
Probabilistic Datalog: Implementing Logical Information
Retrieval for Advanced Applications

Norbert Fuhr
University of Dortmund

Abstract
In the logical approach to information retrieval (IR), retrieval is considered as uncertain inference.

Whereas classical IR models are based on propositional logic, we combine Datalog (function-free Horn
clause predicate logic) with probability theory. Therefore, probabilistic weights may be attached to both
facts and rules. The underlying semantics extends the well-founded semantics of modularly stratified Dat-
alog to a possible worlds semantics. By using default independence assumptions with explicit specification
of disjoint events, the inference process always yields point probabilities. We describe an evaluation method
and present an implementation. This approach allows for easy formulation of specific retrieval models for
arbitrary applications, and classical probabilistic IR models can be implemented by specifying the appro-
priate rules. In comparison to other approaches, the possibility of recursive rules allows for more powerful
inferences, and predicate logic gives the expressiveness required for multimedia retrieval. Furthermore,
probabilistic Datalog can be used as a query language for integrated information retrieval and database
systems.

1 Introduction

The logical view on information retrieval (IR) treats retrieval as inference. For a queryq, the system is
searching for documentsd that imply the query logically, i.e. for which the logical formulaq ← d is true.
Due to the intrinsic vagueness and imprecision of IR, a logic that allows for uncertain reasoning should be
used. In [Rijsbergen 86], a probabilistic approach is discussed for this purpose, thus document retrieval can
be based on the estimation of the probabilityP (q ← d). This approach sets the framework for probabilistic
IR methods.

Numerous evaluations have demonstrated the feasibility of probabilistic models for text retrieval, even for
large-scale databases (see e.g. [Harman 95], [Crestani et al. 98]). The probabilistic parameters involved in
these models can be estimated either from relevance feedback data, or by combining collection statistics with
appropriate assumptions.

In [Wong & Yao 95], it is shown that all classical IR models (probabilistic as well as Boolean, fuzzy
and vector space models) can interpreted as probabilistic inference. All these models are based on proposi-
tional logic (in combination with probability theory), where e.g. terms are treated as propositions. However,
for new IR applications (e.g. structured documents, hypertext, multimedia objects), the expressiveness of
propositional logic is not sufficient. In order to represent the temporal or spatial relationships within multi-
media objects or for modelling complex terminologies, some kind of predicate logic is required. However,
a full-fledged theorem prover for first order logic (in combination with probabilistic reasoning) would not
be appropriate for dealing with the large amounts of data an IR system typically has to cope with. For this
reason, we are looking for a compromise between efficiency and expressiveness.

In the database field, there are similar problems. In fact, the logical view on databases interpretes retrieval
as the task of finding all objectso from the database that imply the queryq, i.e. make the implicationq ← o
true (see e.g. [Ullman 88]). The logical view on IR can be seen as a generalization of this approach, by

1

switching from certain to uncertain inference. For deductive databases, a variant of Horn predicate logic
called Datalog is widely used. Regarding IR as generalization of database retrieval, it seems quite natural to
develop a probabilistic version of Datalog. However, as described in [Pearl 88, pp. 4–12], the combination of
a rule-based approach with probability theory leads to certain restrictions and inconsistencies. This is due to
the fact that the former is based on extensional semantics, whereas the latter requires intensional semantics
in order to yield correct results.

In this paper, we present a new approach for combining Datalog with probability theory that overcomes
these difficulties. This is achieved by using intensional semantics in combination with logical rules. As a
result, we present a new version of probabilistic Datalog (pD).

The major advantages of pD are the following:
• The rule-based approach allows for easy formulation of retrieval models for specific or novel applica-

tions, like e.g. combination with a thesaurus or retrieval in hypertext bases or hierarchically structured
documents.
• Classical probabilistic IR models can be formulated in pD by appropriate rules, since they are just

special cases of a more general probabilistic inference mechanism.
• Since pD allows for recursive rules, it provides more powerful inference than any other (implemented)

probabilistic IR model.
• Using Horn clause predicate logic as basis yields the expressiveness required for dealing with new

kinds of IR applications.
• Finally, since pD is a generalization of (deterministic) Datalog, it can be used as a standard query

language for both IR and database systems, and thus also for integration of these two types of systems
on the logical level.

The remainder of this paper ist structured as follows: First, we give an informal introduction into pD. Section
3 describes syntax and semantics and section 4 the evaluation of pD. In section 5, we introduce a restricted
version of pD that uses default independence assumptions and explicit disjointness of events for computing
point probabilities. Then we give further application examples, compare our work with similar approaches,
and finally give some conclusions and an outlook on future work.

2 Informal description of pD

Probabilistic Datalog is an extension of Datalog with negation (see e.g. [Ullman 88], [Ceri et al. 90]). On the
syntactical level, the major difference is that with ground facts and rules, also a probabilistic weight may be
given, e.g.
0.7 indterm(d1,ir). 0.8 indterm(d1,db).
Informally speaking, the probabilistic weight gives the probability that the following fact or rule is true. In
our example, the index term ’ir’ is assigned to document d1 with a probabilistic weight of 0.7 and the term
’db’ (databases) with a weight of 0.8. Retrieving documents dealing with both of these topics now can be
accomplished by means of the rule (as usual in Prolog or Datalog, variables start with capital letters and
constants with lower-case letters)
q1(X) ← indterm(X,ir) , indterm (X,db).
Obviously, document d1 fulfills predicate q1 with a certain probability. Let us assume that index terms
are stochastically independent. Then we can compute a probability of 0.56 for the probabilistic AND-
combination in this example. In a similar way, the OR-combination produced by the rules
q2(X) ← indterm(X,ir). q2(X) ← indterm(X,db).
would give us probability 0.94 forq2(d1) .

As a more interesting example, we can use pD rules for performing retrieval in hypertext structures where
we have directed links between single documents (or nodes). For example, the factlink(d1,d2) denotes
that there is a link fromd1 to d2 . Assuming that two documents linked together are also semantically related,
we can formulate a probabilistic rule for a predicaterelated :

2

link(d2,d1). link(d3,d2).
0.5 related(D1,D2) ← link(D1,D2).
Now we state that a document is about a term when it is directly indexed with this term or when it is related
to another document that is about the same term:
about(D,T) ← indterm(D,T).
about(D,T) ← related(D,D1) , about(D1,T).
Note that due to the recursive definition, a document also may be about a term if it is only indirectly related
to another document indexed with this term. Thus, the query
?- about(X,db).
now would return three documents, namely d1 with probability 0.8, d2 with probability0.5 · 0.8 = 0.4 and
d3 with probability0.5 · 0.5 · 0.8 = 0.2.

