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Abstract

The purpose of this work is to present an overview of the class of problems solvable

in probabilistic polynomial time with double sided error (PP ). We explore the

relationship of PP to other complexity classes, in particular NP and the polynomial

hierarchy, and discuss closure under some standard operations such as intersection

and complementation. New proofs are given of some results from the literature

using techniques developed by the author.
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Chapter 1

Introduction

In computational complexity theory, a problem is said to be tractable if there exists

an algorithm running in polynomial time on a deterministic Turing machine that

solves it [Ed65]. Such problems are known as the class P of problems.

Given a decision problem such that for each positive instance there exists at

least one polynomial length string (certificate) from which a correct solution can

be derived, it is natural to ask whether there exists any structure to the problem

that can be used to find the solution or the certificate string any faster. The

problems with a polynomial length certificate form the class NP .

With the introduction of probabilistic Turing machines by Gill [Gil74], several

new classes of problems involving probabilistic computations were defined, notably

BPP and PP . Briefly, a problem is in BPP if the solution to a given instance can

be guessed with more than 75% confidence, and a problem is in PP if the solution

can be guessed with more than 50% confidence.

Another class which is closely related to PP is the class #P of problems with

polynomial length certificates together with a count of the number of certificates
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CHAPTER 1. INTRODUCTION 2

for the string. #P is a counting analogue to NP .

For a given instance, a problem in NP (or #P ) can be solved in exponential

time by generating all posible strings of polynomial length and verifying (counting)

if there is a certificate (how many there are). Sucessful guesses of certificates are

called accepting computations.

It can be said that PP is the weakest class of problems that can be approximately

solved in the intuitive sense of the word. Intuitively, it seems that any problem not

in PP will take more than polynomial time to be solved. From this point of view

it is interesting to know how well-known classes of problems relate to PP . Along

this line we show that, among other relations, P ⊆ PP and NP ⊆ PP (Chapter 3).

The subtle differences between the definitions of P , BPP , and PP lead into

classes believed to be far apart, though at this time it is not known if any of the

containments P ⊆ BPP ⊆ PP is proper.

A problem L is said to be complete for a class if it belongs to the class and if L is

tractable then any other problem in the class is tractable as well. To illustrate some

ideas behind each of these classes, we define some properties, give a few problems

and locate the smallest of these classes which they are known to belong.

• 2-SAT is the set of conjunctions of 2-clauses (clauses with two literals) that

have a satisfying assignment.

• Linear Programming consists of a list of linear inequalities (restrictions)

on a set of real-valued variables and a linear function (target). The goal is to

find an assignment to the variables that simultaneously satisfy the restrictions

and maximize the value of the target function.

• ZERO is the set of polynomial expressions which are identically zero.
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• SAT is the set of boolean formulae which have an assignment rendering them

true.

• MAJ-SAT is the set of propositional formulas satisfied by a majority of their

interpretations.

• #SAT is the set of pairs 〈i, F 〉 such that the propositional formula F has

more than i satisfying interpretations.

• Permanent. Let A be an n × n matrix. The permanent of A is defined

as Perm A =
∑

σ∈Υ

∏n
i=1Ai,σ(i) where Υ is the set of n! permutations of

(1, 2, . . . , n).

From Cook’s theorem it follows that 2-SAT is P−complete and SAT isNP−com-

plete [Coo71]. Khachian showed that Linear Programming is in P . ZERO is in

BPP , though is not known to be complete for the class. Similarly, Simon [Sim77]

showed that MAJ-SAT and #SAT are PP complete by noting that several many-

one reductions for NP problems preserved the number of accepting computations.

For the #P class, Valiant found that computing the permanent of a matrix is a

complete problem. This shows that counting the number of accepting computations

is a characterization of an interesting class.

These probabilistically solvable classes capture the intuitive idea of many prob-

abilistic approximations to real life problems. For instance, betting schemes should

ideally be in PP , and solutions given by a MonteCarlo method in BPP .

We can define NP in terms of #P as the languages for which the number of

accepting computation is at least one. Similarly PP is, in terms of #P , the set

of languages for which the majority of the computations are either accepting or

rejecting, depending upon whether the string is or is not in the language.



CHAPTER 1. INTRODUCTION 4

Concepts and results are introduced on the oncoming chapters under the scheme:

In the following chapter (2) we define concepts required for the better under-

standing of this essay.

In chapter 3 we prove P ⊆ PP and NP ⊆ PP using the new ideas of penalty

trees and functions.

Then it is shown that PNP [O(logn)] is in PP (Chapter 4). A new direct proof

based upon the techniques of chapter 3 is given. Another simpler proof shows that

the set of languages truth-table reducible to NP is contained in PP (Wagner has

shown that PNP [O(logn)] is equivalent to the set of languages truth-table reducible

to NP ).

In chapter 5 we study closure properties of PP under truth table reductions

[BRS90] [For90].

Finally we discuss the result that the PP set of languages is at least as powerful

as the polynomial hierarchy (Chapter 6), in other words, PH ⊆ P PP [Tod89].



Chapter 2

Preliminaries

In this essay we use freely the concepts of Turing machine (TM), nondetermininistic

Turing machines (NDTM), computation path and computation tree (for nondeter-

ministic and probabilistic machine). A computation path is determined by the se-

quence of configurations taken by a DTM along a computation, and a computation

tree is the equivalent concept for NDTM’s. The branching nodes of a computation

tree correspond to configurations where the NDTM is in a guess state, and the

branches represent each of the possible outcomes of the guess. For a more formal

definition of these terms the reader is referred to the standard literature [AHU74],

[HU79].

