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Communication is a bottleneck in many distributed computations. In VLSI, com- 
munication constraints dictate lower bounds on the performance of chips. The two-processor 
information transfer model measures the communication requirements to compute functions. 
We study the unbounded error probabilistic version of this model. Because of its weak notion 
of correct output, we believe that this model measures the “intrinsic” communication com- 
plexity of functions. We present exact characterizations of the unbounded error com- 
munication complexity in terms of arrangements of hyperplanes and approximations of 
matrices. These characterizations establish the connection with certain classical problems in 
combinatorial geometry which are concerned with the configurations of points in d-dimen- 
sional real space. With the help of these characterizations, we obtain some upper and lower 
bounds on communication complexity. The upper bounds which we obtained for the 
functions-quality and verification of Hamming distance- are considerably better than their 
counterparts in the deterministic, the nondeterministic, and the bounded error probabilistic 
models. We also exhibit a function which has log n complexity. We present a counting 
argument to show that most functions have linear complexity. Further, we apply the 
logarithmic lower bound on communication complexity to obtain an Q(n log n) bound on the 
time of l-tape unbounded error probabilistic Turing machines. We believe that this is the first 
nontrivial lower bound obtained for such machines. G 1986 Academic Press. Inc. 

1. INTRODUCTION 

It is well known that information transfer is a bottleneck in many parallel 
algorithms, VLSI implementations, and distributed systems. In fact, information 
transfer is a lower bound on the area-time square of VLSI chips [ 171. Com- 
munication complexity measures the information transfer necessary for computing a 
function, when its two arguments are distributed over two processors which com- 
municate according to some protocol [20, 161. This measure, communication com- 
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plexity, is closely related to the time of l-tape Turing machines, and to the size of 
branching programs, and of monotone circuits [ 19, 111. Communication com- 
plexity allows us to study otherwise intractable questions (like the power of non- 
determinism, the power of probabilistic choice, etc.) in a favorable environment, 
where it is possible to settle some of them [20, 16, 10, 1, 211. 

In this paper, we study a model of unbounded error probabilistic communication 
complexity in which the processors are allowed to toss coins and the error in the 
computation is not bounded away from f. This unbounded error probabilistic 
model is not intended to serve as the basis for a theory of “reliable information 
transfer.” Rather, we are interested in understanding the power of unrestricted 
probabilistic choice in distributed environments. 

We show that this model is powerful. Consider the functions: Z(x, y) = (x = v); 
1(x, y) = (x#y); and G(x, y) = (xay), where x and y are interpreted as n-bit 
integers. We show that the functions Z and Z need just 2 bits of information 
transfer,’ and the function G needs only 1 bit of information transfer in the unboun- 
ded error probabilistic communication model. 

In contrast, we have the results that Z, 1, and G require n bits of information 
transfer in the deterministic model, and Iand G require n bits of information trans- 
fer in the nondeterministic model [20, 161. Note that n bits of information transfer 
is equivalent to one processor sending its entire argument to the other processor. 
Even in the bounded error probabilistic model Q(log n) bits2 must be exchanged to 
compute the functions Z, 1, and G [ 193. 

An immediate question is whether these facts mean that the model is trivial. After 
all, one processor could probabilistically guess the argument of the other processor, 
verify the guess using the equality protocol, and compute the function with just 2 
bits of information transfer. Fortunately (?), the strategy does not work since, as 
one can verify, the computation is not reliable enough. This challenges us to try to 
prove lower bounds for the probabilistic information transfer. The results in this 
paper partially answer this challenge. 

The problem of proving lower bounds for the probabilistic information transfer 
requires new techniques. In the case of the deterministic protocols, a counting 
argument immediately yields a (nonconstructive) proof of the existence of functions 
with asymptotically linear communication corn lexity. For example, there are 222n 
Boolean functions of 2n variables, but only 2 

,aR 
different deterministic protocols of 

length 1. There are, on the other hand, nondenumerably many probabilistic 
protocols of length 1, since the probabilities can be arbitrary. Although, by a con- 
tinuity argument, we can restrict ourselves to rational probabilities with bounded 
denominators, the number of resulting protocols still makes the counting argument 
useless. In the case of the bounded error probabilistic model, both logarithmic and 
linear lower bound arguments make use of the fact that the error in the com- 
putation is bounded by a constant [ 19, 211. 

’ This fact was known to M. Rabin in the context of crossing sequences for Turing machines [7] 
* All logarithms in this paper have base 2. 
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The following gives a summary of the techniques we developed to study unboun- 
ded error probabilistic communication complexity and the upper and lower bounds 
we obtained with these techniques. 

We present two equivalent exact characterizations of the probabilistic com- 
munication complexity of a function: one in terms of the approximations of a 
Boolean matrix by rank 1 real matrices (Theorem 3), and the other, a geometric 
one, using arrangements of hyperplanes (Theorem 2). Because of these equivalences, 
questions about the probabilistic communication complexity can be formulated as 
combinatorial problems on arrangements of hyperplanes, oriented matroid, or lop- 
sided sets [22, 6, 121. 

A step towards obtaining these characterizations is the theorem (Theorem 1) 
which proves that the one-way probabilistic model is as powerful as the two-way 
one and thereby let us consider only one-way protocols. (In contrast, we have, in 
the deterministic model, exponential gaps between not only one-way and two-way 
protocols, but also k-turn and k + l-turn protocols [S].) 

