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Probabilistic Context-aware Step Length Estimation

for Pedestrian Dead Reckoning
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Abstract—This paper introduces a weighted context-based step
length estimation algorithm for pedestrian dead reckoning. Six
pedestrian contexts are considered: stationary, walking, walking
sideways, climbing and descending stairs, and running. Instead
of computing the step length based on a single context, the
step lengths computed for different contexts are weighted by
the context probabilities. This provides more robust performance
when the context is uncertain. The proposed step length estima-
tion algorithm is part of a pedestrian dead reckoning system
which includes the procedures of step detection and context
classification. The step detection algorithm detects the step time
boundaries using continuous wavelet transform analysis, while
the context classification algorithm determines the pedestrian
context probabilities using a relevance vector machine. In order
to assess the performance of the pedestrian dead reckoning
system, a dataset of pedestrian activities and actions has been
collected. Fifteen subjects have been equipped with a waist-belt
smartphone and traveled along a predefined path. Acceleration,
angular rate and magnetic field data were recorded. The results
show that the traveled distance is more accurate using step
lengths weighted by the context probabilities compared to using
step lengths based on the highest probability context.

Index Terms—Step length estimation, context detection, step
detection, Pedestrian dead reckoning.

I. INTRODUCTION

The rapid growth of location-based services (LBS) over the

past few years [1] has led positioning and navigation to assume

a significant role in people’s daily lives. LBS mainly involve

sectors like military, emergency services and commercial [2],

and imply the use of mobile computing devices.

Pedestrian navigation applications are crucial for providing

LBS to mobile devices carried or worn by pedestrians. Pedes-

trian navigation is one of the most challenging applications of

navigation technology. It must work in environments where

coverage of global navigation satellite systems (GNSS) and

most other radio signals used for navigation is poor. Inertial

sensors can be used to measure pedestrian motion by dead

reckoning, and micro electro-mechanical systems (MEMS)

sensors are particularly suited for pedestrian navigation pur-

poses: they are small, light and low cost [3]. Moreover, MEMS

sensors are built into smartphones, which can be exploited for

pedestrian navigation scenarios. However, MEMS sensors pro-

vide poor inertial navigation performance stand alone, while

the combination of low dynamics and high vibration limits the

calibration obtainable from GNSS or other positioning systems
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Fig. 1. Pedestrian dead reckoning processing [3].

[3].

Pedestrian dead reckoning (PDR) is a promising solution for

pedestrian navigation using inertial sensors [4], [5], [6]. A

PDR system comprises three phases: step detection, step length

estimation (SLE) and position-solution update, as shown in

Fig.1. Step detection routine aims to identify when steps

occur, while the SLE algorithm determines the length of each

detected step using sensor data. SLE works relatively well

when walking in a straight line. However, real paths include

turns, sidesteps, stairs, variations in speed, and various actions

performed by the subject. These all affect the step length and

must be considered to provide an accurate estimate of the

distance traveled during daily activities as well as laboratory

tests.

This work proposes a weighted context-based step length

estimation (WC-SLE) algorithm in which the step lengths

computed for different pedestrian contexts are weighted by the

context probabilities. Six pedestrian contexts are considered:

stationary, walking, walking sideways, climbing and descend-

ing stairs, and running, as shown in Table I. The proposed

SLE algorithm is compared with the highest context-based

step length estimation (HC-SLE) method, in which the step

length is determined based on the highest probability context.

HC-SLE is the union between two state-of-the-art methods:

• highest probability context determination [7];

• regression-based step length estimation[6], [8].

For each considered pedestrian context, the single step length

is determined based on the assumption that the step length can

be expressed as a linear combination of a constant, the step

frequency and the specific force variance.

The performance of the presented WC-SLE method is compa-

rable to those techniques proposed for step length estimation

with body fixed and handheld sensors in a walking context

only. [9][10][11]. The SLE procedures are part of a PDR

system which includes the step detection and the context



IEEE SENSOR JOURNAL 2

classification algorithms, as illustrated in Fig.2. The step

detection algorithm aims to detect the step time boundaries

and is based on continuous wavelet transform (CWT) analysis.

The context classification routine exploits a relevance vector

machine (RVM) [12] to determine the pedestrian context

probabilities from multiple epochs of data over a sliding time

window which may include several contexts [7].

In order to assess the PDR system performance, a dataset

of pedestrian activities and actions has been collected. Fif-

teen subjects, which have been equipped with a waist-belt

smartphone, traveled along a predefined path, as shown in

Fig.3. Acceleration, angular rate and magnetic field data were

recorded at a 100 Hz sample rate by the relevant 3-axis MEMS

sensors, which are integrated into the smartphone.

Section II reports the background and related work, while

Section III describes the proposed approach and the dataset

collection in detail. Sections IV and V respectively character-

ize the step detection and the context classification techniques.

Section VI defines the SLE algorithms and Section VII reports

the results obtained for the context classification technique

and compares the total distances computed by each SLE

algorithms. Finally, Section VIII presents the conclusions.

II. BACKGOUND AND RELATED WORK

In the PDR systems, the step detection procedure is

commonly based on specific force data processing [13],[14],

while angular rate information is less frequently used [15];

moreover, since the pedestrian motion is usually not aligned

with the sensor-body coordinate frame, the signal magnitude

provided by the sensor is considered. In particular, when

focusing on step detection through the specific force signal

analysis, the steps are revealed through detection techniques

which depend on the on-body sensor location. In the case of

foot-mounted sensors, step detection can easily be performed

by identifying the stance and swing phases of the foot

corresponding to zero velocity periods (ZVPs) [16],[17].