Probabilistic classes have as a model of computation the probabilistic Turing

machine, which is a variation on the concept of nondeterminism. More formally,

Definition 1 . A probabilistic Turing machine (PTM) is a Turing Machine with

distinguished states called coin-tossing states. For each coin-tossing state, the finite

control unit specifies two possible next states. The computation of a probabilistic
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CHAPTER 2. PRELIMINARIES 6

Turing machine is deterministic except that in coin-tossing states the machine tosses

an unbiased coin to decide between the two possible next states.

Similarly to nondeterminism, the computation trace of a PTM can be repre-

sented as a tree rooted at the starting state and with final states as leaves. Coin-

tossing states are those nodes of the computation tree with two children. All other

states make for nodes with one child. Any final state is either accepting or reject-

ing. In nondeterminism, an NDTM has as possible set of computations a tree of

computation paths. If at least one of these paths leads to acceptance then it is

said that the NDTM accepts the input string. Similarly for PTM’s we have the

following definitions:

Definition 2 . The probability of a computation path of a PTM is given by 2−m

where m is the number of coin tossing states in the path.

Thus, the probability of acceptance is naturally defined as the sum of the prob-

abilities over all the accepting paths. We can now introduce the class of problems

that can be solved in probabilistic polynomial time :

Definition 3 . The probabilistic polynomial (PP ) class is the set of languages L for

which there is a PTM M running in poly-time such that for all words x,

(a) x ∈ L⇒ Pr(x is accepted) > 1/2,

(b) x 6∈ L⇒ Pr(x is rejected) > 1/2.

Requiring the majority of the answers to be correct is a natural idea. But if the

correct solution is given with a probability close to 1/2 it is hard to differentiate

the incorrect solution from the correct one. This gives way to a more restrictive
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definition that is also frequently used in real life: bounding away from 1/2 the error

margin of the solution.

Definition 4 . The bounded probability polynomial (BPP ) class is the set of lan-

guages L for which there is a PTM M running in poly-time and some constant

ε > 0 such that for all words x,

(a) x ∈ L⇒ Pr(x is accepted) > 1/2 + ε,

(b) x 6∈ L⇒ Pr(x is rejected) > 1/2 + ε.

Clearly, BPP ⊆ PP since 1/2 + ε > 1/2 for ε > 0.

This definition can be modified and still give the same complexity classes. In

particular, for BPP any constant ε ∈ (0, 1/2) gives the same class as the previous

definition [Zac79]. For the PP class we can also modify the definition to be the set

of languages with a poly-time PTM such that Pr(correct answer) > 1/2 + ε(n),

provided that ε(n)−1 = Ω(2p(|x|)) where p(·) is a polynomial bound on the time

taken by the PTM machine.

Note that in the definitions of PP and BPP we require that the probability of

computing the correct answer for each string to be greater than a bound. On the

other hand, we could think about amortizing the probability of making a mistake

over all the possible inputs or over all the possible inputs up to a certain size. A

drawback of this approach is that if the majority of strings in Σ∗ are in L, the

trivial algorithm which always accepts its input will qualify as a probabilistic way

to solve this problem. Other possible modifications on the probabilistic bounds of

the previous definitions determine more restricted classes of problems.

We may define a class in terms of the exact number of accepting computations.

For this we need to augment the machine model in an appropriate manner.
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Definition 5 . A counting Turing machine (CTM) is a standard nondeterministic

TM with an auxiliary output device that, for a given input, prints in binary notation

on a special tape the number of accepting computations induced in the computation

tree defined by that input.

A counting Turing machine M , apart from recognizing a language, computes a

function f , with output on the auxiliary device, from the strings over the alphabet

Σ into the number of accepting computations of the CTM. Thus a string x is in

the language recognized by M if and only if f(x) ≥ 1.

Definition 6 . #P is the class of functions that can be computed by counting TMs

in polynomial time [Val79]1.

BPP and PP can also be defined in terms of counting Turing machines and

#P .

Definition 7 . A Turing machine is balanced if all the computation paths over a

string x are of the same length, and moreover each state is a guess/coin-tossing

one.

Any TM running in polynomial time can be converted into a balanced TM,

by adding a clock to count the time taken and, if the machine is nondeterministic

or probabilistic, making every state a guess or coin-tossing state. Adding a clock

increases by a polynomial amount the time taken by the TM. The outcome of new

guess/coin-tossing states can simply be ignored by the TM.

1#P is read as number P or sharp P. Recently, number P seems to be the predominant way.
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Definition 8 . The class of problems PP is the set of languages L for which there

is a balanced CTM M running in exactly p(|x|) time, for some polynomial p, and

computing the function f , such that for all words x ∈ Σ∗,

(a) if x ∈ L then f(x) > 2p(|x|)−1,

(b) if x 6∈ L then f(x) < 2p(|x|)−1.

The definition for BPP in terms of #P is analogous.

Another type of Turing machine that is frequently used is an oracle Turing

machine (OTM). An OTM formalizes the idea of free information that could come

from a variety of sources, like preprocessed data or expert advice from a human

operator.

Definition 9 . An oracle Turing machine (OTM) consists of a standard TM aug-

mented by means of an oracle with an additional oracle tape. An OTM has a special

query state, where the oracle, in one step, reads the oracle tape, decides whether the

string written in the oracle tape is in its language or not and writes 1 if the string

is in the oracle language and 0 otherwise. Thus, the language accepted by the TM

is a function of the oracle language.