This example indicates that the idea of combining Datalog with probabilities yields very powerful retrieval
methods. However, if we want to apply probability theory consequently, then we soon run into difficulties.
Assume that in our hypertext structure, we search for documents both about IR and DB (similar toq1):
q4(X) ← about(X,ir) , about(X,db).
Then simple multiplication of the probabilistic weights involved in the inference process would give us for
document d2:0.5 ·0.7 ·0.5 ·0.8 = 0.14. This is not correct, since the probability for the related-ness between
d2 and d1 is considered twice; thus, the proper result would be 0.28. Besides counting the same probabilistic
event twice, this simple approach also is unable to consider disjointness of complex events, for example when
we search for documents either about IR or DB, but not about both:
q5(X) ← irnotdb(X).
q5(X) ← dbnotir(X).
irnotdb(X) ← indterm(X,ir) , ¬ indterm (X,db).
dbnotir(X) ← indterm(X,db) , ¬ indterm (X,ir).
If we would assume probabilistic independence of the subgoals of q5 (although they are disjoint events), we
would compute the invalid result0.7 · 0.2 + 0.8 · 0.3 − (0.7 · 0.2) · (0.8 · 0.3) ≈ 0.35 instead of the correct
probability0.7 · 0.2 + 0.3 · 0.8 = 0.38 for q5(d1) . The only way to overcome this problem in general is to
switch from extensional semantics to intensional semantics (see e.g. [Pearl 88, pp. 4–12] for the comparison
of these two approaches to uncertainty reasoning). For this purpose, we must keep track of the events that
contribute to a derived fact.

In pD, we assume that each ground fact and each instantiated rule (i.e. where all variables are substituted
by constants) corresponds to a basic (probabilistic) event, which can be either true or false. The pD program
specifies the probability of the fact or rule being true. For any derived fact, in order to estimate the probability
of being true, we have to consider the probabilities of ground facts and instantiated rules it depends on. In
order to achieve this, we assign each ground fact and each instantiated rule a unique event key. Any derived
fact relates to a Boolean combination of basic events from which this fact was inferred. Thus, we assign
derived facts an event expression consisting of a Boolean combination of the event keys of ground facts and
rules involved in its derivation. By using the event expression in combination with the probabilities of the
basic events involved, we can compute the probability of the derived fact.

Throughout the examples given in this paper, we will use the first letter of the corresponding predicate (in
case of rules possibly followed by an additional index) along with the argument constants as event keys. For
derived facts, we will denote the event expression in brackets (omitting event keys of certain events). Thus,
we have, for example,
q1(d1) [i(d1,ir) ∧ i(d1,db)]
q4(d2) [r(d2,d1) ∧ i(d1,ir) ∧ r(d2,d1) ∧ i(d1,db)]
q5(d1) [i(d1,ir) ∧ ¬ i(d1,db) ∨ ¬ i(d1,ir) ∧ i(d1,db)]
Given these Boolean expressions, we can identify identical events occurring more than once or disjoint events
(e.g. the complement of an event). Then the corresponding probabilities can be computed correctly by means
of the inclusion-exclusion-formula (see section 4).

3

3 Syntax and semantics

3.1 Syntax

We first explain the syntax of deterministic Datalog.
As basic elements, we have in Datalogvariables(starting with capital letters),constants(numbers or al-

phanumeric strings starting with lower-case letters) andpredicates(alphanumeric strings starting with lower-
case letters).
Definition 1 A term is either a variable or a constant symbol. Ifp is ann-ary predicate (withn ≥ 0) and
t1, · · · , tn are terms thenp(t1, · · · , tn) is anatom. A literal is either an atom or a negated atom. 2

We use the wordgroundas a synonym for “variable-free”. Since Datalog does not allow for functions in
terms, aground termcan only be a constant, and theHerbrand UniverseU of a Datalog program is the set
of constants occurring in it. When we talk about “instantiated” atoms and rules, we mean that values fromU
are substituted for all variables in the atom or rule.
Definition 2 A rule is a sentence of the form

A← L1, . . . , Ln

whereA is an atom, andL1, . . . , Ln are literals (n ≥ 0). A is called theheadof the rule andL1, . . . , Ln the
bodyof the rule. EachLi is a subgoalof the rule. All variables are assumed to be universally quantified at
the front of the rule, and the commas in the body denote conjunction. If the body of a rule is empty, then we
may refer to the rule as afact, and omit the “←” symbol.

A Datalogprogramis a finite set of rules.
A queryis a conjunction of literals. 2

We call a Datalog program(globally) stratifiedif there is an assignment of ordinal levels topredicates
such that whenever a predicate appears negatively in the body of a rule, the predicate in the head of that rule
is of strictly higher level, and whenever a predicate appears positively in the body of a rule, the predicate
in the head has at least that level. Stratified programs can be evaluated in a simple way by computing the
extensions of predicates in the order of increasing ordinal levels (see e.g. [Ullman 88]). Furthermore, it can
be checked syntactically (by computing the ordinal levels of predicates) whether or not a program is stratified.
Unfortunately (as we will show later), there is a need for non-stratified programs in IR applications; these
programs have a more complex semantics and require a more sophisticated evaluation strategy.

Probabilistic Datalog differs from deterministic Datalog only in that it allows for probabilistic weights to
be attached to rules (and facts):
Definition 3 A pD rulehas the formαr, wherer is a rule andα with 0 < α ≤ 1 is the (probabilistic) weight
of the rule. A weight of 1 can be omitted.

A pD program is a finite set of pD rules. 2

We distinguish between the deterministic partPD and the indeterministic partPI of a Datalog program.
Then we can generate the setD(P) of all determistic programs of a pD programP by forming all combina-
tions of the determistic part and subsets of the indeterministic part.
Definition 4 For a pD programP , let H(P) denote the set of ground instances of all predicates fromP (all
possible ground atoms), and letPi denote the set of all its instantiated rules.

Furthermore,PD is the set of all deterministic rules andPI the set of all (instantiated) indeterministic
rules fromPi (without the weights):

PD = {r|1r ∈ Pi}
PI = {r|αr ∈ Pi ∧ α < 1}

Theset of all possible deterministic programsof P is defined as (letP(X) denote the powerset of X):

D(P) = {PD ∪ Y |Y ∈ P(PI)}
2

4

3.2 Semantics

For Datalog with negation, a number of different approaches have been described in the literature (see e.g.
the survey in [Gelder et al. 91]). One of the most advanced approaches (that also yields the most plausible
results) is the well-founded semantics described in [Gelder et al. 91]. Its basic idea is to use a three-valued
semantics, where for each atom, a world may contain either the atom, its negation or none of both.

The definition of the well-founded model for a Datalog programQ is based on the notion of thegreatest
unfounded set. Informally speaking, given a partial interpretation of a program, this is the maximum set of
ground literals that can be assumed to be false. The following definition starts with a setI of ground literals
of predicates from the programQ; this set must be consistent, i.e. it does not contain both the positive and
the negative literal for any ground atom. Then we compute the corresponding unfounded set as the set of all
ground literals that we may conclude to be false. For this purpose, we consider the atoms occurring in the
head of instantiated rules. Now there are two cases where we assume a head atom to be false:

i) the body of the rule obviously is false, due to one of its literals being false.
ii) the body contains another positive literal from the unfounded set, so we can assume both this body

literal and the head atom to be false.
Definition 5 Let H denote the set of ground instancesH of predicates fromQ and letI be a consistent set
of ground literals whose atoms are inH . Then anunfounded setA ⊆ H of Q (with respect toI) is a set of
atoms such that for eachp ∈ A and each instantiated ruler of Q whose head isp,

i) the complement of some literal in the body ofr is in I or
ii) some positive literal in the body ofr is in A.

