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ABSTRACT 

Counterfactual conditionals of the form "If A were true, then C" are com- 

monly used to express generic, law-like relationships. This dissertation provides 

formal semantics for interpreting such conditionals, as well as computational 

methods for answering queries of the form "Find the probability of C if A were 

true, given that A is in fact false." Here, generic knowledge is represented as a 

network of causal relationships among variables of interest, while specific occur- 

rences are represented as instantiations of those variables. The counterfactual 

antecedent A is interpreted as a local, hypothetical change induced by forces ex- 

ternal to the system. Counterfactual probabilities are computed using standard 

evidence propagation in two loosely coupled Bayesian networks — one corre- 

sponding to the factual world, the other to the counterfactual — where the prob- 

abilities are defined over the causal mechanisms governing the domain. When 

such probabilities are not available, we develop methods for computing either 

bounds on the counterfactual probabilities or qualitative beliefs, i.e., order-of- 

magnitude abstractions of standard probabilities. 

We then demonstrate the usefulness of our formulation in application areas 

where counterfactual reasoning is essential but considered difficult, if not im- 

possible, to compute. First, we examine experimental studies in which subjects 

do not comply perfectly with treatment assignment, thus violating the tenets 

of randomized experimentation. We show that it is possible in such studies to 

derive informative bounds on treatment efficacy, tighter than any yet reported 

in the statistical or the epidemiological literature. Next, we address the problem 

of determining legal responsibility (e.g., whether the defendant is liable for the 

plaintiff's injuries). Although counterfactual assertions in this domain cannot be 

evaluated using conventional statistical analysis, under our formalism they can 

be assigned meaningful probability intervals. In the areas of econometrics and 

the social sciences, the formalism allows coherent evaluation of policies involving 

the control of variables that, prior to enacting a given policy, were influenced 

by other variables in the system. Finally, in the area of artificial intelligence, 

the formulation provides a computational model for interpreting counterfactual 

utterances, answering counterfactual queries, and evaluating actions and plans. 
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CHAPTER 1 

Count er fact uals 

1.1    Introduction 

A counterfactual conditional has the form 

If A were true, then C would have been true 

where A, the counterfactual antecedent, specifies an event that is contrary to 

one's real-world observations, and C, the counterfactual consequent, specifies a 

result that is expected to hold in the alternative world where the antecedent 

is true. A typical instance is "If Oswald were not to have shot Kennedy, then 

Kennedy would still be alive" which presumes the factual knowledge of Oswald's 

shooting Kennedy, contrary to the antecedent of the sentence. 

The majority of the philosophers who have examined the semantics of coun- 

terfactual sentences [Goo83, HSP81, Nut80, cou93] have resorted to some form 

of logic based on worlds that are "closest" to the real world yet consistent with 

the counterfactual's antecedent. Ginsberg [Gin86], following a similar strategy, 

suggested that the logic of counterfactuals could be applied to problems in plan- 

ning and diagnosis in Artificial Intelligence. The few other papers in AI that have 

focussed on counterfactual sentences (e.g., [Jac89, PAA91, Bou92, Gra91]) have 

mostly adhered to logics based on the "closest world" approach. 

In the real world, we seldom have adequate information for verifying the truth 

of an indicative sentence, much less the truth of a counterfactual sentence. Ex- 

cept for the small set of relationships between variables which can be modeled 

by physical laws, most of the relationships in one's knowledge base are nonde- 

terministic. Therefore, it is more practical to ask not for the truth or falsity of 

a counterfactual, but for one's degree of belief in the counterfactual consequent 

given the antecedent. To account for such uncertainties, [Lew76] has generalized 

the notion of "closest world" using the device of "imaging"; namely, the closest 

worlds are assigned probability scores, and these scores are combined to compute 

the probability of the consequent. 
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Missing from the "closest world" approach is a precise specification of the 

closeness measure itself, which is critical to the analysis of counterfactuals. More 

specifically, it does not tell us how to encode distances in a way that would (1) 

conform to our perception of causal influences and (2) lend itself to economical 

machine representation. This dissertation will provide a concrete explication of 

the closest world approach, one that satisfies the two requirements above. 

The target of this investigation are counterfactual queries of the form: 

If A were true, then what is the probability that C would have been 

true, given that we know B? 

The proposition B stands for the actual observations made in the real world 

(e.g., that Oswald did shoot Kennedy and that Kennedy is dead) which are made 

explicit to facilitate the analysis. 

Counterfactuals are intertwined with notions of causality: We do not typi- 

cally express counterfactual conditionals without assuming a causal relationship 

between the counterfactual antecedent and the counterfactual consequent. For 

example, we can safely state "If the sprinkler were on, the grass would be wet", 

but the contrapositive form of the same sentence in counterfactual form, "If the 

grass were dry, then the sprinkler would not be on", strikes us as strange, be- 

cause we do not think the state of the grass has causal influence on the state 

of the sprinkler. Likewise, we do not state "All blocks on this table are green, 

hence, had this white block been on the table, it would have been green". In fact, 

we could say that people's use of counterfactual conditionals is aimed precisely 

at conveying generic causal information, uncontaminated by specific, transitory 

observations, about the real world. Observed facts often do reflect strange combi- 

nations of rare eventualities (e.g., all blocks being green) that have nothing to do 

with general traits of influence and behavior. The counterfactual sentence, how- 

ever, emphasizes the law-like, necessary component of the relation considered. It 

is for this reason, we speculate, that we find such frequent use of counterfactuals 

in ordinary discourse. 

The importance of equipping machines with the capability to answer counter- 

factual queries lies precisely in this causal reading. By making a counterfactual 

query, the user intends to extract the generic, necessary connection between the 

antecedent and consequent, regardless of the contingent factual information avail- 

able at that moment. 

Although some philosophers consider the analysis of counterfactuals where 

no causal information is available (e.g., the "All blocks on the table are green" 

12 



example), these will not be treated in this dissertation. The interpretation of 

counterfactuals presented here relies on a strict separation of generic background 

causal knowledge and transient observations of the world. The transient obser- 

vations (e.g., "All blocks on the table are green") may not be used as inference 

rules; only the generic causal knowledge may be used for inferring beliefs from ob- 

servations. [Goo83] stresses the importance of distinguishing causal information 

from observed facts: 

Though the supposed connecting principle is indeed general, true, and 

perhaps even fully confirmed by observation of all cases, it is incapable 

of sustaining a counterfactual because it remains a description of acci- 

dental fact, not a law. The truth of a counterfactual conditional thus 

seems to depend on whether the general sentence required for the in- 

ference is a law or not. If so, our problem is to distinguish accurately 

between causal laws and casual facts. 

Because of the tight connection between counterfactuals and causal influ- 

ences, any algorithm for computing counterfactual queries must rely heavily on 

causal knowledge of the domain. This leads naturally to the use of probabilistic 

causal networks, since these networks combine causal and probabilistic knowledge 

and permit reasoning from causes to effects as well as, conversely, from effects 

to causes. This representation also reflects the separation of causal knowledge 

from transient observations: causal knowledge is represented by the structure of 

the network and its parameterization, while observations are represented by the 

instantiation of nodes within the network. 

To emphasize the causal character of counterfactuals, we will adopt the in- 

terpretation in [Pea93c], according to which a counterfactual sentence "If A were 

true, then B would have been true" states that B would prevail if A were forced 

to be true by some unspecified intervention that is exogenous to the other rela- 

tionships considered in the analysis. This intervention-based interpretation does 

not permit inferences from the counterfactual antecedent towards events that lie 

in its past. For example, the intervention-based interpretation would ratify the 

counterfactual 

If Kennedy were alive today, then the country would have been in a 

better shape 

but not the counterfactual 

13 



If Kennedy were alive today, then Oswald would have been alive as 

well. 

The former is admitted because the causal influence of Kennedy on the country 

is presumed to remain valid even if Kennedy became alive by an act of God. The 

second sentence is disallowed because Kennedy being alive is not perceived as 

having causal influence on Oswald being alive. The information intended in the 

second sentence is better expressed in an indicative mood: 

If Kennedy was alive today then he could not have been killed in 

Dallas, hence, Jack Ruby would not have had a reason to kill Oswald 

and Oswald would have been alive today. 

This interpretation of counterfactual antecedents, which is similar to Lewis' 

[Lew79] Miraculous Analysis, contrasts with interpretations that require that the 

counterfactual antecedent be consistent with the world in which the analysis oc- 

curs. The set of closest worlds delineated by the intervention-based interpretation 

contains all those which coincide with the factual world except on possible con- 

sequences of the intervention. The probabilities assigned to these worlds will be 

determined by the relative likelihood of those consequences as encoded by the 

causal network. 

Finally, the counterfactuals that may be analyzed within the context of this 

dissertation are limited in terms of the form of the antecedent and the types of 

causal relationships. Counterfactual antecedents will be limited to conjunctive 

clauses. For example we will not consider the veracity of the following counter- 

factual conditionals: 

If Bizet and Verdi had been compatriots, Bizet would have been Ital- 

ian. 

If Bizet and Verdi had been compatriots, Verdi would have been 

French. 

because, Bizet and Verdi being compatriots would be defined as, Bizet and Verdi 

are Italians, or Bizet and Verdi are French, or Bizet and Verdi are ..., which is a 

disjunction of conjunctive clauses. 

In addition, we will not consider counterfactual conditionals that are coun- 

terlegals; a counterlegal is defined as a counterfactual conditional where the an- 

tecedent is impossible (e.g., violates some strict law). For example, "if this circle 
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were also a square, ...". Our analysis always assumes that the counterfactual 

antecedent is conceptually compatible (although its normal coincidence in the 

world may be infinitesimally rare) with the history prior to the antecedent. In 

other words, it must always be possible that exceptions exist to every rule in the 

model impinging on the counterfactual antecedent variables. 

1.2    Firing Squad Example 

To illustrate the intervention-based interpretation of counterfactuals, consider a 

firing squad with several riflemen (one called Bob) and a Captain who gives a 

signal to either shoot or release a prisoner charged with treason. The behavior 

of these agents is as follows: 

• The Captain waits for the court decision. 

• Bob typically fires his rifle if and only if the Captain gives the signal to 

shoot. 

• The Traitor typically dies if and only if the Captain gives the signal to shoot 

or Bob fires his rifle. 

Note that if the Captain gives the signal to shoot and Bob does not fire, the 

traitor will typically die as a result of the other riflemen shooting, but these 

intermediate causes will not be made explicit in this story in order to keep the 

model simple. 

The generic causal structure that reflects this description may be represented 

by the structure in Figure 1.1. The three variables C, B, and T have the following 

domains: 

{Co = Captain gives the signal to release the traitor. 1 

ci  = Captain gives the signal to shoot the traitor.    J 

bo = Bob does not fire his rifle. 1 

b\ = Bob fires his rifle. J 

to = Traitor dies.   1 

t\ = Traitor lives. J 

b   € 

t  e 

Now consider the following discussion between two prison guards (Scott and 

Dave) who looking from a window at the jail could only see that Bob fired his 

15 



Bob's firing 

Captain's signal 

Traitor's health 

Figure 1.1: Causal structure reflecting the influence that the Captain's signal has 

on Bob's firing and the Traitor's health, and the direct influence that Bob's firing 

has on the Traitor's health. 

rifle (b 

Dave: 
*i): 

The Captain must have given the signal to shoot, or Bob 

would not have fired his rifle. 

Scott: 

Dave: 

That Traitor's body must be riddled with bullets! 

Yep.   If Bob were not to have fired, the Traitor would 

still have died. 

Scott: Ha! If Bob were not to have fired, the Captain must 

not have given the signal to fire, and none of the other 

riflemen would have fired. Therefore, the Traitor would 

still be alive. 

Dave: No. If Bob were not to have fired despite the Captain's 

signal, the other riflemen would still have fired, and the 

Traitor would be dead. 

In the fourth sentence, Scott tries to explain away Dave's conclusion by claim- 

ing that Bob's not firing would be evidence that the Captain gave the signal to 

release the Traitor which would imply that none of the riflemen fired. Scott, 

however, analyzed Dave's counterfactual conditional in the indicative mood by 

imagining that he had observed Bob not firing his rifle; this allows him to use 

the observation for abductive reasoning. But Dave's subjunctive counterfactual 

16 



conditional should be interpreted as leaving everything in the past as it was (in- 

cluding conclusions obtained from abductive reasoning from real observations) 

while forcing variables to their counterfactual values. This is the gist of his last 

statement. 

This example demonstrates the plausibility of interpreting the counterfactual 

statement in terms of an external intervention causing Bob to not fire, regardless 

of all other prior circumstances. The only variables that we would expect to 

be impacted by the counterfactual assumption would be the descendants of the 

counterfactual variable; in other words, the counterfactual value of Bob's firing 

does not change the belief in the Captain's signal from the belief prompted by 

the real-world observation. 

The claim that the intervention-based interpretation of counterfactual an- 

tecedents should be adopted for the analysis of counterfactual conditionals in 

general is a controversial position. This interpretation does not cover all lin- 

guistic usages of counterfactuals; however, it does provide clear semantics and 

a precise computational formalism for analyzing counterfactuals given a causal 

description of the world. The results of this analysis provide useful information 

about the effects a localized change to a single variable would have on the world. 

In contrast, it is not clear how useful other nonintervention-based interpretations 

of counterfactuals are, because they imply nothing about control of ones environ- 

ment. For example, some counterfactual interpretations will conclude that if Bob 

were not to have fired, then the Traitor would still be alive; however the Traitor's 

wife is not going to bribe Bob not to fire, because she knows that such an in- 

tervention will not prevent her husband from being executed. It is not the goal 

of this dissertation to provide a model of all linguistic usages of counterfactuals, 

but to provide an interpretation that lends itself to meaningful application. 

1.3    Previous work 

Counterfactual conditionals have been extensively studied by the philosophy com- 

munity over the last twenty-five years. Of the more compelling research has been 

the work of Stalnaker and Lewis, from which possible-world semantics have been 

developed. These semantics formally describe how a closeness (or similarity) 

measure between worlds can be used to evaluate one's belief in a counterfactual 

conditional. Most research has focussed on logical inferences, but some has con- 

cerned itself with the probabilistic evaluation of counterfactuals. The 1986 paper 

by Matt Ginsberg injected this important topic into the Artificial Intelligence 
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community, where for the most part, the concentration has been on logical rather 

than probabilistic formalisms. What has been most lacking in this work is a pre- 

cise specification of similarity between worlds; and this is paramount for practical 
application of the possible-world semantics. 

One popular proposal has been that counterfactual conditionals may be ana- 

lyzed by applying belief revision techniques, where possibly contradictory infor- 

mation is added to the knowledge base and information is retracted in order to 

bring about a consistent set of knowledge [Dal88, GM94, Gin86]. However, the 

intervention-based interpretation of counterfactual antecedents proposed in'this 

dissertation is clearly not consistent with belief revision, because one may not 

reason abductively from the new information added to the knowledge base. 

The remainder of this section will review some important contributions in the 
study of counterfactual conditionals. 

1.3.1    Lewis' closest-world semantics 

Lewis' closest-world semantics [Lew76] provides an intuitive interpretation to 

the analysis of counterfactual conditionals. Just find the world most similar 

to our observed world, such that the counterfactual antecedent holds true; if 

the counterfactual consequent holds true in that most similar world, then the 
counterfactual conditional is said to hold true. 

In more detail, all worlds are first ordered relative to the observed world, 

which results in progressively distant "spheres of similarity" surrounding the ob- 

served world. This is graphically represented in Figure 1.2. Of interest is the 

closest sphere in which there exist worlds where the counterfactual antecedent 

A holds true. Within this set, the relative preponderance of worlds where the 

counterfactual consequent C holds true is evaluated, leading to a belief in the 

counterfactual consequent given the counterfactual antecedent. 

In [Lew76], Lewis proposed a method for evaluating the probability of Stal- 

naker's conditionals {A > C) by imaging the set of possible worlds with respect 

to the antecedent A. Assume P(w) is the distribution over all worlds conditioned 

on our partial observation of the world. For each world w, there is an imagined 

world wA that is most similar to w among those worlds where the counterfactual 

antecedent A holds true. The probability of the worlds imaged on A (PA) is then 
evaluated as 

PA(W')   =      £    P{w) 
W.U>A=W' 

18 



Figure 1.2: Graphical representation of Lewis' closest-world semantics. Each 

circular region corresponds to a set of worlds where each world is equally similar 

to w. These regions are called spheres of similarity. The hashed region represents 

the set of closest worlds where the counter factual antecedent A holds true and the 

counterfactual consequent holds true. 
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Lewis refers to this new distribution over all worlds as the "image of P on A." 

The probability of Stalnaker's conditionals P(A > C) is then evaluated 

P(A>C)   =   PA(C) 

=   E PAH 

Missing from this discussion of Stalnaker conditionals, though, is a precise 

formulation of closest worlds (which is crucial to imaging worlds and their associ- 

ated probability distribution). In Chapter 2 we present a formalism for evaluating 

counterfactual conditionals that is consistent with Lewis' formalism for evaluat- 

ing Stalnaker conditionals via imaging. In order to make the formalism concrete, 

though, the notion of closest worlds must be formalized, and this will be ac- 

complished by turning to the causal structure of the world and interpreting the 

counterfactual antecedent as an external intervention that forces the antecedent 

to be true. 

1.3.2    Ginsberg 

[Gin86] introduced the study of counterfactuals to the Artificial Intelligence com- 

munity as an important facet of commonsense reasoning, and discussed several 

application areas that could benefit from the analysis of counterfactual condi- 

tionals. 

Ginsberg presented a syntactic interpretation of Stalnaker's closest-world se- 

mantics. In his formulation, a world is specified by a set of logical statements S, 

and a closest world to S where a is counterfactually true is given by a maximal 

subset S' of S such that S' does not imply a. A counterfactual conditional a > c 

is then accepted if c is true in all maximal subsets S'. In order to incorporate 

domain-dependent information to this strictly semantic interpretation, Ginsberg 

suggests the use of a "badworld" predicate to explicitly eliminate worlds from 

consideration. In addition, a partial order may be specified over all subsets of S 

to extend the set inclusion measure of closeness. In generating possible worlds, 

Ginsberg suggests (in the context of combinatorics) that rules of implication 

should not be reversible; however, it is not clear whether this is based on the 

belief that an implication represents a causal relationship which is not transient. 

In general, though, a syntactic intepretation of closeness of worlds based on 

set inclusion does not reflect our understanding of causal relationships in the 

world.   Suppose that somebody lined up 26 dominoes on end, and then tipped 
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the first domino towards the second domino, creating a chain reaction that finally 

toppled all the dominoes. Let the standing state of these dominoes be represented 

by the variables A,B,C,...,Z, where a0, b0,...,z0 indicate that dominoes fell, 

while ai,6i,... ,zt indicate that dominoes stood. In a syntactic interpretation 

of counterfactuals such as that proposed by Ginsberg, one's might model their 

knowledge of the world by the propositions: 

a0 >6o 

o-i ►&i 

bo ' c0 

bi C\ 

yo zo 

V\ Z\ 

Z\ 

Consider the counterfactual query, "If domino B were not to have fallen, would 

domino Z still have fallen?" Intuitively, we reason that if B had not fallen, then 

there would have been no impetus to continue the chain reaction from domino 

C to Z. Therefore, Z would not have fallen. Under our intervention-based 

interpretation we would still state that A would have fallen, because we are 

considering the world where B was forced to stand by some intervention, e.g., 

domino B was nailed down. This world is given by {a0, 61, cu du ..., zx}. 

The syntactic approach, though, does not make use of this causal information 

necessary for reaching the intuitive conclusion. This approach pursues the world 

that retracts the fewest propositions in the above set. The two closest worlds (we 

only show the fallen state of each domino) are given by {a0, 61, CQ, d0, e0,..., z0} 

(60, aQ ->■ 60, and 6a -+ cx are retracted) and {au 61, Cö, do, e0,..., z0} (a0, b0, and 

61 -»• cx are retracted). Clearly there is a disconnect between these results and 

intuition coming from our causal knowledge, because the syntactic approach does 

not distinguish transient observations from generic causal relationships. 

If we do follow the suggestion that statements of implication should not be re- 

tracted, then there is only one closest world, {au 6a, cu du eu ..., zx}, which leads 
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us to the intuitive belief that the last domino would not have fallen. However, 

there is a distinction between the results produced by this approach and that 

produced by our intervention-based interpretation: whether the counterfactual 

antecedent abductively implies some change to its causal effects (assuming that 

implication is linked to causality in the syntactic interpretation). 

Ginsberg claims that counterfactuals should not be tied too closely to the no- 

tion of causality. Referring to the counterfactual conditional, "If John had koplic 

spots, he'd have measles." he states "... it is difficult to imagine how counter- 

factual implication can capture a causal relation that remains asymmetric even 

in this case." Under our intervention-based interpretation, this counterfactual 

would not hold true; it is possible that another mechanism may be found for 

generating koplic spots, and koplic spots do not cause measles on their own. Of 

course, if we observe koplic spots, we will infer that the subject has measles, but 

this is not the nature of a causal counterfactual conditional. 

1.3.3    Simon and Rescher 

Simon and Rescher discussed the analysis of causal counterfactual conditionals 

in [SR66]. This work is important for its formulation of counterfactuals within 

a causal system, and its distinction it makes between generic causal knowledge 

and transient observations. 

They propose that when the counterfactual antecedent is included into the 

knowledge base, inconsistencies in one's knowledge must be retracted without 

violating any causal relationships ("We might of course give up the law (L), but 

this course is obviously undesirable."). In order to determine which knowledge is 

retracted, each variable is assigned to a modal category according to its distance 

down the causal chain from the exogenous variables. The higher the modal 

category, the more succeptible the variable's value is to retraction. 

While Simon and Rescher choose to uphold all laws in one's model of the 

world, our intervention-based interpretation severs the causal link between the 

antecedent variables and their modelled set of causal influences. Consider Simon 

and Rescher's wheat growing example, where fertilizer (F) and rain (R) influence 

the wheat crop (W), while the wheat crop and population (N) influence the wheat 

price (P). Figure 1.3 shows this causal structure. 

Given the above causal structure, Simon and Rescher's counterfactual condi- 

tional, "If the wheat crop had been smaller last year, the price would have been 

higher" is consistent with our intervention-based interpretation; however, they 
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Figure 1.3: Simon and Rescher's structure representing the causal relationships 

between fertilizer (F), rain (R), wheat crop (W), population (N), and wheat price 

(P)- 

find the following statement "perfectly idiomatic": "If the wheat crop had been 

smaller last year, there would have been either less rain or less fertilizer applied." 

This contrasts with our interpretation which leaves our belief in the rain and fer- 

tilizer amounts unchanged. Simon and Rescher's interpretation fits an analysis 

where the antecedent is considered to be a passive observation, e.g., in a similar 

world where we would have observed a smaller wheat crop, either there was less 

rain or less fertilizer was applied. However, this analysis does not necessarily 

tell us the causal influence that a change in wheat crop would have had on the 

world, if there was another path from rain or fertilizer to the wheat price, because 

the value for variables preceding the counterfactual antecedent may still affect 

variables that are descendants of the antecedent variable. 

1.4    Applications 

In this section the importance of causal counterfactual reasoning will be em- 

phasized by describing some of the tasks that benefit from such analysis. The 

common occurrence of counterfactual statements in everyday human discourse 

is a clear tipoff that counterfactuals are an integral part of human communica- 

tion. Asides from the efficiency gained in communication, formal evaluation of 

counterfactuals is important to system design, fault diagnosis, liability litigation, 

policy analysis, etc. Some of these are mentioned in [Gin86]. 
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1.4.1 Communication 

Counterfactuals are a prevalent aspect of daily communication between humans, 

which is interesting, because very often the conditional statement is made af- 

ter an irreversible event has occurred. For example, suppose that little Johnny 

pulled on Sarah's pigtail followed by Sarah dumping her milk shake on Johnny's 

head. Johnny, totally surprised, turns to his mother and cries out innocently and 

indignantly that Sarah has done something terrible. Johnny's mother, having 

observed the whole scene, calmly explains to Johnny, "If you had not pulled on 

Sarah's pigtail, then she would not have dumped her milk shake on you." 

This counterfactual conditional is useless to Johnny at this point in time; it 

will not bring about a plan to get clean, and it will not allow Johnny to exact 

retribution. So what is his mother's point in making this statement? Precisely for 

conveying information to Johnny about the causal relationship between pulling 

Sarah's hair and Sarah's subsequent actions. It is the mother's belief that this 

information will allow Johnny to formulate a belief system that will hopefully 

discourage him from pulling Sarah's hair (at least when he does not want to 

suffer the consequences). 

This information tells Johnny that when everything else is held fixed, that a 

local change to Johnny's hair pulling would evoke a change to the outcome. This 

is more informative to Johnny then the statements, "If you pull Sarah's hair, then 

she punishes you" and "If you do not pull Sarah's hair, then she will not punish 

you." This might not convey the same information to Johnny; he may interpret 

this to mean that the same situation where he would pull Sarah's hair is the same 

situation where Sarah is going to pour her milk shake on him, in which case he 

might as well go ahead and yank her hair. Thus, we see that the counterfactual 

conditional conveys the isolated causal effect of Johnny's hair-pulling on Sarah's 

response, informing Johnny that his decision whether to pull Sarah's hair will 

have influence on Sarah's reaction. 

1.4.2 Liability litigation 

Frequently, the analysis of counterfactual conditionals is required in the determi- 

nation of liability in legal cases. A plaintiff might claim that a defendant's action 

or product has inflicted damages on their person or property, and the court must 

analyze the following types of questions. "If the plaintiff had not been exposed to 

the product, would the plaintiff still have developed his current illnes?"  Or, "if 
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the defendant had not conspired to fix prices with the other manufacturers of wid- 

gets, would the plaintiff not have lost his business?" To answer these questions, 

the court ponders how a local change to the circumstances of the plaintiff (e.g., 

preventing the defendant's action, or removing the product from the plaintiff's 

environment) would have effected his welfare differently than actually occurred. 

If the court decides that the local change would have prevented the plaintiff from 

suffering financial or personal injury, then the court would find the defendant 

liable for those damages. 

In Chapter 7 we will discuss cases where the analysis of counterfactuals in- 

volves statistical models, and we will present a hypothetical case using the partial- 

compliance model of Chapter 5 to demonstrate that a court must apply coun- 

terfactual probabilities in order to guarantee proper determination of liability in 

product-safety litigation. 

1.4.3    Policy analysis 

In the clinical study of new drug treatments, researchers wish to determine 

whether or not a particular drug will improve the overall rate of recovery of sub- 

jects within the patient population. Subject's from the population are random- 

ized into one of two treatment groups and their treatment response is measured 

at the end of the study. However, the study is seldom perfect: patient's remove 

themselves or are removed from the study; patient's do not comply with their 

treatment assignment; and exogenous influences confound the results. Given the 

data from the study, the researchers wish to answer the following counterfactual 

query: "If the patient population were uniformly treated with the drug under 

study, would the overall recovery rate of subjects in the population have been 

higher than if the population were uniformly given a placebo?" 

This application of counterfactual probabilities will be explored in depth in 

Chapters 5 and 6. In addition an example demonstrating economic policy analysis 

using linear structural equation models will be presented in Chapter 8. 

1.5    Contributions 

The principle contributions in this dissertation consist of: 

• Specification of knowledge representation necessary for adequately analyz- 

ing counterfactual conditionals. 
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• Proposal of unambiguous semantics for interpreting the meaning of coun- 

terfactual antecedents in terms of intervention by an external force/action. 

• Technique for evaluating counterfactual probabilities when a functional 

model of a domain is provided. 

• 

• 

• 

Method for evaluating bounds on counterfactual probabilities when a prob- 

abilistic distribution is only available for observable variables, i.e., a func- 

tional model is not known. A program is available for deriving closed-form 

bounds when the counterfactual probability may be expressed as a linear 

combination of terms from the response-function distributions. 

Formulas for evaluating counterfactual distributions when the domain is 

modelled by linear structural equations. 

Derivation of strict bounds on average treatment effects from experimental 

studies involving partial compliance. 