The role of key information given along the computation path has been inten-

sively studied. Such information may turn out to be mostly useless for a class of

problems but really helpful for a similar class.

An oracle may represent a constant time subroutine call or access to a fixed

database, and the oracle answer representing the value of the computation or a

successful/unsuccessful lookup.
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An oracle Turing machine, making computations of type B, (where B can be

any of the classes previously defined, such as P or NP ), and asking questions of an

oracle with language L is denoted as BL.

As an example of this strange phenomenon, known as relativization, we have

that there exist oracles A and B such that PA = NPA but PB 6= NPB [BGS75].

Clearly, an OTM running on polynomial time can make at most polynomialy

many calls to the oracle. Restricting such OTM to make a lesser number of calls

to the oracle seems to alter the power of the OTM and thus leads to different

classes of problems. Thus, we denote as BL[k] the set of languages accepted by B

computations with at most k questions to an oracle L.



Chapter 3

Relations between P , NP , and PP

The power of the class PP can be analyzed by comparison with other classes.

Demonstrating containment of a class by another is interpreted as a relation of

powerfulness with the former class being weaker than the latter.

Since any deterministic Turing machine (DTM) is a PTM with no coin-tossing

states, we have the following results.

Theorem 1 . P ⊆ BPP ⊆ PP .

The relationship between nondeterministic and probabilistic Turing machines is

not so easily observable. At a first sight, the concept of solving a problem unequiv-

ocally, with the use of nondeterminism to avoid a possible exponential computation

(NP ) looks a stronger requirement than obtaining just a probabilistically correct

solution in polynomial time. But at a more formal level, the relationship is not so

evident. Let us recall that an NDTM accepts a string x if at least one computation

path accepts x; similarly x is rejected if no computation path accepts x. On the

other hand a PTM accepts/rejects a string x if the majority of the computations

11
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paths accept/reject x. Apparently the latter condition is stronger than the former.

The following theorem resolves this situation.

Theorem 2 . NP ⊆ PP .

Proof. The idea behind this proof is that a known polynomial imbalance in

the probabilities of the correct answer can be corrected in polynomial time. That

is, an NP machine is equivalent to a PTM machine computing correct acceptance

with at least 1/2p(n) probability, and rejecting with probability one when correct.

So the probability of correct acceptance has to be increased to over 1/2.

Let M be an NDTM machine, and let L(M) be the language accepted by M

in time p(|x|) over input x, where p(·) is a polynomial. Without loss of generality,

assume that M is a balanced NDTM, over the alphabet {0, 1}. We construct a

modified balanced PTM M ′ from the machine M as follows: replace each of the

guessing states by a coin tossing state, with the outcome of a coin toss corresponding

to a guess. Each terminal node of the computation tree of M over a string x with

n = |x| is reached with probability 1/2p(n). A further computation is carried out

at each such leaf, which will no longer be terminal in M ′. If the terminal leaf of

M is rejecting, then the machine will toss a coin q(n) times, where q(n) is a a

polynomial no smaller than p(n). If not all of these q(n) tosses are heads, then the

machine tosses a coin and accepts/rejects x upon the outcome of the last coin toss.

If all the q(n) coin tossings are heads, it throws a coin and rejects x regardless of

the outcome. On the other hand, if the terminal leaf of M is accepting, then the

machine tosses q(n) + 1 coins and accepts regardless of the outcome (this is done

to maintain balance, so that computing the probability of acceptance reduces to

counting accepting leaves). This concludes the description of M ′.
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From the definition of M ′, the probability of rejecting a string that is not in the

language L is,

Pr(x is rejected | x 6∈ L) =
2p(n)(2q(n) + 1)

2p(n)+q(n)+1

=
1

2
+

1

2q(n)+1

and the probability of accepting a string in L is at least,

Pr(x is accepted | x ∈ L) ≥
(2p(n) − 1)(2q(n) − 1)

2p(n)+q(n)+1
+

2q(n)+1

2p(n)+q(n)+1

=
1

2
+

2q(n) − 2p(n) + 1

2p(n)+q(n)+1

> 1/2 since q(n) ≥ p(n)

implying that the language L is in PP . 2

We call the function q(n) a penalty function over the computation path, since

it reduces the probability of keeping a result obtained during the computation. We

will use penalty functions again in chapter 4.



Chapter 4

Containment of PNP [O(log n)] in PP

As defined in chapter 2, an oracle Turing machine is a standard Turing machine

with the special power of asking questions to an oracle. In this particular chapter

we focus on a polynomial time DTM, with O(log n) queries to an NP oracle.

The capability of accessing an oracle can be used for many different purposes.

For instance, a PNP [O(logn)] machine can use theNP oracle to solve a co–NP problem

or to make a binary search of an NP property over the vertices of a graph under a

particular ordering.

There are several natural problems known to be in PNP [O(logn)]; among these

we have UOCOLORING (unique optimum graph coloring), UOVCOVER (unique

optimum vertex cover), and UOASAT (unique optimum assignment satisfiabil-

ity) [Kad89]. Some not so natural problems are known to be complete for the

PNP [O(logn)] class; most such problems involve counting the number of solutions (as

shown by Krentel [Kre88]). A complete problem for the PNP [O(logn)] class similar

to SAT is the TREE-SAT problem.

A TREE-SAT is a string representing a balanced labeled tree with nodes labeled

14
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with strings representing SAT instances, edges labeled 0 or 1, and leaves labeled

accept or reject. A particular TREE-SAT instance is accepted if following a path

according to the answers to the SAT instances on the nodes of the path given by a

SAT oracle leads to an accept leaf of the tree.