Using these characterizations, we construct a hierarchy of functions fi, that 
require i bits of information transfer for 1 6 i<log n (Theorem 4). We obtain 
efficient protocols for computing equality and verification of Hamming distance 
(Section 7). 

Using a recent result of Goodman and Pollack [9] on the number of equivalence 
classes of arrangements, Alon, Frankl, and Rod1 [2] use a counting argument to 
show that most functions have linear unbounded error communication complexity. 
We give a brief sketch of this counting argument (Theorem 5). 

We also give an S2(n log n) bound on the time of certain l-tape probabilistic Tur- 
ing machines with unbounded error (Theorem 6). This lower bound comes as an 
application of the logarithmic lower bound for the unbounded error probabilistic 
communication complexity. We also indicate a close relation between the lower 
bounds on the time of l-tape Turing machines in the deterministic, the nondeter- 
ministic and the unbounded error probabilistic models and lower bounds on the 
communication complexity of a linear array of processors in the corresponding 
model [ 181 (Sect. 10). Finally, we discuss some open problems in Section 11. 

2. DEFINITION OF THE MODEL 

The essentials of our model are the same as those of Yao [20], who introduced 
the notion of communication complexity (see also [16, lo] for variants of and 
extensions to the model). 

Two processors P, and P, wish to compute a function of two arguments. (We 
assume in most of this paper that the function is Boolean.) The first argument, x0, 
of the Boolean functionf: { 0, 1 }” x (0, 1 }” + (0, 1 } is known to P,,, and the second 
argument, x, , is known to P,. We treat an x E (0, 11” also as a number whose 
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binary representation is the string x. With the functionf, we associate a 2” x 2” 
matrix F whose (x, y)th entry, F[x, y], is f(x, y). 

In order to compute f, P,, and P, communicate with each other in turns by 
sending messages (sequences of bits) according to some protocol. P, and P, have 
unlimited local computing power, and the ability to realize an arbitrary probability 
distribution over the set of messages they transmit in each turn. The complexity 
measure is the number of bits transmitted. 

Given the input xi to Pi for i= 0, 1, the computation, according to some 
protocol 4, will be as follows: P, is always the first one to send a message. The 
processors communicate in turns. The last message is always sent by P, and is a 
single bit. The last bit is the output produced. Each message will be sent with a cer- 
tain probability, determined by the protocol. 

A probabilistic computation can be viewed as a stochastic process. An event in 
this process is a sequence of messages /II, jIz,..., /?2k (where message /Ii is sent by 

processor p(i + 1) mod 2 ). The probability distribution, given by the protocol, assigns a 
probability to each event. The result of an event is the output produced by the 
associated sequence of messages. The protocol CJ~ outputs the bit b (b = 0 or 1) if the 
probability of the events whose result is b is greater than 4. 

Formally, a protocol can be specified by a function 4: (0, 1 }” x (0, 1) * x 
{ 0, 1 > * -+ [0, 11. ( [0, 1 ] is the closed interval on the real line with end points 0 and 
1.) 4(x, CI, 8) is the probability that the message jI will be sent by a processor, where 
x is its input and c( is the concatenation of the sequence of messages exchanged so 
far. 4 has the property that the set {/I 13x4( x, a, /I) # 0} is finite and prefix free for 
each a. Note that CP 4(x, a, /I) = 1. Due to the prefix freeness property, a con- 
catenated sequence of messages can again be decomposed into a sequence of 
messages which is unique for a given protocol. 

Let 4 be a protocol. Let xi be the input at Pi for i=O, 1. Let (fii,pi),..., (p2,,pz1) 
be such that 

d(x,, 13 PI) =P1 where I is the null string; 

4tx0, B1 “‘P2j9 B2j+l)=P2j+l forj= l,..., I- 1; 

~(x1,P1”‘B2j-1,82j)=P2j forj= l,..., 1; 

d(x,, PI . . .82,? 1) = 1 (j12[ is the last message); 

lP211 = 1 (the last message transmitted is a single bit). 

The set of all such sequences (pl,pl), (p2,p2),..., (f12[,p2,) is the computation 
T4(x,, xi) using the protocol 4 with inputs xi at Pi. 

Note that the probabilities pl, p3 ,..., p2,-, do not depend on the input at the 
. . 

processor P,. Similarly, p2, p4 ,..., p2, do not depend on the input at P,. We, 
therefore, define two functions do, 4,: (0, l}” x M, + [0, l]‘, where M, is the set 
of all concatenated sequences of messages that are transmitted between P, and P, 
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with positive probability for some input. Let pi,..., BzI be the decomposition of 
c( E Md according to the protocol 4. Define li(x, CC) = (pi ,..., p,), where 

for j = I,..., 1. 

Pj=~(x,B1"'B*j--2,P2j-11) if i= 0, 

Pj = 4tx9 PI ’ ’ ’ P2j- 13 P*j) if i= 1, 

The functions & and b1 together with the decomposition for each c( E M, capture 
all the information contained in the protocol 4. 