The union of all unfounded sets w.r.t.I is itself unfounded and is known as thegreatest unfounded setUQ(I).
2

Based on the notion of an unfounded set, one can now define a transformationUP that generates new negative
atoms for a given setI, namely by negating all atoms in the unfounded setUQ(I); that is, we assume as many
atoms as possible to be false. On the other hand, the transformationTP generates new positive atoms only
when we are forced to assume the truth, namely if the atom occurs in the head of a rule where the whole body
is true.
Definition 6 TransformationsTP , UP , andWP from sets of literals to sets of literals are defined as follows:
• p ∈ TP (I) if and only if there is some instantiated ruler of P such thatr has headp and each literal

in the body ofr is in I.
• UP (I) is the greatest unfounded set ofP with respect toI.
• WP (I) = TP (I) ∪ ¬ · UP (I) (here¬ · UP (I) denotes the negation of each atom inUP (I)). 2

SinceWP is monotonic, it has a least fixpoint. This fixpoint is called thewell-founded modelof P .
The derivation of the well-founded model can be performed iteratively: Starting withI = {}, in each step

negated atoms are added toI by means of the transformationUP (I), and new positive atoms are generated
by means ofTP (I).
Example 1 As an example, consider the program consisting of the single rule
p ← s, ¬ p.

Here the first iteration yieldsI = {¬s} (since there is no rule wheres occurs in the head), and then, in
the next iteration, we get the modelI = {¬s,¬p} due to conditioni).
Example 2 An example involving the second condition is the program
p ← q, ¬ p.
q ← p, ¬ q.
yieldingI = {¬p,¬q} as model.

These two example havecomplete models, meaning that each instantiated atom of the program occurs
either positively or negatively in the model (is either true or false). However, there are also programs that
have onlypartial models:

5

Example 3 p ← s, ¬ p. s
Here we get the modelI = {s}, i.e.p is neither true nor false, since none of these values would satisfy

the program.
In order to define a semantics for pD, we model a pD program as a probability distribution over the set of

all possible deterministic programs. Then we can make use of the semantics defined for these programs.
Ideally, we could aim at using well-founded semantics for these programs. However, there are two major

obstacles with this approach:
1. As discussed above, there are deterministic Datalog programs that have only a partial well-founded

model. Now assume the following pD program:
Example 4 p ← s, ¬ p. 0.6 s.
This program can be modelled as a probability distribution over the two programs from example 1 and
3. Since the latter has a partial model only, the computation of the probability ofp raises a problem:
With probability 0.4,p is false, and with probability 0.6, it is undefined.
So allowing for programs with partial well-founded models would force us to combine probability
theory with a three-valued semantics. In order to avoid the complexity involved with this approach, we
restrict to pD programs that can be modelled as probability distributions over deterministic programs
with complete models.

2. Due to the definition of the greatest unfounded set, the computation of the well-founded model cannot
always be performed by means of a subgoal-at-a-time evaluation. (E.g. in example 2, this strategy
would jump between the evaluation ofp andq and thus fall into an infinite loop.) Thus, the standard
evaluation algorithms cannot be applied, and we would need a different, less efficient algorithm (e.g.
the XSB system described in [Sagonas et al. 94] switches to interpreter mode as soon as it encounters
a Datalog program which is not globally stratified). So we want to consider only programs that can be
evaluated a-subgoal-at-a-time.

Taking these two criteria together, we want to consider only programs with a complete well-founded
model that also can be evaluated a-subgoal-at-a-time. For deterministic Datalog, this class of programs has
been defined as modularly stratified programs ([Ross 94]). Since the definition of modular stratification is
rather complicated, the precise definitions are cited in the appendix only. Here we give a simpler explanation:
In contrast to global stratification, modular stratification is formulated w.r.t. the instatiation of a programP
for its Herbrand universeU . The programP is modularly stratified if there is an assignment of ordinal levels
to ground atoms such that whenever a ground atom appears negatively in the body of a rule, the ground atom
in the head of that rule is of strictly higher level, and whenever a ground atom appears positively in the body
of a rule, the ground atom in the head has at least that level.
Example 5 The classical example for modular stratification ([Kolaitis 91]) is the game-playing programP
consisting of the rule
win(X) ← move(X,Y), ¬ win(Y)
together with some facts aboutmove. X is a winning position if there is a move fromX to a positionY andY
is a losing position. For example, given the facts
move(4,3). move(3,1). move(3,2). move(1,0). move(2,0) .
winning positions are 1, 2 and 4.

Here win(0) would be assigned ordinal level 1,win(1) and win(2) are on level 2,win(3) has
level 3 andwin(4) level 4. Obviously, this program is modularly stratified as long as the game graph is
acyclic: Adding e.g. the factmove(3,4) would result in a cyclic graph, and thus an assignment of ordinal
levels to thewin facts as before would not be possible.

As an IR example requiring modular stratification, consider the problem of retrieval of structured docu-
ments:
Example 6 Let predicatepart(D,P) state thatP is a part ofD. Each part may be assigned index terms
via the predicateindterm(D,T) . A reasonable retrieval strategy would be to return a whole document (or
a part) consisting of several parts only if all its parts are about the current topic. In Datalog, this can be
formulated as:

6

about(D,T) ← part(D,X) , about(X,T) , ¬ nabpart(D,T).
nabpart(D,T) ← part(D,P) , ¬ about(P,T).
The first rule states thatD is aboutT if there is at least one part aboutT , and there is no part which is not
aboutT . This Datalog program is not globally stratified, sinceabout refers recursively to itself involving
negation. However, if the part structure is acyclic, then the program is modularly stratified and thus can be
evaluated by our approach.

Similar to this example, one can formulate retrieval rules when a hierarchic thesaurus is given, e.g. for
assigning a broader term to a document in case all its narrower terms occur in it. So we see that acyclic
structures are quite common in IR applications.

In general, checking if a program is modularly stratified is an NP-complete problem. However, as ar-
gued already in [Ross 94], modular stratification can be guaranteed by posing constraints on the instances
of predicates, and then considering the rules (with non-empty heads) only. In our example, acyclicity of the
part relation would be the corresponding constraint. In contrast, if we would consider hypertext links instead,
then a cyclic link structure would violate the modular stratification.

For the semantics of pD, we use a possible worlds semantics by mapping a pD program onto a set of
deterministic Datalog programs, where the model of each of the latter corresponds to a possible world. Then
we can define the class of programs we want to consider:
Definition 7 A pD programP is modularly stratified if every element of the set of its possible deterministic
programsD(P) is modularly stratified. 2

Obviously, any (deterministic) modularly stratified program also is a modularly stratified pD program. Thus,
our approach is an extension over both modularly stratified Datalog and pD with global stratification.