The importance of this class has been pointed out by work of Kadin [Kad89],

Krentel [Kre88] and Papadimitriou [Pap84]. Among other results, it has been shown

that under some conditions the polynomial hierarchy can collapse into PNP [O(logn)]

and no further.

In 1988 Hemachandra et al. proved, using concepts and ideas of #P functions,

that PNP [O(logn)] ⊆ PP [BHW89]. Toda, using a combination of simulation tech-

niques and technical properties of #P functions, simplified the proof given by

Hemachandra [Tod88].

In this chapter we give a new direct proof based on direct simulation of a

PNP [O(logn)] by a PTM machine.

Theorem 3 . PNP [O(logn)] ⊆ PP .

Recall that the i-th question to the oracle is of the form Is the string yi in

the language of the oracle?. The oracle answer is either 1 meaning yes, or 0

meaning no.

To prove PNP [O(logn)] ⊆ PP , we emulate the precise deterministic computation

of the P machine until a query to the oracle is made. At that point a probabilis-

tic approximation to the answer of the oracle is computed by the PTM machine.

To avoid compounding the probability of making a mistake, the PTM machine

suspends the computation with high probability.

During the simulation of the PNP [O(logn)] machine by a PP machine the possible

answers to a question to the oracle are:
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• sure yes, in which case the answer of the oracle is 1,

• perhaps no, in which case the answer of the oracle is 0, and

• quit, in which case the computation is aborted with a 1/2 probability of

acceptance and 1/2 of rejecting.

A sure yes is obtained when the PTM machine rightly guesses the accepting

computation path of a string yi in the language of the oracle. Perhaps no is the

result of guessing a rejecting computation path for the string yi. Since the oracle is

an NP language, the PTM cannot be certain that yi is not in the language. Quit

is a branch taken to represent the uncertainty on a perhaps no computation of the

PTM machine.

The idea of penalty functions altering the outcome of a computation, as defined

in chapter 3, can be further extended to penalty trees.

Definition 10 . A penalty tree is a balanced tree attached to the end of an specific

computation path. In the penalty tree all but two leaves are the result of a coin-

tossing deciding whether to accept or reject the input and halting the computation

(quit branches); the other two leaves are in the same state as the computation path

was before the penalization.

Without loss of generality we assume that l(n) = O(log n) questions are always

made on input of length n. Thus, we need to embed in the PTM simulation of

the computations of M counters for the number of steps and queries to the oracle

made by the PTM simulation of the P machine. Whenever those counters exceed

the predetermined polynomial time set for the PTM or the O(log n) queries, the

computation needs to be halted with equal probability of accepting/rejecting the

input string.
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For the purposes of this chapter, we denote the time taken by a PNP [O(logn)]

Turing machine M as p̂(·). In particular p̂ bounds the length of the query strings

yi. Similarly the time taken by an NP machine accepting the language of the

oracle is denoted as p(·). And preserving the notation of chapter 3, q(·) represents

a penalty function as in theorem 2. The input of the machine M is a string x of

length n.

To simplify the calculation of probabilities we number the questions to the oracle

from l(n) down to 1.

Lemma 1 . The i-th question to the oracle Is yi ∈ L(NP )? can be replaced by a

PTM computation tree of polynomial length p(ni), ni = |yi|, with the property that

if the answer to the question is yes then

Pr(sure yes) =
ai

2p(ni)

≥
1

2p(ni)
for 1 ≤ ai ≤ 2p(ni)

Pr(perhaps no) =
bi

2p(ni)22iq(p̂(n))

≤
2p(ni) − 1

2p(ni)22iq(p̂(n))

<
1

22iq(p̂(n))
for 1 ≤ bi ≤ 2p(ni) − 1

Pr(quit) = 1− Pr(sure yes)− Pr(perhaps no)
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On the other hand if the answer is no then

Pr(sure yes) = 0

Pr(perhaps no) =
1

22iq(p̂(n))

Pr(quit) = 1− Pr(sure yes)− Pr(perhaps no)

Proof. Let ai be the number of accepting computations of the NP machine on

input yi and bi the number of rejecting computations. Modify the proof of theorem

2 with a penalty polynomial q̂(n) = 2iq(p̂(n)), and the result trivially follows. 2

Now we have the tools to prove Theorem 3.

Proof(Theorem 3). Given the computation path of the PNP [O(logn)] machine

M , we construct a PTM machine M ′ replacing each of the questions to the oracle

with the construction of lemma 1. We want to prove that the machine M ′ will give

the correct answer with more than 1/2 probability.

Since the computation path of M is deterministic, given the answers to oracle

questions, a sequence of correctly guessed oracle answers by the PTM machine will

lead deterministically into correctly accepting or rejecting the input string.

Hence, the probability of accepting or rejecting correctly the input string of

the PNP [O(logn)] machine is at least the probability of guessing the correct sequence

of oracle answers plus the probability of quit with correct decision computations.

Similarly, the probability of incorrectly finishing the computation is at most the
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probability of guessing incorrectly the answers of the oracle plus the probability of

quit with incorrect decision computations.

We claim that Pr(correct answer) > Pr(incorrect answer), which together with

Pr(correct answer) + Pr(incorrect answer) = 1, implies Pr(correct answer) > 1/2,

as required by the definition of PP .

Now we compute the correct answer worst case probability.

