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Abstract We present a new collision detection algorithm to perform contact computa-

tions between noisy point cloud data. Our approach takes into account the uncertainty that

arises due to discretization error and noise, and formulates collision checking as a two-class

classification problem. We use techniques from machine learning to compute the collision

probability for each point in the input data and accelerate the computation using stochastic

traversal of bounding volume hierarchies. We highlight the performance of our algorithm

on point clouds captured using PR2 sensors as well as synthetic data sets, and show that

our approach can provide a fast and robust solution for handling uncertainty in contact

computations.

1 Introduction

The problems of collision detection and proximity computation are widely studied in differ-

ent areas, including robotics, physically-based modeling, haptics and virtual environments.

In particular, reliable and fast collision detection algorithms are required for robot motion

planning, grasping and dynamics simulation to enforce the non-penetration constraints with

the environment.

Most of the prior work on collision detection assumes an exact geometric description of

the objects in the scene, typically represented as a polygon mesh. However, these methods

may not work well for robots operating in real-world environments, where only partial ob-

servations of the environment are possible based on robot sensors. For example, inaccurate

motor control makes a robot deviate from its exact configuration and the sensors tend to

add noise to the environment measurements. Current robot sensors including cameras and

LIDAR and new devices such as Kinect can easily generate detailed point cloud data of

real-world environments. However, it is hard to directly use prior collision detection al-

gorithms which perform a boolean query and compute a yes/no answer. Moreover, exact

collision checking may not be suitable in terms of handling uncertainty in perception and

control, which also causes uncertainty in collision results. For many robotics applications,

such as grasping or motion planning, we need to reduce the risk of physical contacts be-

tween the robot and the environment that may result in damages. Hence, we need to develop

methods that tend to minimize the probability of collisions.

Main Results: In this paper, we present a probabilistic collision detection algorithm that

can handle environments with uncertainty. Our approach can handle noisy or inexact point

data representations that are gathered using sensors. In order to handle point cloud data with

noise, we reformulate the collision detection problem as a two-class classification problem,

where points of different objects belong to different classes. The collision probability is
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Fig. 1 A visual representation of the collision information generated by the sensors on the PR2 robot.

(Left) The environment includes the points in a collision map (in light blue), mesh representations for

known objects detected through visual sensing (green cylindrical object on table), and an exact geometric

representation of the table surface (green flat surface). A detailed mesh model for the robot is also seen in

the picture. (Right) A representation of the collision points (shown by red spheres) between the gripper and

the object on the table. We use our probabilistic algorithm for robust collision checking with noisy point

clouds at interactive rates.

directly related to the separability of the corresponding two-class problem, which can be

elegantly and efficiently solved using support vector machines (SVMs). We accelerate the

computation using bounding volume hierarchies and perform a stochastic traversal of the

hierarchies that takes into account noise and uncertainty. These hierarchies are updated for

dynamic scenes or when the robot head or the gripper moves. Our probabilistic collision

algorithm also estimates the contact points and contact normals. We test our algorithm on

point clouds generated from PR2 sensors and synthetic data sets. Our method can provide

robust results for probabilistic collision detection and its runtime performance is similar to

that of hierarchy-based collision detection algorithms for triangle meshes (e.g. 500-1000ms

for 10K points on a single CPU core).

The rest of the paper is organized as follows. We survey related work in Section 2. We

introduce our notation and give an overview of the approach in Section 3. Section 4 shows

how probabilistic collision detection computation is reduced to robust classification and

Section 5 describes the use of bounding volume hierarchies to accelerate the computation.

We highlight the performance of our algorithm on different benchmarks in Section 6.

2 Previous Work

The field of probabilistic robotics provides a mathematical framework to handle the uncer-

tainty that exists in the physical world [29]. It deals with representing uncertainty explicitly

using the calculus of probability distribution and obtain robust control choices relative to

the uncertainty in the robot system. Probabilistic robotics can handle perception uncertainty

(or environment uncertainty) due to sensor and action errors. However, previous approaches

tend to use simple methods to model environment uncertainty, such as feature-based meth-

ods or occupancy grid based methods. These models can only provide a rough description

of the environment while many robot actions (e.g. grasping) require more detailed infor-

mation for robust computation.

2.1 Uncertainty of Point Cloud Data
Raw point cloud data obtained from sensor data can have a high degree of uncertainty,

which results mainly from discretization error and noise. As a result, it is difficult to obtain

robust estimation of high-order features like surface normals. This causes difficulty for

many applications that require precise estimates of normal vectors at the boundary, such as

grasping.
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Many approaches consider uncertainty of point clouds implicitly. For example, [27] [24]

encode surface uncertainty as a parameter tolerance for learning algorithms as they apply

geometric operations (e.g. reconstruction) on the point clouds. However, without an explicit

model of uncertainty, we can only consider a single uncertainty formulation for the overall

surface, but may not be able to model varying uncertainty at different parts of the surface

for local control.

There is recent work on explicitly modeling the uncertainty of point cloud data for dif-

ferent applications. Bae et al. [1] present a closed-form expression for the positional uncer-

tainty of point clouds. Pauly et al. [20] propose two methods, confidence map and likeli-

hood map, to analyze shape uncertainty in point clouds for resampling and reconstruction

applications. Jenke et al. [11] describe a Bayesian model for point cloud uncertainty for

surface reconstruction.