The latter approach cannot be applied when dealing with

handheld, wrist- or waist-mounted sensors [16], [11], [13],

since these configurations do not lead to a zero velocity

period occurrence; in these cases, zero-crossing (ZDT) or

peak detection (PDT) can be adopted for the step detection

routine. However, both PDT and ZDT may lead to revealing

multiple steps when actually only one step occurs [16],

leading to detection errors which can affect the resulting PDR

navigation solution.

Step mode classification aims to recognize the type of motion

activity the subject is performing, e.g. walking or running.

The classification routine extracts features [18],[19] from the

signals provided by body-worn sensors, e.g. accelerometers,

gyroscopes, magnetometers and the barometer. Step mode

classification is also dependent on the sensor location: the

same movement may generate different signals for different

on-body sensor locations. This is the reason that step mode

and sensor location classification are frequently tied together

[16][15]. When dealing with PDR on smartphones, the sensor

location may also be related to the device pose which relates

to particular actions the subject can perform: texting, calling,

swinging or simply keeping the device in a pocket. The

classified step modes can be exploited to get landmarks

on building maps in order to calibrate the PDR routines

particularly in locations such as stairs or elevators [20].

In order to reveal a particular activity in a certain time interval,

the algorithms based on pedestrian activity classification use

sensor data from multiple epoch over a sliding time window

which is typically a few seconds long [21]. The selection of

an appropriate window length is critical. A long time window

may incur delayed response of the PDR system and mix

multiple activities in a single window, but a too short window

may not capture sufficient characteristic of the activity for

classification.

The supervised learning field provides a number of

classification algorithms adopted for step mode and sensor

location classification: decision tree (DT), support vector

machine (SVM), k-nearest Neighbour (KNN) [19], [22]; each

of which presents different characteristics in terms of memory

usage, fitting speed, prediction speed, and predictive accuracy

[23]. Furthermore, the relevance vector machine (RVM) is

used for pedestrian context classification, in order to provide

the context probabilities for each considered context class [7].

These are two examples of context-adaptive and context-aided

navigation [24], [25], respectively.

Step length estimation has a significant impact on the

performances of PDR systems and can be implemented

through several approaches: regression-based [26],[27],

biomechanical models [10], [28], or empirical relationships

[29], [10]. Regression-based methods aims to model the

step length as the combination of a constant, the step

frequency, and the specific force variance during the step

interval. A Biomechanical model estimator relates the step

length to the specific force measurement at the center of

mass (COM) of the user. The vertical displacement of the

COM during one step is calculated via double integration

of the vertical acceleration while the COM is ascending.

Empirical relationships determine the step length estimates

through mathematical expressions, which generally relate

the step length to particular specific force parameters,

which commonly correspond to the maximum and minimum

acceleration values measured within the step interval.

III. PROPOSED METHOD AND DATASET

The present paper proposes a weighted context-based

step length estimation (WC-SLE) algorithm, in which the

step lengths computed for different pedestrian contexts are

weighted by the context probabilities. A context corresponds

to a particular pedestrian motion activity; in particular, six

pedestrian contexts are considered: stationary, walking, walk-

ing sideways, climbing and descending stairs and running, as

illustrated in Table I.

The WC-SLE algorithm works over a 2-seconds long and 50%

overlapped sliding time window, and consists of two parts: the

first one aims to determine the distance traveled under each

context by exploiting the relation in which the step length can

be expressed as a linear combination of a constant, the step
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TABLE I
PEDESTRIAN CONTEXTS

Context C1 C2 C3 C4 C5 C6

Type Stationary Walking
Walking

upstairs

Walking

downstairs

Walking

sideways
Running

Fig. 2. PDR framework.

frequency, and the specific force variance [26],[27]; the second

one performs the weighting between the distances computed

in the first part and the context probabilities determined over

the considered time window.

The proposed WC-SLE algorithm is compared with the highest

context-based SLE (HC-SLE) algorithm, which only considers

the traveled distance corresponding to the context with the

highest probability.

The SLE routines are part of a PDR framework, which

also defines the procedures of step detection and context

classification, as shown in Fig.2 The step detection algorithm

aims to identify the step time boundaries by performing the

continuous wavelet transform (CWT) analysis of the specific

force signal [30], [31]. The context classification algorithm

uses the RVM method to classify a fixed portion of data, which

generally may include several steps, into several contexts, each

with an associated probabilities.

In order to assess the performance of the proposed PDR

system in a real scenario, a dataset of pedestrian activities has

been collected. Fifteen subjects traveled along a predefined

path, shown in Fig.3. Subjects with different age and gender

have been considered: 7 women and 8 men, both between

20 and 50 years old. The subjects have been equipped with

a waist-belt smartphone Samsung Galaxy S4, as shown in

Fig.4. Acceleration, angular rate and magnetic field data were

recorded at a 100 Hz sample rate by the relevant 3-axis

MEMS sensors, which are integrated into the smartphone.

Six pedestrian activities, which correspond to the contexts

shown in Table I, have been considered. Moreover, the subjects

performed specific actions during the test, in order to yield a

realistic daily life scenario. As shown in Fig.3, the actions are

numbered from 1 to 5 and comprise:

1) Watching a notice board (Fig.5.1).

2) Entering an office and sitting down for a while (Fig.5.2).

3) Opening a door (Fig.5.3).

4) Lacing up shoes (Fig.5.4).

5) Taking a bottle of water from an automatic vending

machine (Fig.5.5).