In the computation T,(x,, x,), the probability of outputting the bit h is 

c lrbEM# m4cd-h ab)) W41( xi, ab)). Here, l7 is an operator which, when applied to 
a finite list of real numbers, yields their product. 

The communication complexity c, of the protocol 4 is maxi /CC : a E M, >. The 
protocol 4 computes a functionfiff( x,,, xi) = b iff the probability of outputting the 
bit b in the computation T,(x,, xi) is greater than 1. 

The unbounded error probabilistic communication complexity cJ is min{ c, I# 
computes f>. 

A restricted model in which only one processor, P,, is allowed to send messages 
is also of interest because of its equivalence to the unrestricted two-way model. 
In this one-way model, P, sends the messages j?,,..., j?! with probabilities pl,..., p,, 
respectively. P, on the receipt of pi, outputs 1 with probability qi and 0 with 
probability 1 - qi. The probability distribution on the set of messages sent by P, is 
entirely determined by the input at P, alone, and is not influenced by the input at 
P,. Similarly, the probabilities qi at P, depend only on its input and the message 
received. The one-way protocol C$ can therefore be completely specified by two 
functions do, d1 : (0, l}” x M, + [0, 11, where M, is the set of all messages that are 
sent by PO with positive probability for some input. &,(x, u.) is the probability that 
the message a is sent by PO with input x; 4i(x, CI) is the probability that P, with 
input x outputs 1 upon receiving the message a. Since the particular set of messages 
is not relevant, do and d1 can be represented as functions from (0, 1 }” to [0, 1 Ik, 
where IM,I = k. The communication complexity of the protocol 4 is rlog,kl; k, the 
number of distinct messages used, is also called the length of the protocol 4. Other 
notions for one-way protocols are defined in an analogous manner. 

3. EQUIVALENCE OF ONE-WAY AND TWO-WAY COMPLEXITIES 

We exhibit a one-way protocol for each two-way protocol such that both com- 
pute the same function and their communication complexities differ by at most 1. 

THEOREM 1. Let 4 be a two-way protocol. Then, there exists a one-way 

protocol 4’ such that 

(1) $ and 4’ compute the same function 

(2) z$dT,+ 1. 
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Proof. Let &, #r, and M, be as defined earlier for the two-way protocol 4. Let 
M,= MiuMO,. @EM:, if the last bit of c1 is 6. Let dt=CzE,+,$ Z7(&(x, a)) and 
d=max, di. 

We define a one-way protocol 4’ such that the set M,, of messages transmitted in 
4’ is M, u {y } for some message y $ M,. The idea is that the one-way protocol 4’ 
simulates the two-way protocol 4. In the protocol @, PO assumes that P, sends its 
messages with “equal” probabilities, completes the communication according to 
two-way protocol C$ without ever having to receive a message from P, and sends a 
record of this simulated communication to P, with an appropriate probability. P, 
then “corrects” the probability of the message it receives. The functions &, and 1+4’, 
corresponding to 4’ are defined 

d;(x, a) = 1-k for aEM:. 

4; are functions from (0, 1)” x M,. to [0, 11. It can be easily verified that 4 and 
4’ compute the same function. It is also clear that their complexities differ by at 
most 1. 1 

From now on, we consider only one-way protocols. All the upper bounds we 
derive in this paper are upper bounds for one-way protocols. If 4 is a one-way 
protocol of length k, let c,&, dr: (0, l}” + [0, 11” be the associated probability 
functions. Let 6, = 4 1 - (4, f ,..., t). 

4. ARRANGEMENTS OF HYPERPLANES 

We present our first characterization of the probabilistic communication com- 
plexity in terms of arrangements of hyperplanes. 

A hyperplane h in Rd is a set of points in Rd specified by some a = (a,, Q,..., 

Q+lkRd+‘, such that bE h iff ((a,, a2 ,..., a,), b) = ad+, ((s, t) is the inner 
product of the vectors s and t). A hyperplane in Rd which contains the origin is 
specified by some (a,, a?,..., ad). An arrangement Arr(H) of hyperplanes is a finite 
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set H= {h,,h, ,..., h,} of hyperplanes in Rd for some d [22]. The regions of an 
arrangement Arr(H) are the nonempty connected components of R’, when the 
hyperplanes in H are deleted. Each region r of an arrangement can be characterized 
by an m bit string whose ith bit (for i= l,..., m) is 1 iff the region r is in the positive 
half space of the hyperplane hi. We call this bit string, the signature of the region r. 

We say that the arrangement Arr(H) realizes the set S, c { 0, 1 }” if 
s,= {WE (0, l}“l w is a signature of some region r in Arr(H)}. 

We call each w E (0, 1 } m a requirement. A requirement w E { 0, 1 }” is satisfied by 
an arrangement Arr(H) of m hyperplanes H in Rd for some d, if w E S,. Similarly, 
we say that a Boolean valued matrix M of order k x m is satisfied by an 
arrangement Arr(H) of m hyperplanes H in Rd if each row of M when viewed as a 
requirement belongs to S,. 

Let F denote the matrix associated with the Boolean function& i.e., 

FCx> ~1 =fk ~1. 

THEOREM 2. Let F be the matrix of a functionf: Let d be the smallest dimension 
in which there is an arrangement Arr(H) of 2” hyperplanes H that satisfies the 

matrix F. Then 

rl0g dl < 2;rG ri0g dl+ 1. 

