hierarchical Hyperpriors

To follow the Bayesian framework and encourage the model

sparsity, hierarchical hyperpriors over and will be defined.

In order to facilitate the comparison with the RVM, we use

gamma distribution as the hyperprior. However, the hyperpriors

are not restricted to gamma distribution. For example, the ex-

ponential distribution can also be employed as hyperpriors to

introduce a Laplacian prior [12]

where , , , and are parameters of the Gamma hyperprior

and

where is the gamma function.

With these assumptions in place, the complete prior can be

obtained by marginalizing with respect to each and

if

if

(21)

(22)

According to (21) and (22), the hierarchical prior is equivalent

to a truncated student- prior over and a student- prior over

. This prior is sharply peaked at zero and more peaky than a

Gaussian prior.

Authorized licensed use limited to: UNIVERSITY OF BIRMINGHAM. Downloaded on June 11, 2009 at 05:43 from IEEE Xplore.  Restrictions apply.



CHEN et al.: PROBABILISTIC CLASSIFICATION VECTOR MACHINES 913

In most cases, the parameters and will be set to zero.

In this situation, a prior

if

if

is obtained. The prior looks like the Laplacian prior and leads

to a sparse model.

B. Details of Expectation Step

In the expectation step, we need to calculate the expecta-

tions of log-posterior (6) with respect to the latent variables. Ac-

cording to the definition, the expectation step can be obtained by

the following formula:

The computation of reduces to computing

the expectations: , , and

if

if
(23)

where .

Note that the function of in (23) is to restrict the integral

bound: when , is a left-trun-

cated Gaussian from zero to infinity with mean

and when , is a right-truncated

Gaussian from negative infinity to zero with mean .

Since is a diagonal matrix, , the

expectation can be proceeded as a diagonal

matrix

(24)

and

(25)

Usually, we set .

Based on (23)–(25), the function is rewritten as follows:

(26)

where is a vector of : .

C. Further Details of Maximization Step

In the maximization step, we present the update rule for

and

(27)

(28)

From (24) and (25), the evaluation of and needs to

specify the parameters and that are associated with hy-

perpriors. The model benefits from such hyperpriors by setting

since they are scale-invariant and such

uniform hyperpriors have been shown to encourage model spar-

sity in [26]. This setting also facilitates comparison between the

PCVM and the RVM since RVM uses the same hyperpriors and

sets .

However, when setting these parameters to zero, the computa-

tion of and is unstable when ’s

approach to zero. In our formulation, the diagonal matrix is

updated in each M step. The elements of are inversely pro-

portional to the square of the corresponding weights :

. Since some of the weights

do eventually become small, it is not convenient to deal with ,

because that would imply handling arbitrarily large numbers.

We adopt a simple trick suggested in [12, Sec. 3.7, p. 1154] in-

volving an auxiliary matrix and

. This transformation avoids the inversion of the

elements of when updating the weight parameters. The same

modification is applied to (28) as well

where is an -dimensional identity matrix, the diagonal

elements in the diagonal matrix are

if

if

and the scalar . These modifications allow for a stable

numerical computation in practice.

Moreover, as suggested by Tipping [26, App. B.1, p. 235],

even though in theory the matrix is positive def-

inite, it may become numerically singular when some diagonal

elements in matrix tends towards very large values (

in our experiments), i.e., some tends to zero. In this ex-

periments, we delete the appropriate column from to avoid ill-

conditioning. A similar procedure of pruning has been adopted

by Figueiredo [12] as well. In this context, is the weight

cutoff value for pruning kernels out of the model. Note that only

kernels with very small associated weights will be pruned out of

the model.

Since Cholesky decomposition is numerically stable [22], to

enhance numerical stability, we follow Tipping [26] and use

Cholesky decomposition instead of direct matrix inversion in

our experiments.
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