During the data recordings, the path has been identified

through a coloured scotch tape arranged on the ground:

different tape colours have been used for highlighting different

pedestrian contexts. The subjects were asked to travel the path

and perform the movements and actions as natural as possible

without any conditioning. The true path length is 331 meters:

it has been determined through a tape measure by measuring

the length of the tape attached on the ground. The dataset has

been collected at the School of Engineering of the University

of Florence, as shown in Fig 3.

IV. STEP DETECTION

In PDR navigation, the accelerometer signal pattern is

generally exploited to determine the presence of steps over

time [6], [16]. The specific force signal provided by body-

worn sensors during pedestrian activities like walking, shows

a periodic pattern which depends on the principal frequency

of the movement, as illustrated in Fig.6. The purpose of

the step detection routine is to reveal the step time indexes

which correspond to the step boundaries, in order to separate

consecutive steps [13],[14]. Since the step detection is the

primary stage in a PDR process, either false or missed step

detections can strongly affect the estimation of the traveled

distance.

In this work, the step detection algorithm exploits the con-

tinuous wavelet transform (CWT) analysis [30] and follows

the block diagram illustrated in Fig.7. The specific force is

used from multiple epoch over a 50% overlapped sliding time

window of 1-second duration. In order to perform a detection

independently of the sensor orientation, the magnitude of the

specific force is computed:

||f || =
√

f2x + f2y + f2z (1)

where fx, fy , and fz are the components of the specific force

expressed in the body coordinate frame. Then, a band-pass

filtering operation is performed, in order to filter the signal

noise at the higher frequencies and to obtain a zero-mean

specific force magnitude to provide as input to the CWT block.

The latter aims to identify the local maxima which correspond

to the step boundaries, while discarding the local maxima and

minima due to the signal irregularities, as illustrated in Fig.8.

The CWT processing brings out specific time events in the

signal by decomposing the signal over dilated and translated

wavelets [32]. A wavelet is a short waveform generally named

ψ ∈ L2(ℜ): |ψ| = 1 and centered in the neighbour of t = 0
such that:

∫ +∞

−∞

ψ(t)dt = 0. (2)

Suppose that the ψ is a real wavelet, the corresponding Real

Wavelet Transform of the function f is given as:

W
[

f(u, s)
]

=

∫ +∞

−∞

f(t)
1√
s
ψ∗

(

t− u

s

)

dt. (3)

This operator measures the variation of the function f in a

neighbour of u proportional to s. In our case, the variable
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Fig. 3. Path and pedestrian activity description. The subject was asked to travel the highlighted path by performing five pedestrian activities and several
specific actions. The path length is 331 meters.

u represents the time translation variable which enables the

wavelet to scan the entire time window. On the other hand,

the variable s represents the scale which permits to dilate

the wavelet in order to bring out particular events coming

up in a certain time within the analysed signal waveform.

The expression (3) represents the inner product between the

considered wavelet and the given function f which in our case

represents the band-pass filtered version of the specific force

magnitude. The higher the correlation between the function

and the appropriately dilated wavelet, the higher the resulting

inner product value. High values of the correlation between

the filtered version of the specific force magnitude and the

fine scales of the wavelet are expected at the local maxima

which refer to the step boundaries. By knowing that the Local

Lipschiz regularity [32] of a function f at a particular time

v depends on the decay at fine scale of |W [f(u, s)]| in the

neighbour of v, the local maxima in the filtered specific force

magnitude can be detected from the local maxima values of

|Wf [(u, s)]| [30][32]. In this work, a wavelet scale value is

equal to 16 and a time window overlapping factor is equal

to 50% have been chosen in order to provide the best trade-

off between the step detection accuracy and the computational

load.

Fig. 4. On-body smartphone location and sensor body frame.

(1) (2) (3)

(4) (5)

Fig. 5. Illustration of the considered pedestrian actions: watching a notice
board (1), entering an office and sitting down for a while (2), opening a door
(3), lacing up shoes (4), taking a bottle of water from an automatic vending
machine (5).

V. CONTEXT CLASSIFICATION

The purpose of the context classification subsystem is to

predict the pedestrian contexts based on the features that are

Fig. 6. Pattern of the specific force magnitude provided by the waist-worn
accelerometer during a walking activity.

Fig. 7. Step detection processing.
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extracted from the sensor measurements. To this aim, the

RVM algorithm is exploited and six context categories are

considered: stationary, walking, walking sideways, climbing

and descending stairs and running.

The context classification technique is illustrated in Fig. 9.

A. Feature Extraction

Feature extraction is a crucial operation in classification

problems. A good set of feature can often provide accurate

and comprehensive descriptions of patterns from which the

differences between context categories are easily discerned.

In this work, both time-domain and frequency-domain features

are considered, in order to capture either temporal variations

or periodic characteristics of motion [7]. Range, standard

deviation, skewness, kurtosis, energy, and zero-crossing rate

are extracted over time-domain, while the maximum peak

and the relative frequency index are extracted over frequency-

domain, as summarized in Table II1. The aforementioned

features are extracted from the magnitude signal of all avail-

able sensors: accelerometers, gyroscopes and magnetometers.

The effectiveness of features similar to these for pedestrian

activity classification have been shown in different studies

[18],[19],[33],[34].

B. Feature Selection

In order to assess the usefulness and identify the most

relevant features for distinguishing different activities, feature

selection techniques are used and described. To explore the

best combination of features, the Sequential Forward Floating

Selection (SFFS) algorithm [35] is investigated in this paper.