2.2 Collision Detection
Prior collision detection methods mainly focus on performing efficient and accurate contact

computations between objects represented by triangulated primitives [17].

In terms of collision checking with point clouds, there are several simple methods. For

example, we can first reconstruct triangle meshes from point clouds and then perform exact

collision checking between the reconstructed surfaces. However, this approach suffers from

inefficiency (> 10 s for 10K points) and robustness issues that arise in terms of using recon-

struction algorithms (e.g. reconstruction quality, sensitiveness to parameter and noise, etc).

We can also simply expand every point as a sphere with suitable radius and approximate

the object as a union of spheres [10] for collision checking. The main difficulty is in terms

of automatically choosing different sphere radii for different points. Other direct collision

checking methods for point cloud data are based on using bounding volume hierarchies

[13, 26] and reconstructing implicit functions at the leaf nodes, which are prone to robust-

ness issues. Minkowski sums of point clouds have also been used for collision queries [16].

Sucan et al. [28] describe a collision map data structure, which uses axis aligned cubes to

model the point cloud and to perform collisions with a robot. Some applications, including

virtual reality and haptics, need real-time collision checking, and use probabilistic crite-

ria based on minimum distance computation between the point sets [15]. However, these

methods do not take into account point cloud data’s inherent shape uncertainty that arises

from discretization or sampling [20].

There has been relatively little work in terms of handling uncertainty in collision de-

tection. A special type of collision uncertainty is discussed in [7], which projects objects

onto different image planes to perform collision culling using GPU-based computation.

Guibas et al. [8] propose a method to compute the collision probability between 2D objects

composed of line segments in a 2D environment with uncertainty. In order to estimate the

collision uncertainty, this method models the endpoints of a line segment as probability

distributions with a rectangular support region. Missiuro et al. [18] also try to model un-

certainty in probabilistic roadmaps by using the collision probability of a configuration to

bias the sampling process for roadmap computation.

3 Overview

In this section we introduce the notation used in the rest of the paper and give an overview

of our approach.

The main pipeline of our system consists of three steps: 1) Obtain raw data from sensors

and filter the point clouds to remove points on the robot and reduce the shadow effect [28];
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2) Compute the separating surface between two point clouds by estimating the noise from

sensor parameters (Section 4.1-4.3); 3) Estimate the collision probability for each point and

the overall collision probability between two point clouds (Section 4.4). Moreover, we use

bounding volume hierarchies to accelerate the computation and recompute the hierarchies

for dynamic environments (Section 5).

The inputs to our collision detection algorithm are the point clouds. In some cases, we

need to perform the collision query between two different point clouds or between a point

cloud and a polygonal object (e.g. when the mesh representation of a robot hand or gripper

is available). We first present our approach for two different point clouds, and later show

how it can be applied to a point cloud and a polygonal object.

Let the two point clouds be denoted as C1 and C2. We assume that each point cloud

C is obtained from sensors and is a partial and noisy representation of the underlying ex-

act surface S. There are two kinds of errors introduced in the generation of point clouds:

discretization errors and position errors or noise uncertainty. Intuitively, the discretization

error refers to how these point samples are distributed on the boundary of the surface and

the position error measures the imprecision in the coordinates of each point. Formally, we

assume C is generated from S according to the following process: first a series of n sample

points x′i is generated according to some sampling process and we use the symbol p(x′i|S) to

represent the distribution of coordinates for a random point x′i, i.e. it models the discretiza-

tion error. Next, xi is generated from x′i according to some noise distribution p(xi|x′i;Σi),
i.e. it models the position error. Generally p(x′i|S) is not given, but we can estimate it

based on the observed point-cloud data with some assumptions about surface smoothness

and sampling density. The symbol Σi is used to model point cloud’s uncertainty due to

noise, and is typically computed based on the sensor characteristics. For example, Σi may

measure the level of noise that is a combination of sensing noise, motion uncertainty and

deformation error. Then the overall uncertainty of a point xi can be modeled as

xi|S ∼ p(xi|S) =
∫

p(x′i|S)p(xi|x′i;Σi) dx′i. (1)

In this formulation, we have an implicit assumption that the sensor is able to capture the

features of the underlying surface. For example, more sample points x′i are generated near

the sharp features so that we can reconstruct the necessary features of the original model.

The output of the collision detection algorithm is a probability PC1,C2
that estimates

whether two point clouds C1 and C2 are in-collision.

3.1 Separating Surface
Given a point cloud, we can possibly reconstruct a triangulated surface representation using

Bayesian optimization. That is, the underlying surface should be the one with the maximum

probability:

Ŝ = argmax
S

p(S|{xi}n
i=1) = argmax

S

p(S)∏
i

p(xi|S). (2)

Next, we can perform collision checking based on reconstructed models. However, recon-

struction process is only an estimation and the collision computation based reconstruction

can be rather inaccurate. Our formulation is based on the theory of convex sets: two convex

sets are non-intersecting if there exists an oriented separating plane P so that one set is

completely in the positive (open) halfspace P+ and the other completely in the negative

(open) halfspace P− [19]. For non-convex sets, we extend the concept of separating plane

to the separating surface: two sets are non-intersecting (or separable) if and only if there
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(a) (b) (c) (d)

Fig. 2 Separating surface for point cloud sets. Point clouds in (a) and (b) are noise-free and are separable.

