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Abstract—We review probabilistic constellation shaping (PCS),
which has been a key enabler for several recent record-setting op-
tical fiber communications experiments. PCS provides both fine-
grained rate adaptability and energy efficiency (sensitivity) gains.
We discuss the reasons for the fundamentally better performance of
PCS over other constellation shaping techniques that also achieve
rate adaptability, such as time-division hybrid modulation, and ex-
amine in detail the impact of sub-optimum shaping and forward
error correction (FEC) on PCS systems. As performance metrics
for systems with PCS, we compare information-theoretic measures
such as mutual information (MI), generalized MI (GMI), and nor-
malized GMI, which enable optimization and quantification of the
information rate (IR) that can be achieved by PCS and FEC. We
derive the optimal parameters of PCS and FEC that maximize the
IR for both ideal and non-ideal PCS and FEC. To avoid plausi-
ble pitfalls in practice, we carefully revisit key assumptions that
are typically made for ideal PCS and FEC systems.

Index Terms—Modulation, optical fiber communication, proba-
bilistic constellation shaping, quadrature amplitude modulation.

I. INTRODUCTION

I
T HAS been known since 1948 when information theory was

first established in Shannon’s seminal paper [1] that a contin-

uous Gaussian source distribution achieves the capacity of the

additive white Gaussian noise (AWGN) channel when ideal for-

ward error correction (FEC) is assumed. Between the late 1980s

and the early 1990s, many studies developed discrete modula-

tion techniques to mimic continuous Gaussian signaling, com-

monly referred to as constellation shaping [2]–[6]. Constellation

shaping, however, did not find broad applications, except for the

V.34 voice band modem over telephone lines that was standard-

ized by the International Telecommunications Union (ITU) in

1994 [7]. While constellation shaping attempts to approach the

Shannon limit from a modulation perspective, approaching the

Shannon limit from a coding perspective saw a new wave of

substantial progress with the invention of turbo codes in 1993

[8]. The success of turbo codes led to the rediscovery of low-

density parity-check (LDPC) codes [9]–[11], which reduced

the coding gap to the (modulation-constrained) Shannon limit
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Fig. 1. (a) Geometric and (b) probabilistic constellation shaping.

to within tenths of a decibel. Remarkably, capacity-approaching

soft-decision (SD) FEC codes have a good structure for low-cost

parallel application-specific integrated circuit (ASIC) imple-

mentation, and have hence been adopted as a quasi-standard

in almost every field of communications [12]–[18]. A tremen-

dous amount of research has been published in the golden era of

FEC since 1993, and research on constellation shaping was rel-

atively unpopular except for a small number of isolated papers,

e.g., [19]–[25]. This may be partly because the shaping gain

relative to a square quadrature amplitude modulated (QAM)

constellation is fundamentally limited to ∼1.53 dB, while the

coding gain with modern SD FEC codes easily reaches 10 dB

at a bit error ratio (BER) of 10−15 , and partly because there

was no effective method to implement capacity-approaching

constellation shaping up until very recently.

In the context of optical communications, geometric constel-

lation shaping (GCS) in the form of multi-ring constellations

was used to estimate the Shannon limit of the nonlinear optical

fiber channel [26], and in the form of iterative polar modulation

(IPM) to achieve experimental spectral efficiency (SE) records

[27], [28]. Using GCS, the location of the constellation points

in the complex plane is arranged to approximate a Gaussian

distribution, cf. Fig. 1(a). However, GCS has some serious prac-

tical disadvantages that have prevented its commercialization:

(i) there is no simple solution to finding locations of the GCS

constellation points for arbitrary channel conditions; (ii) the ir-

regular constellation points of GCS increase the complexity of

coherent digital signal processing (DSP) for robust signal re-

covery prior to decoding; and (iii) the general infeasibility of
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Fig. 2. Architectures for PCS.

Gray mapping increases the complexity of demapping symbols

to soft-decision bit metrics.

It is only four years ago that constellation shaping began to

attract significant attention, both in research and in rapidly fol-

lowing productization, in the form of probabilistic constellation

shaping (PCS), which shapes the probability of occurrence of

the constellation points rather than their locations to approxi-

mate Gaussian signaling, as shown in Fig. 1(b). In contrast to

GCS, (i) it is simple to optimize these probabilities through a

single parameter to match any given channel condition, (ii) con-

stellation points are placed on the rectilinear grid of a square

QAM template, which facilitates coherent DSP by robust state-

of-the-art square-QAM algorithms, and (iii) Gray mapping fa-

cilitates symbol demapping for subsequent SD FEC.

Combinations of PCS and GCS have also been studied in the

context of optical communications [29], [30], but these have

yielded little gain over pure PCS based on square QAM tem-

plates, which already approach the Shannon limit to within

0.1 dB in the AWGN channel. Nevertheless, the combination

of GCS and PCS to combat channel nonlinearities [31], [32] is

not yet a completely resolved problem.

PCS is practically enabled by the probabilistic ampli-

tude shaping (PAS) architecture [33], which shows capacity-

approaching performance with a practical shaping and cod-

ing implementation and elegantly resolves the long-standing

problem of PCS in terms of combining shaping and coding, as

visualized in Fig. 2: The problem with previously known PCS

architectures is that performing coding after shaping at the trans-

mitter distorts the shaped symbol distribution, as FEC parity

bits are generally not shaped, see Fig. 2(a). On the other hand,

performing coding before shaping at the transmitter can cause

error bursts upon de-shaping erroneously received symbols at

the receiver, see Fig. 2(b). The PAS architecture elegantly cir-

cumvents this problem by optimally intertwining shaping and

coding in a capacity-approaching and efficiently implementable

way, cf. Fig. 2(c). Coding and shaping are decoupled through a

parallel transmitter architecture (as reviewed in Section II-A.)

such that their independent optimization leads to jointly optimal

performance. This greatly simplifies the implementation of en-

coder and decoder by allowing the use of off-the-shelf modern

Fig. 3. Schematic illustration of the AIR of the auxiliary AWGN channel mod-
eling an optical fiber channel. Upper solid line: Gaussian signaling (i.e., AWGN
capacity), lower solid line: uniform QAMs with arbitrarily rate-adaptable FEC
(i.e., modulation-constrained AIR), staircase lines: uniform QAMs with nine
different fixed-rate FEC codes (i.e., modulation- and code-constrained AIRs).

SD FEC codes, with minimum to no specific tailoring for the

use in a PCS application.

PCS based on the PAS architecture in optical communica-

tions was first demonstrated by full-field simulations [34] and

transmission experiments [35] in 2015. Record SEs using PCS

were then demonstrated across a wide range of transmission

distances from 500 km to 4,000 km [36], and a capacity of

65 Tb/s was demonstrated at a record SE using PCS, exploiting

C and L bands over 6,600 km in a laboratory experiment [37].

The first field trial over a trans-oceanic submarine cable using

PCS achieved a record SE over 5,500 km and 11,000 km [38].

Over a short distance of 50 km, a record SE of 17.3 b/s/Hz was

demonstrated using PCS on a 10-subcarrier superchannel [39],

[40]. The first commercial transponder using PCS was recently

announced [41]. The first real-time experimental demonstration

of PCS was reported in [42]. The numerous milestones that have

been achieved in only 4 years and the rapid adoption of PCS in

the commercial sector bear testimony to the significance of PCS

in improving the performance of optical fiber communications.

II. BENEFITS OF PCS IN OPTICAL TRANSMISSION

A. Fiber Channel Capacity and Achievable Information Rates

The trade-off between the achievable information rate (AIR)

and the transmission distance in a fiber-optic transmission sys-

tem is illustrated in Fig. 3; as the figure merely visualizes general

trade-offs, the exact axis labels that vary depending on the un-

derlying system assumptions are omitted. While the nonlinear

fiber channel is a non-AWGN channel with memory, whose gen-

eral capacity has been estimated but is not exactly known [26],

[43], it can under certain assumptions be accurately modeled

as a memoryless AWGN channel [26], [44]–[46]. The AIR for

this auxiliary AWGN channel can then be maximized over all

possible input distributions, assuming ideal FEC coding with

infinite code length and unlimited decoder complexity, lead-

ing to a capacity estimate of the fiber channel as represented

by its auxiliary AWGN channel. The capacity of the auxiliary
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AWGN channel, however, does not represent the fundamental