The number of misclassified observations has been used as the

criterion to determine which feature has to be added next in

the current feature set. The SFFS algorithm aims to minimize

1In Table II, ”a” refers to the specific force signal, ”g” refers to the angular
rate signal, ”m” refers to the magnetometer signal, LPS refers to the low-
pass filtering operation, DFT refers to the discrete Fourier function operation,
ZCR is the zero-crossing rate, N is the length of the sample window, and
I(.) refers to the indicator function which is 1 if its argument is true and 0
otherwise.

Fig. 8. Step detection performed through specific force signal analysis.

Fig. 9. Context classification processing.

TABLE II
FEATURE DESCRIPTION

F1 rangeacc = max(‖a{t}‖)−min(‖a{t}‖)

F2 rangeaccf = max(LPF (‖m{t}‖))−min(LPF (‖m{t}‖))

F3 rangegyro = max(‖g{t}‖)−min(‖g{t}‖)

F4 rangemagn = max(‖m{t}‖)−min(‖m{t}‖)

F5 σacc =
√

1

N

∑N
t=1

(‖at‖ − ‖a‖)2

F6 σaccf =
√

1

N

∑N
t=1

(LPF (‖at‖)− ‖a‖)2

F7 σgyro =
√

1

N

∑N
t=1

(‖gt‖ − ‖g‖)2

F8 σmagn =
√

1

N

∑N
t=1

(‖mt‖ − ‖m‖)2

F9 skewnessacc = 1

Nσ3

√

1

N

∑N
t=1

(‖at‖ − ‖a‖)3

F10 skewnessaccf = 1

Nσ3

√

1

N

∑N
t=1

(LPF (‖at‖)− ‖a‖)3

F11 skewnessgyro = 1

Nσ3

√

1

N

∑N
t=1

(‖gt‖ − ‖g‖)3

F12 skewnessmagn = 1

Nσ3

√

1

N

∑N
t=1

(‖mt‖ − ‖m‖)3

F13 kurtosisacc = 1

Nσ4

√

1

N

∑N
t=1

(‖at‖ − ‖a‖)4

F14 kurtosisaccf = 1

Nσ4

√

1

N

∑N
t=1

(LPF (‖at‖)− ‖a‖)4

F15 kurtosisgyro = 1

Nσ4

√

1

N

∑N
t=1

(‖gt‖ − ‖g‖)4

F16 kurtosismagn = 1

Nσ4

√

1

N

∑N
t=1

(‖mt‖ − ‖m‖)4

F17 Energyacc =
∑N

t=1
‖at‖2

F18 Energyaccf =
∑N

t=1
LPF (‖at‖2)

F19 Energygyro =
∑N

t=1
‖gt‖2

F20 Energymagn =
∑N

t=1
‖mt‖2

F21 max‖DFT (‖at‖)‖

F22 max‖DFT (LPF‖at‖)‖

F23 max‖DFT (‖gt‖)‖

F24 frequency index of F21

F25 frequency index of F22

F26 frequency index of F23

F27 ZCRacc = 1

N−1

∑N−1

n=1
I{‖at‖ ‖at+1‖ < 0}

F28 ZCRaccf = 1

N−1

∑N−1

n=1
I{LPF (‖at‖) LPF (‖at+1‖) < 0}

the misclassified observations over all feasible feature subsets,

in order to obtain better classification performance. The SFFS



IEEE SENSOR JOURNAL 6

consists of two parts:

• a new feature is added to the current feature subset if

better classification performance is achieved;

• a conditional exclusion is then applied to the new feature

subset, from which the least significant feature is deter-

mined. If the least significant feature is the last one added,

the algorithm goes back to select a new feature. Otherwise

the least significant feature is excluded and moved back

to the available feature subsets and conditional exclusion

is continued.

This cycle is repeated until there is no further improvement

of classification performance. The advantage of this method

is that it takes feature redundancy into consideration and the

discarded features can be selected again in the inclusion and

exclusion procedure. Fig.10 shows the average classification

accuracy as a function of the number of features selected by

SFFS, ranging from 1 to 28 (full feature set). The shadow

area in the figure indicates the standard deviation using 10-

fold cross validation. The results show that the classification

performance best with 18 features included, achieving a 91.1%

classification accuracy on average. If we pick some more fea-

tures beyond this number, the performance degrades gradually.

The corresponding 18 features are F1, F2, F4, F5, F6, F9, F10,

F14, F16, F17, F19, F20, F21, F22, F23, F24, F25 and F27

in Table II.

C. Relevance Vector Machine Model

RVM is a Bayesian sparse kernel technique [36] for regres-

sion or classification, sharing many of the main characteristics

of SVM. The advantage of RVM beyond boolean classifiers,

like SVM, is that it can provide probabilistic classification

results for each category. Thus the subsequent mechanism can

adapt different strategies based on the uncertainty of the classi-

fication decisions. Note that in the algorithm described in this

section, we assume that there are L = 6 possible pedestrian

contexts C = {Ck|k = 1, 2, . . . , L}, as illustrated in Table

I. Given a training dataset X = {Xi,j |i = 1, 2, . . . , N ; j =
1, 2, . . . ,M}, each sample Xi = {Xi,1, Xi,2, . . . , Xi,M} is

assigned to a target value yi ∈ C. M is the number of

features and N is the number of the samples in the dataset.