On input x there is a sequence of l(n) questions to the oracle, and even a

single incorrect answer from the PTM simulation of the oracle may result on a

computation of the PNP [O(logn)] machine M with the incorrect answer. We make

the pessimistic assumption that only the correct sequence of answers from the oracle

lead into accepting (if x ∈ L(M)) or rejecting (if x 6∈ L(M)) properly.

This assumption is justified, because if we make a mistake (or many) and still get

the correct solution then the probability of obtaining the correct solution increases.

Let br,s denote the event that questions r through s inclusive are asked an the

correct answer is computed (guessed). Let br,s denote the event that questions r

through s are asked and an incorrect answer is computed for at least one of them.

Denote by Pr(br,s) the probability of computing the correct answer to oracle

queries from question r until s inclusive where r ≥ s (recall that questions are

numbered in reverse order)

The probability of halting the computation of M ′ with the correct answer is at

least Pr(bl(n),1)+Pr(quit with correct decision). Similarly, the probability of halting

with an incorrect answer is, at most, Pr(bl(n),1) + Pr(quit with incorrect decision).

Furthermore, from the construction of the PP simulation it follows that,

Pr(quit with correct decision) = Pr(quit with incorrect decision)
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since the PP machine tosses a coin before quitting evenly deciding the result of the

computation upon the outcome of the coin tossing. But we want to show that the

probability of halting with the correct decision is greater than the probability of

doing the opposite. Therefore it suffices to show that Pr(bl(n),1) > Pr(bl(n),1).

Let us estimate the values of the left and right side of the previous inequality.

Lemma 1 implies that if a sequence of guessed answers to the oracle is incorrect, the

first mistake was necessarily made in a question which had yes as correct answer.

Hence, either there is a question with correct answer 1 or Pr(bl(n),1)=0.

Let the correct answer to the k-th question be 1. Assume that the first l(n)− k

answers from the oracle were computed correctly. When guessing an answer to the

k-th question to the the oracle, because of lemma 1, M ′ guesses a correct answer to

it with probability at least 1/2p(nk) and errs with probability at most 1/22
kq(p̂(n)).

Thus, we have that the probability of an incorrect result of a complete com-

putation of M ′ given that the first mistake was made in the k-th question is, at

most,

Pr(incorrect answer | bl(n),k+1 ∧ bk,k) ≤ Pr(bl(n),k+1)Pr(bk,k)

≤ Pr(bl(n),k+1)
[

1

22kq(p̂(n))

]

(4.1)

That is, the probability of the first (l(n) − k)-th correct answers times the

probability of an incorrect 0 on the k-th question.

For the probability of obtaining the correct sequence of l(n) answers from the

oracle we have,

Pr(bl(n),1) ≥ Pr(bl(n),k+1)
[

1

2p(nk)

] k−1
∏

i=1

Pr(bk−1,1)
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≥ Pr(bl(n),k+1)
[

1

2p(nk)

] k−1
∏

i=1

1

22iq(p̂(n))
(4.2)

This is the probability of the first (l(n)−k)-th answers being computed correctly,

multiplied by the probability of a correct 1 on the k-th question, multiplied by the

worst case probability of the remaining k − 1 questions.

So we have,

Pr(bl(n),1) ≥ Pr(bl(n),k+1)
[

1

2p(nk)

] k−1
∏

i=1

1

22iq(p̂(n))
from (4.1)

= Pr(bl(n),k+1)
[

1

2p(nk)

] [

1

2(2k−2)q(p̂(n))

]

= Pr(bl(n),k+1)
[

1

22kq(p̂(n))

]

[

22q(p̂(n))

2p(nk)

]

≥ Pr(bl(n),k+1)Pr(bk,k)
[

2q(p̂(n))
]

by (4.2) and choice of q

We have shown that the probability of M ′ obtaining the correct answer is much

more than the probability of M ′ making a mistake on the k-th question. It follows

that the probability of making a mistake is at most l(n) · (1/2q(p̂(n))) · Pr(bl(n),1)

which is smaller than the probability of obtaining the correct answer, as required,

for the appropriate polynomial q(n). 2

Toda extended this result to P machines with a restricted number of positive

answers from an NP oracle [Tod88]. Formally, let Q(M,x,A) denote the set of

queries made by a DTM machine M with input x to the oracle A.

Lemma 2 . If for all x, |Q(M,x,A) ∩ A| ≤ log n, then MA ∈ PP .

Now we prove that the set of languages which are truth-table reducible to NP

is contained in PP and, as a corollary, PNP [O(logn)] ⊆ PP .
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Let us define truth-table reducibility. Denote as χ
L
(x) the characteristic func-

tion of the set L.

Definition 11 . A language A is truth table reducible (tt-reducible) to a language

B if there exists a polynomial time computable function g mapping an input x to

the strings y1, . . . , yk and another polynomial time computable function f mapping

{0, 1}k to {0, 1} such that x ∈ A if and only if f(χ
B
(y1), . . . , χB

(yk)) = 1.

In simple terms, a language A is tt-reducible toB if, for any instance of A, we can

effectively and explicitly determine, before any query to B is made, a polynomial

number of queries and a polynomial time formula which tell us how each possible

combination of answers to those questions about B determine the answer to the

instance of A [Rog67].

If a class C of languages is contained under truth-table reductions in another

class E, then E contains the class PC[O(logn)]. (The class of languages accepted

by a DTM with O(log n) questions to a C oracle). This can be easily seen by

noticing that there are 2O(logn) possible queries/computations which altogether can

be simulated in polynomial time. Thus, the effect of each possible combination of

answers can be encoded in a polynomial length boolean formula (provided for us

by Cook’s Theorem [Coo71]) before any question is made.