1.6     Overview 

Part II of this dissertation is concerned with the theoretical and computational 

aspects related to the evaluation of counterfactual probabilities. In this first 

chapter the study of counterfactuals has been motivated and the intervention- 

based interpretation of counterfactuals — adopted for this research — has been 

introduced. In Chapter 2, a formal representation of knowledge facilitating the 

analysis of counterfactual probabilities will be described, and an algorithm for 

computing these probabilities will be developed. Counterfactual probabilities 

may only be uniquely identified when the background knowledge is described by 

a functional model. In addition, formulas are derived for evaluating counterfac- 

tual distributions when background knowledge is given by structural equation 

models with normally distributed disturbances. In Chapter 3, we demonstrate 

how bounds on counterfactual probabilities may be computed/derived, when the 

general knowledge of the world is described by a causal structure and conditional 

probabilities over the observable variables. Chapter 4 discusses the evaluation of 

counterfactual conditionals when beliefs are represented by order-of-magnitude 

abstractions of probabilities. 

In Part III, the evaluation of counterfactual probabilities will be demonstrated 

in a set of applications. The most appealing of these applications is the evalua- 

tion of treatment effects in studies where subjects are randomly assigned treat- 

26 



ment, but do not necessarily comply with this assignment. This task has been 

studied by [EF91] with a concentration on continuous values of treatment con- 

sumed, and [Man90] has derived nonparametric bounds on treatment effects for 

generalized treatment domains. In Chapter 5, we derive the tightest-possible 

assumption-free bounds on treatment effects from partial compliance studies, 

improving upon the results of Manski. In Chapter 6, we extend these results 

to the case where the domain of treatment values is continuous, and show how 

these bounds may be further tightened when the continuous domain is parti- 

tioned into ranges of homogeneous treatment responses. In Chapter 7 we discuss 

the potential application of counterfactual probabilities in legal cases, and we 

present a hypothetical case where proper treatment of counterfactual probabil- 

ities is important for correctly determining liability in product-safety litigation. 

In Chapter 8 we demonstrate the application of counterfactual reasoning to eco- 

nomic policy-making when knowledge is given by structural equation models. 

27 



Part II 

Computation 
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CHAPTER 2 

Count er factual probabilities 

2.1 Introduction 

This chapter will show that causal theories specified in functional form (as in 

[PV91, DS93, Poo93]) are sufficient for evaluating counterfactual queries, whereas 

the causal information embedded in Bayesian networks is not sufficient for the 

task. Every Bayes network can be represented by several functional specifications, 

each yielding different evaluations of a counterfactual. The problem is that, 

deciding what factual information deserves undoing (by the antecedent of the 

query) requires a model of temporal persistence, and, as noted in [Pea93d], such a 

model is not part of static Bayesian networks. A functional specification, however, 

implicitly contains the necessary temporal persistence information. 

The next section will introduce some notation for concisely expressing coun- 

terfactual probabilities. Section 2.3 will describe the relationship between prob- 

abilistic and functional specifications, and will demonstrate that probabilistic 

specifications do not provide sufficient information for precisely evaluating coun- 

terfactual probabilities. Section 2.4 will provide an algorithm for evaluating coun- 

terfactual probabilities, given a functional model of the system under query. The 

algorithm will then be applied to the Firing-Squad example introduced in the 

previous chapter. In Section 2.8 we will describe how counterfactual conditionals 

may be analyzed when functional assumptions (e.g., linear-normal models) are 

imposed on a model. 

It is assumed that the reader is already familiar with probabilistic causal 

networks: representation and inference techniques. If not, the reader is referred 

to [Pea88]. 

2.2 Notation 

Let the set of variables describing the world be designated by 

X = {X\,X2, ■ ■., Xn}. As part of the complete specification of a counterfactual 
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query, there are real-world observations that make up the background context. 

These observed values will be represented in the standard form x\, £2, • • • > xn. In 

addition, we must represent the value of the variables in the counterfactual world. 

To distinguish between x,- and the value of Xi in the counterfactual world, we 

will denote the latter with an asterisk; thus, the value of X,- in the counterfac- 

tual world will be represented by x*. We will also need a notation to distinguish 

between events that might be true in the counterfactual world and those refer- 

enced explicitly in the counterfactual antecedent. The latter are interpreted as 

being forced to the counterfactual value by an external intervention, which will 

be denoted by a hat (e.g., x). 

Thus, a typical counterfactual query will have the form "What is P(c*\a*, &)?" 

to be read as "Given that we have observed B = b in the real world, if A were a, 

then what is the probability that C would have been c?" 

2.3    Probabilistic vs. functional specification 

In this section we will demonstrate that functionally modeled causal theories 

[PV91] are necessary for uniquely evaluating counterfactual queries, while the 

conditional probabilities used in the standard specification of Bayesian networks 

are insufficient for obtaining unique solutions. 

Reconsider the firing-squad example limited to the two variables C and B, 

representing the Captain's signal and Bob's firing, respectively. Assume that 

previous behavior shows P(b\\c\) = 0.9 and P(b0\co) = 0.9. We observe the 

Captain give the release signal and Bob not fire, and then wonder with what 

probability Bob would have fired if the Captain had given the order to fire, i.e., 

what is P{b\\c\, CQ, &o)? The answer depends on the mechanism that accounts for 

the 10% exception in Bob's behavior. If the reason Bob occasionally does not fire 

(when the Captain signals to shoot) is that his gun has jammed and he is unable 

to fire, then the answer to our query would be 8/9 (this result will be evaluated in 

detail in Section 3.3). However, if the only reason for Bob's occasional non-firing 

(when the Captain signals to shoot) is that he got the signalling instructions 

mixed-up, then the answer to our query is 100%, because the Captain's release 

signal and Bob's non-firing proves that Bob has not mixed up the signals. Thus, 

we see that the information contained in the conditional probabilities on the 

observed variables is insufficient for answering counterfactual queries uniquely; 

some information about the mechanisms responsible for these probabilities is 

needed as well. 
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The functional specification, which provides this information, models the in- 

fluence of C on B by a deterministic function 

b = Fb(c,eb) 

where eb stands for all unknown factors that may influence B and the prior prob- 

ability distribution P(eb) quantifies the likelihood of such factors. For example, 

whether Bob's gun is jammed and whether Bob has the signals crossed could 

make up two possible components of eb. Given a specific value for e;,, B be- 

comes a deterministic function of C; hence, each value in ebs domain specifies a 

response function that maps each value of C to some value in i?'s domain. In 

general, the domain for eb could contain many components, but it can always 

be replaced by an equivalent variable that is minimal, by partitioning the do- 

main into equivalence regions, each corresponding to a single response function 

[Pea93a]. Formally, these equivalence classes can be characterized as a function 

rb : dom(et) —> N, as follows: 

n{tb)   = 

0 ifF6(co,e6) = 0&F6(ca,e6) = 0 

1 \tFb(co,eb) = 0&Fb(c1,eb) = l 

2 ifF6(c0,C6) = l &Fb(c1,eb) = 0 

3 if Fb(co, tb) = 1 k Fb(ci,tb) = 1 

Obviously, rb can be regarded as a random variable that takes on as many val- 

ues as there are functions between C and B. This domain-minimal variable will 

be referred to as a response-function variable. rb is closely related to the poten- 

tial response variables in Rubin's model of counterfactuals [Rub74], which was 

introduced to facilitate causal inference in statistical analysis [BP93]. 

Suppose that a variable X has causal influences {Ui, U2, ■ ■ ■, £4} in a proba- 

bilistic causal model. Let the domain size of each influence Ui be given by ra;, and 

the domain size of X be given by n. The domain size of X's response-function 

variable Rx will then be of size 

nm
 (2.1) 

where 

k 
171 = nm' (2-2) 

This suggests that more than anything else, the domain sizes and fan-in of vari- 

ables will be the main contributing factors to the computational complexity of 

evaluating counterfactual probabilities. 
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For this example, the response-function variable for B has a four-valued do- 

main rb G {0,1,2,3} with the following functional specification: 

b   =   fb(c,rb) = hb>rb{c) (2.3) 

where the mappings defined by each response function hbtTb(c) are given by 

hb,o(c)   =   b0 (2.4) 

hAc) = ibh° :!c=Co (2.5) 
[   Ol     it C = Ci 

hAc)   =   (f1   i!C = C° (2.6) 
{ b0   if c = ci 

ka(c)   =   6i (2.7) 

The prior probability of these response functions P(rb) in conjunction with fb(c, rb) 

fully parameterizes the relationship between C and 5 in the model. 

For each observable variable X,-, there is a function that maps the value of 

Xi's observable causal influences pa(X2) and X^s response-function variable rXi 

to the value of X{ 

Xi   =   fxi{p^(xi),rXi) 

If the model is complete (such as the functional model described in [PV91]), all 

response functions will be mutually independent, and each will be characterized 

by a prior probability P(rXi). However, when some variables are left out of the 

analysis, the response functions of the remaining variables (xi,... ,xn) may be 

dependent and, in principle, a joint probability P(rXl,..., rXn) would be required. 

In practice, only local dependencies will be needed. 

If one assumes that two variables C and B are dependent via some exogenous 

common cause, then we create an edge between rc and rb and specify the joint 

distribution P(rc,rb). This treatment of latent variables will be utilized in the 

applications discussed in Sections 5.1 and 7.2. 

Given P(rb), we can uniquely evaluate the counterfactual query "What is 

P(bl\cl,co,b0)V (i.e., "Given C = CQ and B = b0, if C were c1? then what is the 

probability that B would have been &i?"). The intervention-based interpreta- 

tion of counterfactual antecedents implies that the disturbance eb, and hence the 

response-function r&, is unaffected by the interventions that force the counterfac- 

tual values; therefore, what we learn about the response-function from the ob- 

served evidence is applicable to the evaluation of belief in the counterfactual con- 
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sequent. If we observe (c0, b0), then we are certain that rb G {0,1}, an event hav- 

ing prior probability P(rb=0) + P(rb=l). Hence, this evidence leads to an updated 

posterior probability for rb (let P(rb) = (P(r6=0), P(r6=l),P(r6=2), P(r6=3))) 

P'(r6)   =   P(rfe|c0,V)  = 

^P(rb=0) + P(r6=l)' P(rb=0) + P(rb=l)'U'U/' 

According to Eqs. 2.3-2.7, if C were forced to Ci, then 5 would have been b\ 

if and only if rb <E {1,3}, which has probability P'(rb=l) + P'(rb=3) = P'(rb=l). 

This is exactly the solution to the counterfactual query, 

PK^M =p(rt=i)= f(rt=^
=;|rt=1). 

This analysis is consistent with the prior propensity account of [Sky80]. 

What if we are provided only with the conditional probability P(b\c) instead 

of the functional model (fb(c, rb) and P(rb))? These two specifications are related 

by: 

Pihlco)    =   P{rb=2) + P(rb=3) 

P{h\ci)   =   P(rb=l) + P(rb=3). 

which show that P(rb) is not, in general, uniquely determined by the conditional 

distribution P(b\c). 

Hence, given a counterfactual query, a functional model always leads to a 

unique solution, while a Bayesian network seldom leads to a unique solution, 

depending on whether the conditional distributions of the Bayesian network suf- 

ficiently constrain the prior distributions of the response-function variables in 

the corresponding functional model. In Chapter 3 we will develop techniques for 

evaluating bounds on counterfactual probabilities when only given conditional 

probability distributions on the observable variables. 

In practice, specifying a functional model is not as daunting as one might 

think from the example above. In fact, it could be argued that the subjective 

judgments needed for specifying Bayesian networks (i.e., judgments about con- 

ditional probabilities) are generated mentally on the basis of a stored model of 

functional relationships. For example, in the noisy-OR mechanism, which is often 

used to model causal interactions, the conditional probabilities are derivatives of 

a functional model involving AND/OR gates, corrupted by independent binary 

disturbances. This model is used, in fact, to simplify the specification of condi- 

tional probabilities in Bayesian networks [Pea88]. 
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2.4    Evaluating counterfactual queries 

From the last section, we see that the algorithm for evaluating counterfactual 

queries should consist of the following steps: (1) compute the posterior prob- 

abilities for the disturbance variables, given the observed evidence; (2) remove 

the observed evidence and enforce the value for the counterfactual antecedent; 

finally, (3) evaluate the probability of the counterfactual consequent, given the 

conditions set in the first two steps. 

An important point to remember is that it is not enough to compute the 

posterior distribution of each disturbance variable (e) separately and treat those 

variables as independent quantities. Although the disturbance variables are ini- 

tially independent, the evidence observed tends to create dependencies among the 

parents of the observed variables, and these dependencies need to be represented 

in the posterior distribution. An efficient way to maintain these dependencies is 

through the structure of the causal network itself. 

Thus, we will represent the variables in the counterfactual world as distinct 

from the corresponding variables in the real world, by using a separate network for 

each world. Evidence can then be instantiated on the real-world network, and 

the solution to the counterfactual query can be determined as the probability 

of the counterfactual consequent, as computed in the counterfactual network 

where the counterfactual antecedent is enforced. But, the reader may ask, and 

this is key, how are the networks for the real and counterfactual worlds linked? 

Because any exogenous variable, e0, is not influenced by forcing the value of 

any endogenous variables in the model, the value of that disturbance will be 

identical in both the real and counterfactual worlds; therefore, a single variable 

can represent the disturbance in both worlds. ea thus becomes a common causal 

influence of the variables representing A in the real and counterfactual networks, 

respectively, which allows evidence in the real-world network to propagate to the 

counterfactual network. 

Assume that we are given a causal theory T = (D, ®D) as defined in [PV91]. 

D is a directed acyclic graph (DAG) that specifies the structure of causal influ- 

ences over a set of variables X = {Xi, X2,... ,Xn}. Qp specifies a functional 

mapping a;,- = /,(pa(a;,), e,) (pa(x,-) represents the value of X^s parents) and a 

prior probability distribution P(e;) for each disturbance e,- (we assume that e,-'s 

domain is discrete; if not, we can always transform it to a discrete domain such as 

a response-function variable). A counterfactual query "What is P(c*|a*,o)?" is 

then posed, where c* specifies counterfactual values for a set of variables C C X, 
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a* specifies forced values for the set of variables in the counterfactual antecedent, 

and o specifies observed evidence. The solution can be evaluated by the following 

algorithm: 

1. From the known causal theory T create a Bayesian network < G, V > 

that explicitly models the disturbances as variables and distinguishes the 

real world variables from their counterparts in the counterfactual world. 

G is a DAG defined over the set of variables V = X U X* U e, where 

X = {X1,X2, ...,Xn} is the original set of variables modeled by T, X* = 

{Xi,X%,...,X*} is their counterfactual world representation, and e = 

{ei,e2,...,en} represents the set of disturbance variables that summarize 

the common external causal influences acting on the members of X and 

X*. V is the set of conditional probability distributions P(Vi\p&(Vi)) that 

parameterizes the causal structure G. 

If Xj G pa(Xi) in D, then X, G pa(X,-) and X* G pa(AT*) in G (pa(*,-) 

is the set of X.-'s parents). In addition, e,- G pa(X,-) and et- G pa(X*) in 

G. The conditional probability distributions for the Bayesian network are 

generated from the causal theory: 

P(x,\p.x(*<U.)   =   ( 0   otherwi^
P 

where pa_y(a;,-) is the set of values of the variables in X f] pa(a;,-). 

p{x*i\pax.{x*),ei)    =   P(xi\pa.x(xi),€i) 

whenever x{ = x* and pa^.(x?) = pa*(a;,-). P(c,-) is the same as specified 

by the functional causal theory T. 

2. Observed evidence. The observed evidence o is instantiated on the real 

world variables X corresponding to o. 

3. Counterfactual antecedent. For every forced value in the counterfactual 

antecedent specification x* G a*, apply the intervention-based semantics 

of set(X? = £?) (see [Pea93a, SGS93]), which amounts to severing all the 

causal edges from pa(X*) to X* for all x* G a* and instantiating X* to the 

value specified in a*. 

4. Belief propagation. After instantiating the observations and interventionss 

in the network, evaluate the belief in c* using the standard belief update 

methods for Bayesian networks [Pea88]. The result is the solution to the 

counterfactual query. 
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Note that all evidence does not have to come in the form of concrete obser- 

vations; evidence can also be given as likelihood information. For example, we 

may receive a report from one of the other guards that he saw a pardon on the 

Warden's desk, but he did not know which Traitor it was for. We may quantify 

this evidence (e = guard seeing pardon) by a likelihood vector which indicates 

the relative chance that the evidence came in given the Captain's signal, i.e., 

Ac = (P(e|co),P(e|ci)). [Pea88] describes how such evidence is used to update 

our beliefs in a Bayesian network. Additional notation is needed to add this 

virtual evidence into the specification of a counterfactual probability. 

In the last section, we noted that the conditional distribution P(xk\pa,(Xk)) 

for each variable Xk € X constrains, but does not uniquely determine, the prior 

distribution P(ejt) of each disturbance variable. Although the composition of the 

external causal influences are often not precisely known, a subjective distribution 

over response functions may be assessable. If a reasonable distribution can be 

selected for each relevant disturbance variable, the implementation of the above 

algorithm is straightforward and the solution is unique; otherwise, bounds on 

the solution can be obtained using convex optimization techniques. In the next 

chapter, we will explain how such optimization tasks are formulated, and Chap- 

ter 5 applies this technique for deriving bounds on causal effects from partially 

controlled experiments. 

2.5    Firing Squad Revisited 

Let us revisit the firing squad example. Assuming we have observed that Bob 

fired his rifle (b = &i), we want to know with what probability the Traitor would 

have lived if Bob had not fired his rifle (i.e., "What is P(tl\b*, b1)?n). 

Suppose that we are supplied with the following causal theory for the model 

in Figure 1.1: 

c=       fc(rc)       = hCiTc() 

b=     fb(c,rb)     =hbirb(c) 

t=   ft(b,c,rt)   =ht,n(b,c) 

where 

-    /°-40   ifr< = 0 
[c)

   ~       0.60   if r, = 1 

36 



P{n)  = 

P(r<) 

0.02 if n = o 
0.90 if rb = 1 

0.08 if rb = 2 

0 if rh = 3 

0.01 if rt = 0 

0.40 if rt = 8 

0.09 if r4 = 10 

0.35 if rt = 12 

0.13 if r4 = 14 

0.02 if r« = 15 

0 otherwise 

and 

hc,o()   =   Co 

hc,i{)   =   ci 

ht,o(b,c) 

ht,i(b,c) 

ht,i(b,c) 

ht,3{b,c) 

ht,4(b,c) 

ht,5{b,c) 

htfi(b, c) 

htj{b,c) 

htfi{b,c) 

ht,9(b,c) 

=      tr 

f(6,c)# 

f(6,c) = 

f(M^ 
f(6,c) = 

f C = Co 

f C = Ci 

f(M^ 
f(6,c) = 

f& = &0 

f 6 = 6i 

f(6,c)€ 

f(6,c)€ 

f(6,c) = 

f(6,c)^ 

f(M = 
f(6,c)e 

f(6,c)e 

(6i»ci) 

(6l,Ci) 

(&0,Ci) 

(6o,Ci) 

(6i,co) 

(&l,Co) 

{(6o,co),(6i,ci)} 

{(61,c0),(6o,c1)} 

(&o,co) 

(fto,co) 

(bo, c0) 

{bo, Co) 

{(6I,Cö),(6O,CI)} 

{(60,c0),(6i,c1)} 
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to if 6 = 61 

h if b = b0 

to if(&,c) = (&! Co) 

h if (6, c) ^ (6x Co) 

to if c = C\ 

h if c = c0 

to if (6,c) = (6o cl) 
h if (6, c) ± (b0 cl) 

to if(M = (*i Cl) 
h if (6, c) /(öa cl) 

ht,io(b,c 

ht,u(b,c 

ht,x2{b-,c 

ht,\3{b,c 

ht,is{b,c 

The response functions for B {hb,rb) take the same form as that given in Eq. (2.7). 

These numbers reflect the authors' understanding of the dynamics involved. 

For example, the choice for -P(r&) represents our belief that Bob usually fires if 

and only if the Captain gives the signal to fire. However, we believe that Bob is 

sometimes (~ 2% of the time) unable to fire (e.g., his gun jams); this exception 

is represented by r^ = 0. In addition, Bob sometimes (~ 3% of the time) fires if 

and only if the Captain gives the order to release the Traitor (e.g., Bob has his 

signals crossed); this exception is represented by r& = 2. 

Finally, P{rt) represents our understanding that there is a slight chance (1%) 

that the Traitor is "scared to death" (rt = 0) and a slight chance (2%) that all 

of the riflemen miss their target (rt = 15). In addition, the chances that different 

combinations of riflemen inflict a lethal wound are broken down as follows: 40% 

of the time both Bob and the other riflemen are on their mark (rt =8); 9% of the 

time only Bob is on his mark (rt = 10); 35% of the time only the other riflemen 

are on their mark (rt = 12); and 13% of the time it takes the combined influence 

of Bob and the other riflemen to inflict a lethal wound (rt = 14). 

Figure 2.1 shows the Bayesian network generated from step 1 of the algorithm. 

After instantiating the real world observations (b0) and the interventions (b\) 

specified by the counterfactual antecedent in accordance with steps 2 and 3, the 

network takes on the configuration shown in Figure 2.2. 

If we propagate the evidence through this Bayesian network, we will arrive at 

the solution 

P{t\KA 0.15 
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Figure 2.1: Bayesian model for evaluating counter factual queries in the fir- 

ing-squad example. The variables marked with * make up the counter]^actual 

world, while those without *, the factual world. The r variables index the re- 

sponse functions. 

which is consistent with Dave's assertion that the Traitor would still have died 

had Bob not fired, given that Bob had actually fired. Compare this with the 

solution to Scott's indicative counterfactual query: 

P(ti\bo) 0.88. 

that is, if we had observed that Bob did not fire, the Traitor probably would 

not have died. This emphasizes the difference between the intervention-based 

interpretation and a revisionist interpretation of counterfactual conditionals. 

2.6    Complexity Issues 

The complexity of belief update in a probabilistic network is dependent on the 

structure of the network along with the variables for which evidence is available. 

If the structure of causal knowledge is given by a directed tree, then belief update 

occurs in parallel at each node, requiring only a polynomial number of calculations 

in terms of the variables' domain sizes. If the network is not a directed tree, but 

there are no loops in the network (i.e., polytrees), then the complexity becomes 
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Figure 2.2: To evaluate the query P(^|&o, bi), the network of Figure 2.1 is instan- 

tiated with observation b\ and intervention 6Q (links pointing to b$ are severed). 

exponential in terms of the number of parents of each variable [Pea88, p. 183]. For 

unrestricted directed acyclic graphs, the greatest increase in complexity comes 

about from cycles in the structure induced by observations on child variables. 

For example, if the causal structure is given by A —» B, A —> C, B —> D, 

and C —► D, then a cycle would be induced on the network by observation of 

D. [Pea88] discusses various ways of updating beliefs when induced cycles are 

present in the network. 

These same results apply to the computation of counterfactual probabilities; 

however, given a probabilistic causal model for a system, computing a counter- 

factual probability is much more expensive than computing a similar conditional 

probability, because response-function variables must be specified whose domains 

grow in size according to Eqs. (2.1) and (2.2). 

A network generated by the algorithm in Section 2.4 may often be simplified, 

because not all response-function variables need to be generated, as dictated by 

the following theorem: 

Theorem 2.6.1 A response-function variable rx for the variable X is necessary 

for evaluating a counterfactual probability P(c*\a*,o) if and only if 

• X is a descendant of any of the variables specified in the counterfactual 
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antecedent a*, 

• evidence is available for either X or one of its descendants in the factual 

world, and 

• the relationship between X and its known causal influences is nondetermin- 

istic. 

Proof: 

If a variable XJ in the counterfactual world is not a causal descendant of any 

of the variables mentioned in the counterfactual antecedent a*, then Xj and 

Xj will always have identical distributions, because the causal influences 

that functionally determine Xj and Xj are identical. Xj and X* may 

therefore be treated as the same variable. In this case, the conditional 

distribution P(xj\p&(xj)) is sufficient, and the disturbance variable tj and 

its prior distribution need not be specified. 

If XJ is a causal descendant of one of the variables in the counterfactual 

antecedent, but neither Xj nor X,'s descendants have been observed in the 

real world, then the observations in the real world provide no information 

about the distribution of X,-'s response-functions rXj. Therefore, all we 

need to know is the conditional probability distribution P(xj|pa(xj)) for 

evaluating the counterfactual probability. 

If X is already a deterministic function of its causal influences, then a 

response-function variable becomes redundant, because one of the response 

functions will have probability of one, and no observed evidence will change 

this prior distribution. Thus, the functional mapping remains the same in 

both the real and counterfactual worlds. 

However, if all three conditions above are true, then a response-function 

variable rx is necessary because (1) the evidence on X and/or propa- 

gated from its descendants produces a posterior distribution on rx, that, in 

essence, changes the conditional distribution P(xj\pa.(xj)) in the counter- 

factual world; and (2) the causal influences on X (besides rx) have different 

values (or a different distribution of values) between the real and counter- 

factual worlds. This means that we must know how the mapping from one 

valuation of causal influences to a child value is related to the mapping from 

another valuation of the causal influences; this relationship is provided by 

the distribution on the response-function variable. 
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Figure   2.3:     Hypothetical   model   with full functional  specification   (all   re- 
sponse-function variables). 

a 

Important in this discussion is that for evaluating a particular counterfactual 

probability a specification of response-functions and their prior distribution are 

only necessary for a subset of the variables in the probabilistic causal model. 

Consider a causal model over the variables {U,W,X,Y,Z} with the structure 

shown in Figure 2.3. This model is parameterized by the the conditional prob- 

ability distributions P(x), P(u\x), P(y\x,u), P(w\x,y), and P(z\y) and consists 

of 

(Mx - 1) + MX(MU - 1) + MxMu{My - 1) + MxMy(Mw - 1) + My(Mz - 1) 

independent parameters, where Mx is the variable X's domain size. 

In order to evaluate counterfactual probabilities for this model in general, we 

would generate the combined functional model for the factual and counterfactual 

worlds. The structure for this functional model is shown in Figure 2.4. This 

structure is parameterized by the prior probability distributions on the response- 

function variables, which consists of 

(Mx - 1) + (MU
M* - 1) + (My

M*M" - 1) + (M™*M* - 1) + (Mf" - 1) 

independent parameters.   It would be desirable to avoid having to specify all 

parameters associated with the response-function distributions. Fortunately, not 
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Figure   2.4:     Hypothetical   model  with  full functional  specification   (all   re- 
sponse-function variables). 

all response-functions are relevant to the evaluation of specific counterfactual 

probabilities. For example, suppose that we need to evaluate P(x*,y*,z*\u*,w). 

Applying Theorem 2.6.1 we can eliminate from consideration the response- 

function variables for X, U, and Z. rx is eliminated, because X's causal influences 

in the factual and counterfactual world will always be the same; therefore, we 

may treat X and X* as one and the same (we will notate this variable by X®), 

and only need to specify P(x). ru is eliminated, because U* is subjected to a 

local change despite the value of the response-function; therefore, no information 

is conveyed from U to U* and we only need to specify P(u\x). rz is eliminated, 

because the observations in the factual world do not propagate to rz; therefore, 

the posterior probability on rz is identical to its prior probability. Hence, P{z\y) is 

sufficient for parameterizing the relation between Y* and Z* in the counterfactual 

world. In fact, the variable Z in the real world is irrelevant to the evaluation of 

the counterfactual probability and may itself be eliminated. If we perform these 

simplifications in the model, we are left with the structure shown in Figure 2.5. 
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Figure 2.5: Simplified functional specification for a given observation on W and 

counterfactual antecedent specifying just U. Note that the response functions rX) 

ru, and rz do not require specification. 
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2.7    Statistical independence and counterfactual proba- 

bilities 

Statistical independence, e.g., P(&i|a0) = P(&i|ai), does not give us permission 

to remove a causal edge from a probabilistic specification. If there is in fact a 

direct causal influence from A to B, then a functional specification for the model 

can lead to divergent values for the counterfactual probability P(bl\al,a0,b0). 

For example, suppose that 

P{bi\a0)   =   0.50 

P{bi\ai)   =   0.50 

We can imagine two distributions over B's response functions consistent with the 

conditional probability distribution P(b\a): 

^=0) = 0.5 

Px(r6=l) = 0.0 

Pi(rb=2) = 0.0 

P!(r6=3) = 0.5 

and 

P2(r6=0) = 0.0 

P2(r6=l) = 0.5 

P2(r6=2) = 0.5 

P2(r6=3) = 0.0 

The first distribution Pi(b\a) does verify the independence of A and B and eval- 

uates P(b*\äl,a0,b0) = 0.0, while the second distribution P2(b\a) shows B de- 

terministically dependent on A and evaluates P(&iJa*,a0,&o) = 1-0. Thus, it is 

crucial that the dependencies in the causal model are determined by more than 

statistical considerations, but also by subjective knowledge of causal effects. 