Now we define the possible worlds semantics for a modularly stratified pD program.
Definition 8 For a deterministic programQ with a complete, well-founded model, letWF (Q) denote this
model. For a (modularly stratified) pD programP , the set of possible worldsW(P) is defined as

W(P) = {WF (P ′)|P ′ ∈ D(P)}

2

Given the structure of the possible worlds for a pD program, we now turn to the interpretation of the
probabilistic weights.
Definition 9 For a (modularly stratified) pD programP with its set of possible worldsW = W(P), let
M = (W , µ) denote a probability structure, whereµ is a discrete probability distribution onW . Letr denote
a rule of the formL0 ← L1, . . . , Ln. Furthermore, letv denote a valuation mapping variables occurring
in P onto constants from the corresponding Herbrand universeU . For a valuationv and a literal L, let
v(L) denote the atom resulting from replacing the variables occurring inL by the corresponding constants,
according tov. In a similar way,v(r) stands for the instantiated rule derived fromr by applyingv. Finally,
let α denote a real number with0 < α ≤ 1.

Then we can recursively define the notion of anextension[t](M,w,v) of a probabilistic termt for a valua-
tion v and a worldw of M (i.e.W) and the notion of thetruth (M, w, v) |= φ of a formulaφ for a valuation
v and a worldw of M by means of the following rules:

1. [α](M,w,v) = α
2. [r](M,w,v) = µ({w′ ∈ W : (M, w′, v) |= r})
3. (M, w, v) |= αr iff [α](M,w,v) = [r](M,w,v)

4. (M, w, v) |= L iff v(L) ∈ w
5. (M, w, v) |= L0 ← L1, . . . , Ln iff whenever(M, w, v) |= L1∧. . .∧(M, w, v) |= Ln then(M, w, v) |=

L0

2

Extensions are defined by the first two rules. Rule 1 states that the extension of a rational constant is
always the rational number it represents. The second rule specifies that the extension of a rule is computed
as the sum of the probabilities of the worlds in which the rule is true. In rule 3, the truth of probabilistic

7

rules of the formαr is defined by stating that the extension of the ruler must equal the extension of the
probabilistic weightα. For example, for the probabilistic fact0.4 indterm(d1,ir) , rule 1 gives us the
value 0.4, rule 2 computes the probabilities of the worlds containing the atomindterm(d1,ir) , and rule
3 requires that these two values are equal. The fourth rule states that a literal is true for a given valuation if
the corresponding ground literalv(L) is an element ofw. Finally, the truth of a rule is defined such that its
body is true, then also the head must be true.

The last rule is specific for our approach, in that it refers to the specific valuation rather than to all possible
valuations (due to the universal quantification). In order to point out the difference, let us consider an example:
Example 7 The following program states that there is 50% chance that an arbitrary human is a woman, and
thatsu andjo are human.
0.5 woman(X) ← human(X). human(jo). human(su).
If we would require that a rule is true only if it holds for all valuations, then a possible probability structure
would beM1:
P (W1) = 0.5: {woman(jo), woman(su), human(jo), human(su) }
P (W2) = 0.5: {¬woman(jo), ¬woman(su), human(jo), human(su) }
However, we would like to allow also for the following probability structureM2:
P (W1) = 0.25: {woman(jo), woman(su), human(jo), human(su) }
P (W2) = 0.25: {woman(jo), ¬woman(su), human(jo), human(su) }
P (W3) = 0.25: {¬woman(jo), woman(su), human(jo), human(su) }
P (W4) = 0.25: {¬woman(jo), ¬woman(su), human(jo), human(su) }
As another possible interpretation of the probabilistic rule in the program, one could require that it always
holds for the indicated proportion of all individuals, thus preferring the structureM3:
P (W1) = 0.5: {woman(jo), ¬woman(su), human(jo), human(su) }
P (W2) = 0.5: {¬woman(jo), woman(su), human(jo), human(su) }

This example illustrates the difference between our approach and other possible interpretations of probabilis-
tic rules. In principle, there are at least three interpretations:

1. The rule holds with the indicated probability for all possible valuations (as inM1, but neitherM2 nor
M3).

2. The probability of the rule being true is computed for each specific valuation (thus allowing for e.g.
M1 andM2).

3. The rule holds for the indicated proportion of all individuals in each possible world (as inM3).
We prefer the second interpretation over the other two, since it gives more reasonable results and is more
appropriate for IR applications. In the example from above, asking for the probability that bothjo andsu
are women, only structureM2 yields the preferred answer 0.25 — which, in turn, is only possible with the
second interpretation.

Finally, we define the validity of a derived (probabilistic) fact based on the notion of a theory:
Definition 10 A theory of pDis a setΦ of formulae which is closed under logical consequence; i.e.Φ is such
that, ifφ ∈ Φ andφ′ is true in all worlds in whichφ is true, then alsoφ′ ∈ Φ. A formulaφ is valid in a theory
Φ of pD, written|=Φ φ, iff φ is true in all worldsw in which all formulae inΦ are also true. 2

4 Evaluation of pD programs

Our approach of evaluating pD programs is based on the notion ofevent keysandevent expressions. As
mentioned already in section 2, the probability of any derived fact has to be computed from the probabilities
of the ground facts and instantiated rules that were used for deriving this fact. Thus, our basiceventsare
instantiated rules (or ground atoms). Each derived fact also represents a probabilistic event. The dependency
between this event and the underlying basic events can be described by means of a Boolean expression, i.e.
the event of any derived fact can be expressed as a Boolean combination of basic events. For this purpose,

8

we assign each basic event an event key, and each derived fact is associated with an event expression that is a
Boolean combination of the event keys of the underlying basic events.
Definition 11 A set ofevent keys EKis a set of identifiers, that also contains the special elements⊥ (always
false) and> (always true).

For a pD programP , let ε : Pi → EK − {⊥} denote a mapping which assigns each instantiated ruleh
an event keyε(h), with the following constraints:

1. ∀h ∈ Pi (h = 1g ∧ g ∈ H ⇔ ε(h) = >)
2. ∀h, h′ ∈ Pi (ε(h) = ε(h′)⇒ h = h′ ∨ h = 1g ∧ h′ = 1g′)
Furthermore, forη /∈ {>,⊥}, let ε−1(η) denote the inverse mappingEK − {>,⊥} → Pi. 2

The first rule states that probabilistic heads (which also can be ground facts only) with weight 1 are assigned
the event key>, and the second rule requests that two different rules have the same event key only in case
they have probability 1.
Definition 12 For a pD programP , let v denote a valuation andα a probabilistic weight. Furthermore, let
F denote a ground atom andL, L0, L1, . . . stand for literals. Then we can define a mapping fromPi onto the
set of Boolean expressions overEK , by means of the following transformations:

1. η(v(L)) :=
∨

s η(v(s)), wheres ∈ P is a probabilistic rule whose head matchesv(L).
2. η(v(αL0 ← L1, . . . , Ln)) := ε(v(αL0 ← L1, . . . , Ln)) ∧ η(v(L1)) ∧ . . . ∧ η(v(Ln)).
3. η(v(L)) := ¬η(v(|L|)), if L is a negative literal.

Let EE denote the set of all event expressions that can be formed this way. 2

Here the first transformation states that each rule whose head matches the current goalv(L) has to be applied,
and the final event expression is formed as the disjunction of the event expressions resulting from these rules.
The next transformation describes the forming of event expressions for pD rules, where we take the event key
for the rule and the event expressions of the subgoals (if there are any). The last transformation forms the
event expression of negative goals as the negation of the event expression of the corresponding positive goal.