Fundamentally, RVM is a binary classifier (y ∈ {0, 1}) under

a Bayesian probabilistic framework [36]. The relationship of

the input vector and their real-valued predictions t(Xi) are

modelled by a linearly weighted function

t(Xi;w) =

N
∑

i=1

wiφ(Xi) = wTφ(Xi), (4)

where w denotes the weights of samples and φ(Xi) is a

nonlinear basis function. The input data samples Xi are

classified according to the sign of t(Xi). To infer the function

t(Xi), we need to define the basis function and to estimate

the weights as well. In here, the radial basis kernel function

is used, so that:

Φij = φT (Xi)φ(Xj) = exp

(

− ‖Xi −Xj‖2
2σ2

G

)

. (5)

A Bayesian probabilistic framework infers a distribution over

the weights. According to Bayes rule, the posterior probability

of w is

p(w|y,α) =
p(y|w,α)p(w|α)

p(y|α)
, (6)

where y = (y1, ..., yN )T , αi represents the precision of

the corresponding parameter wi, and α = (α1, ..., αN )T .

p(y|w,α) is the likelihood of the target values given the

training dataset. The conditional prior probability distribution

p(w|α) in Equation (6) is modelled by a Gaussian function

where the parameters wi are weighted by parameters αi.

p(w|α) =

M
∏

i=1

√
α√
2π
exp

(

− αiw
2
i

2

)

. (7)

Because y ∈ {0, 1} is a binary variable, the likelihood function

can be described by a Bernoulli distribution:

p(y|w,α) =

M
∏

i=1

[σB(t(Xi;w))]yi [1− σB(t(Xi;w))]1−yi ],

(8)

where σ(y) = 1/(1 + e−y) is the logistic sigmoid link

function. Equation (6) with the probability densities given

by (7) and (6) cannot be solved analytically. Therefore, a

numerical method, the Laplacian approximation, is proposed

to find the maximum a posterior (MAP) weights w∗ based on

the training dataset,

ln{p(y|w)p(w|α)}

=

N
∑

i=1

[yi ln(ti) + (1− yi)ln(1− ti)]−
1

2
wTAw,

(9)

where A = diag(α). By computing the maximum value of

(9) with respect to α and y, the mean w∗ and covariance ∆
of the Laplacian approximation are obtained:

w∗ = B∆ΦTy

∆ = (ΦTBΦ+A)−1,
(10)

Fig. 10. Feature selection performance of the SFFS algorithm.
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where B = diag(β1, β2, . . . , βN ) is a diagonal matrix with

βi = σ(yi)[1 − σ(yi)]. After obtaining w∗, the parameters

are iteratively updated using

αnew
i =

1− αold
i ∆ii

µ2
i

, (11)

where µi is the i-th posterior mean weight w∗

i and ∆ii is

the i-th diagonal element of the covariance. The procedure is

repeated until it converges to a fixed value or the maximum

number of iterations is reached. In order to tackle multiclass

situations using the RVM method, two possible strategies

could be used [36]. The first one is the one-against-all strategy.

L binary classifiers will be created for an L-class classification

and each classifier is trained to separate one class from

the others. The second strategy is one-versus-one. There are

L(L − 1)/2 binary classifiers created to separate every two

classes. In this study, the first method is adopted as it is

more computational efficient. The context classification use

the accelerometer, gyroscope and magnetometer data, from

multiple epoch over a 50% overlapped sliding time window

of 2-second duration.

VI. STEP LENGTH ESTIMATION

A. Step Length k-parameters Calibration

According to the state of the art [26],[37], the step length

can be expressed as a linear combination of the step frequency

fs and the specific force variance σ2
f :

SL = k0 + k1fs + k2σ
2
f , (12)

where k1 and k2 are respectively the coefficients of the

step frequency and the specific force variance, while k0 is

individually computed for each subject.

In this work, the k0,k1 and k2 parameters are determined for

six contexts: stationary, walking, walking sideways, climbing

stairs, descending stairs and running. Considering the path

illustrated in Fig. 3, the segments which correspond to walk-

ing, walking sideways and running, have been fitted out with

benchmarks arranged every 10 meters: the subject has been

followed with a video camera along the path and the video

recordings have enabled the sensor data collected within the

physical benchmarks to be time tagged. The collected dataset

have been divided into two groups: Group A considers the

walking, walking sideways and running contexts, and consists

of subgroups of 10-meter segments for each subject, accord-

ingly with the segmentation by benchmarks; while Group B

considers the walking upstairs and downstairs contexts, and

consists of subgroups of single step segments for each subject.

The k0, k1 and k2 coefficients are determined for each context

by solving for the linear system of equations

Hk0,1,2 = d, (13)

where,

H =


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
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, (14)

k0,1,2 =
[

k0,1, k0,2, . . . , k0,15, k1, k2

]T

,

d =
[

d1,1, d1,2, . . . , ds,15

]T

,

Fi,j =

N
∑

p=1

fs,p, Σ2
i,j =

N
∑

p=1

σ2
f,p.

(15)

k0,j is the constant term which is individually computed for

the j-th subject, and di,j is the length corresponding to the

i-th data segment and the j-th subject. In the case of Group

A, ni,j is the total number of steps detected in the i-th data

segment which refers to the j-th subject; d is the vector which

comprises the lengths corresponding to the data segments, i.e.

10 meters; Fi,j and Σ2
i,j are respectively the summations of the

step frequencies and specific force variances of the N steps

detected in the i-th data segment which refers to the j-th
subject; the s index refers to the last data segment for each

subject.

In the case of Group B, ni,j refers to a single step and is equal

to 1; d is the stair length, which is equal to 0.29 m in the case

of climbing stairs or 0.43 m in the case of descending stairs.