Theorem 4 . Let A be a language truth-table reducible to NP . Then A is in PP .

Proof. Since A is truth table reducible to NP , there exists a PNP Turing

machine M1 accepting A in polynomial time p(·) and asking a predetermined set

of questions of the form Is yi in the language of the oracle? to the NP oracle.

Let M2 be a balanced NDTM that accepts the language of the oracle in polynomial

time t(·) (wlog we assume that t is an increasing function).
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On input x with n = |x|, we simulate the computation of M1 with a PTM as

follows :

• Compute the sequence of queries to the oracle 〈y1, y2, . . . , yk〉.

• For each query to the oracle compute the answer to it using a probabilistic

emulation of M2 (as in lemma (1)) with a penalty tree of depth q(n) + 1

where q(n) > p(n)t(p(n)) + p(n). The probability of a computed accept

given that yi is in the language of the oracle is at least 1/2t(|yi|). Analo-

gously, the probability of a computed reject given that y 6∈ L(M2) is equal to

2t(|yi|)+1/2t(|yi|)+q(n)+1 = 1/2q(n).

• In those cases where the answer to the oracle query was decided by a single

coin tossing (random halts), the PTM halts the simulation of the computation

of M1, accepting or rejecting the input string x upon the outcome of a final

coin tossing.

• In all other cases, the computation continues, keeping as answer to the oracle

query the output of the probabilistic simulation.

Notice that apart from the questions to the oracle, the computation of a PNP

machine, is deterministic. Hence, a sequence of correctly guessed answers to the

oracle queries lead to a correct decision on the simulation of the PNP computation.

On the other hand, we pessimistically assume that even a single mistake on the

guessed sequence of answers leads to an incorrect outcome of the simulation.

Now we want to prove that the simulation halts with the correct decision with

more than 1/2 probability. Equivalently, we want to prove,

Pr(correct decision) > Pr(incorrect decision)
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Because of the construction of the PTM machine we have that the probability

of computing the correct decision is at least the probability of obtaining the cor-

rect sequence of answers plus the probability of halting with the correct decision.

Similarly the probability of computing the incorrect decision is bounded by the

probability of obtaining an incorrect sequence of answers plus the probability of

halting with an incorrect decision.

Furthermore, if we recall that penalty trees halt randomly with the same prob-

ability for correct and incorrect decisions, we then need only to prove that

Pr(correct sequence of answers) >

Pr(incorrect sequence of answers)

Let K0 = {i | query i has answer no} be the set of queries with correct no

answer and K1 = {i | query i has answer yes} be the set of queries with correct yes

answers. Let pi denote the probability of computing the correct answer to question

i.

The probability of computing the correct sequence of answers (and thus obtain-

ing the correct decision on input x) can be expressed as the product of the proba-

bility of obtaining correct yes answers from the oracle, multiplied by the probability

of obtaining only correct no answers from the oracle (which are penalized).

Pr(correct sequence of answers) =

=
∏

i∈K0

pi
∏

i∈K1

pi

≥
∏

i∈K0

1

2q(n)
∏

i∈K1

1

2t(|yi|)



CHAPTER 4. CONTAINMENT OF PNP [O(LOGN)] IN PP 25

≥
[

1

2q(n)

]|K0|
∏

i∈K1

1

2t(p(n))

=
[

1

2q(n)

]|K0| [ 1

2t(p(n))

]|K1|

≥
[

1

2q(n)

]|K0|
[

2|K1|

2p(n)

]

[

1

2t(p(n))

]p(n)

≥
[

1

2q(n)

]|K0|
[

2|K1|

2p(n)t(p(n))+p(n)

]

> 2|K1|
[

1

2q(n)

]|K0|+1

As was pointed out in the previous section, the probability of a computed yes

when the query string is not in the language of the oracle is 0. Therefore any

computed sequence of answers has a computed no answer for all the queries in K0,

and mistakes may only occur where the correct answer from the oracle is yes. An

incorrect answer is then a computed no answer which by construction is penalized

by a 1/2q(n)+1 factor. There are at most 2|K1| incorrect sequences of answers, each

one with at least one additional computed no answer. We can then bound the

probability of computing all the incorrect sequence of answers together:

Pr(incorrect sequence of answers) ≤

≤

[

2|K1|

2q(n)

]

∏

i∈K0

pi

≤ 2|K1|
[

1

2q(n)

]|K0|+1

< Pr(correct sequence of answers)

as required. 2

Corollary 1 PNP [O(logn)] ⊆ PP .
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Closure Properties of PP

Recently it has been proven that PP is closed under intersection, and union. A

complete proof can be found in [BRS90]. We restrict ourselves to an overview of

the results.

But first, we show a simpler proof of a closure property.

Lemma 3 . PP is closed under complementation.

Proof. By definition of PP a PTM M accepting the language L(M), can

be modified to a PTM M ′ identical to M but with the accept state switched to

reject and vice versa. Clearly, M ′ will accept a string in the complement of L(M)

with probability greater than 1/2 and reject a string not in the complement with

probability greater than 1/2. 2

The proof of closedness under intersection and union uses techniques related to

circuits and gates. First we introduce some terminology.

Definition 12 . A threshold gate is a gate whose output is true if more than half

of its inputs are true, and whose output is false otherwise.

26



CHAPTER 5. CLOSURE PROPERTIES OF PP 27

Definition 13 . A PP PH-circuit is a boolean circuit with a threshold as output gate

and with ordinary (∨,∧,¬) circuits as inputs to the threshold gate.