Now we specify a mapping from event expressions onto sets of possible worlds which gives the set of
worlds in which the fact corresponding to the event expression is true.
Definition 13 For a pD programP with a set of possible worldsW and a set of event expressionsEE, let
B(EE,⊥,>, {∧,∨,¬}) denote the Boolean algebra overEE. Then we can define a mappingω : EE →
P(W) onto sets of possible worlds such that for anyg ∈ H(P), ω(η(g)) = {w|g ∈ w}:

1. ω(>) =W ,
2. ω(¬η) =W − ω(η),
3. ω(η1 ∧ η2) = ω(η1) ∩ ω(η2),
4. ω(η1 ∨ η2) = ω(η1) ∪ ω(η2),
5. ω(η) = {w|ε−1(η) = αg ∧ g ∈ w}, if η ∈ EK − {>,⊥}. 2

Thus we have shown that for any factF derived by a pD program, the corresponding event expression
η(F) gives us via the mappingω(η(F)) the set of worlds in whichF is true.

In principle, the probability ofF being true can be computed asµ({w|w ∈ ω(η(F))}) (see e.g. example 9
below). In our approach, we compute the probability based on the event expression, by exploiting the fact that
we have a Boolean algebra onEE, and that we can apply the axioms from this algebra in order to transform
event expressions.
Definition 14 The probability of an event expressione ∈ EE is computed according to the formula

P (e) = µ(ω(e)).

2

In the case of complex event expressions, the inclusion-exclusion formula ([Billingsley 79, p. 20]) can be
used. This formula computes the probability of a disjunction of events in a set-theoretic way: For the union of
two or more sets of events, first the sum of the probabilities of the sets is formed, from which the probability
of the intersection has to be subtracted, e.g.P (A∪B) = P (A) + P (B)−P (A∩B). In case there are more
than two sets, this strategy is applied recursively (for computing the probabilities of the intersections), e.g.

9

P (A∪B ∪C) = P (A)+P (B)+P (C)−P (A∩B)−P (A∩C)−P (B ∩C)+P (A∩B ∩C). In order to
apply this formula, we first have to transform the event expression into disjunctive normal form (DNF), that
is:

e = K1 ∨ . . . ∨ Kn,

where theKi are event atoms or conjunctions of event atoms, and an event atom is either an event key or
a negated event key (n is the number of conjuncts of the DNF). From Boolean algebra, we know that any
Boolean expression can be transformed into DNF.
Definition 15 Let e = K1 ∨ . . . ∨ Kn denote an event expression in disjunctive normal form. Then the
probability for this expression is computed as follows:

P (e) = P (K1 ∨ . . . ∨ Kn)

=
n∑

i=1

(−1)i−1

∑
1≤j1<

...<ji≤n

P (Kj1 ∧ . . . ∧ Kji)

 . (1)

2

For computing the probabilities for the AND-combination of conjuncts, we can simplify the correspond-
ing expressions by means of the axioms of Boolean algebra. Combinations containing an event atom and
its negation yield⊥ and thus can be ignored. Furthermore, duplicate event keys in a combination can be
removed. This way, the probability of an event expression is finally computed as the sum of probabilities of
conjunctions of event atoms.
Example 8 The event expression forq5(d1) in section 2 leads to the following computation:
P (i(d1,ir) ∧ ¬ i(d1,db) ∨ ¬ i(d1,ir) ∧ i(d1,db)) =
P (i(d1,ir) ∧ ¬ i(d1,db)) + P (¬ i(d1,ir) ∧ i(d1,db))−

P (i(d1,ir) ∧ ¬ i(d1,db) ∧ ¬ i(d1,ir) ∧ i(d1,db)) =
P (i(d1,ir) ∧ ¬ i(d1,db)) + P (¬ i(d1,ir) ∧ i(d1,db))

As discussed before, there are now two possibilities for going on:
1. As in probabilistic logics, we can chose a careful interpretation of the probabilistic information avail-

able. Then we can compute a point value for the probability of an event expression only if the proba-
bilities of all conjuncts formed in the inclusion-exclusion formula are given explicitly. Otherwise, only
a probability interval can be given as a result (e.g.[0.1, 0.5] in this example)

2. We use additional assumptions about the independence of events, thus allowing us to compute always
a point value (e.g.0.38).

Example 9 As an example illustrating the two different approaches, consider the programP :
0.6 indterm(d1,ir). 0.5 indterm(d1,db).

Theoretically, there is an infinite number of possible models that differ in the probability distributions
overD(P). Here we give three typical examples (possible worlds with zero probability are omitted):
M1:

P (W1) = 0.3: {indterm(d1,ir), ¬ indterm(d1,db) }
P (W2) = 0.3: {indterm(d1,ir), indterm(d1,db) }
P (W3) = 0.2: {¬ indterm(d1,ir), indterm(d1,db) }
P (W4) = 0.2: {¬ indterm(d1,ir), ¬ indterm(d1,db) }

M2:
P (W1) = 0.5: {indterm(d1,ir), ¬ indterm(d1,db) }
P (W2) = 0.1: {indterm(d1,ir), indterm(d1,db) }
P (W3) = 0.4: {¬ indterm(d1,ir), indterm(d1,db) }

M3:
P (W1) = 0.1: {indterm(d1,ir), ¬ indterm(d1,db) }
P (W2) = 0.5: {indterm(d1,ir), indterm(d1,db) }
P (W3) = 0.4: {¬ indterm(d1,ir), ¬ indterm(d1,db) }

10

M2 andM3 are extreme cases, from which probabilistic logic would conclude
0.1 ≤ P (indterm(d1, ir)∧ indterm(d1, db)) ≤ 0.5.

If we assume independence of events,M1 is the only possible model, which yields:
P (indterm(d1, ir)∧ indterm(d1, db)) = 0.3.

Probabilistic logic would only yield a point value in case we would specify the probability of the conjunct
explicitly, e.g.
0.3 indterm(d1,ir) , indterm(d1,db).

For IR applications, the probabilistic logics approach — although theoretically attractive — does not seem
to be appropriate: Since we have to deal with large amounts of data, only the probabilities of single events
(but not for combinations) will be known in most cases. Due to the lack of additional probability information,
this cautious approach would yield large probability intervals for most answers to a query (as in our example),
from which it would be difficult to derive the top ranking answers – the only thing the user of an IR system is
interested in.

In contrast, all classical IR models are based on default assumptions about the independence or disjoint-
ness of single events (i.e. terms — see the surveys in [Fuhr 92], [Wong & Yao 95] and [Crestani et al. 98]).
Numerous evaluations have demonstrated the high retrieval quality resulting from these models.

For these reasons, we chose the approach based on default independence assumptions in order to develop
an inference system for pD.

5 pD with independence and disjointness

5.1 Concept

We assume that by default, events are independent. Furthermore, it is possible to define sets of disjoint
events.1 Based on these assumptions, we describe probabilistic Datalog with independence and disjointness
(pDI) below.

Independence of events means that the probability of the conjunction of events equals the product of their
probabilities. That is, for any set of independent events with keysη1, . . . , ηn,

P (η1 ∧ . . . ∧ ηn) = Πn
i=1P (ηi).