fiber channel capacity, but rather a lower bound of it, in the

sense that a higher AIR may be obtained if one could further ex-

ploit intra- and inter-channel nonlinear interference to enhance

the signal-to-noise ratio (SNR). The largest recovered SNR of a

fiber channel depends on the network scenario and on assump-

tions about what information is and is not known to the various

transponders within the network. This leads to a variety of capac-

ity estimates for the optical fiber channel [26], [46]. Regardless

of the sophistication of the optical fiber channel model, it is a

general observation that capacity is maximized by a certain op-

tical signal power. Furthermore, as both optical amplifier noise

[26] and nonlinear interference noise (NLIN) at optimized opti-

cal channel powers [44]–[46] are, either exactly or to an excel-

lent approximation for Gaussian signaling, linearly proportional

to the transmission reach, the channel capacity decreases loga-

rithmically with transmission distance in the high SNR regime,

as illustrated by the upper solid line in Fig. 3 [46]. Achieving

the auxiliary AWGN channel capacity implies, at each trans-

mission distance, the use of the optimally chosen variance of

a Gaussian-shaped modulation as well as optimal FEC perfor-

mance at an optimally chosen code rate Rc ∈ (0, 1]; hence, at-

taining the capacity involves the continuous adaptation of both

modulation and FEC code rate. If we restrict ourselves to uni-

form square QAM constellations, the modulation-constrained

AIR is decreased to below the modulation-unconstrained AIR

(i.e., the capacity of the auxiliary channel), as indicated by the

lower solid line in Fig. 3, suffering a loss called the shaping gap

due to the non-Gaussianity of the signal. In principle, the QAM-

constrained AIR can be reached by optimizing the FEC code rate

for each transmission distance with uniform square QAM for-

mats. However, in practical ASIC implementations, only a few

code rates may be available, which lets the AIR decrease in the

form of a staircase function versus distance, as shown for nine

different FEC rates Rc = 1/2, 2/3, . . . , 9/10 in Fig. 3. Despite

these many FEC rates, there is still a significant gap to the opti-

mal AIR, as well as a step-like rate/reach trade-off. Compared to

uniform QAM, PCS achieves both an arbitrarily fine rate/reach

trade-off, even for a single FEC code rate, and bridges the shap-

ing gap to closely approach ultimate performance. These two

distinct benefits of PCS will be discussed in the context of con-

tending techniques in the subsequent Sections II-B and II-C.

B. Rate Adaptation

1) Uniform Square QAM With Multi-Rate FEC: In order to

perform rate adaptation by FEC alone, as discussed along with

Fig. 3, the most common way in communication standards is to

use a small family of base matrices for LDPC coding, which are

highly optimized using, e.g., density evolution [11] or extrinsic

information transfer (EXIT) chart analyses [47], to approach

the (modulation-constrained) AIR. Every matrix in the family

of FEC codes is made to be a sub-matrix of a larger matrix to

establish a good structure for ASIC implementation. The base

matrices are then lifted by replacing each non-zero element with

a z × z circulant matrix such that larger matrices can be derived

for actual LDPC codes. This construction limits the derived code

Fig. 4. (a) Optimal code rate R∗
c for uniform QAM, and (b) optimal code rate

R∗
c (solid lines) and optimal shaping rate R∗

s normalized by m (dashed lines)
for PS QAM.

rates to the form

Rc = zkb

zn b
= kc

n c
, (1)

resulting in a coding overhead of (nb − kb)/kb , with kb and

nb being small positive integers. Hence, practically achievable

code rates have a relatively coarse granularity and do not

fall on a uniform grid; e.g., the 9 code rates of Fig. 3,

Rc = 1/2, 2/3, . . . , 9/10, have increments of 0.167, 0.083,

. . . , 0.011. Together with a set of uniform M 2-ary QAM

constellations, this leads to IRs of1

IR = 2mRc (2)

in bits/symbol (per two dimensions: in-phase I and quadrature

Q), where m = log2M . Therefore, with uniform QAM and

multi-rate FEC, one can only obtain coarse and irregular IR

increments, as shown in Fig. 3.

The AIR is determined through the mutual information (MI)

or generalized MI (GMI), which will be discussed in Section III

in more detail. We denote the AIR under a given transponder

constraint by IR∗. Once IR∗ is obtained for a given QAM order

and SNR, the required code rate R∗
c is found as, cf. (2),

R∗
c = IR∗/ (2m) , (3)

which is depicted in Fig. 4(a) for various uniform square QAM

formats as a function of the SNR. Note that R∗
c denotes the

theoretically largest code rate that leads to error-free decoding;

any actually used FEC code must have a rate smaller than R∗
c .

The available code rates may potentially be far from the op-

timum rate R∗
c , which consequently leads to the step function

behavior of Fig. 3. In order to obtain finer granularity than given

by the “mother codes”, codes can be shortened or punctured

[48]–[52]. By shortening or puncturing s code symbols in each

codeword, with s ≪ nc , code rates of (kc − s)/nc < Rc or

kc/(nc − s) > Rc can be derived with a step size ∆R c
≈ 1/nc ,

letting the resulting code rate more closely approach R∗
c . Since

the code length nc is generally beyond tens of thousands in

1Note that the IR is a property of the transponder parameters alone, while the
AIR is a property of the channel, possibly constrained by assumptions on the
transponder as well (cf. Table I in Section III).
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Fig. 5. The PAS architecture [33].

optical fiber communications, the rate discrepancy � 1/(2nc)
between the optimal R∗

c and the realized Rc could then be made

negligible and one could thereby make the steps finer and more

closely approach the modulation-constrained AIR of Fig. 3.

However, shortening or puncturing induces two problems in

practice: (i) shortened or punctured codes generally have a wider

gap to the AIR than the mother code [48]–[50], which can often

be significant in practice [51], [52], because the optimal degree

distribution for the rate of children codes may not necessarily

be derived by shortening or puncturing the mother codes, and

(ii) their error floor may be raised compared to the mother codes

due to the change of their cycle properties, whose adverse effect

must be minimized by a laborious optimization process [53].

The impact of suboptimum codes on system performance will

be discussed in detail in Section IV.

2) PCS With Variable-Rate and Fixed-Rate FEC: As an al-

ternative to uniform square QAM with variable-rate FEC, PCS

can be used for rate adaptation in conjunction with variable-rate

or even with fixed-rate FEC. As shown in Fig. 5, the PAS archi-

tecture [33] achieves PCS by independently shaping each signal

dimension on an M -ary pulse amplitude modulation (PAM)

template to construct a probabilistically-shaped (PS) M 2-QAM

constellation. This is possible since the in-phase and quadrature

dimensions of a modulated signal are orthogonal.

In what follows, we use the convention that a scalar random

variable is denoted by a capital letter (e.g., X), a realization of

a scalar random variable by a lowercase letter (e.g., x), and an

alphabet (i.e., a set of allowed symbols) by a script letter (e.g.,

X , with elements xi). A vector of random variables is denoted

by a boldface capital letter (e.g., X), and a realization of a vector

random variable by a boldface lowercase letter (e.g., x).

Given the M -PAM symbol setX = ±1,±3, . . . ,±(M − 1),
the probability of a constellation point x ∈ X is commonly gen-

erated according to the Maxwell-Boltzmann (MB) distribution

PX (x) = e−λx 2

∑

x ′∈X e−λx ′2 (4)

with λ ≥ 0, which is the maximum-entropy distribution for

X under an average-power constraint. The rate parameter λ

controls the entropy rate2 2H(X) of the PS QAM signal

in bits/symbol, where H(X) = −
∑

x∈X PX (x)log2PX (x) de-

notes the binary entropy. When λ = 0, the MB distribution de-

generates to a uniform distribution with H(X) = m bits/symbol

2A stationary memoryless information source produces an entropy
H(X1 , . . . , Xn ) that grows linearly with time n at a rate H(X ), hence the
name “entropy rate.”

per dimension. As λ increases, the MB distribution contains

fractional numbers of 1 ≤ H(X) < m bits/symbol per dimen-

sion, hence realizing rate adaptation with a reduced average

symbol energy. The functional block that performs rate-adaptive

shaping in the PAS architecture is the distribution matcher (DM),

which transforms uniformly distributed input information bits

to MB-distributed PAM output symbols, cf. Fig. 5. The DM

generates only the positive amplitudes of the M -PAM symbols

(a “half-PAM” constellation). A binary systematic FEC encoder

generates parity bits that are equally distributed in {−1,+1}.

Since the FEC code is systematic, it does not affect the infor-

mation bits, so the positive-amplitude DM output remains un-

changed by FEC encoding. A symmetric M -PAM distribution

is then created by multiplying each of the half-PAM symbols

with a parity bit acting as a sign bit. In some cases, the sign bit

stream also includes some information bits in addition to parity

bits, see [33], [54] for details.

In the PAS architecture with code rate Rc and entropy rate

2H(X), the IR can be calculated as [33], [54]

IR = 2 (H (X) − m (1 − Rc)) , (5)

in bits/symbol per two dimensions. The term 2H(PX ) on

the right-hand side of (5) is the largest number of informa-

tion bits that can be contained within a complex symbol (i.e.,

per two dimensions) with the distribution PX , which is con-

trolled by the rate parameter λ for an MB distribution, and the

term 2m(1 − Rc) quantifies the FEC overhead in bits/symbol

per two dimensions. Assuming bit-metric decoding (BMD, cf.

Section III-B), IR∗, i.e., the largest AIR for a given SNR and

QAM template, can be obtained by maximizing the GMI over

all possible MB distributions PX . The result then also repre-

sents the capacity of PAS in the auxiliary AWGN channel. The

maximization can be done numerically by an exhaustive search

or by the bisection method, since the MB distribution has only

one free parameter λ. Rigorously speaking, IR∗ obtained this

way does not represent the unconstrained AWGN channel ca-

pacity since (i) the finite number of constellation points in the

underlying QAM template imposes a weak constraint on the

modulation and (ii) the decoding is BMD. However, the gap

between IR∗ and the capacity of the auxiliary AWGN channel

is negligible [55].