To simplify computations, throughout this chapter we represent false as −1 and

true as 1 in boolean circuits.

Lemma 4 . Consider an AC0 circuit of size s and depth D − 1 with kf output

values xi,j with 1 ≤ i ≤ k, 1 ≤ j ≤ f . Then there exists a PP PH-circuit with inputs

xi,j returning true if and only if the polynomial p(
∑

1≤j≤f x1,j , . . . ,
∑

1≤j≤f xk,j) of

degree d, whose coefficients are integers bounded in absolute value by M is positive.

Furthermore, the circuit is of size at most ks +MfO(d)(d + 1)k, depth D + 2, and

the fanin for the threshold gate is at most MfO(d)(d+ 1)k.

Proof. Expand the polynomial p and regroup into monomials on the variables

xi,j with each monomial having coefficient −1 or 1. The number of monomials in the

expansion is at most Mf d
(

d+k
k

)

. Each monomial has degree d or less. The value

of each monomial is −1 or 1 and can be computed by a parity circuit of depth

two and size (d + 1)2d. Therefore there exists a PP PH circuit which determines

whether p(·, . . . , ·) is positive or not by looking at the majority of the output from

the monomials. 2

Since any AC0 circuit can be simulated by a PTM , we have as a consequence

of the previous lemma the following result.

Lemma 5 . Let N1, . . . , Nk be NDTM’s running on time t(n). Let accN(x) (re-

spectively rejN(x)) denote the number of computation paths of N accepting (re-

spectively rejecting) input x. Then for any given rational function Q(y1, . . . , yk) of

order d with coefficients bounded by M , there exists a PTM machine M running
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in time dlog((d + 1)2k+2M2)e + d t(n) such that for all x, [accM(x)− rejM(x)] ·

[Q(accN1
(x)− rejN1

(x), . . . , accNk
(x)− rejNk

(x))] is positive.

The above lemma implies that the sign of a rational function on the outcome of

k polynomial time NDTM’s as variables can be computed in time exponential on

the number of machines plus a polynomial factor. Hence if the number of NDTM’s

is a constant for all inputs x, the sign of the rational function can be computed in

polynomial time.

Now consider the rational functions,

Pn(x) = (x− 1)
n
∏

i=1

(x− 2i)2

Qn(x) = (−1/2)(Pn(x) + Pn(−x))

An(x, y) = 2Pn(x)Qn(y) + 2Pn(y)Qn(x) +Qn(x)Qn(y).

It can be easily shown that for any integral values (|x|, |y|) ∈ [1, 2n] × [1, 2n],

the function An(x, y) is positive if and only if x and y are positive. Moreover, since

An(x, y) is a rational function of order O(n) with coefficients of order O(2n
2

), it

follows from lemma (4) that the sign of An(x, y) can be computed in probabilistic

polynomial time.

Thus, given two NDTM’s N1, N2 there exists a PTM M with a majority of

accepting paths if and only if the rational function An(x, y) is positive, which in

turn is positive if and only if (accN1
(x)−rejN1

(x)) ·(accN2
(x)−rejN2

(x)) is positive.

But this implies that M accepts x if and only if x is in the languages accepted

by the PTM’s N ′
1, N

′
2
1.

1Recall that any NDTM is in particular a PTM.
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A simple extension on the definition of the function An(x, y) provides us with

similar proofs of closedness of PP under polynomial time bounded depth reduc-

tions, poly-time conjunctions or disjunctions, threshold reductions and some other

reductions (see [BRS90]).

Recently, Fortnow and Reingold showed the following theorem [For90].

Theorem 5 . PP is closed under truth-table reductions.

The proof given by Fortnow and Reingold uses similar techniques to those used

by Beigel et al. [BRS90] and is thus omitted.

Corollary 2 . P PP [O(logn)] ⊆ PP .

Up to this point the proof of containments in PP relied heavily and mostly on

knowing in advance the set of questions and the effect a sequence of answers on

the computation. This result by Fortnow and Reingold shows that, even for a PP

language as oracle, having beforehand knowledge of the sequence of questions and

the consequences of its answers from the oracle on the deterministic computation

suffices for a PP simulation to succeed.



Chapter 6

PH ⊆ PPP

The polynomial hierarchy PH was first defined by Stockmeyer [Sto76]. Consider

the sequence of classes ΣP
k , k = 1, 2, . . . where ΣP

0 = P and ΣP
i+1 = NPΣ

P
i . The

PH class of languages is defined as PH = ∪k≥0Σ
P
k . Some properties of PH are,

ΣP
1 = NP and ΣP

k ⊆ ΣP
k+1 for all k. Also, if P = NP then P = PH.

In this chapter we sketch Toda’s result that PH ⊆ P PP . The idea of this proof

is to build a chain of small containments starting on PH and finishing in P PP . First

we introduce the operators ⊕, BP, and P to create new classes out of old ones. Then

we show that PH ⊆ BP⊕P . It turns out to be a trivial fact that BP⊕P ⊆ P⊕P .

Then we prove the containment P⊕ P ⊆ P PP , which implies PH ⊆ P PP .

For the scope of this section, a Q-certificate for a string x with respect to the

language L is a string w of polynomial size on the length of x, such that x is in L

if and only if (x,w) belongs to a language of type Q.

The parity polynomial ⊕P class is the set of languages L for which there is an

NDTM M running in polynomial time such that for all words x, x is in L if and

only if the number of accepting computations (or certificates) of M on input x is

30
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odd.