This assumption is suitable for most IR applications. With respect to eqn (1), this means that we can com-
pute the probability of a conjunct of event atoms as the product of the probabilities of the single event atoms.
If the event atom is an event key, then we take the probability given with the corresponding probabilistic fact
or rule, and in the case of a negated event key, the complement probability is to be taken.
Example 10 For the event expression from example 9, we get
P (i(d1,ir) ∧ ¬ i(d1,db)) + P (¬ i(d1,ir) ∧ i(d1,db)) =
P (i(d1,ir)) · (1− P (i(d1,db)))+ (1− P (i(d1,ir))) · P (i(d1,db)).

In addition to independent events, we also consider the case of disjoint events.
Example 11 Assume that we have only uncertain information about the publication years of books, e.g.
0.3 py(d1,82). 0.2 py(d3,89).
0.7 py(d1,83). 0.7 py(d3,90).
1.0 py(d2,85). 0.1 py(d3,91).
Here the publication year of d1 is either 82 or 83, the publication year of d2 is certainly 85, and for d3, it is
either 89, 90 or 91. Obviously, the facts relating to one document represent disjoint events. In databases, this
situation is called “imprecise attribute values”.

1In principle, this approach allows for modelling of arbitrary dependencies of events, namely by giving the probabilities for all
possible combinations of dependent events and declaring these combinations as being disjoint.

11

The model of this program is (negative atoms are omitted here):
P (W1) = 0.06: {py(d1,82), py(d2,85), py(d3,89) }
P (W2) = 0.21: {py(d1,82), py(d2,85), py(d3,90) }
P (W3) = 0.03: {py(d1,82), py(d2,85), py(d3,91) }
P (W4) = 0.14: {py(d1,83), py(d2,85), py(d3,89) }
P (W5) = 0.49: {py(d1,83), py(d2,85), py(d3,90) }
P (W6) = 0.07: {py(d1,83), py(d2,85), py(d3,91) }

Now a query for books published after 89
b89(D) ← py(D,Y) , Y > 89. ?- b89(D)
would yield the event expression[p(d3,90) ∨ p(d3,91)] for d3 . In terms of the inclusion-exclusion
formula, we have
P (p(d3,90) ∨ p(d3,91)) = P (p(d3,90)) + P (p(d3,91))− P (p(d3,90) ∧ p(d3,91)).

When computing the probability for this expression, we must consider that the two events involved are
disjoint, thus the probability of the conjunction is 0, and we get the correct result as the sum of the two event
probabilities0.7 + 0.1 = 0.8 (this equals the sum of the probabilities of the worldsW2, W3, W5, W6 where
b89(d3) is true).

In general, if two events with keysη1, η2 are disjoint, this means that there is no possible world in which
the corresponding facts both are true (i.e.ω(η1 ∧ η2) = ∅), and thus we have

P (η1 ∧ η2) = 0.

In the following, we assume that disjoint events may occur only with the same predicate, i.e. events
relating to different predicates are always independent. In order to identify disjoint events, we have introduced
in [Fuhr & Rölleke 97] the concept of adisjointness keyfor relations. The schema of a relation consists of a
set of attributes (in pD, each predicate corresponds to a relation, where the attributes are identified by means
of their position). For a probabilistic relationR with attribute setA, a disjointness keyK ⊆ A can be
specified. Two tuples ofR represent disjoint events if they have identical values for all attributes inK. In our
example, the first argument ofpy would be the disjointness key; thus, tuples with the same document number
represent disjoint events, whereas tuples with different document numbers correspond to independent events.
With regard to our possible world semantics, the disjointness key is a relational key in each possible world.

In pDI , we can declare disjointness keys for predicates in a similar way:
Definition 16 A pDI programconsists of adeclaration sectionfollowed by a pD program. The declara-
tion section contains for eachn-ary predicatep occurring in the pD program a declaration of the form
#p(d1, . . . , dn), where fori = 1, . . . , n, di = dk, if the i-th argument belongs to the disjointness key, and
di = av (non-key attribute value) otherwise. Declarations withd1 = . . . = dn = dk may be omitted.

Given this declaration, two instantiated rule headsp(a1 . . . , an) andp(b1 . . . , bn) are disjoint iff

∀i 1 ≤ i ≤ n(di = dk→ ai = bi ∧ (∃j 1 ≤ j ≤ n(dj = av ∧ aj 6= bj))).

Two instantiated rules are independent iff their heads are not disjoint.
Here we have defined disjointness with respect to instantiated rule heads. Thus, it is possible to have

two or more different instantiated rules with identical rule heads which are treated as being independent
according to our definition. However, as we will show in section 6, this situation should be avoided, namely
by formulating rule bodies which are disjoint in case we have identical heads.

Based on this declaration of disjointness, we can define the semantics of pDI programs:
Definition 17 For a modularly stratified pDI program, the semantics according to definition 9 is further
restricted by the following two constraints concerning the extension of terms:

(6) For any pairh, h′ of instantiated rules with disjoint rule heads, the following holds:
∀v µ({w ∈ W : (M, w, v) |= h ∧ h′}) = 0

(7) For any set{h1, . . . , hn} of instantiated rules which are pairwise independent, the following holds:
∀v µ({w ∈ W : (M, w, v) |= hj ∧ . . . ∧ hn}) = Πn

j=1µ({w ∈ W : (M, w, v) |= hj}).

12

With disjoint events, the computation of the probability of the conjunct of event atoms has to be modified
slightly: After eliminating conjuncts containing an event key and its negation and also removing duplicate
event atoms from the conjunct, disjoint event keys have to be considered. If a conjunct contains two disjoint
event keys as unnegated event atoms, then it must be removed. In case there is more than one negated
event key from a set of pairwise disjoint events (i.e. with identical values for the disjointness key) — possibly
together with an unnegated event key from the same set, the corresponding probability is computed as follows:
If there is an unnegated event key, then the probability is equal to the probability of this key. Otherwise,
we have only negated event keys, and the probability is computed as the complement of the sum of the
corresponding probabilities.
Example 12 Assume that the event keysη1, η2, η3 denote disjoint events. Then we can compute the following
probabilities:

P (η1 ∧ η2) = 0 (remove conjunct)

P (η̄1 ∧ η3) = P (η3)
P (η̄1 ∧ η̄2) = 1− (P (η1) + P (η2))

5.2 Implementation

In our research group, we have implemented a pDI system called Hyspirit (Hypermediasystem withprobabilistic
inference for theretrieval ofinformation). The evaluation of pDI programs in Hyspirit is performed in two
phases:

1. The first step is almost identical to that of the evaluation of deterministic Datalog. The only difference
is the additional construction of the event expressions in parallel to the derivation of facts.

2. For the event expressions derived in the first phase, probabilities are computed as described before.
As basic evaluation strategy, we use the magic sets method for modularly stratified programs as described

in [Ross 94]. For a given query, this method transforms a Datalog program into a set of relational algebra
equations. Then the fixpoint of these equations is computed. In our case, we use a probabilistic relational
algebra as described in [Fuhr & R¨olleke 97]. In [Rölleke & Fuhr 97], we have shown that the fixpoint
computed by the magic sets strategy for deterministic Datalog is identical to that of pD. Thus, ignoring the
minor overhead for constructing the event expressions, the computational complexity of the first phase is
identical to that of the evalauation of deterministic Datalog programs.