However, due to discretization uncertainty, the underlying surfaces can be collision-free (a) or in-collision

(b). Point clouds in (c) and (d) have some noise and may not be separable. And the underlying surfaces

can be collision-free (c) or in-collision (d). Notice that we require suitable regularity or smoothness on the

separating surface to avoid overfitting. For example, the separating surface provided in (c) has too large

curvature and therefore is not valid. It in fact does not provide a good estimation for how to separate the

underlying clouds. Collision result based on reconstructed meshes may not be reliable in all four cases due

to discretization error (a)(b) or position noise (c)(d) or unsuitable parameters.

exists a separating surface P between them. Previous work in collision detection [19, 21] is

limited to the special case when P is composed of multiple planes.

We extend the idea of separating surfaces to handle point clouds. Given two point clouds

C1 = {x1
i }

n1
i=1 and C2 = {x2

i }
n2
i=1 with n1 and n2 elements, respectively, a separating surface

P is a surface that can separate the two sets completely with C1 in P+ and C2 in P−. In this

case, P+ and P− represent a partition of the space R3 into two parts. Notice that here P

should not be an arbitrary surface, i.e. it should not be a very complex function in terms

of acting as a valid separating surface. Otherwise, even if P can completely separate the

point clouds, it may not be able to separate the underlying surfaces. Such a problem is

called overfitting in machine learning literature, i.e. the statistical model biases too much

on the observed data and may not be able to predict the underlying model correctly. In

order to avoid overfitting, we need to assume regularity conditions for P, which intuitively

impose suitable smoothness constraints on the separating surface. For example, we repre-

sent P as a parameterized implicit surface {x : f (x;θ) = 0} with θ as its parameters. In this

case, the regularity condition can limit the value of f ′(x;θ). Moreover, P+ and P− can be

represented as {x : f (x;θ) > 0} and {x : f (x;θ) < 0}, respectively. As a result, collision

detection problem is reduced to finding the separating surface, i.e. deciding the parameter

set θ , that can separate C1 and C2.

There is one major difference between point clouds and convex/non-convex sets. In

particular, for point cloud data, the existence of a separating surface is not a necessary or

sufficient condition for non-intersection between the two sets. If two point clouds are noise-

free and separable, their underlying surfaces may still be collision-free or in-collision, as

shown in Fig 2(a)-(b). This is due to the discretization error from point-cloud sampling.

The issue becomes more complicated when point clouds have position errors, as shown in

Fig 2(c)-(d). This property of point cloud sets makes it difficult to perform exact collision

checking, but is suitable for statistical learning approaches like SVM [3]. As a result, the

probabilistic collision detection problem can be reduced to computing the optimal sepa-

rating surface that minimizes the separating error for underlying surfaces: i.e. find θ that

minimizes ∫

x∈S1

1{x∈P(θ)−} dx+
∫

x∈S2

1{x∈P(θ)+} dx, (3)

where S1 and S2 are the underlying surfaces for point clouds C1 and C2, respectively.
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3.2 Probabilistic Model for Point Cloud Collision
We now present the probabilistic model for point cloud collision checking to compute the

optimal separating surface. We rewrite xl
i with l ∈ {1,2} as (xi,ci), where xi = xl

i and ci =
(−1)l+1 ∈{−1,1} denotes which object the point xi belongs to. As a result, we have n1 +n2

elements in {(xi,ci)}. As discussed in Section 3.1, collision checking between two point

sets reduces to finding an optimal separating surface P. In machine learning terminology,

this corresponds to finding an optimal classifier that can minimize the expected risk on

the classification problem whose data is drawn from {x : x ∈ S1

⋃
S2} and its training set

is {(xi,ci)}. As a result, the collision detection problem is reduced to a machine learning

problem. However, unlike typical machine learning algorithms which only deal with cases

where (xi,ci) are specified exactly, we also need to take into account the noise in xi. Our

solution is based on the maximum-likelihood (ML) scheme, i.e. the optimal surface should

maximize the probability on the observed inputs {(xi,ci)}.

Similar to Equation (1), the joint probability for (xi,ci) can be expressed as

p(xi,ci) =
∫

p(x′i,ci;θ)p(xi|x′i;Σi) dx′i. (4)

Here θ is the parameter set used to represent the separating surface P. For example, P is

{x : wT x + b = 0} if P is a plane and θ = {w,b}. Or P is {x : wT Φ(x)+ b = 0} if P is

a hyper-plane in some high-dimensional inner product space H and Φ is the mapping

Φ : R3 7→ H . The unknown surface parameter θ can be estimated from the point cloud

data using ML:

θ ∗ = argmax
θ

∑
i

ln

∫
p(x′i,ci;θ)p(xi|x′i;Σi) dx′i (5)

In practice, the integration over the unknown underlying surface sample x′i makes it hard

to compute the surface parameter. As a result, we consider an alternative form that is com-

putationally more efficient. Specifically, we use an approximation to Equation (5) based on

a widely used heuristic for mixture estimation: we simply regard x′i as a parameter of the

model instead of a random variable. Then Equation (5) reduces to:

θ ∗ = argmax
θ

∑
i

lnsup
x′i

p(x′i,ci;θ)p(xi|x′i;Σi). (6)

We present an algorithm to solve Equation (6) in Section 4.