From (5), the required code rate Rc to achieve an IR with a

channel input distribution PX can be calculated as

Rc = 1 − H(X )−IR/2
m . (6)

If the DM produces a length-ns amplitude block from a length-

(ks − ns) input bit block, with ks > ns , the sign path in the

PAS architecture transports ns sign bits per block, regardless of

whether they are information bits or parity bits from a shaping

point of view, hence the PAS architecture implements a shaping

rate of

Rs = ks

n s
(7)

in bits/symbol per dimension [54]. While a class of FEC mother

codes has a relatively low degree of freedom to choose kc and nc

without shortening or puncturing, limiting the achievable rate

adaptability as discussed above, there exists a DM algorithm that
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can finely adjust the number of input bits ks − ns to be mapped

into a length-ns block of output symbols, hence achieves

granularity of the shaping rate ∆R s
= 1/ns . Denoting by X∗

the M -PAM symbols that maximize the AIR through the MB

distribution PX ∗ , the small shaping granularity lets the realized

Rs closely approach the optimal entropy rate R∗
s ≈ H(X∗), by

choosing a large block length ns . Figure 4(b) shows the optimal

shaping rate R∗
s (dashed lines) that produces the largest AIR

in the auxiliary AWGN channel and the corresponding optimal

code rate R∗
c obtained using (6) with R∗

s = H(X∗). As shown

in the figure, when PCS shares the role of rate adaptation with

FEC by adjusting both Rs and Rc , the optimal code rate (i)

is much higher than when FEC alone performs rate adaptation

(Fig. 4(a)), and (ii) occupies a much narrower range [55]; in

the case of Fig. 4, we have 0.74 < R∗
c ≤ 1 for PCS, instead of

0.18 < R∗
c ≤ 1 for uniform QAM.

The narrow range of optimum FEC rates for PCS suggests

the potential use of a single (or a small number of) fixed-rate

FEC code(s), whereby rate adaptation is performed (almost)

exclusively by PCS. This then gives a code rate-constrained

AIR (with a weak modulation constraint given by the underly-

ing QAM template). Remarkably, it was shown in [55] that the

performance loss due to fixed-rate FEC with Rc = 0.8 does not

exceed 0.07 bits/symbol of IR per two dimensions or 0.3 dB

of SNR in the AWGN channel, valid for all square M 2-QAM

templates with M 2 ≤ 1024. This assumes ideal PCS with a DM

that maps ks − ns information bits into ns PAM symbols such

that the realized shaping rate Rs = ks/ns is exactly equal to

H(X∗). Such an ideal DM can be implemented, e.g., by con-

stant composition distribution matching (CCDM) [56], which

is asymptotically optimal in block length ns . CCDM achieves

close to optimal performance already with a relatively small

ns ≤ 104 , its hardware architecture is universal for all shaping

rates Rs ≤ 2m, and at least in principle it is implementable in to-

day’s hardware. Other DM techniques that are lower-complexity

than CCDM at small performance loss are discussed in [57]–

[63]. In contrast to shaping, it is extremely difficult for FEC

to narrow down the last few tenths of a decibel of coding gap;

for example, a rate-1/2 irregular and unstructured LDPC code

with block length nc = 107 and a maximum variable degree of

200 may approach the (modulation-constrained) AIR to within

0.04 dB at BER = 10−6 using belief-propagation decoding

with up to 2000 decoding iterations [64].

3) Time-Division Hybrid Modulation (TDHM): TDHM

time-interleaves symbols picked from different uniform square

QAM constellations in a deterministic manner to achieve fine

granularity of the IR [65], [66]. For example, using M 2
1 -QAM

for a fraction 0 ≤ α ≤ 1 of the time, and M 2
2 -QAM for a fraction

1 − α of the time, TDHM can realize an arbitrary shaping rate

of Rs = αm1 + (1 − α)m2 bits/symbol per dimension, where

m1 = log2M1 and m2 = log2M2 . When averaged over time,

TDHM creates the illusion of an MB-like symbol distribution,

cf. Fig. 6. However, TDHM is fundamentally different from

probabilistic constellation shaping in that a receiver can separate

the constituent constellations deterministically using the a pri-

ori knowledge of their temporal locations. (The same is true for

any other hybrid modulation scheme that uses multiple orthogo-

nal signal dimensions to carry different uniform QAM constel-

Fig. 6. Time and ensemble averages of symbols created by (a) TDHM and
(b) PCS.

Fig. 7. Three-dimensional square lattice constellation points contained in
(a) a cube, and (b) a ball, and their marginal probability distributions as projected
onto each coordinate axis. Figure after [69].

lations in a deterministic manner, such as frequency-division

hybrid modulation (FDHM) or digital subcarrier multiplexing

[67], [68]). Consequently, while the rate granularity of TDHM

can be as fine as that of PCS, the performance of TDHM does

not reach that of PCS, as we shall see in the following section.

C. Energy Efficiency

In this section, we illustrate various modulation schemes from

the perspective of a multi-dimensional signal space, which gives

valuable insights into why PCS is needed to closely approach

the AWGN capacity. A set of ‘dimensions’ in signal space cor-

responds to the collection of any physically orthogonal entities,

which may be most intuitively viewed as the real-valued (single-

quadrature, PAM) amplitudes of consecutive symbols, which

are orthogonal in time. Hence, 4 dimensions may be built by 4

successive PAM symbols. Alternatively, 4 dimensions may be

built by 2 successive QAM symbols, or by a single polarization-

division multiplexed (PDM) QAM symbol.

1) Uniform QAM: As shown in Fig. 7(a), assume an ns-

dimensional (hyper-) cube centered at the origin, each side be-

ing parallel with each of the ns coordinate axes. If the cube is

uniformly filled with points on a square lattice grid, the pro-

jection of any random selection of points onto any Cartesian
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Fig. 8. (a) Gaussian distribution of a signal, (b) the two-dimensional ‘fuzzy’
ball with a non-uniform density created by their 2-fold Cartesian product, and
(c) the two-dimensional uniform ball with the same entropy as that of (b).

coordinate axis yields a uniform distribution of points (i.e., a

PAM constellation), regardless of the cardinality ns . Projections

on different axes are independent and identically distributed

(IID). Conversely, the ns -fold Cartesian product of zero-mean

uniform IID distributions confined on a finite support constructs

an ns-dimensional uniform cube.

2) Probabilistic Constellation Shaping (PCS): Instead of the

cube, now assume an ns -dimensional (hyper-) ball centered at

the origin, again with a uniform density of points within (cf.

Fig. 7(b)). The projection onto any one of the Cartesian coor-

dinate axes yields a non-uniform probability density. Since the

energy of a signal point is quadratic in distance from the origin,

a ball centered at the origin, which by definition is enclosed by

a constant-radius surface, is the most energy efficient shape to

contain a given number of points in multi-dimensional space.

When ns = 3, the points within the ball have ∼0.27 dB less

average energy than those in the cube, assuming the same num-

ber of points (i.e., 512) and the same minimum distance (i.e.,

2) between them. This relatively small energy saving is due to

the small choice of ns and the small number of points in this

example, and increases with ns .

The energy savings can be translated into a better noise re-

siliency in a communications context as follows: If the mini-

mum distance of the ball is increased to ∼2.06 (i.e., ∆ ≈ 1.03
in Fig. 7(b)) such that the average energy becomes the same for

the ball and the cube, i.e., when we compare signals of equal en-

ergy or signals of equal SNR, the points in the ball have now an

increased minimum distance, hence are more immune to noise.

This suggests that transmitting discrete information symbols in

ns dimensions (e.g., by transmitting successively in ns time

slots), the tightly enclosing shape of the symbols should be an

ns -dimensional ball instead of an ns -dimensional cube.

As ns → ∞, and as the number of points on each axis

M → ∞, the probability density of the points projected onto

each coordinate axis converges to a Gaussian distribution.

Conversely, if we generate an IID zero-mean Gaussian sig-

nal in every Cartesian coordinate axis, the composite signal in

n-dimensional space forms a uniformly dense ball as ns → ∞.

Note that this statement only applies for ns → ∞, as composite

points generated from a finite number of IID Gaussian amplitude

distributions will generally result in a ‘fuzzy’ ball with a non-

uniform density, not a true ball with a uniform density, as shown

in Fig. 8. The energy savings (i.e., the shaping gain) of a ball

relative to a cube for the same volume approaches πe/6 ≈ 1.53
dB [70], Ch. 14] in the limit of ns → ∞. While the above con-

siderations apply to the constellation entropy (a property of the

transmitter), it can be shown that Gaussian signals also result in

maximum mutual information between the transmitted and the

received signals under a transmission energy constraint in the

presence of AWGN [70], Ch. 3], [71], Chs. 8, 9].