In some cases, the event expressions derived in the first phase may have an infinite length, as in the
following example:
Example 13 0.8 indterm(d1,ir). 0.9 indterm(d1,db).
0.5 link(d1,d2). 0.5 link(d2,d3). 0.5 link(d3,d1).
about(D,T) ← indterm(D,T).
about(D,T) ← link(D,D1) , about(D1,T).
Here the query?- about(D,ir) would produce an event expression of infinite length, due to the cyclic
link structure:
i(d1,ir) ∨ l(d1,d2) ∧ l(d2,d3) ∧ l(d3,d1) ∧ i(d1,ir) ∨ ...
However, due to the absorption law in Boolean algebra, this expression is equivalent toi(d1,ir) .
Generally speaking, when an event expression for a fact refers to the event expression for the fact itself, then
the conjunct containing this event expression can be eliminated.2 In [Rölleke & Fuhr 97], we describe this
strategy in detail and show that it always yields correct results.

The evaluation time of the inclusion-exclusion formula grows exponentially with the number of conjuncts.
Practical experimentation with Hyspirit has shown that the evaluation of about 10 or more conjuncts is not
feasible. The only exception is with disjoint events, which lead to probabilities of zero for many of the
expressions in the second sum of eqn (1); our evaluation algorithm for this formula is able to detect many

2Note that due to modular stratification, an atom cannot refer to its own negation

13

of these cases in advance and thus eliminates significant portions of the whole computation (e.g. ifK1 is a
conjunct of disjoint events, then also all AND-combinations containingK1 represent impossible events).

A major advantage of the magic sets strategy involved in the first evaluation phase is its efficient handling
of external data e.g. stored in a relational database. Top-down evaluation like e.g. SLDNF resolution used for
Prolog processes a tuple at a time and thus would generate an SQL query for every single tuple. In contrast,
the magic sets strategy processes a set at a time and thus retrieves sets of tuples with a single call to the
external database; however, only those tuples needed for answering the current Datalog query are retrieved
from external storage.

6 Application

In addition to the examples presented in the previous sections, here we want to give some more examples
which illustrate different features of our approach.

So far, we have considered only Boolean combinations of terms as IR queries. However, we can also
express probabilistic query term weighting in pDI . This is accomplished by regarding the terms in a query as
disjoint events:
Example 14 # qtw(dk).
0.4 qtw(db). 0.6 qtw(ir).
0.8 indterm(d1,db). 0.7 indterm(d1,ir).
q10(D) ← qtw(X) , indterm(D,X).
The query?- q10(d1) yields the event expression
q(db) ∧ i(d1,db) ∨ q(ir) ∧ i(d1,ir) .
Sinceq(db) andq(ir) are disjoint, the result is computed like a scalar product of query and document,
namely0.4 · 0.8 + 0.6 · 0.7.
Thus, we can achieve the same weighting scheme as for example in the vector model or in INQUERY ([Turtle
& Croft 91]). In [Rölleke & Blömer 97], we describe experiments using pDI for implementing different
retrieval strategies and for considering additional information like document structure and hypertext links.

Now we discuss probabilistic rules and outline some problems in the formulation of pD programs with
probabilistic rules
Example 15 As a simple example for reasoning with chaining of probabilistic rules, assume that the proba-
bility of an arbitrary man liking sports (l-s) is 70% , but for women, it is only 40%. Forjo , we only know
that (s)he is human, and we ask for the probability that (s)he likes sports:
sex(dk,av).
0.7 l-s(X) ← sex(X,male).
0.4 l-s(X) ← sex(X,female).
0.5 sex(X,male) ← human(X).
0.5 sex(X,female) ← human(X).
human(jo).
This leads us to the following model (we omit negative atoms here):
P (W1) = 0.35: {sex(jo,male), l-s(jo) }
P (W2) = 0.15: {sex(jo,male) }
P (W3) = 0.20: {sex(jo,female), l-s(jo) }
P (W4) = 0.30: {sex(jo,female) }

For the query?- l-s(jo) , Hyspirit derives the event expressionl1(jo) ∧ s(jo, male) ∨
l2(jo) ∧ s(jo, female) , yielding0.7 · 0.5 + 0.4 · 0.5 = 0.55 (here we usel1 and l2 as event
key for distinguishing between the two instantiated rules), which equals the sum ofW1 andW3.

If there are several probabilistic rules for a predicate which also have at least one subgoal in common,
then these have to be formulated rather carefully, in order to achieve the desired result.

14

Example 16 We want to state that two documents are semantically related when there is a link from one to
another or when they are written by the same author:
sameauthor(D1,D2) ← author(D1,X) , author(D2,X).
0.5 related(D1,D2) ← link(D1,D2).
0.2 related(D1,D2) ← sameauthor(D1,D2).

Now assume that we have two documents with a reference in between which were also written by the
same author. What is the probability of relatedness in this case? Due to the disjunction of the two rules, the
program from above would yield a probability of 0.6. However, this may not be the result that we want. If we
view probabilistic rules as the specification of conditional probabilities, then the specification ofP (r|l) and
P (r|s) says nothing about the probability ofP (r|l ∧ s). Thus, we should write rules in a way which allows
us to specify all the probabilities involved, e.g.
0.7 related(D1,D2) ← link(D1,D2) , sameauthor(D1,D2).
0.5 related(D1,D2) ← link(D1,D2) , ¬ sameauthor(D1,D2).
0.2 related(D1,D2) ← ¬ link(D1,D2) , sameauthor(D1,D2).

In general, if we want to formulate probabilistic rules for a predicate that depends onn different subgoals,
then there may be up to2n rules for this predicate specifying all possible combinations. This situation
corresponds to the link matrix in Bayesian inference networks (see next section), where the same number of
probabilities has to be specified in this case.

This kind of rule formulation representing conditional probabilities requires negation in the rule body. If
the rules are recursive, too, then we need modular stratification:
Example 17 As a variant of example 6 about retrieval from structured documents (wherepart(D,P) states
thatP is a part ofD), let us formulate the following rules
0.8 about(D,T) ← indterm(D,T) , ¬ abpart(D,T).
1.0 about(D,T) ← indterm(D,T) , abpart(D,T).
1.0 abpart(D,T) ← part(D,P) , about(P,T).
Here a nodeD is about a termT with a certain probability, if only the node, but none of its parts is about
T, but with a higher probability, if also any of its parts are aboutT. Assuming an acyclic part structure, this
program is modularly stratified.