4 Probabilistic Collision Checking between Point Clouds

In this section, we present our probabilistic algorithm for collision checking between point

clouds using two-class classification. This reduces to computing the optimal separating

surface that minimizes the function in Equation (6).

4.1 Basic Formulation
For convenience, we first assume that the separating surface is a plane, i.e. P = {x : wT x+
b = 0}. We also assume that the uncertainty due to noise can be described by a Gaussian

distribution. We will relax these assumptions later. Based on these two assumptions, we

have

p(x′i,ci;θ)∼ p(x′i)exp(− (wT x′i +b− ci)
2

σ2
) and p(xi|x′i;Σi)∼ exp(−(xi−x′i)

T Σ−1
i (xi−x′i)),

(7)



Probabilistic Collision Detection using Robust Classification 7

where σ and Σi are the covariance parameters of a Gaussian distribution.

As we will show in Section 6, the discretization uncertainty at x′i can also be estimated

as a Gaussian distribution with the observation xi as mean. That is p(x′i) ∼ exp(−(x′i −
xi)

TΨ−1
i (x′i−xi)), where Ψi is the covariance parameter for discretization uncertainty. Here

we assume that the observed data xi is fixed and the true value x′i is subject to random

errors. This is equivalent to the so-called Berkson’s model in statistics literature [2]. Then

Equation (6) becomes

θ ∗ = argmax
θ

∑
i

inf
x′i

[ (wT x′i +b− ci)
2

σ2
+(xi −x′i)

T Σ̃−1
i (xi −x′i)

]
, (8)

where θ = {w,b} and Σ̃−1
i = Σ−1

i +Ψ−1
i .

Moreover, notice that if (xi −x′i)
T Σ̃−1

i (xi −x′i) is large, then p(x′i,ci;θ) term will have a

small value and can be ignored in the integration for p(xi,ci). As a result, we can constrain

x′i to lie within the ellipsoid Ei = {x′i : (xi − x′i)
T Σ̃−1

i (xi − x′i) ≤ r2
i } and this will not in-

fluence the final result considerably. Also considering the regularity of separating surfaces,

Equation (8) can be approximated by an optimization formulation that is similar to support

vector machine (SVM):

minimize
w,b,ξi

1

2
‖w‖2 +λ

n

∑
i=1

ξi

subject to ci(w
T x′i +b) ≥ 1−ξi, ∀x′i ∈ Ei,∀1 ≤ i ≤ n;

ξi ≥ 0, ∀1 ≤ i ≤ n,

(9)

The above formulation minimizes the upper bound on the classification error, which is

equivalent to separating error in Equation (3). Errors occur when ξi ≥ 1, as x′i lies on the

wrong side of P. The quantity λ is the penalty for any data point x′i that either lies within

the margin on the correct side of P (0 < ξi ≤ 1) or on the wrong side of P (ξi > 1). ‖w‖ is

the regularization term which controls the smoothness of the separating surface.

It is easy to verify that ci(w
T x′i +b) reaches its minimum at point xi− ri(w

T Σ̃iw)1/2Σ̃iw

and the minimum value is ci(w
T xi + b)− ri(w

T Σ̃iw)1/2. As a result, Equation (9) can be

further written as:

minimize
w,b,ξi

1

2
‖w‖2 +λ

n

∑
i=1

ξi

subject to ci(w
T xi +b) ≥ 1−ξi + ri‖Σ̃

1/2
i w‖, ∀1 ≤ i ≤ n;

ξi ≥ 0, ∀1 ≤ i ≤ n.

(10)

Such optimization problems have been studied in the literature [25] and can be solved

using second order cone programming (SOCP) methods. Once w and b are computed, we

can compute ξi = max(0,1− ci(w
T xi +b)+ ri‖Σ̃

1/2
i w‖).

4.2 Non-Gaussian Uncertainty
The uncertainty of real-world sensors may not be accurately modeled using a Gaussian

distribution. Our approach can also handle non-Gaussian uncertainty.

Shivaswamy et al. [25] point out that the ellipsoid radius ri is related to the confidence

of the classification result when the training data contains noise. Briefly, if we desire the
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underlying surface point x′i with Gaussian distribution to lie on the correct side of the sep-

arating surface with a probability greater than κi

P
x′i∼N (xi,Σ̃i)

(
(ci(w

T x′i +b) ≥ 1−ξi

)
≥ κi, (11)

then ri = cdf−1(κi), where cdf(u) = 1√
2π

∫ u
−∞ exp(− s2

2
)ds. Using multivariate Chebyshev

inequality, this relationship between κi and ri can be further extended to the case when x′i
follows non-Gaussian distribution. That is, if x′i ∼ (xi, Σ̃i) represents a family of distribu-

tions with a common mean and covariance given by xi and Σ̃i, and we want x′i to lie on the

correct side of the separating surface with a probability greater than κi

sup
x′i∼(xi,Σ̃i)

Px′i

(
(ci(w

T x′i +b) ≥ 1−ξi

)
≥ κi, (12)

then ri =
√

κi
1−κi

. This formulation implies that we can perform collision detection using

Equation (10) even when the uncertainty is non-Gaussian.