True Gaussian signaling requires continuous symbols whose

support is not confined to within a finite range of amplitudes.

This leads to high required digital-to-analog and analog-to-

digital converter resolutions and to large peak-to-average power

ratios, which are both problematic engineering aspects in prac-

tice. If the symbols are discrete and confined to a finite range

on each coordinate axis, it can be shown that the distribution

that maximizes the entropy is an MB distribution [5], which

is a Gaussian distribution sampled at discrete amplitudes across

a finite amplitude range, cf. (4). Here, it should be noted that

a continuous Gaussian distribution maximizes both the entropy

and the AIR under a transmission energy constraint, but the

MB distribution is proven to maximize only the entropy, not

the AIR, the latter being maximized using the Blahut-Arimoto

algorithm [72], [73]. Nevertheless, the AIR obtained by the MB

distribution is very close to the AWGN channel capacity [33].

Creating the shaped distribution in each dimension is the

task of the DM. For example, the CCDM algorithm creates a

target distribution by fixing the number of occurrences of M -

PAM symbols in each length-ns block; i.e., symbol xi ∈ X , for

i = 1, . . . , M , appears exactly ni times in each of the length-ns

CCDM blocks, where ns =
∑M

i=1 ni , thereby creating a prob-

ability mass function (PMF) PX = [n1

n s
, . . . , nM

n s
] that approxi-

mates an MB distribution. Therefore, if we mark a constellation

point in ns -dimensional space, whose coordinates are speci-

fied by the ns symbols of the CCDM block, its distance from

the origin is a constant

√
∑M

i=1 ni |xi |
2
, hence it lies on an

ns-dimensionl spherical shell. Knowing that almost the entire

volume of a ball is near the surface in high-dimensional space

(known as the sphere hardening phenomenon [70]), CCDM

casts symbols onto the surface of a ball as ns → ∞, which is a

necessary condition to achieve the optimal energy efficiency. A

sufficient condition for the optimal energy efficiency under the

constraint on the finite support on each coordinate axis is that

the DM maps each of the points in a ks -dimensional uniform

cube to a distinct point in an ns -dimensional ball (truncated

to within a finite support in each dimension), thereby fulfilling

Rs = ks/ns → H(X), where PX is an MB distribution. This

is fulfilled by CCDM, as the block length ns → ∞. However,

if the block length ns is small, Rs is smaller than H(X), and

the volume inside the surface of the ball is not negligible, hence

CCDM becomes sub-optimal. In this case, a direct mapping of

uniformly distributed information bits to a completely filled ns

-dimensional ball-like constellation can outperform CCDM, as

is done, e.g., by shell mapping [63], [74]–[76].

3) Time-Domain Hybrid Modulation (TDHM): When

speaking of ‘constellation shaping’ it is important to distinguish

between ensemble-averages and time-averages, as visualized in

Fig. 6. The time average over all symbols in a data stream may

yield the same symbol amplitude distribution for both TDHM

and PCS, in fact, the overall amplitude distribution averaged

over all symbols in a TDHM stream may even be MB, and this
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Fig. 9. Time-averaged distributions generated (a) by TDHM, and (b) by PCS.

may suggest that TDHM and PCS should perform the same in

terms of their shaping characteristics. However, the ensemble

average, i.e., the symbol amplitude distribution within a single

time slot when averaged across all possible data streams, looks

very different for the two shaping schemes, as shown in Fig. 6. In

an ideal PCS implementation, ensemble average and time aver-

age result in the same distribution, letting the encoding process

be stationary and ergodic, and justifying the AIR calculated

based on the entropy as in (5) [77]. As an example, consider

the TDHM shown in Fig. 9(a) that interleaves symbols drawn

from a uniform binary phase-shift keying (BPSK) alphabet

XBPSK = [−1,+1] and symbols drawn from a 4-PAM alpha-

betX4-PAM = [−3,−1,+1,+3] at a multiplexing ratio α = 0.5
such that an MB distribution PX = [p1 , . . . , p4 ] = [ 1

8 , 3
8 , 3

8 , 1
8 ]

is observed at the receiver when performing a time aver-

age. The shaping rate of this TDHM is Rs = (1 + 2)/2 =
1.5 bits/symbol per dimension, and the average symbol energy

is
∑4

m=1 pm |xm |2 =3. Note that PCS can create the same time-

averaged distribution (hence the same average symbol energy

of 3), as shown in Fig. 9(b), but it can do so at a larger shap-

ing rate of Rs = H(X) ≈ 1.8 bits/symbol per dimension! This

shows that achieving a time-averaged MB distribution is only a

necessary condition for optimal energy efficiency.

By using different PAM orders in different time slots, TDHM

does not construct a ball but rather constructs a (hyper-) rect-

angle. As it is the cube (with equal side lengths) that is the

most energy-efficient shape among all possible rectangles for

the same volume, TDHM performs worse than uniform square-

QAM; and as the ball is more energy efficient than the cube,

PCS performs best. Figure 10 depicts a two-dimensional ex-

ample, representing square-QAM and TDHM in 2 dimensions.

The points in the rectangle have ∼3.3 dB larger average energy

than the points in the cube, with the same number of points

(i.e., 64) and the same minimum distance (i.e., 2). The same is

evident from Figure 11, which shows that TDHM (lower solid

line) can cause a loss of ∼2 dB in SNR [69], or 25% loss

in AIR [78], relative to optimal PCS (upper solid line) in the

AWGN channel, when all bit levels are encoded jointly by a

single FEC code of rate 0.8. If used with a fixed rate-0.8 FEC

code, TDHM performs worse than uniform square QAMs with

rate-adaptable FEC (cf. dashed lines in Fig. 11). A compari-

son of rate adaptability and performance of the various coded

modulation schemes discussed so far are sketched in Fig. 12.

Fig. 10. Two-dimensional square lattice constellation points contained in
(a) a cube, and (b) a rectangle, and their marginal probability distributions
in each coordinate axis.

Fig. 11. AIR of various modulation schemes under bit metric decoding in the
AWGN channel.

TABLE I
PERFORMANCE METRICS FOR PCS

III. PERFORMANCE METRICS FOR PCS

To quantify system performance of PCS in conjunction with

SD FEC, several approaches with and without an explicit focus

on their operational meaning have been taken [79]–[85]. Rele-

vant performance metrics are summarized in Table I. The system

model used to obtain these metrics is depicted in Fig. 13(a).
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Fig. 12. Rate adaptability and performance of various schemes.

Fig. 13. (a) System model, and architecture of decoders for (b) SMD,
(c) multi-level coding and multi-stage decoding (discussed in Appendix), and
(d) BMD.

We first consider SMD with non-binary FEC codes that have

the same number of symbols in the code alphabet as that of

the modulation alphabet, i.e., M -ary FEC codes for an M -ary

constellation. (In principle, the code alphabet need not have the

same cardinality as the modulation alphabet, but this restriction

makes it simple to develop equations and achieves capacity in a

memoryless channel.) As briefly discussed in Section II-B.1, a

relevant performance metric for SMD is the MI that quantifies

an IR that is achievable (hence an AIR) using infinite code

length and unlimited decoder complexity. The channel capacity,

known as the Shannon limit (SL), is obtained by maximizing the

MI over all possible modulation formats (including continuous-

amplitude formats with infinitely many “constellation points”).

For the more practical class of BMD systems, a bit-to-symbol

mapper transforms an m-bit sequence [B1 , . . . , Bm ] to an M
-ary modulation symbol X , cf. Fig. 13(a), where m = log2M .

If the bit sequences are encoded by binary FEC codes and are

decoded using BMD, and if we still allow infinite code length

and unlimited decoder complexity, the GMI represents an AIR

for BMD, in the same way as the MI represents an AIR for

SMD. Maximizing the GMI over all possible input symbol dis-

tributions for a square QAM template yields an AIR that is

constrained in terms of the code alphabet size, the specific mod-

ulation template, and the fact that we are using BMD. In this

section, without imposing any complexity constraints on FEC

and PCS, we review the MI, GMI, and other related metrics in

the context of the underlying transponder architecture. A more

realistic scenario will be discussed in Section IV, where prac-

tical (non-ideal, pragmatic) FEC and complexity-constrained

PCS are assumed.