2.8    Parametric and canonical models 

The advantage of using specialized models, e.g., parametric or canonical, arises 

from the reduction in the number of parameters necessary for completely spec- 

ifying the model.   The exponential size of response-function variable domains 
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Figure 2.6:  Unconstrained model of two known variables influencing a third. 

provides a strong incentive to develop and apply these canonical representations. 

The reduction in parameters can possibly lead to more efficient computations, but 

will never lead to less efficiency, because the complete response-function model 

may always be generated from the reduced-parameter canonical model. 

2.8.1     Canonical models 

The typical method for reducing the number of parameters in probabilistic causal 

networks is to decompose the relationship between an effect and its set of causes 

into an expanded model with additional variables that impose structural inde- 

pendencies. For example, suppose that two binary variables A and B causally 

influence another binary variable E as depicted in Figure 2.6. In an unre- 

stricted model, the conditional probability distributions P(E\a,b), a € {a0,ai} 

and b € {b0, bx}, require the specification of four independent parameters, and the 

distribution for the response-function variable re, P{re), requires the specification 

of 15 independent parameters. 

Suppose, however, that the interaction between these variables is correctly 

modelled by a Noisy-OR gate. This model imposes additional structural assump- 

tions into the causal network, as depicted in Figure 2.7. Two new intermediate 

variables, Ia and /(,, have been introduced into the network; E is functionally 

determined by Ia and /& (E = 70 V h), and the nondeterministic effects of A on 

Ja, and B on lb are specified by the conditional probability distributions P(Ia\A) 

and P(Ib\B). This Noisy-OR model still requires the specification of four inde- 

pendent parameters in the general case, but the savings become apparent when 

attempting to evaluate counterfactual probabilities.   From Theorem 2.6.1, no 
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P(Ia\a) 

®     ®  ©  © 

E)f(Ia,h) 

mrh) 

E )f(a,b,re) 

Figure 2.7: Functional model assuming that the influence of A and B on E may 

be modelled by a Noisy-OR gate. 

response-function variable need be generated for E, because E is a deterministic 

function of its causal parents. Instead, response-function variables are generated 

for Ia and 7b, and the distribution of the response functions, P(ria) and P{rib) are 

specified; however, this requires specification of only six independent parameters. 

The reduction in parameters becomes even more drastic as the number of 

causal influences impinging on a variable increase. Consider the case where n 

binary variables Ci, C2, • • •, Cn influence another binary variable E. The con- 

ditional probability distributions P(e\ci,c2,... ,cn) are completely specified by 

2™ — 1 independent parameters. The general functional-model for this pattern of 

influence is depicted in Figure 2.8 where the distribution of response-functions 

P(re) requires specification of 2^2"^ — 1 independent parameters. This super- 

exponential growth of parameters as a function of the number of causal influences 

makes the task of counterfactual inference unmanageable. It quickly becomes ap- 

parent that the number of specification parameters must be reduced in order to 

make any headway. 

Suppose we assume that the relationship between a variable and its causal 

influences satisfies the temporal definition of causal independence [Hec93]. In this 

case, the causal structure of Figure 2.8 may be expanded to the structure depicted 

in Figure 2.9. Each response-function variable rei, ..., rerj specifies the mapping 

from two binary variables to a single binary variable (requiring specification of 

15 independent parameters for P(rek)), while the prior distribution on reo is just 

the same as the prior distribution on eo-   Therefore, the decomposed model of 
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/ (cl> c2> ■ • • ) cn, re 

Figure 2.8: Unconstrained model with n known variables influencing the variable 

E. 

Figure 2.9 requires the specification of only 15n + 1 independent parameters, a 

drastic reduction from the 2^2") — 1 required for the unconstrained functional 

model of Figure 2.8. 

Of course, a decomposed model should only be applied when it is believed that 

it provides a good approximation of the relationships existing in the real world. 

However, from the comparison of parameter counts, it is apparent that the full 

response-function distribution P(re) could be pragmatically unmanageable, and 

require the use of a decomposed model in order to make any progress. 

2.8.2    Linear-Normal Models 

Assume that knowledge is specified by the structural equation model (often used 

in econometrics and the social sciences, and originally established by Sewall 

Wright in his development of path analysis models [Wri21]) 

x   =   Bx + t 

where B is a matrix (not necessarily triangular) corresponding to a causal model 

(possibly cyclic), and we are given the mean fie and covariance T,CtC of the dis- 

turbances e (assumed to be normal). The variables on the right-hand side of 

a structural equation are interpreted as the causal influences of the variable on 

the left-hand side of the equation. The mean and covariance of the observable 

variables X are then given by: 

px   =   Spt (2.8) 

S^   =   5Ee,eS" (2.9) 
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P(reo)        P(rei)        P(re2) P{nn) 

Figure 2.9:  Canonical model assuming temporal causal independence. 

where S = (I - B)~\ 

Under such a model, there are well-known formulas [Whi90, p. 163] [Dem69] 

for evaluating the mean and covariance of X conditioned on some observations 
—* 
o: 

ßx\o     =     Px + Zx,oE0l(o-fio) (2.10) 

2-*x,x\o     =     ^x,x ~ t-ix,o*-'0fC/-'o,x (2.11) 

where, for every pair of sub-vectors, Z and W, of X, T,ZiW is the sub-matrix of 

J±x,x with entries corresponding to the components of Z and W. Singularities of 

£ terms are handled by appropriate means. 

Similar formulas apply for the mean and covariance of X under an intervention 

a. For mathematical convenience, let X be partitioned according to whether each 

variable is referred to in a. The set of variables referred to in a is denoted by Z, 

and the set of remaining variables in X is denoted by Y. Under this partition, 

the matrix B can be partitioned into four submatrices 

B   = 

B is replaced by the intervention-pruned matrix B = [%] defined by: 

kj   = 
0 if Xi <E a 

otherwise 
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Equivalently, 

B   = *-*yy    ^yz 

0       0 

According to intervention semantics [Pea94a] all links from ez to Z are severed 

and Z is forced to the value a. Therefore, the modified structural equation model 

for X when influenced by external interventions is given by 

x   =   (I-B)-1 

0 
+ (/-£)-1 0 

a 

Given the mean and covariance of ty, the mean and covariance of the observable 

variables X may be evaluated 

fJ-x\ä 

-lx,x\a 

Hy\ä 

(I ~ Byy)~l{K +Byzaz) 
az 

Jyz,yz\a 

(i - 5w)-1Ee,,«,((/ - Byy)-*y 0 

0 0 

(2.12) 

(2.13) 

To evaluate the counterfactual distribution fJ,x*\ä*0 
and Sx*,r*|ä we first update 

the prior distribution of the disturbances by their distribution conditioned on the 

observations o: 

A   ,, 
ß°c=ße\o     =     /^ + Ee,0£0j0(o-/ro) 

=   ßt + X^SÜSoE^SÜ-^o-ßo) 

So    _ v Ee,e — £e?0E0]0£0|£ 

= s e.« £e,e'->0('->o^Je,e>->0)      b0Litji 

where S0 is the submatrix of S containing all columns of S, but only those rows 

corresponding to the observed variables in o. 

We then evaluate the means ßs*\z*0 and variances ^x*tX*\ä*0 °f the variables 

in the counterfactual world (X*) under the intervention a using Eqs. (2.12) and 
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(2.13), by replacing the prior distribution on the disturbances S£  £   and \it   with 

the posterior distribution S°      and u° : 

^ 
(I - Byy)-\p°.+ By2a 

y 

a7 

Z-'x* ,x*\ä 
(I - Byy)-^ty((I - Byy)~J   0 

0 0 

(2.14) 

(2.15) 

It is clear that this procedure can be applied to non-triangular matrices, as 

long as S is non-singular. An application of this class of model representation 

will be presented in Chapter 8. 

2.9    Conclusion 

In this chapter we have presented formal notation, semantics, a representation 

scheme, and inference algorithms that facilitate the probabilistic evaluation of 

counterfactual queries. World knowledge is represented in the language of mod- 

ified causal networks, whose root nodes are unobserved, and correspond to pos- 

sible functional mechanisms operating among families of observables. The prior 

probabilities of these root nodes are updated by the factual information trans- 

mitted with the query, and remain fixed thereafter. The antecedent of the query 

is interpreted as a proposition that is established by an external intervention, 

thus pruning the corresponding links from the network and facilitating standard 

Bayesian-network computation to determine the probability of the consequent. 

The algorithm has not been implemented, but, given a subjective prior distri- 

bution over the response variables, there are no new computational tasks intro- 

duced by this formalism, and the inference process follows the standard techniques 

for computing beliefs in Bayesian networks [Pea88]. If prior distributions over the 

relevant response-function variables cannot be assessed, there are methods that 

use the standard conditional-probability specification of Bayesian networks to 

compute upper and lower bounds on counterfactual probabilities. Chapter 3 will 

formally develop these methods. 

The semantics and methodology introduced in this chapter can be adopted to 

nonprobabilistic formalisms as well, as long as they support two essential com- 

ponents: abduction (to abduce plausible functional mechanisms from the factual 

observations) and causal projection (to infer the consequences of the intervention- 

like antecedent). We should note, though, that the license to keep the response- 
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function variables constant stems from a unique feature of counterfactual queries, 

where the factual observations are presumed to occur not earlier than the coun- 

terfactual intervention. In general, when an observation takes place before an in- 

tervention, constancy of response functions would be justified if the environment 

remains relatively static between the observation and the intervention (e.g., if the 

disturbance terms e,- represent unknown pre-intervention conditions). However, 

in a dynamic environment subject to stochastic shocks a full temporal analysis us- 

ing temporally-indexed networks may be warranted or, alternatively, a canonical 

model of persistence should be invoked [Pea93d]. 
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CHAPTER 3 

Bounding count er factual probabilities 

3.1 Introduction 

In Chapter 2, an algorithm was presented for evaluating the unique quantitative 

solutions to counterfactual queries when a functional model is available. How- 

ever, it is rare that there is sufficient knowledge about a system's underlying 

mechanisms to generate a complete functional model. This chapter is concerned 

with the evaluation of counterfactual probabilities when this model is incomplete. 

Section 3.2 describes how counterfactual probabilities may be uniquely ex- 

pressed in terms of a functional model's distribution of response-functions. In 

Section 3.3 we will describe how these response-function distributions are con- 

strained by a probabilistic specification over the observable variables in the sys- 

tem, and how the expression for the counterfactual probability may be minimized 

and maximized over these constraints. When the expression to be optimized is 

a linear function of the response-function distributions, the evaluation of bounds 

on the counterfactual probability may be guaranteed; however, as will be demon- 

strated in Section 3.4 many counterfactual probabilities are polynomial functions 

of the response-function distributions in which case the potential for local op- 

tima usually means that determination of bounds is not guaranteed. Finally, in 

Section 3.5 we demonstrate that marginalization of variables from a probabilistic 

causal model prior to evaluating bounds on counterfactual probabilities lead to 

looser bounds than if the analysis were performed on the original model. 

3.2 Expressing counterfactual probabilities in terms of 
response-function distributions 

Given the functional specification of a causal system as described in Section 2.3, 

we can derive an expression for a counterfactual probability P(c*\a*,o) in terms 

of the underlying functional model's parameters. 

Let r = (rXl,rX2, ...,rXn) represent the set of response-function variables for 
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the corresponding observable variables in the model.   Given the value of r, all 

variables Xi € X are functionally determined according to the recursive function: 

Xi   =   #*,(r) 

where pa(X;) =  {Ui, £/2, ■ ■ ■, £4}  C X are the causal influences of Xi in the 

model. 

If a set of variables A C X in the model are externally forced to the value 

a, then according to the intervention-based semantics of [Pea93a], the recursive 

function becomes 

*•■   =   fl£(r) 

£i if Xi € A 

fXi(rXi) if Xi $ A and pa(X,-) = 0 

. /«i(4(r).A(r).-.<W.',xi) otherwise 

The counterfactual probability P(c*\a*,o) may be rewritten 

P{c*,o\a*) 
P(c*\a*,o)   = 

P(o\a*) 

Since an intervention can only affect its descendants in the graph [Pea94b] we have 

P(o\a) = P(o) which is readily computed from the probabilistic specification. 

P(c*,o\a*) may be evaluated in terms of the functional model by summing 

the probabilities of the response-function configurations which are consistent with 

the arguments (c*, a*, o). Formally, 

P(c\o\a*)   =   £P(r) 

where 

R   =    {r|VI,eo[^,(r)=a;i]andVi;ec.[4(r)]=x*} 

Hence, the counterfactual probability may be written in terms of the structure 

{pa(a;,)} and parameters P(r) of the functional model: 

pic \a ,o)   =        p^— (3.1) 
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The next section will describe how the right-hand side of Eq.(3.1) may be op- 

timized subject to the constraints imposed by the probabilistic specification. But 

first, we will derive an expression for the probability that Bob would have fired his 

rifle, if the Captain were to have given the order to shoot, given that the Captain 

gave the order to release the traitor and Bob did not shoot (P(^|cj,Co, &o))- 

The connection between the factual and counterfactual worlds was discussed 

in Chapter 2 where it was argued that the response-function variables should 

assume the same values in both worlds. For the firing-squad example, this invari- 

ance allows the response function variables rc and r& to be shared between the 

networks corresponding to the two worlds (see Figure 3.1). 

Figure 3.1: Factual (C,B) and counterfactual (C*, B*) worlds for the functional 

analysis of the structure C —* B. The response-function variables rc and r^ 

(summarizing all exogenous influences on C and B) attain the same value in the 

real and counterfactual worlds. 

The domain of .B's response-function variable r& is defined by Eq. (2.3), while 

the response-function variable for C has a two-valued domain rc £ {0,1} with 

the following functional specification: 

c   =   /c(rc) = Ac,rc() (3.2) 

where the mappings defined by each response function hCjrc() are given by 

hc,o()   =   Co 

hc,i()   =   ci 
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One quickly notes that the prior probability distribution on rc will be the same as 

the distribution over C (this is true in general for variables that were root nodes 

in the original causal structure): 

P(rc=0)   =   Pico) 

P(rc=l)   =   P{c{) 

From Eq. (3.1), 

Eren^r) 
P{b\\c[,co,bo)   = 

P{co,bo) 

where 

R   -   {{rc,rb)\9c{rc,rb)=c0Agb(re,rb)=b0Agl1(rc,rb)=b1} (3.3) 

The only tuple satisfying the condition in Eq. (3.3) is 

(rc,rb)    =   (0,1) 

Therefore, 

Pib^C^CoM     =         
P{c0, bo) 

But, P(rc=0) — P(c^co), hence, 

P(b1\c1,coyb0)   = 
P{bo\co) 

3.3    Constraints and optimization 

The probabilistic specification P(x,-|pa(x,-)) for a complete model imposes a set 

of constraints on the distribution of response functions P(rXi) of the form 

P(xi\pa,(xi))   =   X]P(rIi)<(rJ.1.;xI-,pa(xt-)) (3-4) 

where the characteristic function t indicates which response functions rXi map 

the given value of X:'s causal influences pa(x,-) to X,-'s given value x;, i.e. 

<(rXi;x,-,pa(xO)   =        Q   otherwise 
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For an incomplete model, where X{ and Xj are assumed to have an exoge- 

nous common cause, the common constraint for these two variables will be given 

instead by 

P(xi,Xj\pa.x_{x.}(xi),pa.x_{x.}(xj)) = (3.5) 

J2   P(rxi,rXj)t(rXt-xi,p&(xi))t(rXj;Xj,-pa(xJ)) 

Note that the constraints in Eq. (3.5) are linear in P(rXi,rXj). 

As an example, the constraints in the firing-squad story (which is complete 

with two binary variables C and B) are given by 

P^lco)   =   P(r6=2) + P(rb=3) (3.6) 

P(W\Cl)   =   P(rb=l) + P(r6=3) (3.7) 

P(c,)   =   P(rc=l) (3.8) 

Given the entire set of linear constraints and the objective function from 

Eq. (3.1), the bounds may be evaluated using techniques for optimizing non-linear 

objective functions under linear constraints [Sca85]. In general, the optimization 

procedure may converge to a local minima/maxima which would produce false 

bounds. If the objective is to prove that the counterfactual probability falls within 

a certain range, care must be taken to ensure that global optima are found. 

If the objective function given by Eq. (3.1) is linear, the minimum/maximum 

may be determined using linear programming techniques. In this case, when 

the problem size is small enough, we may also derive closed-form bounds to the 

counterfactual probability in terms of the probabilistic specification. This is ac- 

complished by enumerating the vertices in the dual linear programming problem 

(see Appendix B). 

For the firing-squad example, the symbolic expression for the counterfactual 

probability P{b\\c\,CQ, b0) may be optimized over the space of linear constraints 

given by Eqs. (3.6)-(3.8). The resulting symbolic bounds are: 

i        r pihic) - Pihico) \ 
max > K 

P(bo\co) { 0 J 

<P(b*\%,co,bo)< 

1 .   / P(6o|c0) mm ' 
P(bo\co) I P(6i|ci) 
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By substituting the known conditional probabilities from Section 2.3 

P{b0\co)   =   0.90 

P(bi\a)   =   0.90 

we can evaluate the numeric bounds on the counterfactual probability: 

8/9<P(6*|ct,co,60)<l 

Sometimes, one may feel confident in claiming that additional constraints 

should be imposed on the parameters defining the distribution of response-functions. 

For example, we may subjectively believe that Bob never confuses the shoot and 

release signals, which is simply written P(rb = 2) = 0 and added to the exist- 

ing set of constraints. The optimization of the expression for the counterfactual 

probability then proceeds as before. In this case, this assumption is sufficient to 

uniquely determine the counterfactual probability 

P(6t|ct,c0,60)   =   8/9 

This shows that partial knowledge or belief about the distribution of response- 

functions is an important technique for tightening bounds on counterfactual prob- 

abilities given only a probabilistic specification of observable variables. 

3.4     Nonlinear expressions 

Unfortunately, a closed-form expression for the counterfactual probability is not 

always a linear function of the parameters of the response-function distributions. 

This will be demonstrated by the following example which relates to the firing- 

squad example previously discussed. 

First, the original model will be expanded by incorporating the additional 

knowledge that there is only one other rifleman, Dave, whose tendency to fire is 

independent of Bob's firing given the Captain's signal. The causal structure for 

this model is depicted in Figure 3.2. The story relating Dave's firing habits will 

be similar to Bob's habits described in Section 1.2. D is a deterministic function 

of C, and D's response-function variable rd 

d   =   fd{c,rd) = hdi,.d(c) (3.9) 

where 

hd,o(c)   =   do (3.10) 
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Captain's signal 

Bob's firing Dave's firing 

T      Traitor's health 

Figure 3.2: Causal structure reflecting the influence that the Captain's signal has 

on Bob and Dave's firing, and the influence that their firing has on the Traitor's 

health. 

hd,i(c)   = 

hda{c)   = 

hd,z{c)   =   d\ 

do if c = Co 

d\ if c = C\ 

d\ if c = Co 

do if c = C\ 

(3.11) 

(3.12) 

(3.13) 

In addition, T is now a deterministic function of B, D, and T's response-function 

variable rt 

t   =   ft(b,d,rt) = ht<rt(b,d) (3.14) 

where 

ht,o(b, d) = 

ht,i{b,d) = 

ht,2(b,d) = 

ht,3(b,d) = 

bt,4(b,d) = 

ht<5(b,d) = 

io   ] i(b,d)^(b1,dl) 

h   ] i(b,d) = (b1,d1) 

to i(b,d)^(b0,d1) 

h i(b,d) = (b0,d1) 

to f d = do 

h fd = d! 

to i(b,d)^(b1,d0) 

h if (6,d) = (6i,do) 

to if b = b0 

h if b = w 
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htß(b,d 

htJ(b,d 

ht,s(b,d 

ht$(b,d 

ht,10(b,d 

ht,n{b,d 

ht,i2(b,d 

ht,i3{b,d 

htM{b,d 

ht,i5(b,d 

f (M)e 
i{b,d)e 

f(M) = 
i(b,d)^ 

i(b,d)^ 

i(b,d) = 

f (M)e 
f(b,d)e 

fb = b1 

ib = b0 

Hb,d) = 
i(b,d)^ 

{ c = di 

f c = do 

i(b,d) = 
i(b,d)^ 

i(b,d) = 

i(b,d)^ 

{(b0,d0),(bi,di)} 

{(61, do), (60, di)} 

(^o,d0) 

(bo,d0) 

(b0,d0) 

(bo,d0) 

{(6i,c?o),(fe0,di)} 

{(^o,^),^!,^)} 

{bi,d0) 

{bi,d0) 

{b0, di) 
(&o,di) 

(h,di) 
(61, da) 

Suppose, that we observe the Captain give the signal to shoot (cj), Bob fires 

his rifle (61), and the Traitor survives (ti). If the Captain had not given the signal 

to shoot, what is the probability that the Traitor would have died (to), i.e., what 

is P(<o|cS,ci,6i,iO? 

The instantiated graphical structure for evaluating this conditional probability 

is shown in Figure 3.3. 

According to the procedure described in Section 3.2, we can write the prob- 

ability of the counterfactual consequent in terms of the response-function distri- 

butions P(re), P{rb), P(rd), P{rt): 
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Figure 3.3: To evaluate the counterfactual probability P(to\cQ,ci,bi,ti), the com- 

bined functional model (factual/counterfactual worlds) is instantiated with obser- 

vations Ci,&i,£i and intervention CQ (links pointing to CQ are severed). 

^(*o|co,Ci,&i,*i)   = (3.15) 

1 

P(Mi|ci) 

P(n=l) 

P(rd=0)Zke{4,5,6,7}P(rt=k)+ 

P(rd=l)i:ke{i,3,5,7}P(ri=k) + 

P{rd=2)Zk€{4,5,i2,i3}P(rt=k)+ 

_ P{rd=^)J2ke{i,5,9,i3}P{rt=k) 

' P(rd=l)Zke{i,3,9M}P(rt=k)+' 

[ P{rd==2)Eke{4fi,i2,i4}P(rt=k) 

+ 

P(n=S) 

with the following constraints over the response-functions' distributions: 

P(n=0) + P(rb=l) = P(b0\co) 

P(n=2) + P(rb=3) = PiWlco) 

P(rb=0) + P(rb=2) = P{bo\Cl) 

P(rb=l) + P(rb=Z) = P(61|Cl) 
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P(rd=0) + P(rd=l)    =   P(d0\c0) 

P(rd=2) + P(rd=3)    =   P(^|Co) 

P(r,=0) + P(rd=2)   =   P(do\Cl) 

P(rd=l) + P(rd=3)    =   Pfala) 

E ^«=0    =   ^(*o|&o,<*o) 
»'£{0,1,2,3,4,5,6,7} 

E ^fa=0   =   P(ti\bo,do) 
»'£{8,9,10,11,12,13,14,15} 

E ^=0   =   ^olfto.rfi) 
ig{0,l,4,5,8,9,12,13} 

E P(rt=i)   =   P(*i|6ö,rfi) 
»'£{2,3,6,7,10,11,14,15} 

E ^(n=0   =   P(*o|6i,rfo) 
»'€{0,1,2,3,8,9,10,11} 

E ^«=0    =   -P(*i|6i,cfo) 
»'£{4,5,6,7,12,13,14,15} 

E P(rt=i)   =   P(<o|6i,di) 
«'£{0,2,4,6,8,10,12,14} 

E ^(n=»)   =   ^i|&i,di) 
»'£{1,3,5,7,9,11,13,15} 

Eq. (3.15) is a polynomial expression of the response-function variables, and 

is therefore not directly amenable to the linear-optimization procedure detailed 

in Appendix B. As an alternative, one could apply techniques for optimizing 

nonlinear functions in a convex polytope [Sca85]; however, there is no guaran- 

tee that the global optima will be found by these procedures, so care must be 

taken in interpreting the results. In Chapter 4, we will find that global optima 

are guaranteed when computing counterfactual beliefs in an order-of-magnitude 
probability calculus. 

There are some cases, however, where a polynomial expression is amenable 

to linear optimization, because the expression may be manipulated into a form 

where linear sub-expressions may be optimized independently. Once these sub- 

expressions are optimized, then their optimal values may be substituted into the 

original expression, and the procedure is repeated until we are left with a linear 

62 



expression that is directly optimizable. 

Theorem 3.4.1 Several linear expressions f\(x), fii^c), ■ ■ ■, fn{x) may be inde- 

pendently optimized if 

J^optfkix)   =    opt[J2fk{x)} 
k k 

For example, suppose that we have a model for our domain containing three 

binary variables A, B, and C, with the structure A —> B —* C and the conditional 

probability distributions P(a), P(b\a), and P(c\b). We make the observation 

{a0,Co} and then wish to know P(cj|aj,a0,c0), i.e., the probability that C would 

have been ci, if A were a\. Figure 3.4 shows the structure of the functional model 

corresponding to the probabilistic specification. 

Figure 3.4: Bayesian model for evaluating counter]^actual queries when the causal 
structure is given by A —» B —> C. 

C is a deterministic function of B and rc, and B is a deterministic function 

of A and r^ in the complete model. In terms of this models' response-function 

distributions, we may express the counterfactual probability: 

P(r6=l)P(rc=l) + P(rb=2)P{rc=2) 
P(cl\al, a0, Co) 

P(co\a0) 
(3.16) 
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This expression is nonlinear with respect to the response-function distributions 

P(rb) and P(rc); however, applying Theorem 3.4.1 shows that P(rb-1) and 

P(r&=2) may be optimized independently. 

max      _,.,  .    .      „.,  .    .   S    < P(r6=l) <   max      „;,       ' 

max 
0 

P(61|a0)-P(61|a1) 
< P(rb=2) <   max 

P(6oh) 

P(6i|a0) 

max 
P(61|a1)-P(61|a0) 1 

P(61|a0)-P(61|a1) J 

< P(r6=l) + P(r6=2) < 

' P(60|a0) + P(&o|ai) 

P(6i|«o) + P(6i|ai) 
max1 

Summing the right hand side of Eqs. (3.17) and (3.18): 

max' 
P(bo\a0) 

P(bx\ai) 
+ max ■ 

max < 

(3.19) 

(3.20) 

P(&oh) 1 = 
P(bi\a0) J 

P(b0\a0) + P{b0\ai) 

P(6i|a0) + P(6i|a1) 

P(b0\a0) + P{b1\aQ) = l 

, P(6o|a1) + P(6i|a1) = l 

But one of the first two terms in the right hand side of Eq. (3.20) must be greater 

than or equal to one, while the other term is less than or equal to one; therefore, 

the expression reduces to the right hand side of Eq. (3.19). Similar arguments 

lead to the conclusion that the sum of the left hand sides in Eqs. (3.17) and (3.18) 

is equal to the left hand side of Eq. (3.19). The conditions in Theorem 3.4.1 are 

satisfied allowing us to use linear optimization to compute the bounds on the 

counterfactual probability: 

1 

P(c0|a0) 
max < 

0 

(P(61|a1) - P(61|a0))(P(c1|61) - P(Cl|60)) 

{P{h\a0) - P(61|a1))(P(c1|a0) - P^M) 

< P(cl\al,a0,CQ) < 

1 

P(co\a0 

nun < 

P(&o|ao)P(co|6o) + P(60|a1)P(c0|61) 

P(6i|a1)P(c0|60) + P(61|a0)P(c0|61) 

P(6o|a0)P(c1|61) + P(60|a1)P(Cl|6o) 

P(61|a1)P(c1|61) + P(&1|a0)P(c1|61) 

(3.21) 
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This section has shown that although many interesting counterfactual proba- 

bilities are polynomial with respect to the underlying response-function distribu- 

tion, and hence susceptible to the problem arising from local optima within the 

parameter space, there are some cases where linear optimization is still possible 

because some of the terms in the expression may be independently optimized, and 

then combined to form a closed-form expression for the bounds. This technique 

will be applied in Chapter 5 when deriving bounds on treatment effects given a 

subject's category of treatment consumption. 

3.5    Model marginalization 

In the last section, we computed the bounds for a counterfactual probability 

based on a model containing three variables A, B, and C, where P's value did 

not take part in the specification of the counterfactual query. One might consider 

marginalizing B out of the model, because B is not referenced in our observa- 

tions or the counterfactual conditional. Although this is admissible when the 

prior probabilities on the response-function variables P(n) and P(rc) are known 

(allowing exact calculation of the counterfactual probability), this strategy is fal- 

lible when these distributions are unspecified and hence only bounds on the the 

counterfactual probability may be computed. 