Proof We exhibit, for each one-way protocol of length k that computes f, an 
arrangement of hyperplanes in Rk that satisfies the matrix F and, for each 
arrangement of hyperplanes in Rk that satisfies the matrix F, a one-way protocol of 
length k + 2 to compute the functionf: Without loss of generality, let all the rows of 
F be distinct. 

Let 4 be a one-way protocol of length k that computes J For each 
x0, x, E (0, l}“, 4Jx0) and c,~,(x,) (defined previously for one-way protocols) can 
be interpreted as a point, and a hyperplane containing the origin in Rk, respectively. 
The point &(x0) lies in the positive (negative) half space of the hyperplane 6,(x,) 
iff (&,(x0), Ji(x,)> is greater than (less than) zero. This means that the point 
&,(x0) lies in the positive (negative) half space of the hyperplane 6,(x,) iff 
f(xO, x1) = 1 (0). Let H be the set of 2” hyperplanes and P be the set of 2” points in 
Rk obtained from 4 by the interpretation. 

It can now easily be seen that, for each x, the signature of the region in Arr(H) in 
which the point &(x) of P lies is the xth row of F. Therefore, the arrangement 
Arr(H) satisfies the matrix F. 

In the other direction, assume that we have an arrangement of 2” hyperplanes in 
Rk which satisfies the matrix F. Let H be the set of these hyperplanes. For each row 
in F, select a point in the region of the arrangement Arr(H) that corresponds to 
that row. Let P be the set of these 2” points. Note that each point in P determines a 
row in F and each hyperplane in H a column in F. By interpreting these points and 
hyperplanes as the appropriate probability vectors, we can obtain a one-way 
protocol to computef: This we do as follows. 
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For each hyperplane a = (a,, a*,..., uk, ak + , ) E H, consider the hyperplane 

a’ = (a, ,..., ak, -ak + r, ak+ r -C:=, ai) in Rk+ 2 which contains the origin. Let 
d= max,(abs(ai)). Let a” = &a’. Note that all the components of a” are in the inter- 
val [-t, 41. Let H” be the set of all these hyperplanes a” in Rk+‘. 

For each point bE P, let d =max(abs(b,), abs(b,),..., abs(bk), l), and let 
b’ = (d’ + b,, d’ + b2,..., d + bk, d’ + 1, d). Note that all components of b’ are non- 
negative and b’ is nonzero. Let b” be obtained by normalizing b’ to 1. Let P” be the 
set of all these points b” in Rk+ 2. 

It is easy to verify that the signature of the region of Arr(H”) in which a point 
b” E P’ lies corresponds to the row of F determined by the point b. Therefore, the 
arrangement of hyperplanes Arr(H”) in Rk+’ which contain the origin satisfies the 
matrix F. Now, the points of P” and the hyperplanes of H” can readily be inter- 
preted as the probability vectors of a one-way protocol of length k + 2 which com- 
putes f since, for each (a,, a2 ,..., ak+ 2) E P” and (b,, b2 ,..., bk + 2) E H”, we have that 
O<aiQ1, -$6b,<$andC~~:ai=1 for l<i<k+2. ,I 

5. APPROXIMATIONS OF MATRICES 

It is possible to give another equivalent characterization using rank 1 real 
matrices. We say that a real matrix E is an approximation of a Boolean matrix F of 
the same order if E[x, y] > 0, when F[x, y] = 1 and fi[x, v]< 0 when F[x, y] = 0. 

THEOREM 3. Let F be the matrix of a functionf Let d be the smallest number 
such that there are d rank 1 matrices pi of order 2” x 2”, and P= Cf= 1 F, is an 

approximation of F. Then 

ri0g dl d z;/< ri0g dl+ 1. 

Proof. Let E be an approximation of F such that fi= Ct=, pii, where each pi is a 
rank 1 real matrix. Since fii is a rank 1 matrix, pi = a’ x biT for some ai, and b’ E R2” 

(biT is the transpose of b’). Let p” = (a;, a; ,..., a;), and q” = (b;, b; ,..., b;). Note that 
E[x,, x,] = (p”, q”‘). Consider the arrangement Arr(H) in Rd, where H consists 
of the hyperplanes q” that contain the origin. The regions of Arr(H) in which the 
points pX lie correspond to the rows of the matrix F. We, therefore, have that the 
arrangement Arr(H) satisfies the matrix F. From this arrangement, we can obtain, 
as in the proof of Theorem 2, a one-way protocol of length d + 2, i.e., a protocol 
with d + 2 messages to compute f: 

Similarly, given a one-way protocol of length d to compute f, we can obtain an 
approximation of the matrix F which is a sum of d rank 1 matrices. 1 

This theorem generalizes a similar result already known for the deterministic 
communication complexity. Mehlhorn and Schmidt [14] showed that the 
logarithm of the rank of the matrix F is a lower bound on the two-way deter- 
ministic communication complexity. As observed by Kumar and Schnitger, if we 
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define the approximation matrix appropriately for each of the models- 
deterministic, nondeterministic, bounded error probabilistic, and unbounded error 
probabilistic-it can be shown that the logarithm of the rank of the approximation 
matrix minimized over all approximation matrices is a lower bound on the two-way 
communication complexity. 