A. Mutual Information

Assume that we use a length-nc M -ary SD FEC code with

code rate Rc = kc/nc together with an M -ary constellation,

and the (auxiliary) channel is memoryless AWGN. In this sys-

tem, based on perfect knowledge of the transmitted symbols

X , a measurable statistic of the channel is PY |X (Y |X), i.e.,

the probability of the observed physical entity Y given the

transmitted physical entity X , cf. Fig. 13(b), which is often

called the channel transition probability. An SD demapper pro-

duces the conditional probability PY |S (yi |s) of the i-th received

symbol yi , for i = 1, . . . , nc , for every symbol s in the code

alphabet. In our system where the FEC code has the same

alphabet size as the constellation, this is equivalent to the con-

ditional probability PY |X (yi |x)given a transmitted modulation

symbol x ∈ X , which is directly fed to the subsequent SMD

as an SD decoding metric. An optimal SMD finds a legiti-

mate codeword x = [x1 , . . . , xn c
] that is the most likely to

be transmitted among all M kc possible codewords, given the

noisy observation y = [y1 , . . . , yn c
], by maximizing the prod-

uct of the channel transition probabilities over all symbols in

y, PY |X(y|x) =
∏n c

i=1 PY |X (yi |xi) [71], Ch. 7.7]. It should

be noted that there are only Mkc codewords that are legiti-

mate for the underlying code, while Mn c uncoded sequences

can exist for an M -ary alphabet. Therefore, only one out of

Mn c /M kc = Mn c (1−R c ) possible words is a legitimate code-

word, which allows a decoder to select the nearest codeword

from a noisy non-codeword word. (This illustrates the funda-

mental operation of FEC.) An AIR of the ideal and optimal

SMD is the MI, defined as

I (X;Y )
∆
= EX,Y

[

log2

PY |X (Y |X )

PY (Y )

]

= EX,Y

[

log2

PY |X (Y |X )
∑

x ′∈X PX (x′) PY |X (Y |x′ )

]

(8)

in bits/symbol per dimension, where X is a random variable for

the one-dimensional transmitted signal, Y is a random variable
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for the corresponding received signal in the AWGN channel

with a known noise variance, and EX,Y ( · ) denotes the expec-

tation taken over Xand Y. Here, by “ideal” SMD, we mean that

a code is of infinite length (nc → ∞), and by “optimal” SMD,

we mean that (i) the code rate Rc is chosen to match the chan-

nel condition, and (ii) no other codeword has a higher likelihood

than the codeword chosen by SMD, since the decoder is (unreal-

istically) capable of sorting all Mkc codewords in a descending

order of their probabilities PY |X(y|x). The supremum of (8)

over all possible (continuous- and discrete-amplitude) input dis-

tributions PX is the channel capacity, which on an (auxiliary)

AWGN channel can be achieved by Gaussian signaling, as dis-

cussed in Section II.

Although it is in principle possible to use non-binary codes

and SMD in the PAS architecture, PCS in optical systems is

commonly implemented using binary codes and BMD for com-

plexity reasons, hence the MI does not generally represent the

most relevant performance metric.

B. Generalized Mutual Information

Let us next consider BMD in Fig. 13(a), where a bit-to-symbol

mapper transforms a vector B
∆
= [B1 , . . . , Bm ] to a symbol X

of an M -PAM constellation. It should be first noted that Bj

for j = 1, . . . , m are logical entities that are not directly cast

into the channel, but only through their physical representation

X , e.g., a voltage or an optical field amplitude. On the other

hand, in the context of BMD, the decoder estimates bits and

not symbols. Therefore, the decoder operates on PY |B j
(Y |Bj )

instead of PY |X (Y |X), calculated as

PY |B j
(Y |Bj ) =

PB j ,Y (Bj , Y )

PB j
(Bj )

=

∑

x ′∈X
( j )

b j (x )

PY |X (Y |x′ ) PX (x′)

PB j
(Bj )

,

where bj (x) is the j-th bit of symbol x, and X
(j )
b

∆
=

{x ∈ X : bj (x) = b} denotes the set of constellation points

x whose j-th bit representation is b ∈ {0, 1}. For example,

if we use binary reflected Gray coding (BRGC) {101, 100,

110, 111, 011, 010, 000, 001} to represent the 8-PAM sym-

bol alphabet X = {−7,−5, . . . ,+7}, the symbol sets cor-

responding to a ‘0’ and ‘1’ at the second bit position are

X
(2)
0 = {−7,−5,+5,+7} and X

(2)
1 = {−3,−1,+1,+3}, re-

spectively. The conditional probability of observation y given

transmitted bit B2 = 0 is then calculated through PY |X (Y |X) as

PY |B2
(y|0) =

∑

x ′∈X
( 2 )
0

PY |X (y|x′)PX (x′)/PB2
(0). In BMD,

we often use the conditional likelihood PB j |Y (Bj |Y ) instead

of the conditional probability PY |B j
(Y |Bj ), which can be ob-

tained by Bayes’ rule as

PB j |Y (Bj |Y ) = PY |B j
(Y |Bj )

PB j
(Bj )

PY (Y )

=

∑

x ′∈X
( j )

b j (x )

PY |X (Y |x′ ) PX (x′)

PY (Y )
, (9)

which represents the SD decoding metric of BMD. An

SD demapper for BMD produces the conditional likelihood

PB j |Y (bi,j |yi) for the j-th bit bi,j of the i-th transmitted sym-

bol xi , for i = 1, . . . , nc , which is then input to the subsequent

binary SD decoder, cf. Fig. 13(d). Here, we omit the time in-

dex i from Bi,j and Yi since the PCS encoding is a stationary

process and the channel is assumed to be stationary as well.

For a length-nc binary code, optimal BMD finds a legitimate

codeword b = [b1,1 , . . . , bn c /m, m ] that is the most likely to be

transmitted among all 2kc possible codewords by maximizing

PB|Y (b|y) =
∏n c /m

i=1

∏m
j=1 PB i , j |Y (bi,j |yj ), given the noisy

observation y = [y1 , . . . , yn c /m ]. Multiplications in PB|Y (b|y)
are often removed by taking the logarithm without affecting the

decoding performance. In addition, instead of producing two

metrics PB j |Y (0|yi) and PB j |Y (1|yi) for each received symbol

yi , the SD BMD demapper can produce only one log-likelihood

ratio (LLR) metric

log
PB j |Y (0|y i )

PB j |Y (1|y i ) , (10)

which will be discussed in Section IV in more detail.

Note that the BMD demapper produces only log2M LLRs

per received symbol, whereas an SMD demapper pro-

duces |X | = M LLRs per received symbol, in the form of

log PX |Y (x1 |yi)/PX |Y (x|yi) for all x ∈ X , where x1 de-

notes the first letter in X . Using the conditional likelihood

PB j |Y (Bj |Y ) in (9), the channel transition probability can be

approximated as (see Appendix for derivation details and for a

clarification of the operational meaning of the obtained results)

QY |X (Y |X )
∆
=

⎡

⎣

m∏

j=1

PB j |Y (Bj |Y )

⎤

⎦
PY (Y )

PX (X)

≈ PY |X (Y |X ) . (11)

This is called the mismatched decoding metric [86], [87], since

QY |X(y|x) =
∏n c /m

i=1 QY |X (yi |xi) is not a monotonic func-

tion of PY |X(y|x), causing loss of decoding performance; in

other words, the codeword that maximizes QY |X(y|x) does not

necessarily maximize PY |X(y|x).
Eventually, in analogy to the MI obtained from the exact

decoding metric PY |X (Y |X) as in (8), we obtain the GMI using

the approximate decoding metric QY |X (Y |X) as

GMI (X;Y )
∆
= EX,Y

[

log2
QY |X (Y |X )

∑

x ′∈X PX (x ′)QY |X (Y |x ′ )

]

(12)

in bits/symbol per dimension. After some mathematical manip-

ulation (see Appendix), we can obtain a compact notation of

(12) as

GMI (X;Y ) = H (X) −
∑m

j=1 H (Bj |Y ) . (13)

In case of uniform PX and independent bit levels, (13) degen-

erates to

GMI (X;Y ) =
∑m

j=1
I (Bj ;Y ) ,

which represents an AIR for bit-interleaved coded modulation

(BICM) [87]. Importantly, the GMI in (13) has the same form

as the “BMD rate” that was first defined in [33], and was proven
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to be achievable [82], i.e., there exists a coding scheme such

that the post-FEC BER can be made arbitrarily small, as the

code length nc → ∞. The supremum of GMI over all possible

PX is the capacity of PCS under the constraints of a square

QAM template and parallel BMD, which can be approximately

achieved by an MB distribution.

C. Normalized Generalized Mutual Information

The GMI quantifies the number of information bits per trans-

mitted symbol that can be reliably transmitted through a given

channel. After proper normalization of the GMI, we can derive

a channel metric that quantifies the number of information bits

per transmitted bit, which is called the normalized GMI (NGMI)

[79]–[81]. Since the GMI is an AIR of the PAS architecture as

per our above discussion, we can replace the IR of (5) with the

GMI to obtain the unit-less metric

NGMI (X;Y ) = 1 − H(X )−GM I (X ;Y )
m . (14)

It immediately follows from (13) and (14) that

NGMI (X;Y ) = 1 − 1
m

∑m
j=1 H (Bj |Y ) . (15)

Note that the asymmetric information (ASI) introduced in [85]

from a different perspective has the same form as the NGMI.