The least squares solution for the (13) is

k0,1,2 = (HTH)−1HTd. (16)

B. Step Length Estimation Methods

This Section describes the HC-SLE and the WC-SLE

methods, both of which exploit the k-parameters estimated

during the calibration process, in order to determine the step

length for each pedestrian context by linearly combine a

constant, the step frequency and the acceleration variance,

as described in (12). In particular, the HC-SLE algorithm

selects the step length which corresponds to the context with

the highest probability, while in the WC-SLE, the step length

determined for each context are weighted by the context
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Fig. 11. Time framework of the step length estimation system.

Fig. 12. Context RVM classification accuracy on average against the context
window length.

probabilities.

Referring to the time diagram illustrated in Fig. 11, both

methods update the traveled distance at each k-th epoch,

which corresponds to the end boundary of the (k-1)th context

time window. The latter is 50% overlapped and its duration

is 2 seconds. This particular duration maximizes the trade-off

between a real-time analysis and the minimum information

needed to provide an effective context information, as shown

in Fig.12. The improvement on the RVM classification

accuracy by using a time window longer than 2 seconds is

negligible. A too short window does not enable the context

determination process to effectively evaluate the traveled

distance along path segments where the context is uncertain.

1) HC-SLE method: assuming the epoch k as the current

one (see Fig. 11), the HC-SLE algorithm defines

dk,Cn
=

M
∑

p=1

k
Cn,p

0 + k
Cn,p

1 fs,p + k
Cn,p

2 σ2
f,p, (17)

dk =














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...

dk,C6















T

,Context,k−1 =
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{
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}

Pr
{
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}

...

Pr
{

Ck−1,6

}















, (18)

j = argmax
i

{

Pr{Ck−1,i} ∈ Context,k−1

}

, (19)

Selection,k−1 =
[

δj,1, δj,2, . . . , δj,6

]T

. (20)

The dk,Cn
term in (17) represents the distance traveled be-

tween the epochs (k-1) and k, when the pedestrian context

Cn is considered: in particular, k
Cn,p

0 , k
Cn,p

1 and k
Cn,p

2 are

the step length k-parameters referred to the p-th detected step

and the pedestrian context Cn; fs,p and σ2
f,p are respectively

the step frequency and the specific force variance of the p-th
detected step, and M is the total number of steps detected

within the epochs (k-1) and k.

In (18), the dk row vector includes the distances traveled

between the epochs (k-1) and k for each context Cn, with

n = 1, .., 6 (see Table I); while the Context,k−1 vector

comprises the context probabilities for each context Cn within

the context window (k-1).

The Selection,k−1 vector in (20) refers to the context

window (k-1) and comprises the Dirac delta functions [38]

which are all equal to zero except the one corresponding to

the context with the highest probability.

The algorithm 1 describes the HC-SLE routine operations

performed at the epoch k.

Algorithm 1 Highest Context-based SLE Algorithm

pdHC
k = dk · Selection,k−1

dHC
k−1 = dk−1 · Selection,k−1

DHC
k−1 = DHC

k−2 +
1
2 (d

HC
k−1 + pdHC

k−1)

PDHC
k = PDHC

k−1 +
1
2 (d

HC
k−1 − pdHC

k−1) + pdHC
k

The distances pdHC
k , dHC

k−1, DHC
k−1, PDHC

k are sequentially

determined.

pdHC
k is the provisional distance traveled between the

epochs (k-1) and k: the scalar product between dk and

Selection,k−1 selects the distance dk,Cj
, whose j-index

identifies the context Cj with the highest probability, as

defined in (19). The use of the ”provisional” term is because

the context probability information within the context window

k is not available at the current epoch k; therefore, the

information within the context window (k-1) is exploited.

dHC
k−1 is the final distance traveled between the epoch (k-2)

and (k-1). In this case, the ”final” term specifies that the

context probability information within the context window

(k-1) is available at the current epoch k.

DHC
k−1 is the total final distance traveled between the epochs

0 and (k-1): the total final distance DHC
k−2, traveled between

the epochs 0 and (k-2), is added up to the arithmetic mean

between the final and the provisional distances traveled

between the epochs (k-2) and (k-1).

Finally, PDHC
k is the total provisional distance traveled

between the epochs 0 and k: the total provisional distance

traveled between the epochs 0 and (k-1) is added up to

the arithmetic mean between the final and the provisional

distances traveled between the epochs (k-2) and (k-1), and

the provisional distance traveled between the epochs (k-1)

and k.

2) WC-SLE Method: assuming the epoch k as the current

one (see Fig. 11), the WC-SLE algorithm defines the terms
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dk and Context, k−1, as expressed in (18) for the HC-SLE

algorithm.

The algorithm 2 describes the WC-SLE routine operations

performed at the epoch k.

Algorithm 2 Weighted Context-based SLE Algorithm

if
max2(Context,k−1)
max(Context,k−1)

< 0.8 then

go to HC-SLE Algorithm

else

pdWC
k = dk ·Context,k−1

dWC
k−1 = dk−1 ·Context,k−1

DWC
k−1 = DWC

k−2 +
1
2 (d

WC
k−1 + pdWC

k−1)

PDWC
k = PDWC

k−1 +
1
2 (d

WC
k−1 − pdWC

k−1) + pdWC
k

end if

Given the Context,k−1 vector as input, the max(−)
function outputs the highest context probability, while the

max2(−) function outputs the second highest one. If the ratio

between the second highest and the highest context probability

is lower than a threshold is equal to 0.8, the context with the

highest probability is considered predominant with respect to

the other ones; therefore, the HC-SLE algorithm is performed.