6. A LOGARITHMIC LOWER BOUND 

THEOREM 4. There exists a function f such that rlog, nl d cf< rlog, nl + 1. 

Proof Consider the functionf defined as 

f(x, y) = xth bit of y for O<x<n- 1, 

=o otherwise. 

Let H be a set of hyperplanes in Rd that satisfies the matrix F of the functionf: Let 
F’ be the submatrix containing the first n columns of F. There exists a subset 
H’ E H of n hyperplanes in Rd which satisfies the matrix F’. Since F’ has 2” distinct 
rows, the arrangement Arr(H’) should at least have 2” distinct regions. The number 
of distinct regions in any arrangement of n hyperplanes in Rd is bounded by 
If=,, (1) [4,22]. Hence, d> n. This gives us the required lower bound. 

Since any arrangement of d hyperplanes in general position in Rd contains 2d 
regions, we also achieve our upper bound. 1 

The theorem can be easily extended to yield a complexity hierarchy for 
0 < Z;< ri0g nl. 

7. PROTOCOLS 

In this section, we exhibit a protocol to compute the function equality which 
requires two bits of information transfer and a protocol to compute verification of 
Hamming distance which requires 2 log n bits of information transfer. 

Let the equality function Z be Z(x, y) = (x = y). A protocol for Z can be obtained, 
by finding a set P of 2” points and a set H of 2” hyperplanes in Rd for some d, such 
that the arrangement of these hyperplanes satisfies the matrix of Z and, for each row 
in the matrix of Z, there exists a point p E P which lies in a region of Arr(H) whose 
signature corresponds to the row. Since the matrix of Z contains l’s in the diagonal 
and O’s elsewhere, any set P of points, and any set H of hyperplanes in Rd such that 
each p E P is separated from all the rest of the points in P by a hyperplane in H will 
yield a one-way protocol for equality. We show below that we can find such P and 
H in the 2-dimensional plane. From this, by Theorem 2, we can obtain a one-way 
protocol for equality which uses at most 2 bits of communication. 
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Protocol for Equality. 

The idea is that the points of P are located in the first quadrant of R* on the cir- 
cumference of unit circle with origin as its center. To separate a point from the rest, 
we take a slightly displaced tangent to the circle at that point. The sets P and H are 
given below. Let 

p = 42” + ’ and 6 = P/2, 

P={(cos$,sini~)~O<i<2”-1) 

H={(cosi&sin$,cos6)lOdi<2”-1). 

It is easy to verify that P and H have the desired properties. 
In fact, we can obtain a one-way protocol for equality which uses only three dif- 

ferent messages and we cannot do with less than three messages. Similarly we can 
show that there exists a protocol for the function “greater than or equal to” which 
exchanges only one bit. 

Protocol for VeriJication of Hamming Distance. 

Let hd, for some do (0, l,..., n}, be such that h,(x, y) = 1 iff the Hamming dis- 
tance between x and y is d. The following protocol computes h, for d= n/2 with 
2 log n bits of information transfer. Protocols for other d can be devised similarly. 

Processor P, sends two bits of its input x along with their addresses. Each pair of 
positions is equally likely to be selected. At P, , after these two bits are received, one 
of the two following events, Event 1 or Event II, occurs such that the Event I hap- 
pens with probability l/n. 

Event I. Output 1 if the Hamming distance between the two bits received and 
the corresponding bits of y is 1; output 0 otherwise. 

Event II. Output 1 with probability 

( -- 1 (n-2)(n+2) -- 1 

2 2n*(n - 1) n4 )i( ) 
1-i 

n ’ 

It can be verified that this protocol indeed computes the function hn,*. 

8. A LINEAR LOWER BOUND 

In this section, we show that almost all functions have linear probabilistic com- 
munication complexity (due to Alon, Frankl, and Rodl). This result follows from 
an upper bound of Goodman and Pollack [9] on the number of equivalence 
classes (under order equivalence relation) of simple configurations of points in Rd 
and our characterization of probabilistic communication complexity in terms of 
arrangements of hyperplanes. An improved counting argument can be found in [2]. 
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THEOREM 5. For almost all jiinctionsf: (0, 1 }” x (0, 11” + (0, 1 }, 

iZf> n/2 - log n/2. 

This proof is adapted from [a]. 

Prooj Let F be the matrix of a functionJ F can be viewed as a family of 2” sub- 
sets of the set (O,..., 2”- 1 }. Note that if F (the family of subsets represented by F) 
is realizable in Rd by the points aO,..., a2”- i and hyperplanes ho,..., h,.- i, then it is 
also realizable by a; ,..., a;._, and the same h;s, whenever ai is sufficiently close to 
aj. Hence, we can assume that the points aj of a realization are in general position in 
Rd. A set of points in Rd is said to be in general position if no hyperplane in Rd con- 
tains more than d of these points. We now define two equivalence relations on con- 
figurations of points in general position in Rd. 

Two ordered sets pi ,..., pk and qi ,..., qk of points in general position in Rd are 
equivalent, if they can be partitioned by hyperplanes in precisely the same way, i.e., 
there exists a hyperplane h separating pi, ,..., pjr from the rest of the pi’s if and only if 
there exists a hyperplane h’ separating qi,,..., qj, from the rest of the qis. 