Figure 3.4 shows the structure of the functional model corresponding to the 

probabilistic specification. If we marginalize out the variable P, the structure of 

the functional model is given by Figure 3.5 (note that the response-function vari- 

able for C in the partial model is denoted by sc). The mapping from the complete 

model's conditional probability specifications to the partial model's specification 

is given simply by 

P(Cl|a0)   =   P(c1|60)P(&o|ao) + JP(ci|6i)P(61|a0) (3.22) 

P(ciM   =   P(c1|60)P(&oK) + P(ci|61)P(61|a1) (3.23) 

In the complete model, C is a deterministic function of B and rc, and B 

is a deterministic function of A and r^. However, in the partial model, C is a 

deterministic function of A and sc. In terms of the partial models' response- 

function distributions, we may express the counterfactual probability: 

P(ct|at,a0,co)   =   ^f^\ (3.24) 

Given an instantiation of B and C"s response-function distributions, the two 
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Figure 3.5: Partial model over A and C. 

counterfactual probabilities given by Eqs. (3.16) and (3.24) will always be equal, 

because the numerator of Eq. (3.24) is just the result of marginalizing out B. 

However, in terms of the partial model, the bounds on the counterfactual 

probability are derived as: 

1 

P(c0\a0] 
max' ,   ° 1 P(ci|ai) -P(ci|a0) J 

< P(c*|äi,a0,Co) < 

1 •   / P(co\a0) 
—,—:—rmm<   _;        : 

which may be expanded as follows using Eqs. (3.22) and (3.23) 

1 

P(c0\a0) 

0 

max <   [P(&oM^(ci|M + P(bi\a1)P(c1\b1)- 

P(6o|ao)P(co|6o) + P(61|ao)P(c0|61)] 

< P(c[\äl,a0,co) < 

1 .    f PihlaolPicolbo) + PfalaoWcolh) \ 
P(co\a0)mm\ P(&o|ai)P(c1|6o) + P(6i|a1)P(c1|61) J 

Comparing these bounds to those computed with the full model, Eq. (3.21), one 

can see that the numeric bounds evaluated from the partial model are never 

tighter and almost always looser than those evaluated from the complete model 

analysis. 
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In this section, we have demonstrated that unreferenced variables may not be 

marginalized out of the probabilistic causal model without potentially affecting 

the evaluation of bounds for a counterfactual probability. However, the bounds 

evaluated from the marginalized model still hold true — they are just not nec- 

essarily tight. Therefore, one may still consider evaluating bounds under the 

marginalized model if one cannot guarantee that global optima have been found 

from the analysis using the complete model. 

3.6    Conclusion 

This chapter has developed a procedure for evaluating bounds on counterfactual 

probabilities. The corner-stone of counterfactual analysis is the use of functional 

models with response-function variables, for which the counterfactual probability 

may be uniquely written. The task of determining bounds involves the optimiza- 

tion of this expression under the constraints imposed by the known probabilistic 

specification. In general, the task is reduced to the optimization of a polynomial 

function subject to linear constraints, which introduces the problem of local min- 

ima/maxima. However, if the counterfactual probability is linear with respect to 

the functional specification, then the bounds are easily found via linear program- 

ming. In addition, in some cases we may be able to derive closed-form bounds 

on counterfactual probabilities in terms of the probabilistic specification. 
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CHAPTER 4 

Evaluating count er factuals from K rankings: 
Computation and Bounds 

4.1     Introduction 

In Chapters 2 and 3 a formalism was developed for evaluating and bounding 

counterfactual probabilities given a causal structure of the relevant domain along 

with conditional probabilities of each variable given its set of causal influences. 

Detractors of reasoning with probabilistic causal networks claim that it is un- 

reasonable to assume that we can obtain the numbers which parameterize the 

causal model, and that we may only elicit crude measures of belief from human 

reasoners. An alternative representation of these belief measures is given by an 

order-of-magnitude abstraction of probabilities, known as «-rankings [Spo88]. 

In general, the objective function to optimize for evaluating bounds on coun- 

terfactual probabilities will be a polynomial function with respect to the unspec- 

ified prior probabilities on the response-function variables. Therefore, algorithms 

for optimizing cannot always verify that the global minima/maxima has been dis- 

covered, because the algorithms may terminate at local minima/maxima. If we 

cannot guarantee global optima, then the returned bounds on the counterfactual 

probability are too tight; and therefore, are not bounds. If, however, we represent 

knowledge by a K ranking over the worlds, then we can always evaluate the upper 

and lower bounds on our belief in a counterfactual consequent. Of course, this 

only gives us an approximation to the bounds that would be determined using a 

fully specified probabilistic causal model. 

In this chapter, we will reformulate the evaluation of bounds on counterfactual 

beliefs in terms of K rankings over possible worlds. The next section will give 

background on reasoning with K ranking functions. In Section 4.4, a general 

description of a procedure for evaluating bounds on counterfactual beliefs given K 

ranking functions will be given. Section 4.5 will demonstrate this on an example, 

and finally Section 4.6 will give some concluding remarks. 
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4.2 K rankings 

K rankings ([Spo88]) provide an order-of-magnitude abstraction of probability 

distributions that states that if P(a) is of order 0(en) for some constant e less 

than 1 and non-negative integer n, than the K ranking of a is /c(a) = n. Note that 

as a probability decreases, its K ranking will increase. This transformation from 

probabilities to K rankings partitions the range of probabilities into equivalence 

classes designated by a non-negative integer that indicates how surprising a par- 

ticular event would be («(a) = 0 indicates that event a would not be surprising). 

One of the obvious benefits of K rankings is greater ease in specifying beliefs: 

rather than specifying a precise probability, only a crude estimate of the proba- 

bility is necessary. Of course, this also means that the accuracy of the result is 

less precise; if you do not have precise probabilities to begin with, the solution 

should not be expected to be precise. 

The basic operators of ranking functions correspond very nicely with the op- 

erators in probability theory: multiplication and addition in probability theory 

are replaced by addition and minimization, respectively, in K calculus. While 

probability theory has the following axioms 

P(a) = £ P(w) (4.1) 
w\=a 

P(a) + P(-.a) - 1 (4.2) 

P{a,b) = P{b\a)P(a) (4.3) 

K calculus has the corresponding set of axioms 

n(a) — minK(tu) (4.4) 

min{«;(a),/c(-ia)} = 0 (4.5) 

«(a, b) = K(b\a) + K.(a) (4.6) 

We will now use this relationship between K and probability calculi to describe 

the procedure for evaluate counterfactual K rankings. 

4.3 K ranked counterfactuals 

Consider the causal structure C —► B with an associated conditional kappa rank- 

ing K(6|C).   Suppose that we have observed (c0,&o)-   What is our belief that B 
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would have been equal to 61, if C were c\. According to the formalism for evaluat- 

ing counterfactual probabilities in Chapter 2, we generate a functional model for 

the given causal structure. In this case we introduce a response-function variable 

rb which specifies the mapping from C to B as follows: 

b   =   fb(c,rb) = hb)rb(c) 

where 

h,o{c)    =   60 

u    1 \ fb0ifc = Co 
[ bi   11 c = C\ 

u    ( \ / 61   if c = CO 

[ b0   if c = c\ 

h,z{c)   =   h 

The kappa ranking over these response functions «(r;,) then parameterizes the 

model. 

Similar to the strategy developed in 3 we can write the counterfactual kappa 

ranking for our query as follows: 

K(&I|CI, CO, b0)   =    K(CO, 60, ^1^) - «(c0, 60) 

=    «(n>i) - «(&o|co) 

If the kappa ranking over the response-function variable n is known, then a unique 

counterfactual kappa rank may be computed; however, if this information is not 

available, then the counterfactual kappa ranking may only be bounded under the 

constraints given by the known kappa ranking K(6|C). These constraints are: 

K(&D|CI) = mm{n(rbo),K(rb2)} (4.7) 

K(&O|CO) = min{«;(r6o),«:(r'6i)} (4.8) 

K(bi\co) = min{/c(rM),«(r63)} (4.9) 

K(6I|CI) = min{/c(r6l),K(r63)} (4.10) 

K(rbj)   >   0 VjG {0,1,2,3} (4.11) 

The formulation of the problem was straight-forward following the formal- 

ism of Chapter 2; however, an appropriate mechanism needs to be available for 
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performing this integer optimization with constraints containing minimization 

operators. 

Eqs. (4.7)-(4.10) immediately imply 

K(rb0) > max{«;(6o|co);K(6o|ci)} (4-12) 

K(rbl) > max{K(6o|c0);«;(fei|ci)} (4.13) 

«(^2) > max{«;(6i|co);/c(6o|c1)} (4.14) 

K(rb3) > max{K(6i|c0);K(6i|ci)} (4-15) 

No dependencies exist among these expressions that prevent equality from hold- 

ing in all these constraints; therefore, finding the minimum for individual n(rb) 

terms is trivial. For our counterfactual query, this leads to a lower bound on the 

counterfactual «-ranking: 

/c(&!|cJ,co,6o)   >   max \ (4.16) 

When maximizing n(rbi), there are only two situations to consider: either 

K(rbi) is completely unbounded from above; or the upper bound is equal to the 

lower bound in Eq. (4.13), i.e., 

«(rfel)   =   ma.x{K,(b0\co); K(bi\ci)} (4-17) 

To determine which situation holds, we first remove n(rbl) from the minimization 

sets of Eqs. (4.7)-(4.10), and check for satisfiability. If satisfied, then n(rbi) is 

not bounded from above; otherwise, the bounds reduce to equality 

K(&I|CI,C0,&O)   =   max<     ,    .    .        ,, .   .   \ 
{ K(6I|CI) - AC(6O|CO) J 

Of course, if the counterfactual K is equal to zero, then we would like to know 

what the counterfactual K is for the negation of the counterfactual consequent. 

For our example, we would be interested in K(&Q|CJ,CO,60). Applying the same 

procedure as before we obtain the lower bound 

K(&o|ct,c0,&o)   >   max       ,u \   \       //. 1    W 
i /c(oo|ci) - K(6ü|Cö) J 

If /c(rjo) —* 00 is not satisfiable, then the bounds reduce to equality 

K(&5|C!,CO,&O)    =   max ,    .    ,   \ 
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4.4     General case 

4.4.1 Functional expression 

In Section 3.2, we gave a declarative definition for counterfactual probabilities 

written in terms of the structure {pa(x,)} and the parameters of the response- 

function distributions: 

P(c*\a*,o)    =    Er6flP(r) 

P{o) 

where 

R   =   {r|V„.g0[xi = /Bl.(r)]aiidV,;€c.[a;;=4(r)]} 

This definition may be transformed according to Eqs. (4.1)-(4.6) into an ex- 

pression written in terms of the K ranking functions of the response-function 

variables: 

«(c*|a*,o)   =   min/c(r) — K(O) (4-18) 

where the form of /e(r) is always given by the sum of K'S for each independent set 

of response function variables in r. 

4.4.2 Constraints 

The Ac rankings over the model's observable variables /c(a;,-|pa(x,-)) impose a set 

of constraints on the K ranking over the response-function variables K(rXi) of the 

form 

/c(x,-|pa(x,-))   =   min{«(rXj) :x,- = /ffi(pa(a;i),ra.1.)} (4.19) 

Similar to the treatment of exogenous common causes discussed in Section 3.3, if 

Xi and Xj are assumed to have an exogenous common cause, then the common 

constraint for these two variables will be given instead by 

Ac(x,-,xi|pa(x,-) - {xj},pa.(xj) - {x,-}) 

=   min{K(rriir>) : x{ = /Xj(pa(xt),rIi) and x, = fx3{p&(xj),rX:i)} (4.20) 

Therefore, in general, we will be optimizing a function with minimization 

operators over constraints also containing minimization operators. 
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4.4.3    Optimization 

In this section we will show that optimization of the objective K function (Eq. (4.18) 

under the constraints of Eqs. (4.19) and (4.20) is trivial for the minimum value, 

but requires either a complete enumeration or a search procedure for determining 

the upper bound on the K-ranking. 

4.4.3.1 Minimization 

The constraints given by Eq. (4.19) immediately imply the following lower bound 

on the K ranking of individual response functions: 

it{rXi=j)   >   vaax{K(xi\p&(xi)) : Xi = fx,(p&(xi),rXi=j)} (4.21) 

These lower bounds are obtained simply by substituting the known conditional 

K rankings n(xi\p&(xi)) into the right hand side of Eq. (4.21). Given that the 

objective function consists only of minimization and summation operators, the 

strict lower bound on the K of the counterfactual can always be evaluated by 

substituting in the lower bounds for each K,(rXi). 

4.4.3.2 Maximization 

In maximizing the objective function, it helps to note that if a response-function 

rank n(rXi=j) is not forced to be equal to its lower bound given by Eq. (4.21), 

then that K term is completely unbounded from above, and may be assumed to 

be infinite. Therefore, when we try to maximize the objective function, we will 

set each response-function K to either its lower bound value or infinite (which is 

equivalent to removing every instance of that K term from the objective function. 

This suggests a crude algorithm for evaluating the upper bound on the ob- 

jective function: simply evaluate the objective function for every configuration 

of response-function /c's consistent with the constraints imposed by the known 

conditional K rankings, and take the maximum. Besides the enumeration of every 

configuration, we must also have a means for checking the consistency of each 

configuration. Although computationally expensive, if all configurations can be 

enumerated, we can guarantee that the strict upper bound may be computed. 

There are ways in which we may decrease the computational cost by per- 

forming some preprocessing to eliminate a majority of configurations from the 

search space. In addition, the search space can be sorted to speed up the task. A 
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formal algorithm will not be presented, but an example demonstrating the main 

concepts of maximizing a counterfactual K will be discussed in the next section. 

4.5    Example 

In Section 3.4, we attempted to evaluate a counterfactual query related to the 

firing-squad example. In order to evaluate bounds on the counterfactual prob- 

ability, a polynomial objective function over a set of linear constraints was to 

be optimized. Unfortunately, methods for optimizing polynomial functions are 

plagued by the presence of local minima/maxima in the parameter space. How- 

ever, if the belief specification is given in terms of K rankings, the bounds on the 

counterfactual K ranking can be determined precisely. 

In order to make the K bounds on the counterfactual conditional more in- 

teresting, the story behind the causal structure of Figure 3.3 will be changed. 

Suppose there are four individuals, Carol, Bob, Dave, and Tina, with a known 

pattern of party attendance. The variables C, B, D, and T indicate whether each 

individual attended the party, respectively; the values c\, bx, c?i, and ti indicating 

that the individuals were at the party, while CQ, b0, dQ, and t0 indicating that the 

individuals were not at the party. 

Bob really dislikes parties so almost never attends them, but if Carol is there 

he is slightly more likely to be there than if Carol is not at the party. This can 

be modelled in K rankings as follows: 

K(bo\co) = 0       n(b0\ci) - 0 

AC(6I|CO) = 2       «(&i|ci) = 1 

Dave, though, loves parties so he almost always attends them. However, if 

Carol is there he is a little less likely to be there than if Carol is not there. This 

can be modelled as follows: 

K(d0\co) = 3       K(d0\ci) = 1 

K(di\co) = 0       K(C?I|CI) = 0 

Tina is a friend of Bob and Dave and is not very excited about going to 

parties. She also knows that Bob and Dave get into scuffles when they get 

together; therefore, Tina typically will not go to parties if both Bob and Dave 

are going to be there. The K ranking representing this information is given by 

K(t0\bo, d0) = 0       K(t0\bi, dQ) = 4 
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n(ti\b0,d0) = 2       «(^xj&x, c?0) = 0 

n(to\bo,di) 

K{ti\bo,di) 

3       K(t0\bi,di) = 0 

0      «(^i|6i, di) = 1 

Each variable is a deterministic function of its observable causal influences and 

its response-function variable according to Eqs. (3.2), (2.3), (3.9), and (3.14). 

Suppose that we observe Carol at the party (ci), Bob at the party (6X), 

and Tina at the party (£i). If Carol were not at the party (co), how surprised 

would we be to see Tina absent from the party (t0)l In other words, what is 

Ac(i5|c5,ci,&i,*i)? 

The instantiated graphical structure for evaluating this K ranking is the same 

as that depicted in Figure 3.3. 

According to the procedure described in Section 4.4.1, we can write the K rank 

of the counterfactual consequent in terms of the response-function K-rankings 

K(rc),K(rb),K(rd),K(rt): 

K{to\cZ,ci,bi,ti)   = 

K(TV=1) + min < 

mm < 

«(&i,ii|ci)+ 

K(rd=Q) + mm{K{rt=j)\j € {4,5,6,7}} 

K{rd=l) + mm{K(rt=j)\j 6 {1,3,5, 7}} 

K(rd=2) + min{K(rt=j)\j e {4,5,12,13}} 

K(rd=3) + iain{K(rt=j)\j € {1,5,9,13}} 

K(rd=l) + mm{K(rt=j)\j e {1,3,9,11}} 

K{rd=2) + mm{K(rt=j)\j e {4,6,12,14}} 
K(TV=3) + min 

with the following constraints over the response-functions' «-ranking: 

min{K(r6=0),K(r6=l)} = n(b0\co) 

min{«;(r6=2),/c(rfe=3)} = «(6i|co) 

min{«;(r6=0),/c(r6=2)} = K(60|CI) 

min{/c(Tv=l),K(r6=3)} = K(6I|CI) 

min{fi;(rc=0),K(rc=l)} = «(co|c0) 

min{«(rc=2),fi;(rc=3)} = K(CI\C0) 

(4.22) 
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min{«;(rc=0), /c(rc=2) 

min{fi;(rc=l), «(rc=3) 

mm{K{rt=i)\i G {0,1,2,3,4,5,6,7} 

mm{n(rt=i)\i G {8,9,10,11,12,13,14,15} 

min{K(rt=i)|ie {0,1,4,5,8,9,12,13} 

min{/c(rt=i)|i G {2,3,6,7,10,11,14,15} 

mm{K{rt=i)\i G {0,1,2,3,8,9,10,11} 

min{«(rd=i)|i G {4,5,6,7,12,13,14,15} 

min{/c(rt=i)|i G {0,2,4,6,8,10,12,14}; 

min{/e(rt=i)|i G {1,3,5,7,9,11,13,15}] 

We can simplify these constraints by the following procedure. For n(rx=i), find 

the set of constraints containing K,(rx=i) with the maximum right hand side. Then 

for all other constraints over /c(z|pa(a;)) eliminate n(rx=i) from each constraint's 

minimization set. Applying this procedure reduces the above constraints to: 

K(rb=0)   =   0 

min{/s(r&=2),K(rb=3)}   =   2 

«(r6=l)   =   1 

}    = ä(CO|CI) 

}   = K(CI|CI) 

}   = K(t0\b0,d0) 

}    = K(ti\b0,d0) 

>      zz: K(t0\b0,di) 

}     = K(ti\bo,di) 

K(t0\bi,do) 

/c(ii|&i,d0) 

«(*o|&i,c?i) 

/c(ii|6i,rfi) 

min{K(rei=0),K(r(i=l)} = 3 

K(rd=3) = 0 

«(rd=2)   =   1 

(4.23) 

K(r,=6) = 0 

min{/c(rt=14),K(rt=15)} = 2 

min{«;(rt=4),«;(rt=5),/c(rt=12),/c(rt=13)} = 3 

min{/c(r«=i)|i € {0,1,2,3,8,9,10,11}} = 4 

K{rt=7) = 1 

The conditional kappa term on the right-hand side of Eq. (4.22) may be com- 
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puted by substituting the conditional kappa rankings specified at the beginning 

of this section into the following equation: 

K(£I,&I|CI)   =   K(6I|CI) + min< 

=   2 

*(do|ci) + «(*i|&i,do) 

K,(di\ci) + AC(^I|6I, d\) 

Figure 4.1 represents the structure of Eq. (4.22) and will be used to represent 

the search state (not the search tree) for finding the upper bound on the K ranking 

of the counterfactual. Earlier, we mentioned that each response-function K value 

is either constrained to be equal to its lower bound or completely unconstrained. 

Therefore, each edge in the tree is either assigned to its minimum value or set to 

oo. The K ranking of the counterfactual for these values of the response-function 

K'S is given by the minimum sum of K terms over all paths from the root to any 

leaf node. 

To start the search procedure, we assign every response-function K to its 

minimum value as given by the right-hand side of Eq. 4.21. This assignment 

will never violate the constraints imposed by the conditional K rankings on the 

observable variables. 

-«(ti,6i|ci) = -2 

^4     *a     ^     ^7     Si     *Ü     \>     ^7     ^4     *ü   ^12   ^13    *U     Ktf     *W     ^13   ^1     ^3     ^9     ^11   ^4     ^6    ^12   *IU 

55     23665333333     23266     664143 

Figure 4.1: Initial representation of maximization search state. 

We then evaluate the K sums along each directed path. Taking the minimum 
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of each sum gives us the lower bound on the K ranking of the counterfactual, and 

this also gives us a starting point on the upper bound. The key to the algorithm 

is that the only way that the upper bound can be greater than the current upper 

bound, is when response-function K values may be set to infinite along all directed 

paths with the next higher K sums. 

Consider, then our current example. Figure 4.2 shows all directed paths with 

the minimal K sum equal to 1. In order to extend the bound we must be able to 

sever this path by assigning one of the response-function K'S to infinite. Those 

edges along the path that we immediately know cannot be set to infinite because 

of the simplified constraints are represented with dashed lines. /c(r(,=3), though, 

may be set to infinite without violating any constraints. Therefore, we know that 

the upper bound on the counterfactual's n ranking is greater than 1. 

-K(MI|CI) = -2 

^4     Ni     ^6     ^7     *tl     ^     ^     ^7     ^4    Ktf   ^12   ^13    *tl     ^     ^9     ^13   *«     ^     ^9     ^U   ^4     ^6   *U2   ^14 

55  23665333333  23266664143 

Figure 4.2: Representation of maximization search state after severing all kappa 

1 paths. 

The next step is to consider all directed paths whose K sums are less than 

or equal to the next potential upper bound — in this case 2. These paths are 

shown in Figure 4.3. For this particular example, KJO, «ts, and Ktis must also 

be set to oo to sever all paths with K sums less than or equal to 2. This set of 

K'S may be set to infinite without violating the given constraints; therefore, the 

counterfactual K ranking must be greater than 2. 
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K(tl,&l|ci) = -2j 

*t4  *tS  ^6  ^7  Ktl  ^3  ^  ^  ^4 ^ ^12 ^13 ^1  ^  ^9  ^13 ^1  ^3  ^9  ^11 ^4  ^6 *M   ^14 

55  23665333333  23266664143 

Figure 4.3: Representation of maximization search state after severing all kappa 

2 paths. 

Again we consider all directed paths whose K sums are less than or equal to 

the next potential upper bound — now 3. These paths are shown in figure 4.4. 

In order to sever the left-most three directed paths, both K(r^=0) and «(^=1) 

must be set to infinite. However, this violates the constraint given by Eq. (4.23). 

Therefore, it is impossible to sever all directed paths with K sums less than or 

equal to 3, leading us to the conclusion that the upper bound on K(£Q|CQ, CI, &i,^i) 

is 3. Combined with the earlier results for the lower bound, the range of the 

counterfactual's «-ranking is given by 

1 < K(io|Co,C!,6i,^i) < 3 

4.6     Conclusion 

In this chapter we have presented a method for evaluating bounds on beliefs 

in counterfactuals when our general knowledge is given by order-of-magnitude 

abstractions of probability distributions. Where evaluating bounds on counter- 

factual probabilities may not succeed because of the presence of local optima in 

the response-function parameter space, we can always guarantee that the upper 
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^4 Ss  So  ^7 Si  S3  S5  S7 S4 S5 Sl2 Sl3 Si  S>  S9 Sl3 Si  S3 S9 Sll S4 So Sl2 Sl4 

55  23665333333  23266664143 

Figure 4.4: Representation of maximization search state showing that all kappa 3 

paths may not be simultaneously severed. 

and lower bounds of the counterfactuals K ranking may be found given sufficient 

time. The lower bound on the K, ranking ("we would be at least as surprised as") 

can be evaluated almost directly once we have the counterfactual's K rank written 

in terms of the response-functions' K rankings. For the upper bound ("we would 

be at most as surprised as"), an informal algorithm was presented through an 

example. 
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Part III 

Applications 
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CHAPTER 5 

Clinical trials with imperfect compliance 

5.1    Introduction 

Consider an experimental study where random assignment has taken place but 

compliance is not perfect (i.e., the treatment received differs from that assigned). 

It is well known that under such conditions a bias may be introduced, in the 

sense that the true causal effect of the treatment may deviate substantially from 

the causal effect computed by simply comparing subjects receiving the treatment 

with those not receiving the treatment. Because the subjects who did not comply 

with the assignment may be precisely those who would have responded adversely 

(positively) to the treatment, the actual effect of the treatment, when applied 

uniformly to the population, might be substantially less (more) effective than the 

study reveals. 

In an attempt to avert this bias, economists have devised correctional formu- 

las based on an "instrumental variables" model ([BT84]) which, in general, do 

not hold outside the linear regression model. A recent analysis by [EF91] de- 

parts from the linear regression model, but still makes restrictive commitments 

to a particular mode of interaction between compliance and response. [Rob89] 

and [Man90] derived nonparametric bounds on treatment effects using differ- 

ent techniques; however their bounds are not tight. [H0I88] has given a general 

formulation of the problem (which he called "encouragement design") in terms 

of Rubin's model of causal effect and has outlined its relation to path analysis 

and structural equations models. [AIR93], also invoking Rubin's model, have 

identified a set of assumptions under which the "Instrumental Variable" formula 

is valid for certain subpopulations. These subpopulations cannot be identified 

from empirical observation alone, and the need remains to devise alternative, 

assumption-free formulas for assessing the effect of treatment over the popula- 

tion as a whole. In this chapter, we derive bounds on the average treatment effect 

that rely solely on observed quantities and are universal, that is, valid no matter 

what model actually governs the interactions between compliance and response. 

82 



The canonical partial-compliance setting can be graphically modeled as shown 

in Figure 5.1. 

Treatment fy\ (TT\ Latent 
Assignment \~J X_/ Factors 

Treatment 
Received      

\.  '' 
i Observed 
'Response Y 

Figure 5.1: Graphical representation of causal dependencies in a randomized clin- 

ical trial with partial compliance. 

We assume that Z, D, and Y are observed binary variables where Z represents 

the (randomized) treatment assignment, D is the treatment actually received, 

and Y is the observed response. U represents all factors, both observed and 

unobserved, that may influence the outcome Y and the treatment D. To facilitate 

the notation, we let z, d, and y represent, respectively, the values taken by the 

variables Z, D, and Y, with the following interpretation: z £ {zo,Z\}, z\ asserts 

that treatment has been assigned (zo, its negation); d € {d0,di}, d\ asserts 

that treatment has been administered (do, its negation); and y € {2/0,2/1}, Vi 

asserts a positive observed response (y0, its negation). The domain of U remains 

unspecified and may, in general, combine the spaces of several random variables, 

both discrete and continuous. 

The graphical model reflects two assumptions of independence: 

1. The treatment assignment does not influence Y directly, but only through 

the actual treatment D, that is, 

Zj\_Y\{D,U} (5.1) 

In practice, any direct effect Z might have on Y would be adjusted for 

through the use of a placebo. 

2. Z and U are marginally independent, that is, Z \\ U. This independence is 

partly ensured through the randomization of Z, which rules out a common 

cause for both Z and U. The absence of a direct path from Z to U represents 

the assumption that a person's disposition to comply with or deviate from a 
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given assignment is not in itself affected by the assignment; any such effect 

can be viewed as part of the disposition. 

These assumptions impose on the joint distribution1 the decomposition 

P(y,d,z,u)  = P(y\d,u) P{d\z,u) P(z) P(u) (5.2) 

which, of course, cannot be observed directly because U is a latent variable. 