4.3 Non-linear Separating Surface
Linear separating surface is mainly limited to the case when all the underlying surfaces

are convex. If any one of them is non-convex, a separating plane may not exist even when

the surfaces are collision-free. Therefore, we need to extend our algorithm to non-linear

P. Similar to typical SVM algorithms [30], we can remove the linear separating surface

assumption by applying a kernel trick on the dual form of Equation (10). Briefly, kernel

trick is a method that transforms the Euclidean space Rn into another inner space H

using mapping Φ and then replaces the inner product 〈y,z〉Rn by the new inner product

K(y,z) = 〈Φ(y),Φ(z)〉H in space H . Here K(·, ·) is called the kernel function. Usually a

hyper-plane in H will correspond to a non-linear surface in Rn, which is a popular way

to construct non-linear classifiers in machine learning [9]. Some of the widely used kernel

functions include linear (K(y,z) = yT z) and Gaussian (K(y,z) = exp(−γ‖y− z‖2)).
Based on the kernel trick, the non-linear separating surface can be formulated as P = {x :

wT Φ(x)+b = 0}. To compute P, we first transform Equation (10) into its dual form. Next,

based on the Taylor-expansion technique [3], we replace yT z by kernel function K(y,z)

and replace y by the kernel gradient
∂K(y,z)

∂z
and finally obtain the optimization formulation

in non-linear case as

maximize
αi,vi

n

∑
i=1

αi −
1

2

( n

∑
i=1

n

∑
j=1

αiα jcic jK(xi,x j)+
n

∑
i=1

n

∑
j=1

αici

(
Σ̃

1/2
j

∂K(xi,x j)

∂x j

)T
v j

+
n

∑
i=1

n

∑
j=1

α jc j

(
Σ̃

1/2
i

∂K(xi,x j)

∂xi

)T
vi +

n

∑
i=1

n

∑
j=1

vT
i

(
Σ̃

1/2
i

∂ 2K(xi,x j)

∂xi∂x j

Σ̃
T/2
j

)
v j

)

subject to ‖vi‖ ≤ riαi, 0 ≤ αi ≤C, ∀1 ≤ i ≤ n; and
n

∑
i=1

αici = 0;

(13)

where C is a regularity term similar to λ in Equation (10). Once αi and vi are computed,

we can compute the formulation for the separating surface P



Probabilistic Collision Detection using Robust Classification 9

f (x) = b+
n

∑
j=1

α jc jK(x j,x)+
n

∑
j=1

vT
j Σ̃

1/2
j

∂K(x j,x)

∂x j

(14)

and ξi = max(0,ξ ′
i ), where

ξ ′
i = 1− ci f (xi)+ ri‖Σ̃

1/2
i f ′(xi)‖. (15)

Notice that the surface parameter b does not appear in the dual form, but it can be computed

based on Karush–Kuhn–Tucker conditions [5]. We first choose i so that 0 < αi < C,‖vi‖<
riαi and then set ξ ′

i = 0 in Equation (15) to obtain b. Moreover, notice that all the results for

non-linear separating surface are consistent with those for linear separating surface, which

use a linear kernel K(y,z) = yT z.

4.4 Probabilistic Collision Decision
Based on the computed separating surface, we present a simple scheme to perform proba-

bilistic collision detection between the point clouds. First, we compute the collision proba-

bility for each point, i.e. the probability that x′i lies on the wrong side of separating surface:

P
x′i∼N (xi,Σ̃i)

(ci f (x′i) ≤ 0) = cdf(−ci f (xi)/‖Σ̃
1/2
i f ′(xi)‖). (16)

We denote this per-point probability as P(xi). Next, we need to use an appropriate met-

ric to measure the collision probability between two point clouds. For two exact mod-

els, collision occurs if any subsets of them are in-collision. Therefore, for point clouds

C1 and C2, it seems to be reasonable to define the collision probability between them as

1−∏x∈{C1
⋃

C2}[1−P(x)]. However, this metric may have some issues: when the number

of points increases, its value will go to zero instead of converging to the real collision prob-

ability. The reason is that this metric does not consider the dependency between collision

states of nearby points. Our approach for computing collision probability only involves

far-away points with large per-point collision probability. First, we compute the maximum

per-point collision probability maxx P(x). Next, we find all the points whose per-point col-

lision probabilities are near the maximum value, e.g. more than 0.8maxx P(x). For points

that are close to each other, we only use one of them in the whole body collision probabil-

ity computation. The first rule filters out points whose collision probabilities are not large

enough so as to improve the stability of collision results while the second rule filters out

points that are closely correlated. Finally, we compute the collision probability between

point clouds based on the left m ≪ n points {x̃i}: PC1,C2
= 1−∏

m
i=1[1−P(x̃i)]. We can

also use a simpler version of this metric which only considers the point with the maximum

collision probability: PC1,C2
= maxx∈C1

⋃
C2

P(x). For collision between exact models, the

two metrics are equivalent, as P(x̃i) = maxx P(x) = 1, for all i. The simpler metric can

not distinguish the collision states when point clouds have one or more far-away points

with large per-point collision probability, but it is more convenient to distinguish between

collision-free and in-collision cases.

4.5 Handling Polygonal Objects
In many cases, the exact mesh representation of one of the objects is known (e.g. the model

of the robot operating in the environment). We assume that the object is represented using

a triangle mesh and we extend our point-cloud algorithm to handle such models. It turns

out that we only need to represent a triangle by four noisy-free points: three vertices and
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the centroid point. The regularity of a separating surface can guarantee that if these four

points are separated from the other point cloud (say C1) then the entire triangle would lie

on one side of separating surface. Therefore we can use the framework above to compute

the collision probability, the only difference is that we set ri = 0 and use a larger value for

λ or C in Equation (13) for the points from the triangles to bias the optimization solver

to minimize the error on the points that lie on the triangles. The collision probability for a

noisy point can still be computed by Equation (16), while the collision probability for any

exact point is equal to 1 if it lies on the wrong side of separating surface.