A sequence p0 ,..., pd of points in Rd with pi = (pii ,..., pid) is said to have positive 
orientation if 

det(pV) > 0 

where pi0 = 1 for each i. The order type of an ordered set of points pr,..., pk in 
general position in Rd is the set of all d+ l-tuples j, <j2 < . . . < jd+ , such that the 
sequence pj,, pi2 ,..., pjd has positive orientation. 

It is easy and well known that pi,..., pk and qi,..., qk have the same order type, 
then they are equivalent. Recently, Goodman and Pollack [9] obtained the 
asymptotically best possible upper bound on the number of order types of k labeled 
points in Rd using a result of Milnor [ 15 J on real algebraic varieties. They prove 
that the number of order types (and hence the number of equivalence classes) of k 
labeled points in Rd is at most kdCd+ I) k. 

We now bound the number of families of m subsets that are realizable by a con- 
figuration of points in general position in Rd. From [22], we know that the number 
of partitions of k points in Rd into two disjoint subsets separated by a hyperplane is 
at most Cf=‘=, (k; I). Therefore, the number of families of m subsets of { 1,2,..., k} 
realizable in Rd is at most (2CyC0 (kr l))m. Therefore, from the result of Goodman 
and Pollack, the total number of families of m of { 1, 2,..., k} that can be realized by 
k points in Rd is no more than 

Since the total number of families of m subsets of (1,2,..., k} is ($), the theorem 
folIows. 1 
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9. A LOWER BOUND FOR ~-TAPE PROBABILISTIC TURING MACHINES 

Consider the unbounded error l-tape probabilistic Turing machines. We first 
prove a “bottleneck” lemma which states that an information transfer bottleneck 
exists in a “short” region of the tape. Using this and the logarithmic lower bound 
on the probabilistic communication complexity, we establish an Q(n log n) bound 
on the time of certain l-tape probabilistic Turing machines. 

In a probabilistic Turing machine, the next state is determined by not only the 
current state and the contents of the cells scanned by the heads but also the out- 
come of an unbiased coin toss. The concatenation of the outcomes of the coin 
tosses during a computation obtained by representing heads by 1 and tails by 0 is 
called a guess string. The probabilistic machines we consider have only finite com- 
putations. A probabilistic Turing machine M is said to accept (reject) a string x in 
time t if M stops after at most t steps in all computations with input x and the 
probability of the event, “M, started in its initial configuration with input x, will 
enter an accepting (rejecting) configuration” is greater the 4 [7]. A l-tape 
probabilistic Turing machine is a probabilistic Turing machine with a single one- 
way infinite tape. 

Let M(x, g) denote the deterministic computation of M with input x and guess 
string g. To obtain our results, we need to consider crossing sequences in M(x, g) 
and a “cut and paste” lemma. 

A crossing sequence is a maximal list of states that occur at a boundary in a com- 
putation. We require that the last state in this list is either an accepting or a 
rejecting state. This requirement can be satisfied if the Turing machine makes a 
sweep over the nonblank portion of its work tape, once it accepts or rejects. Let 
CS(x, g) denote the set of all crossing sequences (along with the boundaries at 
which they occur) that occur in M(x, g). More precisely, for in N, and 4, a 
sequence of internal states of M, (i, 4) E CS(x, g) iff 4 is the crossing sequence that 
occurs at the boundary of tape cells i and i + 1 in M(x, g). The length of a crossing 
sequence (i, S) is the length of the sequence 4. It is clear that the time of the com- 
putation M(x, g) is at least &i,4)ECS(X,gJ 141. 

LEMMA 1 (cut and paste lemma). Let x=xIx2x3 be an input to M with guess 
stringg. Let CS(x, g) be the corresponding set of crossing sequences. Let the crossing 
sequences at the boundaries of x,, x2 and x2, x3 be identical. Then, there exists a 
guess string g’ such that the set of crossing sequences CS(x, x3, g’) corresponding to 
the computation M(x, x3, g’) is given by 

(6 4) E CS(x, x3, g’) iff (i, 4) E CS(x, g) and id Ix,l 

or (i+ IxA, 4) E CSb, 8) and i> /x,1. 

Proof: The guess string g’ can be obtained by cutting and pasting the guess 
string g appropriately. 1 
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We now formulate and prove the bottleneck lemma. Let M be an unbounded 
error probabilistic Turing machine which recognizes a certain language containing 
strings of the form x # “y, for some k E IV, x,y~ (0, l}*. Let x#“y be an input to 
M, such that 1x1 = n and lyl = m. Let the portion of the tape which contains the 
#‘s of the input be called the bridge for inputs of the form x # “y. The length of a 
bridge is the number of tape cells in it. Assume, for all guess strings g, the time 
spent by M(x# “y, g) in the bridge is less than Ek log k, for all sufficiently large k, 
m, and n; E is a constant less than 1 and can be chosen to be sufficiently small. 

Let CS(x# “y, g) be the set of all crossing sequences in the computation 
M(x# “y, g). A crossing sequence of CS(x# “y, g) is long if its length is at least 
CE log k, for a suitable constant c > 1. Otherwise, a crossing sequence is short. It is 
clear that the number of long crossing sequences in the bridge is at most l/c k. 