However, the marginal distribution P(y,d,z) and, in particular, the conditional 

distributions P(y,d\z),z € {z0,zi}, are observed, and the challenge is to assess 

the causal effect of D on Y from these distributions.2 

In addition to the independence assumption above, the causal model of Fig- 

ure 5.1 reflects claims about the behavior of the population under external in- 

terventions. In particular, it reflects the assumption that P(y\d,u) is a stable 

quantity: the probability that an individual with characteristics U = u given 

treatment D = d will respond with Y = y remains the same, regardless of how 

the treatment was selected — be it by choice or by policy. Therefore, if we wish to 

predict the distribution of Y under a condition where the treatment D is applied 

uniformly to the population, we should calculate 

P(y*\d*)   =   Eu[P(y\d,u)\ (5.3) 

=   £P(y|d,u)i>(ti) (5.4) 
u 

Likewise, if we are interested in estimating the average change in Y due to 

treatment, we define the average causal effect, ACE(£> —> Y) ([H0I88]), as 

ACE(D-y)   =   Eu[P(yi\duu)-P(yi\d0,U)} (5.5) 

=   P{yl\d\)-P{y{\dl) (5.6) 

For uniformity of notation, we can define, in an analogous way, the average causal 

effects of the assignment Z, ACE(Z —> Y) and ACE(Z —> D). However, since Z 

is assigned at random, these two quantities can be obtained from the observed 

distribution: 

ACE(Z^D)   =   P(di|zi)-P(di|z0) (5.7) 

ACE(Z-+Y)   =   P{yx\zx) - P(yi\z0) (5.8) 

xWe take the liberty of denoting the prior distribution of U by P(u), even though U may 
consist of continuous variables. 

2In practice, of course, only a finite sample of P{y, d\z) will be observed, but since our task 
is one of identification, not estimation, we make the large-sample assumption and consider 
P(y, d\z) as given. 
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The task of causal inference is then to estimate or bound the expression in 

Eq. (5.6), given the observed probabilities P(y,d\z0) and P(y,d\z1). 

[Pea93b, Rob89, Man90] have derived bounds on the two terms on the right 

hand side of Eq. (5.6) given the distribution over F, D, and Z: 

max[P(y1,c?1|21); P(y1,d1,\z0)] 

<E[P(yi\duu)}< 

l-max[P(y0,di\zo)\ P(y0,di\z1)] (5.9) 

max[P(yi,do\z0); P(yi,d0,\zi)} 

<E[P{yi\d0,u)}< 

1 -max[P(y0,d0\z0)i P(y0,dQ\z1)] (5.10) 

Choosing appropriate terms to bound the difference 

E[P(y1\d1,u)]-E[P(y1\d0,u)] 

we obtain lower and upper bounds on the causal effect of D on Y: 

i3(yi,diki) + i'(yo,rfoko)-l 

< ACE(D -> Y) < 

l-P(yo,d1\z1)-P(yl,d0\z0) (5.11) 

or, alternatively, 

ACE(D^Y)   >   ACE(Z-^Y)-P(yud0\z1)-P(y0,d1\z0)     (5.12) 

ACE(D^Y)   <   ACE{Z^Y) + P(y0,d0\z1) + P(yi,d1\z0) 

Due to its simplicity and wide range of applicability, we will call the bounds of 

Eq. (5.12) the natural bounds (three other less intuitive expressions for the up- 

per and lower bounds may be inferred from Eqs. (5.9) and (5.10), but these will 

not be presented here because they will be derived in Section 5.2). The natural 

bounds guarantee that the causal effect of the actual treatment cannot exceed 

that of the intent-to-treat by more than the sum of two measurable quantities, 

P{yi,d0\zi) + P(y0,di\zo); they also guarantee that the causal effect of treat- 

ment cannot drop below that of the intent-to-treat by more than the sum of two 

other measurable quantities, P(y0,d0\zi) + P(yi,di\z0). The width of the natural 

bound, not surprisingly, is given by the rate of defection, P(di\z0) + P(d0\zi). 
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Before continuing to the more refined derivation of bounds on ACE(D -> Y), 

we should point out that the structural model of Figure 5.1 imposes definite con- 

straints on the observed distributions P(y,d\z0) and P(y,d\zi). The constraints, 

obtained directly from Eq. (5.2), are 

^(2/o,t?i|z0) + P(?/1,c/1|21)    <    1 

P(yo,d1\z1) + P{y1,d1\z0)   <   1 

^(!/o,doko) + P(yi,doki)   <    1 

P(yo,do\zi) + P(yudo\z0)   <   1 (5.13) 

These constraints constitute necessary and sufficient conditions for a marginal 

probability distribution P(y,d,z) to be generated by the structure of Figure 5.1 

(proof in Appendix A.l), and therefore they may serve as an operational test for 

the compatibility of that structure with the observed data. 

5.2    Tight bounds on average causal effect of treatment 

Strict bounds on the causal effect of treatment received on subject response may 

be derived by following the procedure detailed in Section 3.3 where the objec- 

tive function to be optimized is the difference between the two counterfactual 

probabilities on the right-hand side of Eq. (5.6). 

5.2.1    Response-function model 

First, the functional model corresponding to the probabilistic model of Figure 5.1 

must be specified. For each of the observable variables in the model (Z, D, 

and Y), we define the corresponding response-function variables (rz, rd, and ry, 
respectively). 

Figure 5.2 shows the graphical representation of the resulting functional model. 

Because D and Y are assumed to be influenced by an unobservable common cause, 

the response-function variables rd and ry are connected by an edge. 

The states of the variables rd and ry have the following interpretations: 

D is a deterministic function of the variable Z and rd 6 {0,1,2,3}: 

d   =   fd{z,rd) = hd,rd(z) (5.14) 

where 

hdfi{z)   =   d0 
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0   12   3^ 
•   •   •   »J 

Td 

0    12    3^ ry 

Figure 5.2:    A structure  equivalent to that of Figure 5.1  but employing re- 

sponse-function variables rz, rj, and ry. 

hd,i(z)   = 

hd,2{z)   = 

d0 if z = ZQ 

d\ if z = z\ 

d\ if z — ZQ 

do if z = z\ 

hd,3(z)   ~   di 

Similarly, F is a deterministic function of D and ry € {0,1,2,3}: 

y   =   fy(d,ry) = hyiTy(d) 

where 

(5.15) 

hyfl(d) 

KM 

hya(d) 

yo 

y0 if of = o?o 

j/i if d = d\ 

t/i if 6? = d0 

y0 if d = rfi 

=   J/i 

The correspondence between the states of variables r^ and ry and the potential 

response vectors in the Rubin's model [RR83] is rather transparent: each state 

corresponds to a counterfactual statement specifying how a unit in the population 

(e.g., a person) would have reacted to any given input. For example, r^ = 1 

represents units with perfect compliance, while r<j = 2 represents units with 
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perfect defiance. Similarly, ry = 1 represents units with perfect response to 

treatment, while ry = 0 represents units with no response (y — y0) regardless 

of treatment. The counterfactual variables Y\ and Y0 usually invoked in Rubin's 

model can be obtained from ry as follows: 

Yx =   {Y\iD = d1}   = 

Y0=   {YiiD = d0}   = 

1   if ry = 1 or ry 

0 otherwise 

1 if ry = 2 o 
0   otherwise 

In general, treatment response and compliance attitudes may not be inde- 

pendent, hence the arrow rd —»■ ry in Figure 5.2. The joint distribution over 

rd x ry requires 15 independent parameters, and these parameters are sufficient 

for specifying the model of Figure 5.2, 

P(y, d, z, rd, ry) = P(y\d, ry)P(d\rd, z)P(z)P(rd, ry) 

because Y and D stand in functional relation to their parents in the graph. The 

causal effect of the treatment can now be obtained directly from Eqs. (5.4) and 

(5.15) according to Eq. (3.1), giving 

P{y{\d\)   =   P(ry=l) + P(ry=3) (5.16) 

P(y*M   =   P(ry=2) + P(ry=3) (5.17) 

and 

ACE(£> -> Y) = P(ry=l) - P(ry=2) (5.18) 

5.2.2    Linear programming formulation 

In this section we will explicate the relationship between the parameters of the ob- 

served distribution P(y, d\z) and the parameters of the joint distribution P(r, r') 

of the potential-response functions. This will lead directly to the linear con- 

straints needed for minimizing/maximizing ACE(D —> Y) given the observation 

P(y,d\z). 

The conditional distribution P(y,d\z) over the observable variables is fully 

specified by eight parameters, which will be notated as follows: 

Poo.o   =   P{yo,d0\z0) 

POLO   =   P{yo,di\z0) 

88 



Pio.o = P{yi,d0\z0) 

P11.0 = P(yi,di\z0) 

Poo.i = P(yo,do\zi) 

Poi.i = P(yo,d!\zi) 

Pio.i = P(yi,do\zi) 

Pn.i = P(yi,di\zi) 

The probabilistic constraints 

11 

£ Pn.O    =    1 (5.19) 

11 

E Pn.i   =   1 (5-20) 
n=0O 

further imply that p = (poo.o,Poi.o,Pio.o,Pii.o,Poo.i,Poi.i,Pio.i,Pn.i) can be spec- 

ified by a point in six-dimensional space. This space will be referred to as P. 

Eqs. (5.7) and (5.8) may be rewritten in terms of these parameters as 

ACE(Z^D)   =   pin+poi.i-pn.o-poi.0 (5.21) 

ACE(Z->Y)   =   pn.i + Pio.i - Pu.o - Pio.o (5.22) 

The joint probability over R x R', P(r,r'), has 16 parameters and completely 

specifies the population under study. These parameters will be notated as 

qjk   =   P(r = rj,r' = r'k) 

where j, k £ {0,1,2,3}. The probabilistic constraint 

3      3 

EE?i*   =   l 

implies that q = (goo, 9oi,?02,9o3,?io,9n,?i2,913,920,921,922, 923,9M, 931,932,933) 

specifies a point in 15-dimensional space. This space will be referred to as Q. 

Eq. (5.18) can now be rewritten as a linear combination of the Q parameters: 

ACE(D ->• Y)   =   <7oi + 911 + 921 + 931 - 902 - 912 - 922 - 932      (5.23) 
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Given some point q in Q space, there is a direct linear transformation to the 

corresponding point p in the observation space P: 

Poo.o =   9oo + 9oi + qio + qn 

Pox.o =     920 + 922 + 930 + 932 

Pio.o =     902 + 903 + 912 + 913 

Pll.O =     921 + 923 + 931 + 933 

(5.24) 

Poo.i =   9oo + 9oi + 920 + 92i (5.25) 

POM =     910 + 912 + 930 + 932 

PlO.l =     902 + 903 + 922 + 923 

Pn.i =     911 + 913 + 931 + 933 

which will sometimes be written i in matrix form, p = Pq. 

Given a point p in P space, the strict lower bound on ACE(Z> —► Y) can be 

determined by solving the following linear programming problem: 

Minimize: q01 + qn + q21 + q3i - 902 - 912 - 922 - 932 

Subject to: 

3      3 

S 2 Ijk =   1 
j=0 k=0 

Pq =   P (5.26) 

<ljk >   0 for j,k€ {0,1,2,3} 

5.3     Closed-form solut ions to the linear programming 
problem 

Given an observed point p'mP space, LB^Y{P) and UD->Y{P), respectively, will 

represent the strict lower and upper bounds on ACE(D —+ Y) associated with p. 

More precisely, 

LD-*Y{P) =   ^ mm    ACE(D^>Y) 
q s.t. p=Pq 

(5.27) 

UD^Y(P) =    ^ max    ACE(Z> -»• Y) 
q s.t. p=Pq 

(5.28) 

where Eq. (5.23) gives ACE(L> - -> Y) in terms of q. 
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For every given point p, the optimization above can be executed using the 

Simplex Tableau algorithm (see [DM81]), which yields a pair of numerical val- 

ues for LD-^Y(P) and UD^Y(P)- Fortunately, the size of the problem permits 

a closed-form solution to be obtained by enumerating all vertices of the dual 

linear-programming problem's constraint polygon (see Appendix B). This proce- 

dure leads to the following bounds: 

'D-+Y (P)   = max < 

P11.1 + Poo.o - 1 

Pi l.o + Poo.i - 1 

-Poi.i - Pio.i 

-poi.o - Pio.o 

Pn.o - Pii.i - Pio.i - Poi.o - Pio.o 

P\\.\ - Pn.o - Pio.o - Poi.i - PlO.l 

Poo.i - Poi.i - Pio.i - Poi.o — Poo.o 

. Poo.o - Poi.o - Pio.o - Poi.i - Poo.i 

(5.29) 

UD^Y{P)   =   min- (5.30) 

1 - Poi.i - Pio.o 

1 - Poi.o - PlO.l 

Pll.l + Poo.i 

Pi 1.0 + Poo.o 

-Poi.o + poi.i + Poo.i + Pn.o + Poo.o 

-Poi.i + Pll.l + Poo.i + poi.o + Poo.o 

-Pio.i + Pll.l + Poo.i + Pi 1.0 + Pio.o 

-Pio.o + Pn.o + Poo.o + Pll.l + Pio.i 

Note that the first term in these two expressions correspond to the natural bounds 

of Eq. (5.11). Tables 5.1 and 5.2 list the regions of P space for which each of 

the terms in Eqs. (5.29) and (5.30) represents the lower/upper bound, respec- 

tively. These bounds constitute substantial improvement over those derived by 

Robins (1989) and Manski (1990), which correspond to the four upper terms in 

both (5.29) and (5.30). The width of these bounds cannot exceed the rate of 

noncompliance, P(di\z0) + P(d0\zi). 

We may also derive bounds on the treatment responses under the condi- 

tion that one treatment is uniformly applied to the population, by optimizing 

Eqs. (5.16) and (5.17) individually (under the same linear constraints).   The 
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Conditions LD-+Y{P) 

Pll.l > Pn.o 

Poi.i + Pio.i > Poi.o Pll.l + Poo.o - 1 

Poo.o > Poo.i 

Poi.o + Pio.o > PlO.l 

Pn.o > Pll.l 

P01.0 + Pw.o > Poi.i Pll.O + Poo.i - 1 

Poo.i > Poo.o 

Poi.i + P10.1 > Pw.o 

Pi 1.0 + P10.0 > P11.1 > P11.0 -Poi.i - P10.1 

P01.0 + Poo.o > Poo.i > Poo.o 

Pll.l + P10.1 > P11.0 > P11.1 -Poi.o - P10.0 

P01.1 + Poo.i > Poo.o > Poo.i 

Pll.O > Pll.l +P10.1 Pll.O - Pii.i - P10.1 - Poi.o - - P10.0 

P01.1 > P01.0 + P10.0 

Pll.l > Pll.O + P10.0 Pll.l -Poi.i -Pio.i -Pii.o - - P10.0 

P01.0 > P01.1 + P10.1 

P10.0 > P01.1 + P10.1 Poo.i -Poi.i -Pio.i - Poi.o ■ - Poo.o 

Poo.i > P01.0 + Poo.o 

P10.1 > P01.0 + P10.0 Poo.o - Poi.o -Pio.o -Poi.i - Poo.i 

Poo.o > P01.1 + Poo.i 

Table 5.1:   Lower bounds on ACE(Z) —► Y) given a point p in the observation 

space P. 
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Conditions 

Poi.i > Poi.o 

Pn.i +P00.1 >Pn.o 

P10.0 > P10.1 

Pn.o + Poo.o > P00.1 

P01.0 > P01.1 

Pn.o + Poo.o > Pn.i 

P10.1 > Pio.o 

Pn.i + Poo.i > Poo.o 
 L ™ ■>-> ^  P01.0 + Poo.o > P01.1 > P01.0 

Pn.o + Pio.o > P10.1 > pio.o 

P01.1 + P00.1 > P01.0 > P01.1 

P11.1 +P10.1 > P10.0 > PlQ.l 

Poi.o > P01.1 + Poo.i 

Pi 1.1 > Pi 1.0+ Poo.o 

P01.1 > Poi.o + Poo.o 

Pn.o > Pn.i + Poo.i 

Poo.o > P11.1 +P00.1 

PlQ.l > Pll.O+PlO.O 
r>„~ .   ■>   n. -  - J. r.  

UDMP) 

P01.1 - P10.0 

P01.0 - P10.1 

Pn.i + Poo.i 

Pn.o + Poo.o 

-Poi.o + P01.1 + Poo.i + Pn.o + Poo.o 

-Poi.i + Pn.i + Poo.i + Poi.o + Poo.o 

-P10 .1 + Pn.i + Poo.i + Pn.o + P10.0 

-Pio.o + Pn.o + Poo.o + Pn.i + P10.1 Poo.i > Pn.o + Poo.o 

Pio.o > Pn.i + PlQ.l 

Table 5.2:   Upper bounds on ACE(D —»■ Y) given a point p in observation space 

P. 
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resulting bounds are: 

max < 

Pio.o + pn.0 - poo.i - Pll.l 

PlO.l 

PlO.O 

. Poi.o + Pio.o - Poo.i - Poi.i , 

< P(vfö) < 
POI.O +PlO.O + PlO.l + Pll.l 

1 - Poo.i 

1 - Poo.o 

.   PlO.O +P11.O + POM + PlO.l    , 

mm < 

and 

max < 

Pi 1.0 

Pn.i 

-Poo.o - Poi.o + Poo.i + Pll.l 

-Poi.o - Pio.o + Pio.i + Pn.i 

< P(fi\d\) < 

1 - Poi.i 

1 - Poi.o 

Poo.o + Pi 1.0 + PlO.l + Pll.l 

.  PlO.O + Pn.o + Poo.i + Pll.l   , 

These bounds improve upon the results of [Man90]. In addition, one can prove 

that these are the tightest possible assumption-free bounds. 

mm < 

5.3.1    The positive-effects convention 

To simplify the presentation of the bounds found in the last subsection, we first 

choose a notational system in which assignment to treatment does not reduce the 

probability of treatment usage (D = d-i) and of positive response (Y = yx). From 

Eqs. (5.7) and (5.8), these conditions can be written as 

or, alternatively, 

ACE(Z - -+D)   >   0 

ACE(Z ->y) > o 

Poi.i + Pll.l >    Poi.o + Pi 1.0 

PlO.l + Pll.l >     PlO.O + Pi 1.0 
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The conjunction of these two inequalities will be referred to as the condition 

of positive effects. This constraint may be imposed without loss of generality, 

because the labels of the variables' values can always be swapped in such a way 

that the inequalities are satisfied: if ACE(Z —► D) < 0, we swap d0 and d\; if 

ACE(Z —► Y) < 0, we swap y0 and y\. 

In a notational system where the condition of positive effects holds, the lower 

and upper bounds on the treatment effect can be simplified to read 

LD^Y(P)   —   max« 

Pn.i + Poo.o - 1 

Pn.i - Pu.o - Pio.o - Poi.i - Pio.i 

-Poi.i ~ Pio.i 

-poi.o - Pw.o 

Poo.o - Poi.o - Pw.o - Poi.i - Poo.i 

and 

UD-*Y{P)   =   min< 

1 - Poi.i - Pio.o 

1 - Poi.o - Pio.i 

-Poi.o + poi.i + poo.i + Pu.o + Poo.o 

Pn.i + Poo.i 

Pi l.o + Poo.o 

-Pio.i + Pn.i + Poo.i + Pu.o + Pio.o 

respectively. 

(5.31) 

(5.32) 

5.3.2     Graphical presentation of the bounds 

When compliance is perfect (i.e., ACE(Z —> D) = 1), we expect the causal effect 

of the treatment to coincide with the causal effect of the intent-to-treat, that is, 

ACE(D -> Y) = ACE(Z -► Y)    if    ACE(Z -^ D) = 1 

Similarly, if all units were to exhibit the same difference in compliance proba- 

bilities, P(d1\zi, u) — P(di\z0, u), the celebrated "Instrumental Variable" formula 

applies 
ACE(Z^Y)      P(yi\Zl) - P(yi\z0) 

ACE(D -> Y) (5.33) 
ACE{Z -+ D)      P(d1 \Zl) - P(d!\zQ) 

Here ACE{D -> Y) is determined solely by ACE(Z -> Y) and ACE(Z -+ D). In 

general, however, the latter two parameters will not be sufficient to determine 

ACE(D —► Y) uniquely; nevertheless, they can be used to determine the range 

within which ACE(D —► Y) may fall. 
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Figure 5.3 plots LD^Y(P) and UD^Y(P) given ACE(Z —> D) and 

ACE(Z —> Y).   The range of ACE(£> —> F) is quite wide, and is given by the 

simple formula: 

ACE(Z -> F) + ACE(Z -+ £>) - 1 

< ACE(£> -► F) < 

1-|ACE(Z^D)-ACE(Z^F)| (5.34) 

An interesting point is that plotting the natural bounds given by Eq. (5.12) as a 

function of ACE(Z —> D) and ACE(Z —> F) gives us precisely the same results 

as shown in Figure 5.3. 

Note that the bounds LD->Y(P) and UD^Y(P) for a particular point p in P 

space may be much tighter than the bounds shown in Figure 5.3 as functions of 

ACE(Z —> D) and ACE(Z —> Y) evaluated at p. This will be demonstrated by 

example in Section 5.4. 

5.4    Examples 

At this point it is worth summarizing by example how the bounds of Eqs. (5.29) 

and (5.30) can be used to provide meaningful information about causal effects. 

Consider the Lipid Research Clinics Coronary Primary Prevention Trial data 

(see [Pro84] for an extended description of the clinical trial). A portion of this 

data consisting of 337 subjects was analyzed in [EF91] using a model that in- 

corporated subject compliance as an explanatory variable; this same data set 

is the focus of our analysis. A population of subjects was assembled and two 

preliminary cholesterol measurements were obtained: one prior to a suggested 

low-cholesterol diet (continuous variable Cn); and one following the diet period 

(C/2). The initial cholesterol level (C/) was taken as a weighted average of these 

two measures: Ci = 0.25C/1 + 0.75C/2- The subjects were randomized into two 

treatment groups; in the first group all subjects were prescribed cholestyramine 

{z\), while the subjects in the other group were prescribed a placebo (z0). During 

several years of treatment, each subject's cholesterol level was measured multiple 

times, and the average of these measurements was used as the post-treatment 

cholesterol level (continuous variable CF)- The compliance of each subject was 

determined by tracking the quantity of prescribed dosage consumed (continuous 

variable B). 

In order to apply our analysis to this study, the continuous data obtained 
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ACE(Z->Y) 

ACE(Z->D) = 0.0 

ACE(Z->D) = 0.2 

ACE(Z->D) = 0.4 

ACE(Z->D) = 0.6 

ACE(Z->D) = 0.8 

ACE(Z->D) = 1.0 

Figure 5.3: Bounds on ACE(D —> Y) plotted against ACE(Z —> Y) and 
ACE(Z -► D). 
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in the [Pro84] study must be transformed to binary variables representing treat- 

ment assignment (Z), received treatment (£)), and treatment response (Y). The 

following transformation accomplishes this by thresholding dosage consumption 

and change in cholesterol level: 

,   _    j d0   if z = z0 or b < 50 , 

~    \ <*x    if z = z, and b > 50 {   ^j 

/ 2/0   if c/ - cF < 28 
J/   =   i .( ^ OQ (5.36) 

[ j/!   if a - cF > 28 

This transformation reflects the assumption that a subject does not receive 

cholestyramine if not assigned to the cholestyramine treatment group, namely, 

P(yo,di\z0) = 0 and P(yi,di\zQ) = 0. The threshold for dosage consumption in 

Eq. (5.35) was selected as roughly the midpoint between minimum and maximum 

consumption, while the threshold for cholesterol level reduction in Eq. (5.36) was 

selected at 28 units. 

If the data samples are interpreted according to Eqs. (5.35) and (5.36), then 

the computed distribution over (Z,D,Y) results in the following point in P 

space3: 

Poo.o = P(yo,do\z0) = 0.919 

Poi.o = P(yo,d1\z0) = 0.000 

Pio.o = P(yi,d0\z0) = 0.081 

Pn.o = P{yi,d1\z0) = 0.000 

Poo.i = P(yo,d0\zi) = 0.315 

Poi.i = P(yo,di\zi) = 0.139 

Pw.i = P(yi,do\zi) = 0.073 

Pii.i = jP(yi,diki) - 0.473 

By first computing the causal effects of the intent-to-treat, 

ACE(Z->Z>)   =   pn.i+PDi.i-pii.o-poi.o = 0.612 (5.37) 

ACE(Z -> Y)   =   pn.i + pio.i - pii.o - Pio.0 = 0.465 

3We make the large-sample assumption and take the sample frequencies as representing 

P{y,d\z). 
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we can verify that the condition of positive effects is satisfied. This justifies the 

use of Eqs. (5.31) and (5.32) for evaluating the strict lower and upper bounds on 

ACE(D —*■ Y). By computing the quantities required for Eq. (5.31), we obtain 

Pn.i + Poo.o - 1    = 0.392 

Pu.i - Pil.o - Pio.o - Poi.i - PlO.l    = 0.180 

LD^Y{P) — max • -Poi.i - PlO.l    = -0.212 

-Poi.o - Pio.o    = -0.081 

Poo.o - Poi.o - Pio.o - Poi.i - Poo.i    = 0.384 

Those needed for Eq. (5.32) give us 

1 - Poi.i - Pio.o   = 0.780 

1 - Poi.o - PlO.l    = 0.927 

UD^Y(P) = min< 
-Poi.o + Poi.i + Poo.i + Pi 1.0 + Poo.o    = 

Pll.l + Poo.i    = 

1.373 

0.788 

Pi 1.0 + Poo.o    = 0.919 

,   -PlO.l + Pll.l + Poo.i + Pi 1.0 + Pio.o    = 0.796 

Accordingly, we conclude that the treatment causal effect lies in the range 

0.392 < ACE(£> -* Y) < 0.780 (5.38) 

which is rather remarkable; the experimenter can categorically state that when 

applied uniformly to the population, the treatment is guaranteed to improve by at 

least 39.2% the probability of reducing the level of cholesterol by at least 28 points. 

This guarantee does not rest on any assumed model. Unfortunately, these results 

cannot be translated directly into a useful policy statement for treating people 

with high cholesterol, because the [Pro84] data were obtained for continuous level 

of dosage consumed (D), while our analysis is restricted to binary D. To infer 

the behavior of the population under uniform consumption at a specific level of 

dosage, a model with a continuous (or at least 3-level) treatment must be studied; 

these types of models will be addressed in Chapter 6. 

Note that the bounds in Eq. (5.38) are equal to the natural bounds given by 

Eq. (5.12): 

ACE{D^Y)   >   0.465-0.073-0.000 = 0.392 

ACE(D^Y)   <   0.465 + 0.315 + 0.000 = 0.780 

It is interesting to note that "naive" comparison of subjects in and out of the 

treatment group would predict, in this case, the value of 

P(yi|di)-P(yi|do) = 0.662 
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which demonstrates the potential inaccuracy in using the mean difference for 

evaluating ACE(D -»• Y). 

If ACE(Z —> D) and ACE(Z —► F) are the only quantities measured, then the 

following bounds on ACE(D —> Y) can be computed by substituting the values 

from Eq. (5.37) into Eq. (5.34): 

0.077 < ACE(£> -> y) < 0.853 

As noted in Section 5.3.2, these bounds are much wider than those obtained in 

Eq. (5.38), which utilized the full information given by P(y,d\z). 

5.5    Tightness of the natural bound 

Although the example above shows no improvement over the natural bounds, the 

next (hypothetical) example will show that in certain cases the natural bounds 

can be improved upon significantly. Consider the following point in P space: 

Poo.o = P(yo,d0\z0) = 0.55 

Poi.p = P{yo,di\zo) = 0.45 

Pio.o = P(yi,d0\z0) = 0.00 

Pn.o = .P(yi,di|zo) = 0.00 

Poo.i = P(yo,do\zi) = 0.45 

PDi.i = i'(yo,di|2i) = 0.00 

Pio.i = P(yi,4ki) = 0.00 

Pii.i = P(yi,di\zi) = 0.55 

Substitution of these parameters into Eq. (5.12) results in the natural bounds 

0.10 < ACE(£> -> Y) < 0.55 

while the bounds resulting from the application of Eqs. (5.29) and (5.30) collapse 

to 

0.55 < ACE(£> -► Y) < 0.55 

Obviously, when our goal is the assessment of the treatment causal effect, the 

bounds obtained through linear programming can be much more informative. 
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Interestingly, a precise determination of ACE(D —► Y) is feasible even though 

the compliance is low: 

ACE(Z-+£>)    =   0.10 

Intuitively, one would expect that if most subjects ignore their treatment as- 

signment, the results of the study would be suspect. This intuition is partially 

supported by Figure 5.3, which shows that the feasible range of ACE(D —*• Y) 

tends to widen as ACE(Z —> D) decreases. Nevertheless, the idiosyncratic fea- 

tures of the data in this example permit us to determine precisely the causal 

effect. These features also allow us to precisely determine the distribution of 

subjects in the population, in terms of the subjects' compliance and response 

characteristics. 