Otherwise the distances pdWC
k , dWC

k−1, DWC
k−1, PDWC

k are

sequentially determined.

As for the threshold value, it has been set to 0.8 to minimize

the error in the estimated traveled distance either when the

context is clearly determined or when the context is uncertain,

e.g. during context transitions.

pdWC
k is the provisional distance traveled between the epochs

(k-1) and k: the distances determined for each context Cn

and included in the row vector dk, are weighted by the

context probabilities included in the vector Context,k−1.

dWC
k−1 is the final distance traveled between the epochs

(k-2) and (k-1). In contrast with the provisional distance

computation, the distances included in the row vector dk−1

refer to the distances traveled for each context in the previous

interval, i.e. between the epochs (k-2) and (k-1). DWC
k−1

and PDHC
k are respectively the total final distance traveled

between the epochs 0 and (k-1), and the total provisional

distance traveled between the epochs 0 and k: they are both

determined as for the HC-SLE method.

VII. RESULTS AND DISCUSSION

A. Context Classification

The context classification model is trained with sensor

data recorded from fifteen subjects; in particular, the features

in Table II are determined by the specific force, angular

rate, and magnetic field sensors, and are given as input

to the classification model. The latter employs a 10-fold

TABLE III
CONFUSION MATRIX OF THE RVM MODEL. PEDESTRIAN CONTEXTS:

STATIONARY (S), WALKING (W), WALKING SIDEWAYS (WS), WALKING

UPSTAIRS (WU), WALKING DOWNSTAIRS (WD), RUNNING (R).

Predicted context

S W WS WU WD R

T
ru

e
co

n
te

x
t

S 93.7% 0.9% 4.9% 0.5% 0% 0%

W 0% 85.2% 4.8% 9% 1% 0%

WS 0% 6% 90% 2.2% 1.8% 0%

WU 0% 9.8% 3.4% 82.5% 4.3% 0%

WD 0% 1% 0.8% 3% 95.2% 0%

R 0% 0% 0% 0% 0% 100%

cross-validation technique for the model validation.

The particular sequence and length of the context segments

illustrated in Fig.3, have been considered only for the

assessment of the step length estimation routines. In order

to avoid the class imbalance, the context classification RVM

model has been trained considering the same number of

movements for each context. Different short path segments

traveled twice have been considered for each context. For each

subject, 40 movements relevant to each context have been

selected: in total, 600 movements have been evaluated for

each context. Considering all pedestrian contexts, the dataset

used for context classification consists of 3600 movements.

The RVM method used for context classification achieves

a predictive accuracy of 91.1% and its confusion matrix is

illustrated in Table.III: walking and climbing stairs are the

most confused contexts and produce the main contribution to

the overall misclassification rate.

B. Step Length Estimation

The results of the SLE algorithms are divided according to

three subgroups of testing subjects: for each subgroup, the data

collected from 5 subjects is used to test the SLE algorithms,

while the data collected from the remaining 10 subjects is used

to train the context classification RVM model.

The total final distances DHC and DWC , which respectively

refer to the HC-SLE and WC-SLE algorithms described in

Section VI, are determined at the end of the path illustrated

in Fig.3. These distances are compared and the results are

shown in Fig.13 for each subject and for each SLE method.

The root-mean-square percentage error (%RMSE) is computed

by comparing the actual path distance with the total final

distances determined by the SLE algorithms. Table IV shows

the %RMSE obtained for each subgroup of 5 testing subjects

and across all 15 subjects.

The WC-SLE algorithm exhibits the best %RMSE perfor-

mance for the subgroups of testing subjects 6-10 and 11-

15, while the HC-SLE algorithm reveals the best %RMSE

performance for the subgroup of subjects 1-5. However,

the weighted context-based SLE algorithm confirms the best

%RMSE performance across all 15 subjects. By analysing in

depth the percentage error on total final distance traveled by

each subject, described in Table V, it possible to note that the

HC-SLE algorithm clearly provides better performance than
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TABLE IV
%RMSE ON TOTAL FINAL DISTANCE TRAVELED BY EACH SUBGROUP OF TESTING SUBJECTS AND ACROSS ALL 15 SUBJECTS.

Subgroup of subjects 1-5 Subgroup of subjects 6-10 Subgroup of subjects 11-15 Across all 15 subjects

SLE

method
HC-SLE WC-SLE HC-SLE WC-SLE HC-SLE WC-SLE HC-SLE WC-SLE

%RMSE 4.5% 5.7% 6.2% 5.9% 11.5% 3.6% 7.9% 5.2%

TABLE V
%ERROR ON TOTAL FINAL DISTANCE TRAVELED BY EACH SUBJECT. THE RESULTS ARE DIVIDED IN THREE SUBGROUPS OF TESTING SUBJECTS.

Subgroup of subjects 1-5

Subject index 1 2 3 4 5

SLE method HC-SLE WC-SLE HC-SLE WC-SLE HC-SLE WC-SLE HC-SLE WC-SLE HC-SLE WC-SLE

%Error on total

traveled ditance
0.6% 5.1% -3.3% 1.2% -5.7% 4.5% -3% -3.3% -6.9% -10.3%

Subgroup of subjects 6-10

Subject index 6 7 8 9 10

SLE method HC-SLE WC-SLE HC-SLE WC-SLE HC-SLE WC-SLE HC-SLE WC-SLE HC-SLE WC-SLE

%Error on total

traveled ditance
-7.8% -9% -3.6% 0% -6% -7.5% -4.5% -0.3% -7.5% -6%

Subgroup of subjects 11-15

Subject index 11 12 13 14 15

SLE method HC-SLE WC-SLE HC-SLE WC-SLE HC-SLE WC-SLE HC-SLE WC-SLE HC-SLE WC-SLE

%Error on total

traveled ditance
-13.6% -3% -13.5% -3.9% -7.8% 1.8% -7.5% 1.2% -13.1% -6.1%

TABLE VI
%ERROR ON DISTANCE TRAVELED UNDER DIFFERENT PEDESTRIAN CONTEXTS, AVERAGED ACROSS ALL 15 SUBJECTS.