A d-bottleneck is a region of ks consecutive tape cells in a bridge of length k such 
that a short crossing sequence exists in this region. 

LEMMA 2 (bottleneck lemma). For all 6 and g, there exists a b-bottleneck in the 
computation M(x# “y, g), for all sufficiently large k, m, and n, provided E and c are 

chosen appropriately. 

Proof: Consider the bridge. There are at least (1 - l/c) k short crossing sequen- 
ces in the bridge. Note that the total number S of distinct short crossing sequences 
is at most 1 Q 1 ‘&log k, where Q is the set of internal states of M. By applying the cut 
and paste lemma to the short crossing sequences of the bridge successively, we can 
obtain a computation of M with input x # k’y, and with some guess string g’ in 
which the number s of short crossing sequences in the bridge is such that S < s d 2S 
Let I be the number of long crossing sequences in the bridge of the resulting com- 
putation M(x# k’y, g’). We have that k’ is at least S + I+ 1 and at most 2S+ 1. 

Since a long crossing sequence is at least CE log k long, the time spent in the 
bridge is at least S + Zcs log k in the computation M(x # k>, g’). By hypothesis, the 
time spent in the bridge is at most 42s + I) log(2S+ I) in the computation 
M(x # k’y, g’). Therefore, we have 

S + ICE log k < ~(2s + I) log( 2s + I) 

which means 

where 6 < 1 can be made to be sufficiently small by selecting c and E appropriately. 
Consider the first I+ 1 crossing sequences in the bridge in the computation 

M(x# “y, g). One of them must be short. Otherwise, we would have I+ 1 con- 
tiguous long crossing sequences in the bridge of the computation M(x# k’y, g’). 
This follows from the fact that these I+ 1 crossing sequences are the leftmost cross- 
ing sequences in the bridge of M(x# “y, g), and from the fact that we applied the 
cut and paste lemma only to short crossing sequences to obtain the computation 
M(x# k’y, g’). This proves the lemma. 1 
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We now use the bottleneck lemma, and the logarithmic lower bound on the 
unbounded error probabilistic communication complexity to prove the following 
lower bound on the time of l-tape probabilistic Turing machines. 

THEOREM 6. Let L=(~#~yIx,y~{0,1}*, kENandbityofxexistsandis l}. 
Then, any l-tape probabilistic Turing machine A4 that accepts L takes Q(n log n) 
steps for an input of length n for infinitely many n. 

Yao [ 191 has obtained an Q(n log n) lower bound on the time required by cer- 
tain l-tape probabilistic Turing machines. However, the definition of acceptance 
used in [19] is more restrictive (the probability of acceptance is bounded away 
from f by a constant) and the proofs use this restriction in an essential way. 

Proof. Consider an input of the form x# “y, where 1x1 = n and 1 yl = log n. 
Assume that the theorem is not true. We can then find a sufficiently small E > 0 such 
that M, with inputs of the form x # “y, always stops within time En log n for all suf- 
ficiently large n. 

By the bottleneck lemma, we can find a J-bottleneck starting from the leftmost 
“#” in the bridge of the computation M(x# “y, g) for all X, y, and g. This 
a-bottleneck contains a short crossing sequence of length at most CE log n. Note that 
the number of distinct short crossing sequences of length CE log n is at most n” for 
some 6’. 6, 6’ < 1 can be selected to be sufficiently small by selecting E and c 
appropriately. 

We use these short crossing sequences along with their adresses in the bottleneck 
to produce a contradiction by obtaining a protocol to compute the functionf of 
Theorem 4 which uses less than log n bits of communication. This is possible since a 
short crossing sequence in the bridge can be specified by less than log n bits. 

More precisely, let K= {(i, 4) 1 1 < id n’, 4 is a sequence of states of length less 
than CE log n and the last state in the sequence 4 is either an accepting or a rejecting 
state}. For each (i, 4) E K, let P”#“~ (i, 4) be the probability that the crossing sequen- 
ce 4 occurs at the boundary of the tape cells n + i and n + i + 1, when M is given the 
input x# “y. p”#“y(i, 4) can be factored into two components: p;(i, S) which 
depends on x and pT(i, S) which depends on y. Let 4 = (qj,, qj *,..., qi,). 

p;(i, 4) is defined as the probability of the computation: “M is given the input 
x# ‘. 4 is the crossing sequence at the boundary of the cells n + i and n + i + 1. Also 
4 is the leftmost short crossing sequence in the bridge. Whenever M crosses the 
boundary of the tape cells n + i and n + i + 1 to the right in state qj,, for some odd 
r’ < r, M crosses the boundary back to the left (for the first time since its entry to 
the right in state q,,,) in state qj,,+, with probability 1. If M crosses the boundary to 
the right in state q,,, it never returns to the left and halts with probability 1.” 

p{(i, 4) is defined as the probability of the computation: “A4 is given the input 
b n+‘#“piy, whe re b is the blank symbol, and M is started in the state qj, with its 
head scanning the first “#” symbol. 4 is the crossing sequence at boundary of the 
cells n + i and n + i+ 1. Whenever M crosses this boundary to the left in state qj,, for 
some even r’ < r, A4 crosses the boundary back to the right (for the first time since 
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its entry to the left in state qj,,) in state qj,,+, with probability 1. If M crosses the 
boundary to the right in state qj,, it never returns to the right and halts with 
probability 1.” 