The first behavior is characterized by perfect compliance with the assignment 

along with a perfect response pattern to the treatment received (y = y1 if and 

only if c? = di). The second behavior is characterized by perfect defiance of 

the assignment (the subject always chooses the treatment that is the opposite 

of the one assigned) along with a total inability to respond positively to either 

treatment. The strong and strange interactions between the compliance and 

response behaviors implied by these data would be very uncharacteristic of most 

subject populations. 

In fact, we can prove that there are exactly six regions where the average 

causal effect of treatment on response is identifiable when no assumptions are 

presumed. This is accomplished by enumerating the conditions whereby one of 

the lower bound terms in Eq. (5.29) is equal to one of the upper bound terms in 

Eq. (5.30). 
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Region ACE(£> -> Y) 

P(d1\zo) = 0 

Pidofa) = 0 

PiVudxlzi) + P(yo,do\z0) - 1 

P(tfi,di|zo) = 0 

P(j/o,c?iko) + -P(yi,^iki) = 1 

P(t/o,^oko) +p(yo,^oki) -P(y0,^iko) 

P(yo,do\z1) = 0 

P(yo, d0\z0) + Pjyudolzi) = 1 

P(yi,di\zi) + P(yi,di\z0) -P(yudo\zi) 

P{d0\zo) = 0 
P(di\z1) = 0 

P{yi,di\z0) + P(yo,do\zi) - 1 

P{yo,di\z0) = 0 

P(!/1,dikx) = 0 

P(y1,d1\z0) + P{y0,dl\z1) = l 

P{yo,d0\z0) + p(y0, do\zi) - P(yQ, d1|^i) 

P(yo,^oko) = 0 
P{yi,do\z1) = 0 

P{yi,d0\z0) + P(yo,d0\z1) = 1 

P(yi,^iki) + P(yi,c?iko)-P(yi,^oko) 

The entries in this table indicate that precise determination of treatment 

effects is feasible whenever (a) the percentage of subjects complying with assign- 

ment z0 is the same as those complying with z\ and (b) in at least one treatment 

arm d, y and z are perfectly correlated. 

In this section, we have shown that, in general, the natural bounds given by 

Eq. (5.12) may not always be as tight as the bounds given by Eqs. (5.29) and 

(5.30). In the next section, however, we will demonstrate that the natural bounds 

are tight in two important subspaces of P: when the data reveal treatment suf- 

ficiency (conditional independence between treatment assignment and treatment 

response given treatment received), and when it is reasonable to assume that 

subjects are non-defiant. 

5.6    Incorporating additional assumptions 

In this section we will examine the impact that various assumptions have on the 

bounds for ACE(D -> Y) and the constraints that they place on the observed 

parameters. The main assumptions to be discussed here are: 

• treatment sufficiency (conditional independence of treatment assignment 

and observed response given treatment received); 
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• treatment sufficiency together with structural stability; 

• no perfectly defiant subjects; and 

• monotonic compliance and response behaviors. 

5.6.1    Treatment sufficiency 

This subsection examines whether the presence of conditional independence 

Z   ||   Y\D in the data simplifies the formulas for the bounds on ACE(.D —> Y). 

In other words, are any of the expressions within the minimization/maximization 

of Eqs. (5.31) and (5.32) eliminated? The following theorem provides the answer 

to this question. 

Theorem 5.6.1 If the observed distribution P(y,d\z) satisfies Z   \\   Y\D and 

the condition of positive effects, then the natural bounds on ACE(Z) —► Y) 

KCE{D^Y)   >   ACE(Z^Y)-P(y1,d0\z1)-P(yo,d1\z0) 

ACE(D->Y)   <   ACE(Z^Y) + P{yo,do\z1) + P(yud1\z0) 

are tight. 

Proof: 

We will show that a set of constraints implied by Z || Y\D and the con- 

dition of positive effects are only mutually consistent with those conditions 

in Tables 5.1 and 5.2 corresponding to the natural bounds (the topmost 

entries). 

First, assume that p is strictly positive. 

By definition, Z   \\   Y\D if and only if 

P(y\d,z0)   =   P(y\d,Zl) 

for all y and d such that P(d\z0) > 0 and P(d\zi) > 0. This may be written: 

Pio.o Pio.i 

Poo.o + Pio.o Poo.i + Pio.i 
Pi 1.0 _ Pn.i 

Poi.o + Pn.o Poi.i+Pu.i 
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or, equivalently, 

Poo.i = ■Spoo.o 

PlO.l — •S'Pio.o 

P01.0 = Tpoi.i 

Pu.o = Tpu.i 

S and T represent the ratios 

S   = 

T   = 

Poo. 

Poo. 
Poi. 

1         PlO.l 

0        PlO.O 

0      Pu.o 

(5.39) 

Poi.i      Pn.i 

From the condition of positive effects, 

Pn.i + poi.i - Pu.o - Poi.o   >   0 

which, from Eq. (5.39), may be rewritten 

(l-THpn.x+poi.i)    >   0 (5.40) 

This implies that T < 1. 

Likewise, we may use the equalities in Eq. (5.39) to rewrite the probabilistic 

constraints given by Eqs. (5.19) and (5.20): 

Poo.o + Tpoi.i + Pio.o + Tpu.i   =   1 

Spoo.o + Poi.i + S'Pio.o + Pn.i   =   1 

Taking the difference of these two equations gives 

(1 - S)(poo.o + Pio.o)   =   (1 - T)(poi.i + pn.i) 

T < 1 then implies that S < 1. 

Applying these bounds on S and T to Eq. (5.39) results in the constraints 

Poo.o > Poo.i 

Pio.o > PlO.l 

Poi.i > Poi.o 

Pn.i > Pu.o 

104 



which, when conjoined with the conditions in Tables 5.1 and 5.2, reveal 

that the only applicable bounds on ACE(D —> Y) under the assumption of 

positive effects and conditional independence are the natural bounds: 

LD^Y(P)   = P11.1 + Poo.o - 1 

= ACE(Z - Y) - P{yudQ\zx) - P{yQ^\zQ) 

UD^Y{p)   = 1 - Poi.i - Pio.o 

= ACE(Z - Y) + P(y0,do\zi) + ^(yi^i^o) 

When p is not strictly positive, we can proceed through a similar exercise 

on a case-by-case basis and obtain identical results. We omit this part of 

the proof. 

D 

Figure 5.4 shows how the conditional independence tightens the lower bounds 

shown in Figure 5.3 when the only information known about the observed distri- 

bution is ACE(Z -► D) and ACE(Z -* Y). 

5.6.2    Treatment sufficiency with structural stability 

Where treatment sufficiency holds under a variety of experimental conditions, it 

is reasonable to assume that it is not caused by incidental equality of parameters, 

but rather by structural constraints. This notion of structural stability is indeed 

the pivotal assumption behind the causal inference methods of [PV91, SGS91], 

namely, that every conditional independence shown in the data must be logi- 

cally implied by the decomposition of the joint probability distribution given by 

Eq. (5.2) as dictated by the graph structure. If this assumption holds, then the 

data are DAG-isomorphic to the graph structure, and all independence relations 

may then be tested by using the d-separation criterion ([Pea88]). 

Theorem 5.6.2 If an observed distribution P(y,d\z) is structurally stable and 

satisfies Y   \\   Z\D and Y   [f Z, then 

ACE(£ -» Y) = P(yi|di) - P(yi\do) (5.41) 

Proof: 
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ACE(Z->Y) 

ACE(Z->D) = 0.0 

ACE(Z->D) = 0.2 

ACE(Z->D) = 0.4 

ACE(Z->D) = 0.6 

ACE(Z->D) = 0.8 

ACE(Z->D)=1.0 

Figure 5.4: Bounds on ACE(D —»• Y) ■plotted against ACE(Z —> Y) and 
ACE(Z —> D), given that Z and Y are independent given D. 
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The antecedent of the theorem implies that Z and Y must be d-separated 

given D in the graph structure for which the data is DAG-isomorphic. 

Applying the d-separation criterion to the graphical structure of Figure 5.1, 

we find that, given D, Z and Y are dependent via the path, Z — D — U — Y. 

The only way to remove this dependency is to eliminate one of the following 

edges: Z —► D, U —► D, or U —> Y. The assumption that Z and D are 

marginally dependent prevents the elimination of Z —> D; therefore, the 

antecedent of the theorem can only be satisfied if at least one of the edges 

U —> D or U —> Y is eliminated. 

First, assume that U —*• Y is eliminated from the graph structure. In this 

case, P{y\d,u) = P(y\d), which, when substituted into Eq. (5.5), results in 

ACE(D->Y)   =   P'iyM - P(yi\do) 

Next, assume that U —> D is eliminated from the graph structure. In this 

case, we note that P(u) = P(u\d), allowing the following transformations 

of Eq. (5.5): 

ACE(D-^Y)   =   Y,[P(.»)P(yi\di,u)-P(u)P(.yi\do,u)] 
u 

u 

=  T,[P(yiMdi) - P(ViMdo)] 

=   P{yi\dx) - P{yx\do) 

D 

Notice that the combination of structural stability and treatment sufficiency 

subsumes the assumption of Eq. (5.1); Z || Y\{D,U} is no longer an assump- 

tion but is implied by Z || Y\D, because, for any set of variables S, Z \\ Y\S 

cannot hold if there is a direct arc from Z to Y. Therefore, when structural 

stability holds, finding a variable Z' satisfying Z' || Y\D and Z' [f Y permits 

us to dispose of the randomized assignment altogether and infer causal effects 

(using Eq. (5.41)) in purely observational studies. Discovering a Z' which sat- 

isfies these relationships may be viewed as uncovering a randomized experiment 

that is conducted by Nature itself, and this is the basis of the "virtual control" 

condition discussed in [PV91]. 
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5.6.3    Non-defiance 

A subject is characterized as perfectly defiant if under either treatment assignment 

the subject fails to comply with the assignment (d = d\ if and only if z — z0). In 

terms of the potential-response model of Figure 5.2, this behavior is specified by 

rj = 2 in Eq. (5.14). One could imagine individuals who despise having decisions 

made for them. It is possible that the act of assigning them to a treatment 

will lead them to evade that treatment, where alternatively, they would have 

voluntarily selected that treatment. Consider a study that involves observation 

of draft status (Z) and military service (D) ([AIR93]). It is conceivable that there 

could be subjects who despise authority and so, if drafted, would evade service 

and, if not drafted, would volunteer for service. 

Alternatively, there are situations in which perfectly defiant behavior would 

be improbable: 

• when subjects do not know exactly what the two treatment options (z0 and 

Z\) are; hence, it is beyond their means to defy both treatment assignments. 

• when subjects know what the two treatment options are, but do not know 

which treatment they have been assigned (the procedures for receiving the 

assigned treatments are identical, as in the use of placebo). 

• when subjects know what both treatments are and know which treatment 

they have been assigned but do not have access to both treatments; there- 

fore, it is beyond their means to obtain the opposite treatment under either 

assignment. 

Drug studies often are very likely to fit one of these situations, especially since 

a placebo is usually used as the alternative treatment to the medication under 

study, so subjects cannot easily determine which treatment they have been as- 

signed. 

Based on the applicability suggested above, we will define the assumption of 

non-defiance as stating that there are no perfectly defiant subjects in a study. 

This assumption is expressed by the constraint P(r = r2) = 0, or q2j = 0 

for j = 0,..., 3. Non-defiance together with the condition of positive effects 

is equivalent to the assumption of "monotonicity" analyzed by [AIR93], which 

translates to the restriction: either P(r = r2) — 0 or P(r = r*i) = 0. Because the 

assumption of non-defiance imposes restrictions on the unobserved parameters in 
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Q space, it carries the potential of improving the bounds on ACE(Z) —> Y) beyond 

those of Eqs. (5.27) and (5.28). The following theorem refutes this possibility. 

Theorem 5.6.3 // all subjects in a population are non-defiant, then the natural 

bounds on ACE(D -> Y), 

ACE(D^Y)   >   ACE{Z^Y)-P(y1,d0\z1)-P(yQ,d1\z0) 

ACE{D-+Y)   <   ACE(Z->Y) + P(y0,d0\z1) + P(y1,d1\zQ) 

are tight. 

This theorem may be proven by reapplying the linear optimization procedure 

detailed in Appendix B to the optimization problem given by Eq. (5.26) with the 

additional constraints q2j = 0 for j = 0,..., 3. This procedure results in a single 

expression each for the lower and upper bounds, identical to the natural bounds 

given by Eq. (5.12). 

It is important to understand that the non-defiance assumption (as well as 

that of treatment sufficiency) does not widen the bounds of Eqs. (5.27) and (5.28) 

to the natural bounds, but instead restricts the observation space P to a region 

where the natural bounds are the only applicable bounds. Consequently, the 

assumption of non-defiance is partly observable; if P(y,d\z) does not satisfy the 

following constraints implied by non-defiance 

Poo.o > Poo.i 

Poi.i > Poi.o 

PlO.0 > Pio.i 

Pii.i > Pii.o 

then the assumption of non-defiance does not hold. To summarize, the assump- 

tion of non-defiance provides no benefits over the unconditional bounds given 

by Eqs. (5.29) and (5.30); however, it narrows the space of observation so as to 

render the natural bounds of Eq. (5.12) realizable. 

5.6.4    Monotonie compliance and response behaviors 

What if we assume that both compliance and treatment response behaviors spec- 

ify monotonic functions from treatment assignment to treatment consumed and 
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treatment consumed to treatment response, respectively? This just corresponds 

to the incorporation of two additional constraints: 

P(rd = 2)   =   0 

P(ry = 2)   =   0 (5.42) 

The set of points in P space consistent with these assumptions is given by the 

following set of constraints: 

Pio.i < Pio.o 

Poi.o < Poi.i 

Pio.o + Pn.o < Pio.i + Pn.i 

Poi.o+Pn.o < Poi.i+Pn.i 

These last two inequalities just correspond to the positive effects convention 

(ACE(Z -> Y) > 0 and ACE(Z -► D) > 0). 

In terms of the Q space parameters, the average treatment effect under the 

monotonicity assumption reduces to 

ACE(D-+Y)    =   qoi + qu + qsi (5.43) 

If we incorporate the constraints given by Eq. (5.42) and optimize the objec- 

tive function (Eq. (5.43) we generate the following bounds on the average causal 

effect under the monotonicity assumption: 

Pio.i + Pii.i - Pio.0 - Pii.0 < ACE(D -»■ Y) < 1 - poi.i - Pio.o 

or 

ACE(Z -> Y) < kCE{D ^Y)< ACE(Z -* Y) + Pn.o + Poo.i 

This shows that the average treatment effect evaluated under the monotonicity 

assumption is always at least as great as the causal effect evaluated from the 

intent-to-treat analysis. 

5.7    Additional Results 

5.7.1    Local average-treatment effect 

While this chapter focuses primarily on predicting the average treatment effect 

over an entire population, there are cases where one would be interested in treat- 

ment effects averaged over a subpopulation of special characteristics.   [AIR93] 
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have found that, under the assumption of non-defiance, the treatment effect av- 

eraged over the subpopulation of perfectly complying individuals, ACEC(D —► Y), 

can be identified and is given by the Instrumental Variable formula 

ACEC(D -*Y)- ACE{Z ^ D) - p{di{zi) _ p{dilzo) (5-44) 

In other words, Eq. (5.44) gives the correct treatment effect for those individuals 

whose participation in the treatment D comes as a consequence of the encour- 

agement Z. 

This can be verified by noting that a compliant subpopulation is characterized 

by the condition rd — 1; thus 

ACEC(£> - -y) =   P(yx\dx,Td=l) - P{yi\d0,rd=l) 

=   P(ry=l\rd=l) - P(ry=2\rd=l) 

P(rd=l,ry=l) - P{rd=l,ry=2) 

P(rd=l) 
<7u - 9i2 

?10 + ?11 + <?12 + <?13 

This last expression coincides with the Instrumental Variable formula above under 

the condition of non-defiance, namely, P(rd=2) = 0, or q^j = 0 for j = 0,..., 3. 

It is worth noting that the subpopulation of perfectly complying individuals 

is not, in general, identifiable, because the condition rd = 1 cannot be determined 

from the triplet (y,d,z). Nevertheless, the behavior of this subpopulation may 

be of interest to analysts, as it reveals the treatment effect under ideal conditions, 

free of noncompliance side effects. Bounds on the behavior of other subpopula- 

tions of interest can be obtained by methods similar to those in Section 5.2.2. 

5.7.2    Treatment effect given treatment consumed 

Some researchers might claim that the average treatment effect (ACE(Z) —» Y)) 

is not the deciding factor when developing a policy for patient care, because they 

believe that patients' compliance behaviors in clinical practice will be similar to 

their compliance during drug trials. Although the author disagrees with this in- 

terpretation — patients would be more apt to follow the advice of their physician 

in taking an approved drug demonstrated to be effective — this section will ex- 

amine the conditional treatment effect that would be the basis for their policy 

decision. 
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If patients act in clinical practice as they do in drug studies, then the re- 

searcher is actually interested in the average causal effect of drug treatment for 

those subjects who actually consumed the drug (di). In other words, derive 

bounds for P{y{\d\,di) - P(yl\d*0,di) given the observed distribution P(z,d,y). 

These counterfactual probabilities may be written in terms of the distribution 

of respons functions: 

p/„. I>    J  x      _      ^(*l)[gl2 + g!3 + 932 + g33] + P(z0)[q22 + 923 + 932 + 93s] 

P(d1) 

P(y*\d* d )   =   P(Zl^qn + 9l3 + g31 + g33^ + p(2°)[g2i + 923 + g3i + g33] 

Taking the difference between these two expressions gives us the average causal 

effect of treatment on response for those individuals who took the treatment: 

ACE(Z> -» Y\dx) = 

■P(*i)[gii + 931 - 912 - 932] + P{zo)[q2l + q31 - q22 - 932] 

P(di) 
(5.45) 

Given a specific distribution for the treatment assignment P(z), we can apply 

linear symbolic optimization to the numerator of this equation. It turns out 

that the Q space expressions multiplied by P(zx) and P(z0) may be optimized 

independently. This can be shown by deriving the closed-form bounds on fx(q) = 

9n + ?3i — 912 — 932 and f2(q) = q2x + 931 — 922 — 932 and demonstrating that the 

sum of their lower (upper) bounds is equal to the closed-form lower (upper) 

bound on fx(q) + f2(q). Since the coefficients on fx and f2 (P(zx) and P(z0), 

respectively) are non-negative, we can optimize Eq. (5.45) by optimizing f\ and 

f2 independently. 

Following this strategy, closed-form bounds on the conditional average causal 

effect may be derived, and are expressed in terms of the distribution of observables 

P(y,d,z): 

P(zo)\pio.o + Pi 1.0 - P10.1 - P11.1] - P01.1 

P(zi)[pw.i + Pu.i - Pw.o - P11.0] - P01.0 

P(zo)\pn.o ~ P10.1 - P11.1] - -P(^i)pio.o ~ P01.0 

P(zi)\pu.i - Pw.o - Pn.o] ~ P{z0)pio.i ~ P01.1 

Y\dt) < 

P(z0)pn.o + P(zi)\pw.i + P11.1 - P10.0] 

P(zo)\pio.o + P11.0 - P10.1] + P(zi)pii.i 

P(zi)\poo.o + P01.0 - P01.1] + P{z0)poo.i + Pll.l 

-P(^i)poo.o + P11.0 + P(zo)\poo.i + P01.1 - P01.0] 

max < 

< ACE(D 

1 
mm < 
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or 

P(di) 
max < 

P(yuz0) - P{yi\Zl)P{z0) - P(yo,^iki) 

P(yi,zi) - P(y1|z0)P(^1) - P{y0,di\z0) 

P(yi,z0) - P(yi|2i).P(zo) - P{yi,do\zo) - P(y0,di\z0) 

P(yi,zi) - P(yi\zo)P{zi) - P(yi,do\zi) - P(j/o,<iiki) 

< ACE(I> -► F^i) < 

P(y1; *0) - P(yi|zi)P(z0) + P^i.rfikx) 

P(yi,zi) - P{yx\zQ)P{zx) + P{yo,do\Zl) + P^d^) 

P(yi,z0) ~ P{yi\zi)P(z0) + P(y0,d0\z0) + P{yudx\z0) 

P(di) 
mm < 

5.7.3    Divergence of intent-to-treat analysis from treatment effect 
bounds 

Strides have been made to educate the scientific community to the potential errors 

in evaluating treatment effects from the intent-to-treat analysis, ACE(Z —► Y) = 

P(yx\z\) — P(yi\z0); however, there are still some who incorrectly use this expres- 

sion to evaluate a drug's efficacy in a quasi-experimental study. This begs the 

question, just how inaccurate is the intent-to-treat analysis? Even though this 

analysis does not produce the correct bounds for the treatment effect, does the 

computed value at least provide a feasible value for the treatment effect? Unfor- 

tunately, not always. In fact, this divergence from the bounds can occur even in 

cases where ACE(Z —* D) approaches 100%. For example, consider the point in 

P space: 

Poo.o = 0.84 

poi.o = 0.16 

pio.0 = 0.00 

Pii.o = 0.00 

Poo.i = 0.08 

Pom = 0.00 

Pio.i = 0.12 

Pn.i = 0.80 

The compliance is given by the average causal effect of treatment assignment on 

treatment received 

ACE(Z^D)    =   0.64 

and the bounds on the average causal effect are computed to be 

0.68 < ACE(Z) -* Y) < 0.72 
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Hoever, the intent-to-treat analysis gives 

ACE(Z->Y)   =   0.92 

Here we see that even though compliance is relatively high, the intent-to-treat 

analysis can lead to results outside the bounds on the average causal effect. 

In general, ACE(Z -> Y) will fall below ACE(£> -> F)'s lower bound in the 

following three regions of P space: 

P01.0 + P10.0 > Poi.i 

Poi.i + PlO.l > PlO.0 

Poo.i + Pll.O > PlO.l + Pn.i + Poo.o + Poi.o 

Poi.i > Poi.o + Pw.o 

Pi 1.0 > PlO.l +P11.1 + \poi.o 

PlO.O > P01.1 + PlO.l 

Poo.i > P00.0 + P01.0 + |pio.i 

In addition, ACE(Z —> Y) rises above ACE(Z) —> y)'s upper bound in the 

following three regions of P space: 

Poo.o + Pn.o > Pll.l 

Poo.i + Pi 1.1 > Poo.o 

P01.0 + PlO.l > P10.0 + Pi 1.0 + Poo.i + P01.1 

Pll.l > Poo.o + Pi 1.0 

P01.0 > Poo.i + P01.1 + |pn.o 

Poo.o > Poo.i + Pll.l 

PlO.l > P10.0 + Pn.o + 5P00.1 
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In all other regions of P space consistent with the canonical partial compliance 

model, ACE(Z -> Y) will fall within ACE(£> —► F)'s upper and lower bounds. 

Therefore, the intent-to-treat analysis not only fails to reflect the uncertainty 

imposed by subject noncompliance, but may also lead to an estimate of the 

causal effect that lies outside its actual bounds. In other words, the intent-to- 

treat analysis can not even state that its estimate is potentially correct given the 

observed distribution. 

5.8    Conclusions 

This chapter provided formulas that allow analysts to make categorical state- 

ments about causal effects in the context of studies where subjects are only par- 

tially compliant. These formulas, expressed in terms of the distribution over 

observed variables (treatment assignment, treatment received, and observed re- 

sponse), represent strict upper and lower bounds for the average causal effect 

of the treatment on the population. These bounds are applicable to all studies 

where the assignment itself only affects the observed response via the treatment 

actually received, regardless of any interaction that might take place between the 

treatment received and the observed response. Aside from this assumption, the 

results do not rest on any particular model of compliance behavior. 

We believe that the results presented here could be particularly helpful in 

quasi-experimental studies, that is, studies in which randomized mandated treat- 

ments are either unfeasible or undesirable and randomized encouragements are 

instituted instead ([H0I88]). For example, in evaluating the efficacy of a social 

program, the randomized instrument can be advertisement, incentives, or eligibil- 

ity, letting subjects make the final choice of participation. The bounds established 

through Eqs. (5.29) and (5.30) reveal that such studies, despite the indirectness of 

the randomized instrument, can yield valuable information on the average causal 

effect of the treatment on the population. 

One topic that should receive attention in future work is the maximum- 

likelihood estimation technique for finite samples. 
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CHAPTER 6 

Continuous treatments 

6.1    Introduction 

In the last chapter, strict upper and lower bounds on the causal effect of treatment 

on response from partial compliance studies were derived using linear optimiza- 

tion techniques. These bounds were derived for a model where the set of observed 

variables (treatment assignment, treatment received, and observed response) are 

all binary. Aside from the qualitative structure of the model, those results are 

assumption free. [BP93, Sections 1 and 2] and [Pea93a] provide motivation for 

studying the causal effects identification task and explain the basic qualitative 

assumptions which are applied in this chapter to derive results applicable when 

the received treatment variable is not binary. 

When the observed received treatment is not binary, it is difficult, if not 

impossible, to translate the causal effect bounds evaluated from a binary model 

into a policy statement. For example, consider a quasi-experiment where subjects 

are encouraged to take either two units of treatment or zero units of treatment. At 

the end of data collection we find that besides zero and two units, many subjects 

consumed just one unit of treatment. In order to apply the bounds of Section 5.3 

the received treatment must be transformed to a binary variable. In one attempt, 

the one and two unit treatments are merged into the positive received treatment 

category and the resulting distribution is substituted into Eqs. (5.29) and (5.30) 

to compute the average treatment effect. After this analysis we might find that 

the lower bound on the treatment causal effect is positive; therefore, a strict 

treatment policy is developed which states that patients who meet the studies 

selection criterion will be forced to consume two units of treatment. 

Unfortunately, this transformation of the three value domain to a two value 

domain loses information about the distribution of received treatment, in par- 

ticular, between one and two units. It is possible that relatively few subjects 

consumed two units of treatment, and for those subjects the treatment had a 

negative causal effect on response. At the same time, the treatment causal effect 
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was strong for those subjects who consumed just one unit of treatment. There- 

fore, if a treatment policy is implemented that forces two unit consumption, then 

subjects will suffer negative consequences on average. Because of this short- 

coming of the binary treatment analysis, this chapter will further partition the 

received treatment domain such that meaningful and safe results may be obtained 

for continuous received treatment data. 

[AI92] and [EF91] have looked at the analysis of causal effects for studies 

where the domain of the received treatment variable is not binary. In [EF91] 

the partial compliance data is fit by a naive treatment-response curve for both 

the placebo and treatment. The actual treatment-response curve is then related 

to these two measurable curves along with other unmeasurable factors. Specific 

assumptions allow estimation of the actual treatment-response curve, but in gen- 

eral, this is not possible. Their framework differs from the model presented here, 

in that the observed response variable in [EF91] is continuous allowing specifica- 

tion of a treatment-response curve, while our use of a binary observed response 

variable only allows us to specify the probability that the response will fall within 

a particular range. [AI92] partition the continuous treatment variable and show 

that under a condition of monotonicity the treatment causal effect can be deter- 

mined for the class of subjects whose treatment is influenced by their treatment 

assignment. Their partitioning of the treatment variable and direct use of the 

continuous treatment response allows evaluation of a treatment-response curve. 

Section 6.2 describes the received treatment partitioning strategy which en- 

ables derivation of bounds on the causal effect of one treatment level versus a 

base treatment level when the domain of received treatment is continuous. An 

example demonstrating the application of those closed-form bounds will then be 

presented in Section 6.3. In Section 6.4 we will demonstrate that these bounds 

may be further tightened when more than two homogeneous treatment levels 

are extracted from the continuous domain. Section 6.5 presents some concluding 

remarks. 