Context
Walking

(209.9 meters)

Walking upstairs

(20.6 meters)

Walking downstairs

(30.5 meters)

Walking sideways

(20 meters)

Running

(50 meters)

SLE method HC-SLE WC-SLE HC-SLE WC-SLE HC-SLE WC-SLE HC-SLE WC-SLE HC-SLE WC-SLE

% Error on traveled distance -8.5% -5.1% 6.2% 3.4% -5.5% -4.2% -5.9% -2.5% -4.8% -3.3%

the WC-SLE one only for the subjects 1 and 5 (13% out of

all subjects). For the subjects 3, 4, 6, 8, and 10 (33% out of all

subjects), both the SLE algorithms have similar performance.

Whereas, for the subjects 2, 7, 9, 11, 12, 13, 14, and 15 (54%

out of all subjects), the proposed WC-SLE algorithm presents

an evident better result with respect to the HC-SLE algorithm.

The results in Table V can assume a positive or negative sign

Fig. 13. Total final distances traveled by the subjects and computed for each
considered SLE algorithm.

depending on whether the total traveled distance computed by

the SLE algorithms is overestimated or underestimated with

respect to the actual path length.

Table VI shows the percentage error on distance traveled under

different pedestrian contexts, averaged across all 15 subjects.

While the distance traveled under the walking upstairs context

is overestimated, all the other ones are underestimated. The

proposed WC-SLE algorithm permits to improve the accuracy

on the estimated traveled distance under all contexts: the

weighted approach achieves better performance when coping

with critical path segments where the context is uncertain, e.g.

when context transitions occur.

The threshold introduced in the WC-SLE algorithm (algorithm

2 described in Section VI.B) allows the optimization of the

step length estimation process. By varying the threshold from

1 to 0, the WC-SLE algorithm would pass from the HC-SLE

baseline to a fully WC-SLE approach, as shown in Fig.14.

If the threshold is set to 1, the conditional expression in the

Algorithm 2 would always be true, leading the WC-SLE to

work as the HC-SLE algorithm. This approach could work

fine when the pedestrian context is always clear. On the other

hand, if the threshold is set to 0, the conditional expression in

the Algorithm 2 would always be false, leading to a fully WC-
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Fig. 14. Performance of the Algorithm 2 with a variable threshold.

SLE version, in which the estimated step lengths are always

weighted by the context probabilities, even when the context

is quite clear. This approach could work fine when the context

is always uncertain. In a real daily life scenario, both clear and

uncertain contexts are present; in particular, the presence of

a clear context is more likely during a steady context, while

the presence of an uncertain context is more likely during

the transition between one context to another. The threshold

value set to 0.8 leads the WC-SLE algorithm to achieve the

best performance in terms of %RMSE. The computationally

complexity of the WC-SLE algorithm grows linearly with

respect to the number of the considered pedestrian contexts. In

particular, both the provisional distance and the final distance

defined over each context window, are achieved as the results

of scalar products between a row vector containing the step

lengths associated to the pedestrian contexts and the vector

which includes the pedestrian context probabilities. Note that

both the total provisional distance and the final distance do

not depend on the number of considered contexts.

VIII. CONCLUSION

In this work, a weighted context-based SLE algorithm

has been demonstrated: the step lengths determined as a

linear combination of a constant, the step frequency and the

specific force variance, are weighted by the pedestrian context

probabilities. The proposed SLE algorithm is compared with

the highest context-based method, which considers the step

lengths corresponding to the context with the highest proba-

bility.

The SLE algorithms are part of a PDR system which defines

the step detection and the context classification routines. The

step detection aims to detect the step time boundaries and

is based on the continuous wavelet transform analysis. The

context classification routine exploits the relevance vector ma-

chine method to determine the pedestrian context probabilities.

Moreover, a dataset of pedestrian activities and actions has

been collected. Fifteen subjects, which have been equipped

with a waist-belt smartphone, are asked to travel along a prede-

fined path, shown in Fig.3. Six pedestrian contexts have been

considered: stationary, walking, walking sideways, climbing

and descending stairs, and running.

The RVM method used for context classification has achieved

a predictive accuracy of 91.1% and defines walking and

climbing stairs as the most confused contexts which produce

the main contribution to the overall misclassification rate.

Either the total distance traveled by the subjects or the distance

traveled under separated contexts, have been determined for

each SLE methods. The %RMSE has been computed by

comparing the actual path distance with the total distances

determined by the SLE algorithms. The weighted context-

based SLE algorithm has exhibited an %RMSE of 5.2% across

all 15 subjects providing significantly better performance than

the highest context-based SLE algorithm which exhibited an

%RMSE of 7.9%.

The percentage error on distance traveled under different con-

texts has been determined. While the distance traveled under

the walking upstairs context is overestimated, all the other

ones are underestimated. The proposed WC-SLE algorithm

permits to improve the accuracy on the estimated distance

traveled under all contexts: the weighted approach achieves

better performance when coping with critical path segments

where the context is uncertain.
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