Suppose that we have obtained the maximum GMI(X;Y )
over all possible distributions of X , and denote by X∗

the channel input that maximizes the GMI, i.e., X∗ =
argmaxX GMI(X;Y ). It should be noted that GMI(X∗;Y )
and NGMI(X∗;Y ) are not associated with potential imper-

fections of the underlying transceiver technology but represent

channel metrics of the auxiliary AWGN channel, whereas R∗
c

in (1) and R∗
s in (7) are the transceiver metrics that need to

be used to achieve GMI(X∗;Y ), cf. Table I. In other words,

the channel’s transmission capabilities as given by the channel

metric GMI(X∗;Y ) are fully exhausted when we use ideal

binary FEC with the optimal code rate R∗
c = NGMI(X∗;Y )

and ideal PCS with the optimal shaping rate R∗
s = H(X∗), as

summarized in Table I.

IV. IMPACT OF SUB-OPTIMAL PCS AND FEC

GMI and NGMI quantify theoretic channel metrics as well

as the limit of transceiver technologies without imposing any

constraints on implementation complexity. However, they are

also very useful to evaluate and optimize systems with sub-

optimal pragmatic PCS and FEC, if shaping and coding gaps

are properly taken into account. In what follows, let PX † denote

the distribution that maximizes the IR using a sub-optimal PCS

and/or FEC scheme.

A. Sub-Optimal FEC, Optimal Shaping

Since sub-optimal FEC requires more redundancy (i.e., a

lower code rate) than optimal FEC to achieve error-free de-

coding, the largest code rate for error-free decoding is

R†
c = NGMI

(
X†;Y

)
− δc ,

where δc ≥ 0 is the coding gap. The coding gap δc quantifies

how much fewer information bits are conveyed per transmit-

ted bit by sub-optimal coding compared to optimal coding. In

[80], FEC decoding simulations are performed using spatially-

coupled (SC) LDPC codes, showing that for each code rate R†
c

the coding gap δc is nearly constant across various distributions

PX and M 2-QAM constellation templates; the most widely

applicable coding gap is conservatively chosen as that of the

smallest constellation (i.e., 4-QAM) since it is the marginally

greatest among those of all PX and M 2-QAM. This implies

that we can with high confidence declare error-free decoding if

the channel metric NGMI(X†;Y ) is larger than the code rate

R†
c by δc , independent of modulation. Therefore, if only one

FEC code of rate rc with coding gap δc is available, the optimal

shaping distribution can be obtained as

PX † = argmax
PX

GMI (X;Y )

subject to NGMI (X;Y ) ≥ rc + δc , (16)

where the last condition ensures error-free decoding. It has been

shown in [88] that the loss of IR due to a constant coding gap δc

is approximately proportional to m, which importantly implies

that a small QAM template with moderate shaping performs

better than a large QAM template with strong shaping.

B. Optimal FEC, Sub-Optimal Shaping

If the FEC is optimal but PCS is sub-optimal, we can calculate

the IR loss ∆s ≥ 0 that quantifies how many fewer information

bits are transmitted per transmitted symbol per dimension by

a sub-optimal shaping algorithm compared to optimal shaping.

Formally, the IR loss due to a sub-optimal shaping algorithm is

∆s
∆
= H(X†) − R†

s , where X† is the output of the sub-optimal

shaping algorithm whose probability approximately follows an

MB distribution and R†
s ≤ H(X†) is the realized shaping rate

(7). If we define a shaping gap as the unit-less ratio of the IR

loss relative to the entropy H(X†) for the same average symbol

energy H ∗ [|X†|
2

], i.e.,

δs
∆
=

∆s

H (X†)
= 1 −

R†
s

H (X†)
,

the IR obtained by sub-optimal shaping is a fraction

R†
s/H(X†) = 1 − δs ≤ 1 of the GMI. Also, by substituting R†

s

for H(X†) in (5), we have

IR = R†
s − m

(
1 − R†

c

)

= H
(
X†

)
(1 − δs) − m

(
1 − R†

c

)

in bits/symbol per dimension. It follows from IR =
GMI(X†;Y )(1 − δs) that the optimal code rate that achieves

this IR is then given by

R†
c = 1 −

H
(
X†

)
− GMI

(
X†;Y

)

m
(1 − δs)

= NGMI
(
X†;Y

)
(1 − δs) + δs . (17)

If only one FEC code of rate rc with δc = 0 is available, and if

the shaping gap δs is known for every realized MB distribution

PX of the shaping algorithm, the optimal distribution for this
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Fig. 14. Shaping gap δs of (a) CCDM and (b) MR-PCDM, with 4-PAM
(dotted lines), 8-PAM (dashed lines), and 16-PAM (solid lines) constellations.
The numbers in parentheses show the block length ns .

sub-optimal shaping scheme can be obtained by

PX † = argmax
PX

GMI (X;Y )

subject to NGMI (X;Y ) ≥
rc − δs

1 − δs
. (18)

In Fig. 14, the shaping gap is estimated for two sub-optimal

finite-length DM algorithms: (a) CCDM [56], and (b) low-

complexity multi-rate prefix-free code DM (MR-PCDM) [89].

For some cases in Fig. 14, the shaping gap is almost constant

across the realized shaping rates Rs , e.g., when ns ≥ 320 with

CCDM, or when ns ≥ 1280 with MR-PCDM for 8- and 16-

PAMs. This constant shaping gap simplifies the maximization

problem (18) and facilitates the analysis, as will be shown in the

following section.

C. Sub-Optimal FEC and Sub-Optimal Shaping

Combining the above results, if FEC and PCS are both

sub-optimal, after penalizing GMI by δc and δs , the IR can be

Fig. 15. IR of non-ideal PCS with δs = 0.025, and non-ideal FEC with
δc = 0 (solid lines), δc = 0.05 (dashed lines), and δc = 0.10 (dotted lines).

calculated as

IR =
(
GMI

(
X†;Y

)
− mδc

)
(1 − δs) . (19)

At the same time, from (5) we have

IR = H
(
X†

)
(1 − δs) − m

(
1 − R†

c

)
(20)

in bits/symbol per dimension. Therefore, the optimal code rate

is given by relating (19) and (20) as

R†
c =

(
NGMI

(
X†;Y

)
− (1 + δc)

)
(1 − δs) + 1. (21)

In case where a fixed rate-rc code is used with a pre-determined

coding gap δc , if we assume a nearly constant shaping gap of

δs over all Rs , (20) shows that the practically achieved IR is

increasing with the entropy rate H(X†). Therefore, the optimal

distribution PX † for the sub-optimal PCS and FEC can be

obtained by solving

PX † = argmax
PX

H (X)

subject to NGMI (X;Y ) ≥
rc − δs

1 − δs
+ δc . (22)

Figures 15 and 16 show the IRs obtained by solving the

maximization problem (22), with coding gaps δc = 0, 0.05, 0.1,

and shaping gaps δs = 0, 0.025, 0.05. Note that state-of-the-

art soft-decision FEC codes have coding gaps of δc ≤ 0.1, and

CCDM with a block length ≥ 480 produces shaping gaps of

δs � 0.02, as shown in Fig. 14(a). It can be seen from Figs.

15 and 16 that a reduction of the coding gap is crucial to more

closely approach the channel capacity, but the effect of a shaping

gap on the IR is relatively insignificant, except at high SNR

where the IR is saturated. In practice, however, the IR at high

SNR can be recovered if uniform QAM is used.
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Fig. 16. IR of non-ideal FEC with δc = 0.05, and non-ideal PCS with δs = 0
(solid lines), δs = 0.025 (dashed lines), and δs = 0.05 (dotted lines).

V. IMPLEMENTATION ASPECTS

A. Distribution Matching

CCDM [56] is one of the most commonly assumed DMs for

PCS in optical communications, since (i) it is asymptotically op-

timal in block length, simplifying the analysis of experimental

results, and (ii) it can be implemented on the same architecture

for any shaping rate. However, CCDM uses modified arithmetic

coding that involves multiplications, divisions, and comparisons

of real numbers. An approximate implementation of CCDM

using fixed-point operations still needs multiplications and di-

visions of (possibly large) integer numbers, see, e.g., [90]; the

effect of limited numerical precision on the performance can be

analyzed following [91]. Furthermore, and more fundamentally,

arithmetic coding is intrinsically serial in each block, and the

block size should be large to approach capacity, which impedes

parallel ASIC implementations.

Approaches to design a DM algorithm that is computationally

efficient and also good for parallelization include PCDM, which

was used in early demonstrations of PCS in optical communi-

cations [36]. This scheme is implemented using small look-up

tables (LUTs), and a framing method for PCDM is presented in

[58], [59], which allows variable-length prefix-free codes to be

contained in a fixed-length block. Without framing, PCDM ap-

proaches the optimal energy efficiency to within a few tenths of

a dB across a wide range of shaping rates with very fine granu-

larity. Even after framing, the shaping gap is kept to within a few

tenths of a dB if the block length is large. Like CCDM, PCDM is

also an asymptotically good algorithm in block length. Indeed,

the asymptotically good performance of CCDM and PCDM is

intrinsic, since they are both designed to avoid the exponen-

tial complexity associated with the direct mapping of uniformly

distributed information bits to an ns-dimensional ball of con-

stellation points, by generating IID MB distributions in large

dimensions. Conversely, though, both schemes can result in a

significant shaping gap for short block lengths.