The concepts of bounded probability, probability and parity can be extended

to any class of languages. Namely, given a class C of certificate languages, and a

language L, we define ⊕C, BPC, and PC as follows.

• L ∈ ⊕C if and only there exists a language of certificates A ∈ C and a

polynomial p such that x ∈ L if and only if the number of certificates of

length p(|x|) in A is odd.

• L ∈ BPC if and only there exists a language of certificates A ∈ C and a

polynomial p such that if x ∈ L then the number of certificates of length

p(|x|) in A is at least 2
3
2p(|x|). If x 6∈ L then the number of certificates of x is

at most 1
3
2p(|x|).

• L ∈ PC if and only there exists a language of certificates A ∈ C and a

polynomial p such that x ∈ L if and only if the number of certificates of

length p(|x|) in A is greater than 1
2
2p(|x|).

Lemma 6 . PH ⊆ BP⊕ P

Proof(sketch). First we show that a one level difference on the polynomial

hierarchy can be closed using the composition of operators BP⊕. In other words,

Σp
k ∪ Πp

k ⊆ BP ⊕ Πp
k−1. The proof of Σp

k ⊆ BP ⊕ Πp
k−1 goes as follows. From

the definition of the polynomial hierarchy it follows that any language L ∈ Σp
k,

has a language of Πp
k−1-certificates for it. Thus if we can guess an odd number

of certificates with bounded probability that will show the containment of Σp
k in

BP⊕ Πp
k−1.
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Instead of attempting to guess an odd number of certificates, which is hard since

certificates are guessed independently, the simulation randomly attempts to con-

struct a related problem that has an odd number of certificates (a unique certificate,

to be precise) if and only if the original problem has at least one certificate.

It has been shown by Valiant and Vazirani [Val85] that there is a probabilistic

technique to construct such a problem with probability of success greater than 1/4.

Moreover, for this particular case, such problem can only be constructed if the

number of certificates is odd and a success in the construction can be verified on

polynomial time.

Hence, a simple iteration on the random construction of the problem increases

the probability of success over 2/3. So, for any problem in Σp
k, an family of problems

in Πp
k−1 with an odd number of certificates can be probabilistically obtained with

probability higher than 2/3.

Finally, since any BP class of languages is closed under complementation, we

have the result, Σp
k ∪ Πp

k ⊆ BP ⊕ Πp
k−1. In other words, the k-th level of the

polynomial hierarchy is contained in the k − 1-th parity-randomized level.

It can be shown that BP⊕ BP⊕ P ⊆ BP⊕ P . Hence, using induction over the

levels of the polynomial hierarchy we have,

Basis of induction : Trivially Σp
0 ⊆ BP⊕ P .

Induction step : Assume Σp
k−1 ⊆ BP ⊕ P , then Σp

k ⊆ BP ⊕ BP ⊕ P , which has

been pointed out to be BP⊕ P .

This implies PH ⊆ BP⊕ P . 2

From the definition of BP and P and lemma 6 we have, as a corollary, PH ⊆

P⊕ P .
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Lemma 7 . P⊕ P ⊆ P PP

Proof(sketch). It turns out that a PP machine can simulate in parallel a P

operator and ⊕P machine. In other words, given a string x in a language L ∈ P⊕P ,

the total number of accepting computations of this particular PP machine is of the

form a·2q+b, where b is the number of certificates of x in ⊕P . The factor a·2q is the

result of spurious accepting computations arising from the verification of certificate

candidates in the ⊕P language of certificates.

Consider a second PP machine which on input (x, k) emulates the computation

of the above machine but penalizes accept states according to the factor k in such

a way that the majority of the computations are accepting after the penalization if

and only if more than k% computations were accepting originally.

Thus the actual number of certificates of the string x can be obtained using

binary search with O(log n) calls to such PP oracle. The string x is accepted

by the P PP machine if such number of accepting states modulus 2q is greater than

(1/2)2p(|x|), where p(|x|) is the polynomial length of the certificate strings. Therefore

P⊕ P ⊆ P PP . 2

Theorem 6 . PH ⊆ P PP .

Proof. Follows from lemma 5 and 6. 2

The implications of this result are varied. In particular we have that, unless

the polynomial hierarchy collapses to finitely many levels, any language in the

polynomial hierarchy is Turing reducible to a PP -complete language (e.g. MAJ-

SAT). In other words, if PP ⊆ PH then the polynomial hierarchy collapses to

finitely many levels.



Chapter 7

Conclusion

The classes NP , BPP and PP are so similarly defined, that it is natural to expect a

problems of about the same complexity to be contained in all of them. Nevertheless,

as the results in this essay point out, these classes are very different (unless of course

P = NP ).

The simulation techniques and penalty functions proposed in this essay provide

more insight on the ways a PTM can emulate a different type of TM. These sim-

ulation techniques may suggest new relationships among complexity classes and

provide insight for further research.

We conjecture that the inverse of the function An(x, y) as described in chapter

5, can be used as a penalty function to prove by direct simulation the closedness of

PP under intersection. If that is the case, the result most likely can be extended

to closure under polynomial time truth-table reductions.

Whether PH ⊆ PP remains to be proven, and it is widely conjectured to be

false [Joh89]. The author believes, based on recent advances, that such containment

is not so unlikely to be true.

34
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In particular, if a ΣP
k complete or a ΣP

k hard problem is contained in PP then

the polynomial hierarchy up to the k-th level is contained in PP . So far this

containment is known only for the first level of the polynomial hierarchy.
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