Note that p”#“y(i, 4) =pg(i, fj)p{(i, 4). 
Since the last state in each crossing sequence occurring in a computation is either 

an accepting or a rejecting one, the probability that M accepts the input x# “y can 
be given by 

c P x#ny(i, 4) = 1 PtXi, 4lpT(i, 4). (44)EK (i.4)EK 
4 is accepting 5 IS accepting 

We now design a one-way probabilistic protocol to compute f in a way similar to 
Theorem 1. Processor P, has the input x E { 0, 1)” and processor P, has the input 
y E (0, l}iog”. For some y # K, Ku {y } is the set of messages transmitted by PO. Let 
K be partitioned into two sets K, and K, such that K = K, u K,. (i, tj) E K, (K,) if 
and only if (I is accepting (rejecting) crossing sequence. Let d: = &, 4)E K,p;(i, tj) 

and d; = &,,EK,p;(i, tj). Let da = max, d;. P,, with input x, sends the message 
(i, 4) E K, with probability (1/2d,) p;( i, q), and the message (i, q)~ K, with 
probability (1/2d;)p;(i, 4). The message y will be sent with probability f( 1 - d;/d,). 

P,, after receiving the message (i, g), outputs 1 with probability pi(i, 4) if 4 is 
accepting, and with probability 1 - 1/2d, if 4 is rejecting. (Note that da is indepen- 
dent of the input at the processor PD.) If P, receives y, it outputs 0 with 
probability 1. 

Therefore, the protocol with inputs x and y outputs 1 with probability 

f-h+& c PiXi, 4) p’;(i, ii). 
u u (i.4)EK 

4 is accepting 

This means the protocol outputs 1 iff M accepts the input x# “y. Therefore, this 
protocol computes the functionf, using less than log n bits of information transfer 
since IK:I < nn for some CI < 1. 1 

10. LINEAR ARRAYS OF PROCESSORS 

A linear array of processors is a sequence of processors P,, PI,..., P, such that 
the adjacent processors are connected by a link or a communication channel. The 
end processors, P, and P,, have the inputs of a functionf which the processors 
cooperate to compute. We are interested in the total amount of communication 
(across all links) needed to compute $ The communication complexity Cj of a 
linear array of k + 1 processors is defined as the total number of bits transmitted 
across all the links between the processors in the worst case minimized over all 
protocols that compute the functionf: Tiwari [ 181 investigated this model and con- 
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jectured that CT and Cj are related by the equation: Cj = kc). (A complete descrip- 
tion of this model can be found in [18].) He partially resolved this conjecture by 
showing that C,, = kc) -k’ (for some k’, 0 6 k’ <k) whenever the lower bound on 
C; is obtained by using one of the general techniques of Lipton and Sedgewick 
[13] or Mehlhorn and Schmidt [14]. 

We note the similarity be%een l-tape Turing machines and linear array of 
processors. Boundaries between tape cells on the tape correspond to links between 
processors, crossing sequences to the sequences of messages exchanged and time to 
the number of bits exchanged over all links. This similarity indicates that bottleneck 
lemma is also applicable to linear arrays of processors. Therefore, techniques of Sec- 
tion 9 can be used to obtain the following corollary which says that an extension of 
Tiwari’s conjecture (up to a multiplicative constant) is true for linear arrays of 
processors in the nondeterministic and the unbounded error probabilistic models. 

COROLLARY. Cr = O(kCj) for the nondeterministic and the unbounded error 
probabilistic models. 

11. CONCLUSIONS AND OPEN PROBLEMS 

Our results start a theory of probabilistic information transfer for unbounded 
error protocols. We provided interesting characterizations, some surprisingly 
efficient protocols, and a nontrivial lower bound. 

It is pleasing that the basic questions about probabilistic information transfer are 
mathematically interesting. Approximations of matrices by matrices of rank 1 (in a 
different metric) play an important role in numerical analysis [8], and the decom- 
position of Euclidean space by hyperplanes is a classical geometric problem [4, 221. 
Our lower bounds follow from the basic properties of these objects. Strengthening 
them would be equivalent to settling certain mathematical problems that are 
interesting on their own. 

The main remaining open problem is to exhibit a function which has 
superlogarithmic lower bound. The lower bound proof of Alon, Frankl, and Rod1 
only says that a random function has linear communication complexity. We have 
done little to settle the problem. On the positive side: consider the problem of 
verifying whether x and y have the Hamming distance d for some dE (O,..., n}. We 
exhibited a protocol with O(log n) information transfer for this problem. Similar 
techniques yield O(log n) protocols for other problems. But, the technique fails for 
the function defined by a Hadamard matrix. We conjecture that this function has 
maximal (linear) probabilistic communication complexity. Proving this, however, 
seems to be difficult. Our logarithmic lower bound proof uses counting of regions in 
Rd: A linear lower bound results from a choice of 2” regions, that would require the 
existence of 22”(“’ other regions in any arrangement of 2” hyperplanes that contains 
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these 2” regions. The choice of orthogonal regions corresponding to the Hadamard 
matrix of order 2” x 2” seems to be a suitable one, and hence the conjecture. 
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