However, for short block lengths (i.e., small dimensions

ns ≤ 100), it is feasible by today’s implementation technol-

ogy to perform direct mapping of information bits to an ns

-dimensional ball-like constellation in an algorithmic manner,

e.g., using shell mapping [63], [74]–[76]. Shell mapping was

adopted in dial-up and fax modems in the mid-1990s, as de-

fined in the ITU-T Standard V.34 [7]. Obviously, the shaping

performance of shell mapping is somewhat sub-optimal due to

its limited block length.

B. SD FEC

In BMD, the SD decoding metric of the j-th bit level can be

represented by an LLR as (cf. (10))

Lj (y) = log
PB j |Y (0|y )

PB j |Y (1|y ) = log

∑

x ∈X
( j )
0

PY |X (y |x )PX (x)
∑

x ∈X
( j )
1

PY |X (y |x )PX (x) . (23)

When symbol X is uniformly distributed over X , the LLR re-

duces to

Lj (y) = log

∑

x∈X
( j )
0

PY |X (y |x )
∑

x∈X
( j )
1

PY |X (y |x )

and an efficient piecewise-linear approximation of Lj [92] leads

to near-optimal decoding performance in belief-propagation de-

coding of LDPC codes [93]. If we use PS QAM with an MB

distribution PX in an AWGN channel with noise variance σ2 ,

the LLR Lj can be calculated from the received signal y as

Lj (y) = log

∑

x ∈X
( j )
0

exp
(

−
( y −x ) 2

2 σ 2 −λx2
)

∑

x ∈X
( j )
1

exp
(

−
( y −x ) 2

2 σ 2 −λx2
) . (24)

Let us denote the symbols that have a dominant effect in decod-

ing as

x0 = argmax
x∈X

( j )
0

exp

(

−
(y − x)2

2σ2
− λx2

)

and

x1 = argmax
x∈X

( j )
1

exp

(

−
(y − x)2

2σ2
− λx2

)

,

respectively, from the numerator and the denominator of (24).

Then, the max-log approximation of (24) using x0 and x1 leads

to an LLR estimate of the j-th bit level, which is a linear function

of y as

L̃j (y) =
x0 − x1

σ2
y

︸ ︷︷ ︸

(a)

−

(
1

2σ2
+ λ

)
(
x2

0 − x2
1

)

︸ ︷︷ ︸

(b)

.
(25)

The term (a) is a function of the channel parameter σ, and the

term (b) is a joint function of the channel (σ) and shaping (λ).
When PS QAM degenerates to uniform QAM by λ = 0, (25) re-

duces to the conventional linear LLR approximation of uniform

QAM, Lj (y) = (x0 − x1)/σ2 × (y − (x0 + x1)/2). Figure 17

shows the exact and piecewise-linear approximate LLRs of the

first 3 bit levels (i.e., of one quadrature) of a PS 64-QAM con-

stellation with BRGC [101, 100, 110, 111, 011, 010, 000, 001].
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Fig. 17. Exact (solid lines) and piecewise-linear approximate (dashed lines)
LLRs of the (a) first, (b) second, and (c) third bit levels, with H(X ) = 2.6 on
the 64-QAM template at SNR = 13 dB.

The piecewise-linear approximation (dashed) yields LLRs that

are indistinguishable from the exact (solid) LLRs when their

magnitudes (i.e., the absolute values |L̃j (y)| on the y-axis) are

small; i.e., the approximation error is negligible for those LLRs

that play a crucial role in SD decoding. The approximation leads

to an increasing discrepancy as the magnitude grows. This, how-

ever, has an insignificant impact on decoding performance, and

almost no impact at high SNR.

SD FEC codes are typically designed by assuming symmetric

LLR distributions, which occur, e.g., as a consequence of BICM

with uniform QAM constellations. However, when a constella-

tion is strongly shaped such that its shaping rate Rs is much

smaller than 2m, LLRs can have highly asymmetric distribu-

tions. Therefore, performance loss can be observed in pragmatic

FEC decoding if the constellation is strongly shaped. As an ex-

ample, the probability distribution of input symbol, PX (X), and

that of the LLR, PL i
(Li), are evaluated for two shaping rates

Rs = 2H(X) with H(X) = 2.7 and 1.8 in Fig. 18, using the 64-

QAM template, m = 3, and the BRGC [101, 100, 110, 111, 011,

010, 000, 001] in each dimension. The LLR distributions are ob-

tained at SNRs of 12.9 dB and 5.1 dB, respectively, which are

the SNRs that achieve capacity with R∗
s = 2H(X). With weak

shaping of H(X) = 2.7, all LLR distributions are symmetric

or close to symmetric. With strong shaping of H(X) = 1.8,

however, L2 and L3 become highly asymmetric around zero.

In particular, at the second bit level, P (L2 < 0) ≈ 0.9963 and

P (L2 > 0) ≈ 0.0037, hence the hard decision (HD) value of

the demapper output is almost always bit 1. This results in the

effect that the code bits are nearly shortened at the second bit

level, which amounts to 1/3 of the code bits. In the extreme case

where λ → ∞, hence H(X) = 1, only the innermost constel-

lation points have a non-zero probability of occurrence, which

results in complete shortening of the code bits that are mapped

to outer symbols (i.e., the code bits at the second and third bit

Fig. 18. Probabilities of 8-PAM constellation points X and LLRs Lj with
(a) H(X ) = 2.7 at SNR = 12.9 dB, and (b) H(X ) = 1.8 at SNR = 5.1 dB.

levels in this example). Therefore, in order to support strong

shaping, FEC codes should be designed to be robust to shorten-

ing at the bit levels with a highly asymmetric LLR distribution.

With this, and looking back at the fact that a fixed coding gap

causes a loss of IR that increases with m, overly strong shaping

of a large QAM template, such as used, e.g., in [94], should

be avoided for pragmatic FEC decoding. Instead, one should

switch to a smaller QAM template whenever the shaping gap

becomes small enough with weak shaping.

C. Pre-FEC Performance Metrics and HD FEC

In terms of reporting raw transmission performance (pre-FEC

BER or Q-factors), attention has to be paid to how these are de-

termined for a shaped constellation. When performing HD of the

received symbols according to the maximum a posteriori (MAP)

decision rule, the decoder chooses x̂ = argmax
x∈X

PX |Y (x|y). If

we represent the constellation symbols X in a binary form

B = [B1 . . . Bm ] using the BRGC, two nearest-neighbor sym-

bols xL , xR ∈ X of a received symbol y differ in only one

bit. Denote this bit level by j. Then, the MAP decision can be

made as x̂ = argmax
x∈{xL ,xR }

PB j |Y (bj (x)|y). In other words, x̂ = xL

if PB j |Y (bj (xL )|y) > PB j |Y (bj (xR )|y), and x̂ = xR other-

wise. Therefore, an optimal decision boundary is given by the

value d such that PB j |Y (bj (xL )|d) = PB j |Y (bj (xR )|d). That is,

PB j |Y (bj (xL )|d)/PB j |Y (bj (xR )|d) = 1, hence Lj (d) = 0 (cf.

(23)). The HD boundaries are a union of the HD boundaries of

constituent bit levels. Since evaluation of exact Lj (y) is compli-

cated as shown in (24), and by knowing that the piecewise-linear

approximate of LLR is very accurate in low-magnitude regimes

(near Lj (y) = 0), we can obtain the HD boundaries using (25)

as by L̃j (d̃) = 0. Therefore, from (25), the union of HD bound-

aries of all bit levels is given by

d̃k =
(
1 + 2λσ2

) xk +xk + 1

2 , (26)

for the M -PAM constellation X = [x1 , . . . , xM ] with x1 <
. . . < xM . Notice that the boundary d̃k is a joint function of
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Fig. 19. Penalty in Q factor when the HD boundaries of uniform 16-QAM are
used for PS 16-QAM.

the channel (σ) and shaping (λ). For uniform PAM with λ = 0,

the boundaries in (26) reduce to d̃k = (xk + xk+1)/2, which

is independent of the parameters σ and λ. Interestingly, given

σ and λ, the PS PAM boundaries are simply a constant multi-

plication of the uniform PAM boundaries, hence making a uni-

form grid; e.g., if DU = [d̃1 , . . . , d̃M −1 ] = [−6,−4, . . . ,+6]
for uniform 8-PAM, DP C S = [−6∆,−4∆, . . . ,+6∆] for PS

8-PAM, where ∆ = 1 + 2λσ2 . Therefore, when PCS is used,

the raw pre-FEC BER should be calculated based on DP C S

instead of DU . Figure 19 shows that, when PCS is performed,

QU = 10log10BER obtained with the uniform 16-QAM bound-

aries DU can lead to > 0.5 dB of loss compared to QP C S

obtained with the optimal PS 16-QAM boundaries DP C S .

VI. CONCLUSION

In this paper, we reviewed the theoretic foundation of PCS

and discussed the merits of PCS over other constellation shaping

techniques. Information-theoretic measures such as MI, GMI,

and NGMI were explained with their operational meanings.

Based on these measures, optimization problems are formulated

for systems with optimal and sub-optimal PCS/FEC schemes,

the solution of which provides the parameters of PCS and FEC

that achieve the maximum IR under a given channel condition.