5 Acceleration using Bounding Volume Hierarchies

We have reduced the problem of collision detection between two point clouds to a two-class

classification problem and can solve it with SVM. However, performing collision detection

by directly using Equation (13) introduces some challenges. First, the timing complexity of

SVM can be O(n3), where n = n1 +n2 is the number of points in the two point clouds. As a

result, the underlying algorithm can be slow for dense point clouds. Second, the two point

clouds corresponding to different objects may have different numbers of points, which can

result in unbalanced training data in terms of using machine learning algorithms. Moreover,

if the two point clouds under consideration correspond to objects with different sizes (e.g.

a large room and a small robot), it will cause the optimization algorithm to have a lower

separating error for the large object and higher error for the small object.

We use bounding volume hierarchies (BVH) to overcome these problems. These hier-

archies provide a quick identification of objects or parts of an object that can be easily

culled away and therefore perform exact collision queries on relatively few primitives. In

our case, each leaf node of our BVH contains a subset of the point clouds. The BVH is

computed in a top down manner, and we terminate the BV split recursion according to

the covariance of points and the number of points within one BV. For each BV, we com-

pute the covariance matrix C = 1
m ∑

m
i=1(xi − x)(xi − x)T , where {xi}m

i=1 are the points in

the BV and x is their mean. Next, we compute C’s three eigenvalues σ1,σ2,σ3, assuming

σ1 ≤ σ2 ≤ σ3. We define σn = σ1
σ1+σ2+σ3

as BV’s variation and 0 ≤ σn ≤ 1/3. σn = 1/3

means the points in the BV is completely isotropically distributed while σn = 0 means the

all the points lie in a plane. We continue splitting current BV along its longest axis (i.e. the

eigenvector of C corresponding to σ3) if the number of points it contains is larger than nmax

or the corresponding σn is above σmax, where nmax and σmax are two thresholds.

In prior BVH-based algorithms for triangulated models, the children nodes split from

the same parent node will typically have no common triangles. However, for point clouds,

the BVH constructed in this manner will result in false negatives (i.e. missed collisions).

As shown in Fig 3(a), the BVs of two objects can be collision-free when the underlying sur-

faces are non-separable and the algorithm will return incorrect collision-free result without

checking for collisions between any leaf nodes. To overcome this problem, we require the

BVs split from the same parent to be ε-overlap with each other. We usually set ε to be

1%− 5%. Such an overlap will result in some redundancy in terms of point storage: for

one object with n points, its BVH will store about (1 + ε lg n
nmax

)n points, where nmax > 1

is the threshold used in BV splitting.

In case of point clouds, a BVH may not fully enclose the point primitives that lie within

it. There is a small probability that the underlying surface may not be completely enclosed.

Therefore, even if two nodes are non-intersecting, we still need to check the collision be-

tween the point clouds within them with a small probability. We call such probability the

leakage probability, which causes BVH traversal to be stochastic, rather than determinis-
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(a) BVH without overlap (b) BVH with overlap

BV-1 BV-2 BV-1

BV-2

(c) BVH for deep penetration

Deep-penetrating points

Penetration depth

Fig. 3 Green and red points are the point clouds for two objects. Green and red intersecting lines are

the underlying surfaces in collision. In (a), BVs split from the same parent node have no overlap and the

collision detection algorithm returns collision-free. In (b), BVs have overlap and the collision detection al-

gorithm returns in-collision. (c) shows the deep-penetration case that BVH may underestimate the collision

probability for deep-penetrated points.

tic. We estimate the leakage probability for each BVH node in the following manner. For

a given BV, suppose one pair of its parallel boundary planes are B1 = {x : wT x + b1 = 0}
and B2 = {x : −wT x+b2 = 0}, where w and −w are plane normals pointing to the outside

of BV. For one point x ∼ N (µ,Σ) in the BV, the probability that it lies between the two

planes is PB1,2 = cdf(−b1−wT µ√
wT Σw

)− cdf( b2−wT µ√
wT Σw

). Then the probability that x lies outside the

BV is Px ≈ 1−min(PB1,2 ,PB3,4 ,PB5,6
), where B1, ...,B6 are the six boundaries of BV. We

define the leakage probability for the BV as the ratio of the underlying surface outside of

BV: Pleak(BV) =
∑

m
i=1 w(xi)Pxi

∑
m
i=1 w(xi)

, where {xi}m
i=1 are the points in the BV. Here w(xi) is the

weight for one point according to the size of surface region that it represents, which is ap-

proximated by the area of enclosing sphere of its k-nearest neighbors. We also define the

coverage probability for the BV as Pcov(BV) = 1−Pleak(BV).
Once the BVHs for the two objects are constructed, the collision detection algorithm

traverses the BVHs recursively. In our case, the operation between two leaf nodes corre-

sponds to collision checking between two point subsets using the two-class classification

method proposed in Section 4. When two non-leaf BVs are non-intersecting, for point

clouds, because of the existence of BV leakage probability, we still need to visit the BVs’

children with a small probability. Suppose the coverage probabilities for the two BVs are