6.2    Derivation of continuous treatment bounds 

Suppose that the domain of the treatment variable D is no longer binary, but 

is now continuous. We are interested in the average causal effect of one level of 

treatment do (the control) versus the effect of another level di (nominal treat- 

ment).   All other treatments in D's domain not in {d0,di} will be labelled by 
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Because d0 and d\ coincide with exact values of treatment, the independence 
relations discussed in Chapter 5 still hold: 

Z j\_Y | {D = d0,U} 

Z±Y\{D = d1,U} 

However, Z and Y are no longer independent given U and D = dm: 

Z  W_Y\{D = dm,U} 

We can derive bounds on the average causal effect ACE(D —> Y) by first 

specifying the model not in terms of a completely functional model, but in terms 

of a partial functional model. Because D is continuous, we cannot completely 

specify the response function ry mapping D to Y. Instead we specify the partial 

response function mapping only part of £>'s domain (d0 and e?i) to Y: 

V   =   fy(d,ry) = hy<r(d) 

where 

KM = < undef 

if d e {dQ,di} 
\id = dm 

2/0 if d = do 

hy,i{d)    =    < 2/1 if d = di 
undef if d = dm 

2/i if d = d0 

KM    =    < 2/o if d = d\ 

undef if d = dm 

KAd) = < ' 2/i 

undef 

if d G {d0,di} 

ii d = dm 

D is still functionally defined by 

d   =   fd{z,rd) = hd,r<t(z) 

where 

hd,o(z)   =   d0 

h    (z)   _    I d°    Ü z = zo 
\ dm   if z = z\ 

(6.1) 
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hd,5(z 

hdß{z 

hdj{z 

hd,&{z 

dQ if z = zo 
d\ if z = z\ 

">m if z — Zo 

do if z = z\ 

"•m if z — ZQ 

<*i if z = z\ 

dx ii z = zo 

do \i z — z\ 

di if z = z0 

if z = z\ 

<*i 

Let gjfc = P(rd—j-,ry—k). Then we may write the linear relationship between 

the P space and the Q space as follows: 

P(yo, do\zo)   —   9oo + 9oi + 9io + 9n + 920 + 921 

-P(y0, ^1 ko) = 960 + 962 + 970 + 972 + 980 + 982 

P{yi,d0\z0) = 902 + 903 + 912 + 913 + 922 + 923 

P{y\, di \Z0)     =     961 + 963 + 971 + 973 + 981 + 983 

P{dm\zo)     =     930 + 931 + 932 + 933 + 940 + 941 + 942 + 943 + 

950 + 951 + 952 + 953 

P(y0, d0\zi)   =   qoo + 9oi + 930 + ?3i + 9eo + 9ei 

P(yO, d\ |zi)  =  920 + 922 + 950 + 952 + 980 + 982 

P{y\,d0\zi) = qo2 + 9o3 + 932 + 933 + 962 + 963 

P{yi,di\zi)   =   q2\ + 923 + 951 + 953 + 9si + 983 

P{dm\zi)     -     910 + 911 + 912 + 913 + 940 + 941 + 942 + 943 + 

970 + 971 + 972 + 973 

The reason why P(y0,dm\z) + P(yi,dm\z) is treated as a single value P(dm\z), 

is that the individual components cannot be expressed in terms of the Q space 

parameters. 
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In terms of the Q parameter space we can write the average causal effect as 

ACE(D Y)   =   Efci 
j=o 

Qj2 

Given this objective function and linear constraints on the Q space, we may 

derive general upper and lower bounds on ACE(D —>■ Y): 

Poo.o + Pn.i - 1 

Poo.i + Pn.i - 1 

Pn.o + Poo.i - 1 

Poo.o + Pil.o - 1 

2poo.o + Pi l.o + Pio.i + Pii.i - 2 

Poo.o + 2pn.o + poo.i + Poi.i - 2 

Pio.o + Pn.o + 2poo.i + Pn.i - 2 

Poo.o + Poi.o + Poo.i + 2pn.! - 2 

L D^Y (P) max < (6.2) 

UD^Y{P)   =   min< (6.3) 

1 - Pio.o - Poi.i 

1 - Poi.o - Pio.i 

1 - Poi.o - Pio.o 

1 - Poi.i - Pio.i 

2 - 2poi.o - Pio.o - Pio.i - Pn.i 

2 - poi.o - 2pio.o - Poo.i - Poi.i 

2 - Pio.o - Pi l.o - 2poi.i - Pio.i 

. 2 - poo.o - Poi.o - Poi.i - 2pio.i 

It is very important to understand that no assumptions whatsoever have been 

made about the range of dm, or the functional mapping from any values in dm 

to Y. Therefore, these bounds hold true (they might be loose if we obtain more 

specific information about dm) regardless of the composition of dm. 

Often, in the real world, practically no subjects will consume exactly do or 

d\ units of treatment. Therefore, we must make an assumption that there exists 

homogeneous treatment windows around d0 and d\. In other words, if any subject 

forced to consume d\ (d0) units of treatment has a response of Y = y, then if 

the subject would have consumed an amount of treatment in [d\ — 6,d\ + 6] 

([dQ — e, d0 — e]), the subject would have had the same response Y = y. This 

is a reasonable assumption when the window sizes (26 and 2e) are much smaller 

than the difference between d\ and d0. If do is defined as zero units of treatment, 

then it is desirable that the window be of zero width (e = 0). These will be the 

assumptions made in our reanalysis of the Lipid study data. 
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6.3     Example 

We will now show by example how the bounds of Eqs. (6.2) and (6.3) can be used 

to provide meaningful information about causal effects. Reconsider the Lipid Re- 

search Clinics Coronary Primary Prevention Trial data described in Section 5.4. 

In order to apply our analysis to this study, the continuous data obtained in 

the [Pro84] study must be transformed to the discrete variables representing treat- 

ment assignment (Z), received treatment (D), and observed response (Y). The 

following transformation accomplishes this by thresholding dosage consumption 

and change in cholesterol level: 

do    if z — ZQ or b = 0 

d   =    <   di    if z = z\ and 7 - p < b < 7 -f- p (6.4) 

dm   otherwise 

y  =  lyo *C/~CF<c (6-5) \ yi   if Cl - cF > 8 

7 and p are the center and radius of the window of positive treatment, while 8 

specifies the minimum decrease in cholesterol level which we consider a positive 

treatment. This discretization assumes that subjects taking between 7 — p and 

7 + p units of cholestyramine form a homogeneous treatment-response group. In 

addition, Eq. (6.4) reflects the finding that subjects assigned placebo (z0) did not 

take cholestyramine, namely, 

P(dx\zQ)   =   0 

P{dm\z0)   =   0 

Clearly, by varying this threshold over the range of Y one obtains upper and lower 

bounds on the entire distribution of the treatment effect, P(Y* < y\di) — P(Y* < 

y\do)- 

For the current analysis we set p = 7 and 7 = 94, while the threshold for 

cholesterol level reduction in Eq. (6.5) was selected at 8 = 38 units. If the 

data samples are interpreted according to (6.4) and (6.5), then the conditional 

distribution over (Z,D,Y) results in the distribution given in Table 6.11 

By computing the quantities required for (6.2), we obtain 

irwn      v,   . / 0.262,-0.685,-0.976,-0.029, \ 
ACE(D^Y)   >   max I  Q.^ _0.902, _L632,-0.423  ) = °'262 

x
We make the large-sample assumption and take the sample frequencies as representing 

P(y,d\z). 
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P(y,d\z) zo Z\ 

yo       y\ yo        yx 

d0 0.971    0.029 0.024    0.000 

"771 0.000    0.000 0.436    0.146 

dx 0.000    0.000 0.103    0.291 

Table 6.1: Conditional probability distribution P(y,d\z) for the Lipid Research 

Clinic Program (1984) data, discretized by Eqs. (6.4) and (6.5). 

Those needed for (6.3) give us 

Accordingly, we conclude that the treatment causal effect lies in the range 

0.262 < ACE(£> -*Y)< 0.868 

which is quite informative; the experimenter can categorically state that when 

applied uniformly to the population, a dosage of 84 to 101 units of cholestyramine 

is guaranteed to improve by at least 26.2% the probability of reducing a patient's 

level of cholesterol by 38 points or more. This guarantee is established despite the 

fact that 60.6% of the subjects in the treatment group did not comply with their 

assigned dosage level. For comparison, note that the intent-to-treat analysis 

in this study gives P{y\\z\) — P(yi\zo) = 0.408, meaning that enforcing full 

compliance might result in as much as 26% improvement and no more than 

14.6% reduction in the proportion of patients benefiting from the treatment. 

In the above analysis, we selected p and 7 such that the subjects who con- 

sumed the greatest quantity of cholestyramine would be classified as having re- 

ceived positive treatment. This is not necessary, though; beyond a certain dosage, 

a treatment may actually impede the mechanism whereby positive response is at- 

tained. It is possible that a higher feasible range of causal effects may be attain- 

able by examining a different range of consumed treatment than the maximum 

range. Hence, we can re-analyze the cholesterol treatment by evaluating the fea- 

sible range of ACE(D —► Y) for different values of 7 while keeping p and S fixed. 

Figure 6.1 presents the results of this analysis, and shows that the highest lower 

bound on the treatment causal effect is obtained when we use the maximum re- 

ceived treatment. In a sense, this graph can be viewed as a treatment-response 

curve, where the differences in the probability of reducing the cholesterol level 
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by at least 8 units under treatment and placebo are plotted against the received 

treatment (7), rather than a plot of the difference in cholesterol plotted against 
received treatment. 

It is interesting to see how the bounds on ACE(Z> -> Y) in this study are de- 

pendent on the threshold (6) used to transform the continuous observed response 

to the binary observed response. The results in Figure 6.1 indicate that the 

maximum received treatment in the cholestyramine study gives the highest lower 

bound on the treatment causal effect (which is preferred in this case); therefore, 

we plot the treatment causal effect of the maximum cholestyramine dosage as a 

function of 6. These results are rendered in Figure 6.2. 

6.4    Further decomposition of treatment 

It is possible that the bounds calculated from Eqs. (6.2) and (6.3) may become 

tighter as the remaining treatment class dm is further decomposed and incor- 

porated into the analysis. For example, suppose that the treatment variable's 

domain may be partitioned into three variables, such that the independence as- 

sumptions are sufficiently accurate: 

Z J\_Y I {D = d0,U} 

Z  \_Y I {D = duU} 

Z J\_Y\{D = dm,U} 

In this case, the domain of the treatment-response variable, ry, may be partitioned 

into eight values, where Y is functionally determined by D and ry 

V   =   fy(d,ry) = hytr(d) (6.6) 

where 

hVio(d) 

KM 

KM 

KM 

yo 

y0 if d € {d0,dm} 

t/i if d = d\ 

y0 if d - d0 

2/1 \fd = dm 

y0 if d — di 

y0 if d = d0 

yx \ide{dm,dx} 
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20 40 60 80 

Positive Treatment Window Center 

100 

Figure 6.1: Ranges of ACE(JD —> Y) evaluated for the cholestyramine treatment 

data for different positive treatment window centers (j). For all values 0/7, the 

radius of the positive treatment window (p) is 7 and the positive observed response 

threshold (8) is 38. 
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ACE(D->Y) 
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0.80 

0.60 

0.40 

0.20 

0.00 

-0.20 
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100 

Figure 6.2: Ranges o/ACE(D —► Y) evaluated for the cholestyramine treatment 

data for different positive observed response thresholds (8). For all values of 8, 

the radius of the positive treatment window (p) is 7 and the positive treatment 

window center (j) is 94- 
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yi if d = d0 

y0 if d - dm 

j/i if d = di 

ya if d 6 {rfo,^m} 

y0 if d = di 
hyfi(d) 

The causal effect of the treatment can now be obtained directly from Eqs. (6.1) 

and (6.6), giving 

P(ya*K)    =   P(ry=l) + P(ry=3) + P(ry=5) + P(ry=7) 

P{y\\dl)   =   P(ry=4) + P(ry=5) + P(ry=6) + P(ry=7) 

and 

ACE(D^Y)   =   P(ry=l) + P(ry=3) - P(ry=4) - P(ry=6)        (6.7) 

The distribution over potential responses, P(r4,ry), is specified by 72 param- 

eters. Let these parameters be notated as follows: 

Qij   =   P(rd=i,ry=j) 

The probabilistic constraint 

8      7 

i=0 j=0 

implies that there are only 71 independent parameters. 

In terms of the Q parameter space we can rewrite Eq. (6.7) as 

ACE(z>-y) = I>;i + 9i3-fc4-<&6] 
3=0 

The conditional distribution P(y,d\z) over the observable variables is fully 

specified by 12 parameters, which will be notated as follows: 

Poo.o   =   P(yo,d0\zQ) 
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POm.O     =     P{yO,dm\zo) 

POLO   =   P{yo,d\\z0) 

Pio.o   =   P{y\,d0\z0) 

Plm.O     =     P{yi,dm\z0) 

Pu.o = P{yi,di\z0) 

Poo.i = P(t/o,c?oki) 

Pom.i = -P(y0,cLki) 

Poi.i = P{yo,di\zi) 

P10.1   =   P(yi,do\zi) 

Pim.i   =   P(yudm\zi) 

Pll.l  =  ^(j/l,^lkl) 

The probabilistic constraints 

2    5Z  Pu.0 = i 
t'6{0,l}ie{0,m,l} 

I] £       P.J.1      =     1 
ie{0,l}j€{0,m,l} 

implies that there are only 10 independent parameters. 

Given some point q in Q space, there is a direct linear transformation to the 

corresponding point p in the observation space P: 

POO.O     =     qoo + 9oi + q02 + <?03 + 9l0 + <?11 + 9l2 + 9l3 + 920 + 921 + #22 + 923 

POm.O  =  930 + 931 + #34 + #35 + ?40 + 941 + 944 + 945 + $50 + 951 + 954 + 955 

POI.O  =  960 + ?62 + ?64 + 966 + 970 + 972 + 974 + 976 + 980 + 982 + 984 + 986 

PlO.O     =  904 + 905 + 906 + 907 + 914 + 915 + 916 + 917 + 924 + 925 + 926 + 927 

Plm.O  =  932 + 933 + 936 + 937 + 942 + 943 + 946 + 947 + 952 + 953 + 956 + 957 

Pi 1.0  =  961 + 963 + 965 + 967 + 971 + 973 + 975 + 977 + 981 + 983 + 985 + 987 

POO.I  =  900 + 901 + 902 + 903 + 930 + 931 + 932 + 933 + 960 + 961 + 962 + 963 

POm.l  =  910 + 911 + 914 + 915 + 940 + 941 + 944 + 945 + 970 + 971 + 974 + 975 

POI.I  =  920 + 922 + 924 + 926 + 950 + 952 + 954 + 956 + 980 + 982 + 984 + 986 
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PlO.l 

Plm.l 

Pll.l 

904 + 905 + 906 + q07 + 934 + 935 + 936 + 937 + 964 + ?65 + 966 + ?67 

9l2 + 9l3 + 916 + 9l7 + ?42 + 943 + 946 + ?47 + 972 + 973 + #76 + 977 

921 + 923 + 925 + 927 + 951 + 953 + 955 + 957 + 981 + 983 + 985 + 987 

which will be written in matrix form, p = Pq. This relationship between points 

in Q and P space imply the following constraints on points in P space: 

Poo.o + Pio.i    <    1 

POm.O + Plm.l      <      1 

Poi.o + Pll.l < 1 

PlQ.O + POO.I < 1 

Plm.O + POm.l < 1 

Pll.O+Poi.l < 1 

Similar to the P space constraints in the binary case (Appendix A.l), we can 

prove that these constraints are necessary and sufficient for a point in P space 

to be modelled by some point in Q space. 

ACE(D —> Y) may be optimized given the constraints 

p   =    Pq 
8      7 

S£?i*   =    l 
j=0 fc=0 

qjk   >   0 je{0,...,8}andfcG{0,...,7} 

using a program written for obtaining symbolic solutions to linear-programming 

problems. The following lower and upper bounds for ACE(D —► Y) were ob- 

tained: 

Poo.o+ P11.1 - 1 

Poo.i + Pil.i - 1 

Pil.o + Poo.i - 1 

Poo.o + Pil.o - 1 

2poo.o + Pi l.o + Pio.i + Pn.i - 2 

Poo.o + 2pn.o + Poo.i + Poi.i - 2 

Pio.o + Pn.o + 2poo.i + Pn.i - 2 

Poo.o + Poi.o + Poo.i + 2pn.i - 2 

—POm.O — POI.O — PlO.O — POI.I — PlO.l — Plm.l 

—POI.O — PlO.O — Plm.O — POm.l ~ POI.I ~ PlO.l 

W-+Y (P) max < 
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UD^Y (p)   —   min < 

1 - Pio.0 - Poi.i 

1 - Poi.o - P10.1 

1 - Poi.o - Pio.o 

1 - Poi.i - Pio.i 

2 - 2poi.o - Pio.o - Pio.i - Pn.i 

2 - poi.o - 2pio.o - Poo.i - Poi.i 

2 - pio.o - Pn.o - 2poi.i - Pio.i 

2 - Poo.o - Poi.o - Poi.i - 2p10.i 

POO.O + POm.O + Pi 1.0 + POO.1 + Plm.l + Pll.l 

POO.O + Plm.O + Pll.O + POO.1 + POm.l + Pll.l 

6.5    Conclusion 

In this chapter, the strict bounds on the causal effect of treatment on observed 

response have been derived for models where received treatment take on non- 

binary values and treatment assignment and observed response are binary. These 

bounds can be used to derive useful bounds for treatment causal effects on quasi- 

experimental data containing continuous values of received treatment. By useful, 

we mean that a policy statement for treatment may be specified. 

In future work, we might explore how exact knowledge of one point in the 

treatment-response curve can constrain the bounds of the rest of the treatment- 

response curve; for example, there might exist experimental data that has pre- 

cisely determined the causal effect of a specific drug dosage on the probability of 

recovering from a particular ailment. 
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CHAPTER 7 

Statistics in Law 

7.1     Introduction 

Over the last thirty years, there has been a steady increase in the number of 

court cases where statistical evidence has been introduced. These include cases 

involving product liability [BBB92], employment discrimination [MSZ84] [Fin80], 

price-fixing (anti-trust litigation) [DF85], genetic evidence, etc [Kay90]. Most 

of the statistical evidence provided is in the form of regression analysis [Fis80] 

[Fin80] [DF85], or by comparing the relative rates of some event across differ- 

ent populations, e.g., hiring rates among different races/sexes, or cases of illness 

among employees and non-employees. Most analysis of the data goes into show- 

ing the accuracy of the results given the sample size, but except for regression 

analysis, qualitative information is introduced after the statistical data has been 

presented. 

The comparison of relative rates among different populations may produce 

serious errors in judgment, as will be shown by a hypothetical example in Sec- 

tion 7.2. These rates demonstrate dependence, but do not necessarily prove that 

those rates are a result of a defendants actions, because other unobserved fac- 

tors may be responsible for the dependency. It turns out that the participants 

of the court case ask the right question (in terms of a counterfactual), e.g., "If 

the plaintiff were male, would she have been promoted a year earlier?"; however, 

although the right question is usually posed, the analysis usually fails to reflect 

the structure of the problem. 

Ideally, a court would settle upon a qualitative model describing the causal 

relationships between variables in the system. Then the statistical data would 

be applied to parameterize the causal structure. Given this model of the system, 

the counterfactual conditional may then be evaluated and incorporated into the 

judgment. 

When applying regression analysis, the variable claimed to be the basis of 

discrimination or unfair control is assumed to be exogenous to the system (i.e., 
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a root node in the causal structure). Chapter 8 showed that not all variables 

that may be controlled satisfy this assumption, e.g., in a price-fixing case, the 

controlled variable is a product's price that is ordinarily influenced by other 

market factors. 

It is very important that the model proposed by counsel is compatible with 

the statistical model provided as evidence. Such a case is discussed in [GKR94], 

where it was hypothesized that college attendance rates accounted for the dif- 

ference in pass-rates between men and women on a test for promotion, yet the 

two distributions (one relating gender and college attendance, the other relat- 

ing gender and rate of promotion) were inconsistent with a model where college 

attendance is supposed to explain away any gender bias. In a similar vein, Chap- 

ter 5 presented constraints (Eq. 5.13) on the observed distribution imposed by the 

assumed model of interaction in experimental studies with partial compliance. If 

a distribution fails these constraints, then the assumed model is improper for 

evaluating average treatment effects. 

7.2    Hypothetical Product Safety Litigation 

Evaluation of counterfactual probabilities could be enlightening in some legal 

cases in which a plaintiff claims that a defendant's actions were responsible for 

the plaintiff's misfortune. Improper rulings can easily be issued without an ad- 

equate treatment of counterfactuals. Consider the following hypothetical and 

fictitious case study, especially crafted to accentuate the disparity between dif- 

ferent methods of analysis. 

The marketer of PeptAid (antacid medication) randomly mailed out product 

samples to 10% of the households in the city of Stress, California. In a follow- 

up study, researchers determined for each individual whether they received the 

PeptAid sample, whether they consumed PeptAid, and whether they developed 

peptic ulcers in the following month. 

The causal structure which describes the influences in this scenario is iden- 

tical to the partial-compliance model given by Figure 5.1, where z\ asserts that 

PeptAid was received from the marketer; d\ asserts that PeptAid was consumed; 

and y\ asserts that peptic ulceration occurred. The data showed the following 

distribution: 

P{zx) = 0.1 
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P(y0, d0\z0) = 0.32 P(y0, do\Zl) = 0.02 

Piyoid^zo) = 0.32 P(j/0,rfiki) = 0.17 

P(yudo\z0) = 0.04 P(yi,rfoki) = 0.67 

Pfoi,(*i|zo) = 0.32 P^i.dilzx) = 0.14 

This data indicates a high-correlation between those individuals who consumed 

PeptAid and those who developed peptic ulcers in the following month 

P(y1\d1) = 0.50      P(yi\d0) = 0.26 

In addition, the intent-to-treat analysis showed that those individuals who re- 

ceived the PeptAid samples had a 45% greater chance of developing peptic ulcers 

P(y1\z1) = 0.Sl       P(yi\zo) = 0M 

The plaintiff (Mr. Smith), having heard of the study, litigated against both 

the marketing firm and the PeptAid producer. The plaintiff's attorney argued 

against the producer, claiming that the consumption of PeptAid triggered his 

client's ulcer and resulting medical expenses. Likewise, the plaintiff's attorney 

argued against the marketer, claiming that his client would not have developed 

an ulcer, if the marketer had not distributed the product samples. 

The defense attorney, representing both the manufacturer and marketer of 

PeptAid, though, rebutted this argument, stating that the high correlation be- 

tween PeptAid consumption and ulcers was attributable to a common factor, 

namely, pre-ulcer discomfort. Individuals with gastrointestinal discomfort would 

be much more likely to both use PeptAid and develop stomach ulcers. To bol- 

ster his clients' claims, the defense attorney introduced expert analysis of the 

data showing that, on the average, consumption of PeptAid actually decreases 

an individual's chances of developing ulcers by at least 15%. 

Indeed, the application of Eqs. 5.29 and 5.30 results in the following bounds 

on the average causal effect of PeptAid consumption on peptic ulceration 

-0.23 < ACE{D ^Y)< -0.15 

and proves that PeptAid is beneficial to the population as a whole. 

The plaintiff's attorney, though, stressed the distinction between the average 

treatment effects for the entire population and the sub-population consisting of 

those individuals who, like his client, received the PeptAid sample, consumed it 

and then developed ulcers.  Analysis of the population data indicated that had 
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PeptAid not been distributed, Mr. Smith would have had at most a 7% chance 

of developing ulcers regardless of any confounding factors such as pre-ulcer pain. 

Likewise, if Mr. Smith had not consumed PeptAid, he would have had at most 

a 7% chance of developing ulcers. 

The damaging statistics against the marketer are obtained by evaluating the 

bounds on the probability that the plaintiff would have developed a peptic ulcer if 

he had not received the PeptAid sample, given that he in fact received the sample 

PeptAid, consumed the PeptAid, and developed peptic ulcers. This probability 

may be written in terms of the functional model parameters: 

P{rz=l)[qi3 + q3i + 933] 
P{yi\zotyudi,*i)  = 

P(yi,di,zi) 

But, since Z is a root node in the probabilistic specification, P{rz=l) = P(zi); 

therefore, 

p(yi\zo>yudi,zi)   = 
g!3 + <?31 + <?33 

P(yi,di\zi) 
gl3 + ?31 + ^33 

Pll.l 

This expression is linear with respect to the Q parameters; therefore, we may use 

linear optimization to derive symbolic bounds on the counterfactual probability 

with respect to the probabilistic specification P(y,d\z): 

0 

max < 
P11.1 

P11.1 - Poo.o 

P11.0 - P00.1 - P10.1 

P10.0 - P01.1 - P10.1 

< P{yt\zoizuduyi) ^ 

Pll.l 

min<      P10.0 + P11.0 

1 - Poo.o - P10.1 

1 

P11.1 

Similarly, the damaging evidence against PeptAid's producer is obtained by 

evaluating the bounds on the counterfactual probability P(y^\d^yi,di,zi). In 

terms of the Q parameters the counterfactual probability is written: 

<?13 + 933 
P(y\\do,yud\,z\)  = 

qu + ?13 + ?31 + g33 
g!3 + g33 

Pll.l 
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If we minimize/maximize the numerator given the linear constraints, we arrive 

at the following bounds: 

1 
max < 

Pn.i 

0 

Pn.i - Poo.o ~ Pi 1.0 

Pio.o - Poi.i - PlO.l 

<p(yi*K,^i,yi)< 
Pll.l 

•min<      pio.o + Pii.0 

1 - Poo.o - Pio.i 

J_ 
Pn.i 

Substituting the observed distribution P{y,d\z) into these formulas, the fol- 

lowing bounds were obtained 

0.00 < PCyJl^,^,^,^) < 0.07 

0.00<P(y*1\d*o,zud1,y1)<0.07 

We can write the average causal effects for the sub-population resembling the 

plaintiff by conditioning the counterfactual probabilities in Eqs. (5.16) and (5.17) 

on the features of the plaintiff. 

ACE(D^Y\z1,d1,y1) = 

-P(yrK>2i,<*i»yi)--P(yri&2i,di»yi) 

Counterfactual probabilities have the property that if the counterfactual an- 

tecedent is implied by the real-world observation, then the probability of the 

counterfactual consequent is the same as in the real-world given the observations: 

Therefore, 

and 

P(c*\a\o)   =   P{c = c*\o) 

Pfälzlzud^yx)   =   1.00 

P(y*1\d*,z1,d1,y1)   =   1.00 

0.93 < ACE(£> -► Y\zuduyi) < 1.00 

0.93 < ACE(Z -> Y\zuduyx) < 1.00 
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At least 93% of the people in the plaintiff's subpopulation would not have devel- 

oped ulcers had they not been encouraged to take PeptAid (20), or similarly, had 

they not taken PeptAid (<f0). This lends very strong support for the plaintiff's 

claim that he was adversely affected by the marketer and producer's actions and 

product. 

The judge ruled in favor of the plaintiff. PeptAid withdrew the product from 

the market, and initiated a research effort to identify observable characteristics 

of those individuals who are adversely effected by PeptAid. 

One might be curious about the distribution of consumption and response 

behaviors, P{ri,ry), that would be responsible for such a peculiar story. Given 

the distribution over the observables {Z,D,Y}, we can evaluate bounds on each 

individual combination of consumption and response behaviors, leading to the 

identification of four common behaviors in the population: 

0.16 < qw < 0.17 

0.13 < qn < 0.14 

0.31 < q22 < 0.32 

0.31 < ?23 < 0.32 

Essentially, this tells us that about 1/3 of the population consists of individuals 

who would consume PeptAid (di) if and only if they received a sample in the mail 

{zi). Of this sub-population (r^i), about half of them would never develop ulcers 

(ry0), while the other half would develop ulcers (t/i) if and only if they consumed 

PeptAid (ryi). 

The other 2/3 of the population consists of individuals who would consume 

PeptAid if and only if they do not receive a sample in the mail. Of this sub- 

population (rd2), about half of them develop ulcers if and only if they do not 

consume PeptAid (ry2), while the other half would always develop ulcers (ry3). 
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CHAPTER 8 

Policy Analysis in Linear Models 

8.1    Introduction 

Counterfactual thinking dominates reasoning in political science and economics. 

We say, for example, "If Germany were not punished so severely at the end of 

World War I, Hitler would not have come to power," or "If Reagan did not lower 

taxes, our deficit would be lower today." Such thought experiments emphasize 

an understanding of generic laws in the domain and are aimed toward shaping 

future policy making, for example, "defeated countries should not be humiliated," 

or "lowering taxes (contrary to Reaganomics) tends to increase national debt." 