We revisited important assumptions that are commonly made

for ideal PCS and FEC systems, and addressed the potential

pitfalls that should be avoided in practice.

APPENDIX

In this section, we show that QY |X (Y |X) in (11) represents

an approximated channel transition probability that derives the

GMI, in analogy to PY |X (Y |X) that derives the MI, and its

operational meaning is illustrated.

When binary codes are used with non-binary signaling, the

multi-level coding and multi-stage decoding (MLC-MSD) [95],

illustrated in Fig. 13(c), can achieve the SMD capacity. The

MLC-MSD encodes each bit level using a different binary FEC

code whose rate is matched to the bit level, and decodes the

received symbols in a successive manner from the 1st constituent

bit level to the m-th bit level, where each of the m decoders

uses the (error-free) output of all the preceding decoders (cf.

Fig. 13(c)). The reason why MLC-MSD can achieve the SMD

capacity will become clear below.

First, recall that B is merely a binary representation of the

non-binary symbol X , hence we have

PY |X (Y |X ) = PY |B (Y |B ) =
PB|Y (B|Y )PY (Y )

PB(B) , (27)

where the last equation is again due to Bayes’ rule. Here, using

the chain rule, the likelihood can be rewritten as

PB|Y (B |Y ) = PB1 ...Bm |Y (B1 . . . Bm |Y )

= PB1 |Y (B1 |Y ) × PB2 |B1 Y (B2 |B1Y ) · · ·

× PBm |B1 ...Bm −1 Y (Bm |B1 . . . Bm−1Y )

=

m∏

j=1

PB j |B1 ...B j −1 Y (Bj |B1 . . . Bj−1Y ). (28)

For example, with the BRGC {101, 100, 110, 111, 011,

010, 000, 001} of the 8-PAM constellation X = −7,−5,

. . . ,+7, we have X
(1,2)
00

∆
= {x ∈ X : b1(x) = 0, b2(x) = 0} =

{+5,+7}, hence PY |B1 B2
(y|00) =

∑

x ′∈X
( 1 , 2 )
0 0

PY |X (y|x′) is

calculated using the measurable PY |X (Y |X), which in

turn can be plugged into PB2 |B1 Y (0|0y) = PY |B1 B2
(y|00)

PB2
(0)/PY (y) to evaluate (28). Eventually, by plugging (28)

into (27), we obtain an equivalent form of PY |X (Y |X) ex-

pressed using the metrics of BMD as

PY |X (Y |X )

=

⎡

⎣

m∏

j=1

PB j |B1 ...B j −1 Y (Bj |B1 . . . Bj−1Y )

⎤

⎦
PY (Y )

PX (X)
.

(29)

Using (29), an optimal MLC-MSD that consists of m different

length-n binary FEC codes finds m codewords b1 , . . . , bm such

that the product of the channel transition probabilities

n∏

i=1

⎡

⎢
⎢
⎢
⎢
⎢
⎣

m∏

j=1

PB i , j |B i , 1 ...B i , j −1 Y (bi,j |bi,1 , . . . , bi,j−1 , yi )

︸ ︷︷ ︸

(a)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

PY (yi)

PX (xi)
︸ ︷︷ ︸

(b)

(30)

is maximized, where bi,j denotes the j-th bit of the

transmitted symbol xi . When nc → ∞, the terms

(a) and (b) can be factored out of the product as

limn c →∞

∏n c

i=1 [(a)(b)]=limn→∞

∏n c

i=1 (a) · limn→∞

∏n c

i=1(b),
since both limits separately exist. In particular, due to the

asymptotic equipartition property (AEP),
∏n c

i=1 (b) becomes

concentrated at a fixed value 2−n c (H(Y )−H(X )) that is inde-

pendent of the choice of the codeword (i.e., independent of

decoding), as nc → ∞. Therefore, decoding in MLC-MSD is

a function only of the remaining term
∏n c

i=1 (a). The chain

operations in (a) describe the successive decoding procedure

of the MLC-MSD depicted in Fig. 13(c). This shows why
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MLC-MSD can achieve the SMD capacity using binary codes

and successive BMD.

MLC-MSD has a high complexity due to the use of multi-

ple different FEC codes and a long latency due to successive

decoding of bit levels and is hence not very practical. The par-

allel BMD architecture shown in Fig. 13(d) is a low-complexity

low-latency alternative to MLC-MSD. Parallel BMD uses an

approximation of the term (a) in (30) without relying on knowl-

edge of any other bit levels as

PB j |B1 ,...,B j −1 ,Y (Bj |B1 , . . . , Bj−1 , Y )≈PB j |Y (Bj |Y ). (31)

By plugging the right-hand side of (31) into (29), it follows

that the channel transition probability PY |X (Y |X) can be ap-

proximated as (11), in which the term PY (Y )/PX (X) has a

vanishing effect on decoding as the code length increases, for

the same reason as in (30). Therefore, optimal BMD finds a

codeword that maximizes the product of PB j |Y (Bj |Y ) over the

received symbols that span all of the nc codeword bits. Note

that the mismatched decoding metric in (11) is valid for arbi-

trary distributions PX , whereas the mismatched decoding met-

ric has been derived for uniform PX in most cases. In a special

case where PX is uniform and bit levels B1 , . . . , Bm are inde-

pendent of each other, such as in BICM with BRGC, the mis-

matched decoding metric can be simplified as QY |X (Y |X) =
∏m

j=1 qY |B j
(Y |Bj ), where q

Y |B j
∆
=

∑

x ′∈X i
b j (x )

PY |X (Y |x′), as

derived in [87].

We are now to derive (13). First, by substituting (11) into

(12), we have

GMI (X;Y )

= EX,Y

[

log2

QY |X (Y |X )
∑

x ′∈X PX (x′) QY |X (Y |x′ )

]

=
∑

x∈X

∫

y

PX,Y (x, y) log2

QY |X (Y |X )
∑

x ′∈X PX (x′) QY |X (Y |x′ )
dy

=
∑

x∈X

∫

y

PX,Y (x, y)log2

∏m
j=1 PB j |Y (bj (x) |y )

PX(x)
∑

x ′∈X

∏m
j=1PB j |Y (bj (x′) |y )

dy

=
∑

x∈X

∫

y

PX,Y (x, y)log2

∏m
j=1 PB j |Y (bj (x) |y )

PX (x)
∑

x ′∈X

∏m
j=1

PB j Y (bj (x ′),y )

PY (y )

dy

=
∑

x∈X

∫

y

PX,Y (x, y)

×log2

∏m
j=1 PB j |Y (bj (x) |y )

PX (x)
PY (y )m

∑

x ′∈X

∏m
j=1 PB j Y (bj (x′) , y)

dy. (32)

In the denominator of the log term,

∑

x ′∈X

m∏

j=1

PB j Y (bj (x′) , y)

=
∑

[b1 ...bm ]∈{0,1}m

m∏

j=1

PB j Y (bj , y)

=
∑

[b2 ...bm ]∈{0,1}m −1

PB1 Y (0, y)
m∏

j=2

PB j Y (bj , y)

+
∑

[b2 ...bm ]∈{0,1}m −1

PB1 Y (1, y)

m∏

j=2

PB j Y (bj , y)

=(PB1 Y (0, y)+PB1 Y (1, y))
∑

[b2 ...bm ]∈{0,1}m −1

m∏

j=2

PB j Y (bj , y)

= PY (y)
∑

[b2 ...bm ]∈{0,1}m −1

m∏

j=2

PB j Y (bj , y) .

By recursion, therefore, we obtain

∑

x ′∈X

m∏

j=1

PB j Y (bj (x′) , y) = PY (y)m .

By substituting this into (31), we have

GMI (X;Y )

=
∑

x∈X

∫

y

PX,Y (x, y) log2

∏m
j=1 PB j |Y (bj (x) |y )

PX (x)
dy

=
∑

x∈X

∫

y

⎡

⎣PX,Y (x, y) log2

m∏

j=1

PB j |Y (bj (x) |y )

⎤

⎦ dy

︸ ︷︷ ︸

(a)

−
∑

x∈X

∫

y

[PX,Y (x, y) log2PX (x)] dy

︸ ︷︷ ︸

(b)

.

The term (a) can be developed as

(a) =
∑

x∈X

∫

y

⎡

⎣PX,Y (x, y)

m∑

j=1

log2PB j |Y (bj (x) |y )

⎤

⎦ dy

=

m∑

j=1

∫

y

[
∑

x∈X

PX,Y (x, y) log2PB j |Y (bj (x) |y )

]

dy

= −
m∑

j=1

H (Bj |Y ) .

The term (b) can be developed as

(b) = −
∑

x∈X

[∫

y

PX,Y (x, y) dy

]

log2PX (x)

= −
∑

x∈X

PX (x) log2PX (x)

= H (X) .

Therefore, we obtain

GMI (X;Y ) = (a) + (b) = H (X) −

m∑

j=1

H (Bj |Y ) ,

which is equal to (13).
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