Pcov(BV1) and Pcov(BV2), then the probability that we do not need to check their chil-

dren BVs is Pcov(BV1) · Pcov(BV2) because the points are completely enclosed within

BVs and thus if the BVs are collision-free, it implies that the resulting points are also

collision-free. As a result, the algorithm continues traversing the subtrees with the proba-

bility 1−Pcov(BV1) ·Pcov(BV2).
There are two small limitations of the BVH framework. First, the BV decomposition

will lose global information about the entire object, and therefore cannot detect the points

that are deeply penetrating, as shown in Fig 3(c). This is not a big issue in the real world, as

robots or grippers typically do not deeply penetrate into objects. Secondly, the BVH traver-

sal stops when one large collision probability is at a leaf node. As a result, the algorithm

only returns a lower bound for the actual collision probability, but it is still large enough to

distinguish between collision-free and in-collision configurations.
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6 Implementation and Results

In this section, we describe some details of our implementation and highlight the perfor-

mance on several benchmarks.

6.1 Implementation
First, we discuss how to estimate the distribution of the underlying surface sample p(x′i).
The mean of p(x′i) is xi due to our unbiased assumption. We estimate the covariance Ψi

based on the formulation described in [20]:

Ψi =
∑

n
j=1(x j −xi)(x j −xi)

T exp(−‖xi −x j‖2/τ2
i )

∑
n
j=1 exp(−‖xi −x j‖2/τ2

i )
, (17)

where n is the total number of points and τi is a parameter used to remove the influence of

points too far away from xi. We set τi = τ ·ηi. τ as a global scale parameter and the variable

ηi = r√
k

denotes the local sample spacing estimated from a k-neighborhood, where r is the

radius of the enclosing sphere of the k-nearest neighbors of xi.

Our algorithm is based on machine learning techniques and includes some parameters

that need to be tuned. Fortunately, we find that our method is not sensitive to the parameter

choice if we preprocess the data by scaling it to [0,1]3 volume in 3D. Scaling is considered

important in terms of robustness of SVM, especially for the non-linear case. Moreover,

scaling also helps us in computing the parameters that are suitable for the point clouds with

different sizes or configurations. In practice, scaling also changes the uncertainty of each

point, so we need to update the noise level from Σ̃i to SΣ̃iS
T , where S = diag(s1,s2,s3) is

the scaling matrix.

We have used our algorithm on data captured using robot sensors. Note that our method

is designed for noisy environments where the ground-truth for collision detection is un-

known. In this case, exact collision algorithms are not applicable as we don’t have an exact

representation of the environment. Therefore, it is difficult to directly compare the qual-

ity or accuracy of our algorithm with prior methods. However, our method can guarantee:

1) For easy collision queries, i.e. when the distance between two collision-free objects is

large or the two objects are in deep-penetration, our method will give collision probabil-

ity near 0 or 1. In this case, only very large noise can reverse the outcome of the query.

However, our probabilistic algorithm would give the same result as the exact approach that

first performs mesh reconstruction from the point clouds. 2) For challenging queries, i.e.

when two objects are almost in-contact or have a small penetration, our method computes

a collision probability near 0.5, because these configurations are more susceptible to noise.

Exact collision algorithms will still provide a yes-no result, but the accuracy of the exact

algorithm is governed by the underlying sampling and mesh reconstruction algorithm. If

a yes-no collision answer is required, our algorithm uses two thresholds A ≥ 0.5 ≥ B: if

collision probability > A, we report collision-free; if collision probability < B, we report

in-collision; if collision probability is between A and B, we report in-contact. For exam-

ple, when collision-avoidance is critical for the underlying applications, we can use large

conservative value for A and small conservative value for B to achieve higher guarantees.

6.2 Results
We highlight the performance of our algorithm on real-world point clouds as well as syn-

thetic data sets. We also compare its accuracy with prior collision detection techniques. The
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Fig. 4 Comparison between the results for 100 random queries between prior collision detection algo-

rithms for exact triangle meshes and our algorithm on the point clouds (generated by sampling and adding

noise). We show the results of exact collision detection and separation distance as well. If the noise in the

point cloud is small (the upper figure), our method returns 0 or 1 collision probability for most queries.

When the queries correspond to a small separation distance or penetration depth (i.e. difficult cases), our

algorithm computes collision-free probability close to 0.5. Furthermore, the collision-free probability is

higher when the separation distance is large for non-overlapping objects. If the noise is large (the bottom

figure), fewer queries return 0 or 1 collision probability. We see a good correlation between the regression

curves computed by our algorithm and the exact queries on these synthetic datasets.

running time of our probabilistic algorithm is similar to that of exact collision detection al-

gorithms and varies based on number of primitives and their relative configuration.

We evaluated the performance of our algorithm on a synthetic data set corresponding to

a moving piano in a room with tables. We generated a point cloud by sampling the polygons

and adding some noise. We used the PQP package to perform exact collision detection and

separation distance query between the exact, triangulated model and compared the results

with probabilistic collision detection on the resulting point cloud (see Fig 4). We see a

high correlation between our results and the actual separation distance, and it varies based

on the level of noise. This shows that our approach is quite robust and even works well

in degenerate configurations, e.g. when the two objects are barely touching or very close
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Fig. 5 Comparison on point-cloud data generated by PR2 robot sensor: we use our probabilistic collision

detection on the noisy point cloud vs. results computed by ODE package used in ROS vs. exact collision

and distance queries on the reconstructed mesh model. Our results on the point cloud are more robust as

compared to the ODE package.

to each other. Such configurations are more susceptible to noise and the exact collision

detection algorithms are very sensitive to these configurations.