Strangely, there is very little formal work on counterfactual reasoning or pol- 

icy analysis in the behavioral science literature. An examination of a number of 

econometric journals and textbooks, for example, reveals an imbalance: while an 

enormous mathematical machinery is brought to bear on problems of estimation 

and prediction, policy analysis (which is the ultimate goal of economic theories) 

receives almost no formal treatment. Currently, the most popular methods driv- 

ing economic policy making are based on so-called reduced-form analysis: to find 

the impact of a policy involving decision variables X on outcome variables V, 

one examines past data and estimates the conditional expectation E(Y\X=x), 

where x is the particular instantiation of X under the policy studied. 

The assumption underlying this method is that the data were generated un- 

der circumstances in which the decision variables X act as exogenous variables, 

that is, variables whose values are determined outside the system under analysis. 

However, while new decisions should indeed be considered exogenous for the pur- 

pose of evaluation, past decisions are rarely enacted in an exogenous manner.1 

^his distinction is often blurred in the literature. [DS93], for example, state: "A variable is 

considered exogenous to a system if its value is determined outside the system, either because 

we can control its value externally (e.g., the amount of taxes in a macro-economic model) or 

because we believe that this variable is controlled externally (like the weather in a system 

describing crop yields, market prices, etc.)" Still, our ability to externally control the value 

of a variable X does not render X exogenous for the purpose of legitimizing the reduced form 
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Almost every realistic policy (e.g., taxation) imposes control over some endoge- 

nous variables, that is, variables whose values are determined by other variables 

in the analysis. Let us take taxation policies as an example. Economic data are 

generated in a world in which the government is reacting to various indicators 

and various pressures; hence, taxation is endogenous in the data-analysis phase 

of the study. Taxation becomes exogenous when we wish to predict the impact 

of a specific decision to raise or lower taxes. The reduced-form method is valid 

only when past decisions are nonresponsive to other variables in the system, and 

this, unfortunately, eliminates most of the interesting control variables (e.g., tax 

rates, interest rates, quotas) from the analysis.2 

This difficulty is not unique to economic or social policy making; it appears 

whenever one wishes to evaluate the merit of a plan on the basis of the past 

performance of other agents. Even when the signals triggering the past actions of 

those agents are known with certainty, a systematic method must be devised for 

selectively ignoring the influence of those signals from the evaluation process. In 

fact, the very essence of evaluation is having the freedom to imagine and compare 

trajectories in various counterfactual worlds, where each world or trajectory is 

created by a hypothetical implementation of a policy that is free of the very 

pressures that compelled the implementation of such policies in the past. 

This chapter will present an example of counterfactual analysis in the area 

of econometrics, where apparently no adequate formalism for dealing with policy 

analysis has been proposed. In contrast to reduced-form analysis, our method 

allows evaluation of the consequences of intervening on economic attributes that 

are endogenous in normal operation only to become exogenous for the purpose 

analysis: for E[Y\X = x] to represent the impact of X = x on Y, X must also be independent 

of all implicit factors (disturbance terms) affecting Y. 
While every economist knows that this disturbance-independence is a necessary condition 

for consistent estimation of structural parameters, most economists assume that disturbance- 

independence is a guaranteed property of controllable policy variables. A popular textbook 

[Int78], for example, mentions these two properties as if they were synonymous: "The exogenous 

variables are variables the values for which are determined outside the model but which influence 

the model. From a formal standpoint the exogenous variables are assumed to be statistically 

independent of all stochastic disturbance terms of the model, while the endogenous variables are 

not statistically independent of those terms. ... In general the exogenous variables are either 

historically given, policy variables, or determined by some separate mechanism." 
2This problem is unrelated to the celebrated Lucas's critique [Luc76] which concerns param- 

eter changes due to economic agents becoming aware of interventions. The failure of reduced- 

form analysis extends to physical systems as well, where there are no rational agents to speak 

of, and where system parameters remain unaltered (except those under direct control). 
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of evaluation. The general techniques developed in Section 2.8.2 will be demon- 

strated in Section 8.2 by evaluating the effect on the demand for some commodity 

when a government imposes price controls on that commodity for the first time. 

8.2     Example 

Consider an econometric structural equation model described in [Gol92] 

q   =   bip + dii + ui (8.1) 

p   =   b2q + d2w + u2 (8.2) 

where, q = the quantity of household demand for product A, p = unit price of 

product A, i = household income, w = wage rate for producing product A, U\ — 

demand shock, and u2 — supply shock. 

We extend this model by incorporating an additional variable r = household 

demand for some substitute product B, along with its structural equation 

r   =   b3p + u3 

As an example, B could stand for tea and A for coffee. 

Consider the following set of counterfactual queries: 

1. What would be the expectation of demand for coffee (q) had we intervened 

to force coffee prices (p) to some predetermined value, say p = 7? 

2. What would be the expectation of demand for coffee (q) had we intervened 

to force coffee prices (p) to some predetermined value, say p = 7, and then 

observed the demand for tea (r) to be r = 4? 

3. Given that presently the demand for tea (r) is r = 4, what would be the 

expectation of demand for coffee (q) had we intervened to force coffee prices 

(p) to some predetermined value, say p = 7? 

Note the difference between queries number 2 and 3. Number 2 states that the 

price intervention occurs prior to our observation of Product B's demand, while 

number 3 states that we first make an observation of Product B's demand and 

then intervene to force Product A's price. 

The above counterfactual queries only involve the variables X = [P,Q,R\; 

therefore, we may marginalize out all remaining variables in Eqs. (8.1) and (8.2), 
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only retaining the distributions on P, Q, and i?'s disturbance terms. Because 

I and W are exogenous (root) variables in the structural equations, we may 

combine 7 and U\ into one disturbance variable eq. Likewise, W and Ui may be 

combined into one disturbance variable ep. The structural equations for analyzing 

the above counterfactual queries may be reduced to 

x   =   Bx + e 

' p]           [ 0    b2   0 " p 

q = 61    0    0 9 
r 63   0   0 r 

+ 

The causal structure for this model is shown in Figure 8.1. 

Product A 
Price 

(8.3) 

Product A 
Demand 

Product B 
Demand 

Figure 8.1: Causal structure of an econometric model relating the demand for two 

products A and B and the price of product A. The variables are related according 

to the linear structural equations given in Eq. 8.3, where the disturbances, ep, eq, 

and er are independent and normally distributed. 

Because R and Q are d-separated ([Pea88]) by P when the arrow Q —>• 

P is removed, the observation of R after P's intervention has no impact on 

the evaluation of Q's distribution. Therefore, the counterfactual distribution of 

demand for coffee (Q) will be the same as evaluated from queries number 1 and 

2. 

Suppose that the parameters for this model are given by: 

B 

0 

-1.80 

1.00 

0.50 0 

0 0 

0   0 

0   19.00   3.00 
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Je,e 

1.00 0 0 

0 3.00 0 

0 0 2.00 

which reflects the following prior distribution on X = [P, Q, R]: 

£ 

2->x,x     — 

5.00   10.00   8.00 

0.48 

-0.08 

0.48 

-0.08 

1.73 

-0.08 

0.48 

-0.08 

2.48 

The expected price of coffee is $5.00, while the average demands for coffee and 

tea are 10 and 8 units, respectively. 

The first query above is interested in determining the distribution of demand 

for coffee (Q) given that no observations have been made on the system, if we 

had intervened to force the price of coffee to $7.00. Evaluating the expressions 

in Eqs. (2.14)—(2.15), we arrive at the following distribution: 

^x*\p=7 

&x*\p=7 

7.00   6.40   10.00 (8.4) 

0 

0 

0 

0 

3.00 

0 

0 

0 

2.00 

We conclude that the average household demand for coffee and tea would have 

been 6.4 and 10 units, respectively, if the price of coffee were $7.00. 

The third question asks what would have been the distribution of demand for 

coffee (Q), if the price of coffee were controlled to $7.00, given that demand for 

tea is currently 4 units. Applying the expressions in Eqs. (2.14)—(2.15): 

it1 

Atx*|p=7,r=4 

crx*|p=7,r=4 

7.00   5.13 6.78 

0          0 0 

0      2.75 -0.64 

0   -0.64 0.39 

(8.5) 

Note the importance of the observation of demand for tea (R). In the first query 

we found that forcing the price of coffee (P) to $7.00 will reduce the expected 

demand for coffee (Q) from 10 units to 6.4 units. The observation of 4 unit 

demand for tea changes our belief in the expected value of the demand for coffee to 
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Vq\r=4 = 10.13 units; if we intervene to force the price of coffee $7.00, the expected 

demand for coffee (Q) will be reduced from 10.13 to 5.13 units. Therefore, we see 

that enforcing price control on coffee would have had a more adverse affect on 

the demand for coffee under the knowledge that the demand for tea was only 4 

units. In addition, the expected household demand of tea would have been 6.78 

units rather than the observed 4 units. 

If we believe that the disturbance on the demand for coffee (eq) slowly change, 

or at least change infrequently, then we can use the results of this counterfactual 

distribution to determine whether price controls should now be imposed to meet 

our needs. In other words, the counterfactual distribution will tell us how we 

expect variables' distributions to change as a result of an external intervention 

applied in the present. 

It is important to note the difference between counterfactual distributions 

(conditioned on observations and external intervention) and distributions simply 

conditioned on observations. Consider the distribution that would be computed 

from observing the price of coffee at $7.00 (p = 7), or from observing the demand 

for tea at 4 units and the coffee price at $7.00 (r = 4 and p = 7): 

/7* rx\P=7 

&x,x\p=7     — 

^x\r=4,p=7 

[ 7.00   9.66   10.00 

0        0 0 ' 

0   1.71 0 

0       0 2.00 

7.00   9.66   4.00 

^x,x\r=A,p=7 

0       0 0 " 

0   1.71 0 

0       0 0 

(8.6) 

(8.7) 

(8.8) 

(8.9) 

Contrast the expected household demand for coffee evaluated from these condi- 

tional distributions to those counterfactual distributions where the price of coffee 

(P) has been forced by external intervention. In particular, compare Eq. (8.6) 

to Eq. (8.4) and Eq. (8.8) to Eq. (8.5). This should convince the reader that it 

is incorrect to use distributions conditioned on observations for evaluating (eco- 

nomic) policies, because they fail to capture the change in value of the variable 

that will undergo external intervention. The expected value of that variable prior 

to intervention is important for properly evaluating the effect of that intervention. 
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8.3    Conclusion 

This chapter has addressed the inadequacy of current techniques in economet- 

rics and the social sciences for evaluating the potential effects of economic and 

social policies. Current techniques fail to correctly evaluate policies that control 

endogenous variables, that is, variables that are influenced by other variables in 

the system prior to enacting the policy. 

This deficiency has been addressed by applying the formalism for evaluat- 

ing counterfactual conditionals in linear structural equation models described in 

Section 2.8.2. This method is applicable to the analysis of policies, even when 

the policy dictates intervention on an endogenous variable. An example was 

presented that demonstrates the disparity between analyses based on counterfac- 

tuals and reduced-form analysis which treats intervention as an observation on 

controlled variables. 
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CHAPTER 9 

Conclusion 

Counterfactual reasoning is common to everyday discourse, and is important to 

a broad range of applications including liability litigation and policy analysis. 

Although closest-world semantics and imaging provide a solid foundation for 

analyzing counterfactual conditionals, a formalization of closeness of worlds that 

intuitively reflects our understanding of the mechanisms that drive the world has 

not previously been provided. This dissertation has addressed this short-coming 

by representing generic knowledge of the world by causal relationships and by 

interpreting a counterfactual antecedent as an external intervention that forces 

the antecedent to be true despite all known influences that normally impinge on 

the antecedent variable. 

Under this formulation, the ability to precisely evaluate a counterfactual prob- 

ability (i.e., the probability that the consequent would have been true, if the 

antecedent were true) is dependent on the detail of causal knowledge available. 

While a counterfactual probability may be uniquely computed given a functional 

model of a system, only bounds on the counterfactual probability may be com- 

puted if the causal relationships are parameterized by a probabilistic specification 

(i.e., a conditional probability distribution for each variable given an instantia- 

tion of its causal influences). Depending on the form of a counterfactual query 

and the causal structure of the system, it is not always possible to guarantee 

the evaluation of bounds on a counterfactual probability. However, it has been 

shown in this dissertation that the evaluation of bounds is guaranteed for coun- 

terfactual beliefs when the causal model is parameterized by order-of-magnitude 

probabilities. 

Our formulation for interpreting and evaluating counterfactual probabilities 

has been applied to the determination of bounds on treatment effects from studies 

in which subject compliance is imperfect, resulting in tighter bounds than pre- 

viously discovered. These results are based on a large-sample approximation; in 

the future, we would like to explore the small-sample analysis through hypothesis 

testing and computing the distribution of bounds. 
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We have also demonstrated the potential power of counterfactual probabilities 

for determining liability in legal cases when a causal formulation may be brought 

to bear in the case. Finally, economic and social policy analysis can also ben- 

efit from evaluating counterfactuals in structural equation models, which allows 

analysts to determine the effect of controlling endogenous variables in a system. 
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APPENDIX A 

Proofs 

A.l    Sufficiency of P space constraints 

In this section, we will prove that any distribution in observation space, P, which 

satisfies the constraints given in equation 5.13 can be modeled by the latent 

structure given in figure 5.1. 

The key to the proof is to show that there is a one-to-one mapping between 

the extreme points in the observation space constrained by equation 5.13 and the 

extreme points in a transformed parameter space of the counterfactual model. 

This can easily be accomplished by using an algorithm for enumerating all vertices 

in a convex polytope. 

Theorem A. 1.1 [Sufficiency of P space constraints] Satisfaction of the con- 

straints: 

Pn.i + Poi.o < 1 

Poi.i+Pn.o < 1 

Pio.i + Poo.o < 1 

Poo.i + Pw.o < 1 

is sufficient to guarantee that the latent structure in figure 5.1 can model a point 

in the probabilistic observation space p. 

Proof: 

The full set of linear constraints (including those imposed by probability 

theory) which define the above P space is given by 

Pn.i + Poi.o < 1 

Poi.i + Pn.o < 1 

Pio.i + Poo.o   <    1 
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Poo.i + Pio.o   <    1 

POO.i + Poi.i + Pio.i + Pll.l    =    1 

Poox + Poi.o + Pio.o + Pn.o    =    1 

P00.O5P01.O5 Pio.o ,Pii.o,Poo.i,Poi.i,Pio.i,Pn.i    >   0 

The extreme vertices within this closed polytope may be enumerated by 

one of many vertex enumeration algorithms (for example, [Mat73]) 

Ä = (1,0,0,0,1,0,0,0) 

P2 = (1,0,0,0,0,1,0,0) 

P3 = (1,0,0,0,0,0,0,1) 

Pi = (0,1,0,0,1,0,0,0) 

P5 = (0,1,0,0,0,1,0,0) 

Pe = (0,1,0,0,0,0,1,0) 

Pi = (0,0,1,0,0,1,0,0) 

Ps = (0,0,1,0,0,0,1,0) 

P9 = (0,0,1,0,0,0,0,1) 

Pw = (0,0,0,1,1,0,0,0) 

Pii = (0,0,0,1,0,0,1,0) 

Pl2 = (0,0,0,1,0,0,0,1) 

where 

P   =   (poo.o,Poi.o,Pio.o,Pn.o,Poo.i,Poi.i,Pio.i,Pll.l) 

The transformation from Q space to P space (Eq. 5.25) was explicated in 

Section 5.2.2. There are four pairs of Q space parameters each of which 

always occur in combination within this transformation; therefore we can 

reduce the Q space to a 12 dimensional space, V, where V and Q are related 

as follows: 

Vl = ?00 + <?01 

V2 = <?02 + 903 

V3 = <?10 

V4 
= 911 

v5 = ?12 
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^6 = 9l3 

V7 = 920 

^8 = ^21 

"9 = 922 

VW = 923 

"11 = 930 + 932 

Ul2 = 931 + 933- 

The V and P spaces are then related by the following equations: 

Poo.o = "l + "3 + v4 

Poi.o = v7 + v9 + vn 

Pio.o = v2 + v5 + ve 

Pi 1.0 = v8 + vw + v12 

(A.l) 

Poo.i = vx + vj + vs (A.2) 

Poi.i = u3 + v5 + vn 

PlO',1 = v2 + v9 + vw 

Pll.l      =     V4 + V6 + Ul2 

If we constrain V by probability theory (J2}=i vi = 1 and u; > 0, i = 1... 12) 

we obtain twelve extreme vertices corresponding to the points where exactly 

one of the u,- is equal to 1.0 and all others are zero. 

Eq. A.2 provides a one-to-one mapping between these twelve V space ver- 

tices and the twelve vertices in the constrained P space. Because the linear 

transformation maps the extreme vertices of the V space to the extreme 

vertices of the P space, then for every point p in the constrained P space, 

there exists a point in V (and hence Q) space that models p. Since the 

latent structure model (Figure 5.1) subsumes the response-function model, 

any point in P which satisfies the constraints given by equation 5.13 can 

be modeled using the latent structure. 

D 
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APPENDIX B 

Closed-form solutions to linear optimization 

In general, a linear optimization problem may be specified by an objective func- 
tion to minimize 

mine*a; /g , \ 

along with a set of linear constraints that must be satisfied: 

Ax   >   b (B2) 

x   -   ° (B.3) 

where A is a matrix of coefficients, c is a vector of coefficients acting on the 

variable vector x and 6 is a vector of constants. Given A, c, and 6, there are 

many algorithms that will return a value for the vector x that globally minimizes 
c x subject to the specified linear constraints [Had62] [Dan63]. 

Sometimes, though, it is desirable to derive a closed-form expression for 

mm c x for all possible values of the constraint vector b. The procedure for de- 

riving this closed-form solution is tied to the enumeration of all extreme vertices 
m tne dual linear-programming problem. 

The dual of the above minimization problem is given by the objective function: 

maxy'i 

subject to the constraints 

y'A   $   c* (B.4) 

y   ^   ° (B.5) 

It is known [Jac93] that the expression for the mine'* in terms of b is given 

mine's   =     maxjlb (B.6) 
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where {y,-|i = 0,..., K] is the set of y such that each j/,- maximizes t/*6 for some 

value of 6. This set of y is exactly the set of extreme vertices in the constraint 

space given by Eqs. (B.4) and (B.5) 

y*A   <   c* 

V   >   0 

Therefore, to generate the general solution to the minimization problem given 

by Eqs. (B.1)-(B.3) we merely enumerate all vertices in the constraint space of 

the dual linear-programming problem (Eqs. (B.4) and (B.5)) and substitute into 

Eq. (B.6). 

A review of some vertex-enumeration algorithms may be found in [MR80], 

of which the algorithm by Mattheiss [Mat73] was implemented to derive the 

solutions presented in this dissertation. 

In order to apply this procedure for deriving a closed-form solution to a linear- 

optimization problem, the constraints must be transformed to > relations. Many 

of the constraints imposed for deriving bounds on counterfactual probabilities 

are in the form of equalities. The presence of equality constraints indicates that 

there are fewer degrees of freedom in the problem space than the number of 

variables suggests; these equalities will be used to eliminate variables from the 

linear-optimization problem. For example, suppose that the following constraints 

exist for the two variables a and 6: 

a + b = 1 

a > 0 

b   >   0 

and the expression to be optimized is 

2a -b 

The equality relation allows us to write a in terms of the remaining variable 

which may then be used to eliminate a from the linear programming problem. 

The constraints then become 

1-6   >   0 

6   >   0 

while the objective function becomes 

2-36 
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B.l    Example 

Consider the derivation of bounds for average treatment effect in Section 5.2.2; the 

objective function to optimize was given by Eq. (5.23) and the linear constraints 

were given by Eq. (5.26). 

The equality constraints in this specification allow us to eliminate seven of 

the variables g0o, 9io, 9205 9n, 921, 902, 9i2 resulting in the following seven non-trivial 
inequality constraints: 

930 - 901 + ?31 + 922 + 932 + 923 + 933 > Poi.O + Pll.O ~ PoO.l 

-930 - 922 - 932 + 913 - 923 > PlO.O ~ POl.l - PlO.l 

— 930 — 922 — 932 > — POI.O 

-931 - 913 - 933 > -pii.i 

-931 - 923 - 933 > -Pll.O 

— 922 — 903 — 923 > —PlO.l 

922 - 913 + 923 > PlO.l - PlO.O 

The objective function to be minimized ACE(D —> Y) may also be rewritten in 

terms of the remaining variables: 

Pll.O + Pll.l - PlO.O + 901 - 931 - 922 - 932 + 903 - 923 ~ 2^; 33 

Before this expression is minimized the constant terms (pn.o + Pu.i — Pio.o) will 

be dropped. After the minimization is complete these terms will be reattached. 

Therefore, the expression to be optimized by linear programming is given by: 

9oi - 931 - 922 - 932 + 903 - 923 - 2# 33 

In terms of Eqs: (B.1)-(B.5), this task may be specified by the following 

matrices. 

A 

1 -1 1 1 1 0 0 1 1 

1 0 0 -1 -1 0 1 -1 0 

1 0 0 -1 -1 0 0 0 0 
0 0 -1 0 0 0 -1 0 -1 

0 0 -1 0 0 0 0 -1 -1 

0 0 0 -1 0 -1 0 -1 0 

0 0 0 1 0 0 -1 1 0 
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b = 

c     = 

Poi.o + Pn.o - Poo.i 

Pio.o - Poi.i - PlO.l 

-Poi.o 

-Pll.l 

-P11.0 

-Pio.i 

Pio.i - Pio.o 

g30 qoi     #31  922  <?32  <?03  <Zl3  ?23  ?33 

0   1-1-1-110-1   -2 

yi  2/2  y3  ?/4  2/5  ye  y7 

Applying a vertex enumeration algorithm to the dual linear-programming 

problem's constraint space leads to the following list of extreme vertices: 

v\ = 0 0 1 2 0 1 o   ] 

v\ = 0 0 1 0 2 0 o   ] 

ti 
= 0 1 0 0 2 1 1  ] 

2/4 
= 0 1 0 2 0 0 o   ] 

yi = 0 1 0 1 1 0 o   ] 

vk = 0 0 1 1 1 0 o   ] 

y\ = f  o 2 0 2 0 0 o   ] 

vk = 0 0 2 0 2 0 1  ] 

Substituting these vertices into Eq. (B.6) and then adding back the previ- 

ously dropped terms (pn.0 + Pn.i - Pio.o) will produce the same results given by 

Eq. (5.29). 

B.2    Program Implementation 

At the UCLA Cognitive Systems Laboratory, we have implemented a program 

for deriving closed-form solutions to these linear optimization problems. This 

program accepts a text file specifying the optimization problem to solve, and 

enumerates all terms in the minimization (maximization) set that make up the 

close-form solution for the maximum (minimum) of the specified objective func- 

tion. 
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B.2.1    Input Text File 

The input text file is composed of several sections (the order being irrelevant), 

each delimited by a header. Blank lines may be used to separate lines in the text 

file. In addition, comments may be entered on lines by placing a single '%' before 

free-form text. If an equation or expression is too long to fit on a single line, 

you may break the line by placing a backslash ('\') at the end of the line, and 

continuing the expression on the following line. This may be repeated to extend 

an expression over several lines. Symbol (variable or parameter) names must 

begin with an alphabetic character followed by alphabetic, numeric, or underscore 

characters (e.g., a_01, Lon#JVame_32) and must not exceed 20 characters in 

length. The following paragraphs explain the format of each section in the text 

file. 

VARIABLES This section lists the variables that correspond to the vector x in 

Eq. (B.l). When bounding counterfactual probabilities, the values of these 

variables specify the distribution of response-functions, e.g., the Q space 

parameters in Chapter 5. Only one variable may be listed per line, and the 

VARIABLES keyword must appear on a line by itself. 

PARAMETERS This section lists the parameters that correspond to the vec- 

tor b in Eq. (B.2). When bounding counterfactual probabilities, these corre- 

spond to the conditional probability distributions over the observable vari- 

ables, e.g., the P space parameters in Chapter 5. Only one parameter may 

be listed per line, and the PARAMETERS keyword must appear on a line 

by itself. 

CONSTRAINTS This section lists the constraints imposed on the variables by 

the parameters. These constraints may be written as =, >, or < relations. 

The constraints must be linear, i.e., plus, minus, and real coefficients. There 

is no requirement as to the placement of variables versus parameters or ad- 

ditive constants. Suppose that the set of variables is given by {X, Y, Z}, and 

the set of parameters is given by {A,B,C}, then the following constraints 

satisfy the required format: 

-A + 8.9X -4.35   <   C + 4.678 

A + B   =   0.5X 

X+Y   >   l+Z 
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Nonnegativity constraints are assumed for all variables, e.g., 

X   >   0 

Y   >   0 

Only one constraint may be listed per line (although it may extend over 

several lines using a backslash at the end of each incomplete line), and the 

CONSTRAINTS keyword must appear on a line by itself. 

MINIMIZE/MAXIMIZE This keyword indicates whether the objective func- 

tion is to be minimized or maximized, respectively. This keyword must 

appear on a line by itself. 

OBJECTIVE The objective to be optimized must be an expression that is a 

linear function of the parameters, variables, and real constants. For exam- 

ple, 

2A + X + 0.5Y-Q.7 

END The specification of the optimization problem must be terminated by the 

END keyword alone on a separate line. 

An example of a complete input file used for obtaining the results in Chapter 5 

follows: 

•/ •/ •/ •/ o/ v •/ •/ •/ •/ v •/ •/ •/ v •/ •/ v •/ •/ v •/ v v v v v •/ •/ •/ v v v v v v •/ •/ •/ v. •/ v. •/ 

'/, This linear optimization specification will be used 

'/, to generate the lower bounds on the average treatment 

'/, effect for experimental studies where subject compliance 

•/, is not perfect. 
V o/ o/ o/ o/ v./ •/»/ •/»/»/ •/ •/ •/ •/ •/ v v •/ •/ v •/ •/ v v v v •/ •/ •/ v v v •/ •/ v V V V V •/ •/ V •/ •/ 

VARIABLES 

qOO 

qOl 

q02 

q03 

qlO 

qll 

ql2 
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ql3 

q20 

q21 

q22 

q23 

q30 

q31 

q32 

q33 

PARAMETERS 

pOO_0 

pOl.O 

plO_0 

pll_0 

pOO.l 

p01_l 

plO_l 

pll_l 

CONSTRAINTS 

1 = qOO + q_01 + q_02 + q_03 + \ 

qlO + q_ll + q_12 + q_13 + \ 

q20 + q_21 + q_22 + q_23 + \ 

q30 + q_31 + q_32 + q_33 

pOO.O = qOO + qOl + qlO + qll 

p01_0 = q20 + q22 + q30 + q32 

plO_0 = q02 + q03 + ql2 + ql3 

pll_0 = q21 + q23 + q31 + q33 

pOO_l = qOO + qOl + q20 + q21 

pOl.l = qlO + ql2 + q30 + q32 

plO_l = q02 + q03 + q22 + q23 

pll.l = qll + ql3 + q31 + q33 
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MINIMIZE 

OBJECTIVE 

qOl + qll + q21 + q31 - q02 - ql2 - q22 - q32 

END 

B.2.2    Program Output 

The output of the program will first redisplay the problem specification in a 

canonical form. It will then display a set of expressions that are to be minimized 

or maximized depending on whether the objective function was to be maximized 

or minimized, respectively. These expressions will be linear functions of the 

specification parameters (not the variables) and a real constant. 

For example, the output to the specification file shown above will be: 

Constraints: 

qOO + q_01 + q_02 + q_03 + qlO + q_ll + q_12 + q_13 +  q20 +  \ 

q_21 + q_22 + q_23 + q30 + q_31 + q_32 + q_33 -1=0 

p00_0 - qOO - qOl - qlO - qll = 0 

p01_0 - q20 - q22 - q30 - q32 = 0 

pl0_0 - q02 - q03 - ql2 - ql3 = 0 

pll.O - q21 - q23 - q31 - q33 = 0 

p00_l - qOO - qOl - q20 - q21 = 0 

p01_l - qlO - ql2 - q30 - q32 = 0 

pl0_l - q02 - q03 - q22 - q23 = 0 

pll_l - qll - ql3 - q31 - q33 = 0 

Minimize Objective: 

qOl + qll + q21 + q31 - q02 - ql2 - q22 - q32 

Solution: 

MAX 

{ 

pill + pOOO - 1, 

pllO + pOOl - 1, 

- pOll - plOl, 
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- pOlO - plOO 3 

pllO - pill - plOl - pOlO - plOO, 
pill - pllO - plOO - pOll - PlOl, 
pOOl - pOll - plOl - pOlO - pOOO, 
pOOO - pOlO - plOO - pOll - pOOl 

} 
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