We have applied our probabilistic collision detection to the point cloud data generated

for manipulation using the PR2 robot. Point cloud data on the PR2 robot is generated

from a scanning laser range finder (Hokuyo Top-URG(UTM-30LX)) and a stereo camera

(WGE-100), which is combined with an active texture projector to obtain good 3D data

from untextured objects. The robot is placed in front of a table with multiple household

objects (e.g. bowls, cans) on the table at a distance of about 1.5 m from the robot’s sensors.

The point clouds are a discretized (about +/-1.5 cm in range) representation of the real

environment and are generated periodically by each sensor. The data is noisy and exhibits

speckles especially in the vicinity of boundaries of objects and boundaries of the field of

view of the sensor. The sensors are calibrated with respect to each other and the arms using

a known calibration pattern. The known position of the arms, measured using encoders, is

used to filter out the points corresponding to the arms from the point clouds obtained by the

sensors. Typical point clouds generated by the stereo sensors on the PR2 robot have more

than 40,000 points and are generated at 20 Hz. Point clouds generated by the laser range

scanners typically have about 10,000 points. The data from the point clouds is aggregated

into a collision map representation. The collision map is a 3-dimensional occupancy grid

maintained at a fixed resolution. The resulting collision maps are at 1 cm resolution and

have about 2,000 occupied cells. A complete triangulated mesh representation of the robot,

including the arms and the gripper, is also available as input for the collision checker.

There are very few algorithms or systems available for collision checking between noisy

point clouds. As a result, we compare our algorithm with the implementation in ROS (based

on ODE) and exact collision detection on reconstructed meshes.

The collision checking procedures used in ROS are currently based on the collision

checking implementation in the ODE software package. The input to the collision checker

is a combination of mesh models for the robot and objects in the environment and the col-

lision map. The points in the collision map are represented as axis-aligned box primitives

whose length is equal to the resolution at which the collision map is maintained. The cur-

rent representation of the collision space considers every point in the collision map to be
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a potential obstacle. Thus, noise in the sensor data can frequently lead to false positives,

i.e. the detection of potential collisions in parts of the environment where there are no ob-

stacles. There is no robust criterion to compute the box size, e.g. a function of noise, so

we can’t compare all the features of our method with ODE collision checking. We also use

a reconstruction algorithm to compute a triangle mesh from the point clouds and perform

triangle-based collision as well as separation distance computation using PQP. In many

ways, this formulation only provides an approximation of the ground truth and is used to

evaluate the robustness of our algorithm.

As shown in Figure 5, our result matches well with the exact collision detection algo-

rithm, especially with the separation distance computation. Furthermore, we notice that the

collision probability of our approach changes slowly when the noise increases. It is more

robust as compared to the yes-no result computed by ODE on the point clouds, which is

likely to frequently switch between collision-free and in-contact configurations, when the

noise level changes. Moreover, from Figure 4 and Figure 5, we observe that configurations

with the same distances to the obstacles can have large spread in the computed collision

probabilities. The reason is that distance is only a partial measurement of collision status

while our collision probability is a more complete description about collision status and

provides more detailed information about the relative configurations.

For one query, our method needs about 500-1000 ms for about 10,000 points on one

Intel Core i7 3.2GHz CPU, based on BVH acceleration. It is about 5-10 times slower than

optimized collision packages on models with 10K triangles (e.g. PQP can compute col-

lisions in such situations in about 50ms-100ms). However, the reconstruction algorithms

take more than 10 seconds to compute the triangulated mesh from the point cloud. More-

over, our current implementation can be optimized in several ways, such as replacing the

non-linear kernel by approximated linear kernel [22] and using more efficient SVM meth-

ods designed for large scale data [6]. We expect an optimized probabilistic collision method

to have similar speed to the PQP algorithm. Furthermore, our approach can provide more

detailed information and can be easily combined with planning/reasoning algorithms. For

example, we can combine it with trajectory optimization algorithms (e.g. CHOMP [23],

STOMP [12]) to find a smooth path that has a minimum probability of colliding with the

obstacles.

7 Conclusions and Future Work

We have presented a novel and robust method for contact computation between noisy point

cloud data using machine learning methods. We reformulate collision detection as a two-

classification problem and compute the collision probability at each point using support

vector machines. The algorithm can be accelerated by using bounding volume hierarchies

and performing a stochastic traversal. We have tested the results on synthetic and real-world

data sets and the preliminary results are promising.

There are many avenues for future work. We need to test the performance on differ-

ent robotic systems and evaluate its performance on tasks such as planning and grasping.

It would be useful to extend this approach to continuous collision checking, which takes

into account the motion of the robot between discrete intervals along the path. Similar

probabilistic methods can also be developed for other queries, including separation and

penetration depth computation. Finally, we are interested in improving the algorithm to

handle dynamic environments where points may change position or can be added or re-

moved from the environment due to movement, occlusion or incremental data, based on

incremental SVM [4] and BVH refitting techniques [14].
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