As an extension of pD, we introduce vague predicates. These predicates are a new type of builtin predi-
cates (i.e. neither rule nor ground facts are given for these predicates). In contrast to other builtin predicates,
however, vague predicates yield probabilistic events.
Example 18 Assume that a PC shop offers the following models (tuples denote model name, CPU type,
memory size, disk size and price):
pc(m1,pI,16,1200,900).
pc(m2,pII,32,1200,1000).
pc(m3,pII,32,2400,1100).
Now a customer asks for a model with a price less than 1000:
?- pc(MOD, CPU, MEM, DISK, PRICE), PRICE < 1000

Obviously, it would not be appropriate to interprete this condition in a Boolean way. Rather, there is a
certain probability that the customer finally will pay more than 1000 in case he gets a special bargain. This
situation can be modelled by interpreting the conditionPRICE < 1000 probabilistically by means of a
vague predicatê<, that would yield the following results:
1.00 <̂(900,1000)
1.00 <̂(950,1000)
0.99 <̂(1000,1000)
0.90 <̂(1050,1000)
0.60 <̂(1100,1000)

Thus, formulating the query using this predicate
?- pc(MOD, CPU, MEM, DISK, PRICE), PRICE <̂ 1000
should yield the outcome

15

1.00 pc(m1,pI,16,1200,900)
0.99 pc(m2,pII,32,1200,1000)
0.60 pc(m3,pII,32,2400,1100)

Internally, the application of vague predicates generates new event keys that are considered in the final
probability computation. Thus, for the last answer, the event expression would be
p(m3) ∧ <̂(1100,1000).

Since vague predicates can hardly be defined as a set of probabilistic facts (due to the possibly infinite
number of elements), we view them as a special form of builtin predicates; in deterministic datalog, builtin
predicates (e.g.=, <,≥) yield Boolean values, wheras the vague predicates of pD correspond to probabilistic
events.

Vague predicates are essential for advanced IR applications. Besides vague fact conditions (as in this
example), they can, for example, be used for proper name search or retrieval of OCRed text (based on string
similarity). In [Fuhr 96], we argue that vague predicates are essential for the logical view on IR systems,
in order to be able to answer queries irrespective of existing access structures (physical data independence).
For example, searching for documents containing a certain phrase could be achieved by means of a vague
predicate for phrase search (e.g.?- phrase(information retrieval,D)), where the actual imple-
mentation of the phrase search is left to the underlying IR system (as Boolean combination of the single
words, as adjacency search or based on syntactical analysis). Another important application area is multime-
dia IR, where the notion of similarity used in most of these systems can be interpreted as vague predicates;
for example, in image retrieval, typical methods compute similarity values for color, contour and texture (see
e.g. [Flickner et al. 95]).

As an alternative approach to image retrieval, we have combined Hyspirit with the IRIS image index-
ing system ([Hermes et al. 95]) which performs semantic indexing by inferring semantic concepts from
syntactic features. IRIS has been applied successfully to the domain of landscape photos, where it detects
basic concepts like e.g. water, sand, stone, forest, grass, sky and clouds. By subdividing an image into tiles,
IRIS identifies the concepts occurring in a tile. Then, for each concept, adjacent tiles with the same concept
are joined and finally the corresponding minimum bounding rectangle (MBR) is computed. In addition to
the position and the size of the MBR, IRIS also computes the certainty with which the concept is identi-
fied. The output of the indexing process for an image is a list of objects, where each consists of a concept
and the corresponding parameters. In HySpirit, each image object is represented as a fact of the formim-
gobj(O,I,N,L,R,B,T) , whereOdenotes the object id,I the id of the image,N the name of the concept
(water, sand,. . .) andL,R,B,T are the coordinates of the MBR. The probabilistic weight of the fact gives
the certainty with which the object was identified. Based on this representation, we can formulate queries
for images with a certain content. As an example, the following query searches for images with water (lake,
river, sea) in front of stone (rocks):
?- imgobj(OA,I,water,L1,R1,B1,T1) , imgobj(OB,I,stone,L2,R2,B2,T2) & B1 ≤
B2
This type of query is only possible with Hyspirit due to its combination of predicate logic with probabilistic
inference.

An important application of modular stratification is presented in [Fuhr & R¨olleke 98], where we in-
troduce probabilistic 4-valued Datalog (p4D). For execution, p4D programs are translated in probabilistic
Datalog programs as presented in this paper. Due to the translation process, any recursive rule in p4D is
mapped onto a rule involving negation of the head predicate, thus violating global stratification and requiring
modular stratification.

In the same paper, we also describe experiments with a large text database, namely the AP subcollection
of the TREC databases comprising all messages of the AP newswire from 1989. These 84,678 documents
contain 259 MB of text. After indexing, storage in a relational database takes 284 MB (including the index).
We were able to process the original first 150 TREC queries on this dataset, with an average response time of
about 450 seconds on a 170 MHz SUN UltraSparc1.

In [Rölleke & Blömer 97], we describe the application of several retrieval strategies (formulated as logical

16

rules) for the CACM collection, including strategies for considering hypertext links (similar to the examples
shown above). Like other researchers (not using logic-based IR methods), we were able improve retrieval
effectiveness when using information about links between documents.

7 Comparison with other approaches

Our approach is a further development of the probabilistic relational algebra (PRA) presented in [Fuhr &
Rölleke 97] (a similar probabilistic algebra has been described in [Lakshmanan et al. 97]). Since PRA is a
generalization of ordinary relational algebra, all equivalences from this algebra also hold for PRA. Due to this
fact, standard relational query languages like e.g. SQL could be used in combination with PRA. However,
since PRA and these languages do not allow for recursion, recursive structures cannot be handled in this
approach. This is a major drawback, since recursive structures (e.g. hierarchical thesauri, hypertext link
structures, hierarchical document structures) will become very important in IR.

A solid theoretical foundation for probabilistic Datalog has been presented by Ng and Subrahmanian in
[Ng & Subrahmanian 93] and [Ng & Subrahmanian 94]. Based on the idea of probabilistic logic, a system of
linear inequalities is constructed for any derived fact during the inference process. Solving this system yields
the corresponding probability interval. Intervals (instead of point probabilities only, as in our approach) also
may be attached to facts and rules. Since it is also possible to state independence or disjointness of events,
this approach is more expressive than pD. However, a major difference is the handling of rule disjunction.
Example 19 Consider the following variation of our human-woman example from before:
0.5 woman(X) ← human(X). human(jo). woman(jo).
Here our approach would yieldwoman(jo) with certainty, due to the disjunction of the twowoman-rules
(where the latter has an empty body). In contrast, Ng and Subrahmanian require that whenever there is more
than one rule leading to the same fact, the intersection of the probability intervals resulting from the different
rules has to be formed. Thus, the empty interval would be the result in this case.
Thus, their approach would be appropriate only if there is always only one rule for deriving a fact. Alter-
natively, one would have to use probability intervals (which is not appropriate for typical IR applications),
and formulate rules in a very cautious way. Ng and Subrahmanian base their approach on stable semantics;
unfortunately, even for deterministic Datalog, the computation of the stable model is already NP-complete —
whereas modular stratification requires only polynomial time ([Gelder et al. 91]).

An alternative approach to probabilistic Datalog has been presented in [Lakshmanan & Sadri 94]. Here a
more general approach to uncertainty handling has been taken, by distinguishing between belief and doubt,
which do not have to sum up to 1, and for which intervals can be given. Furthermore, Lakshmanan and Sadri
consider different cases of probabilistic independence: in addition to independence and disjointness, also
positive and negative correlation as well as total ignorance can be assumed; of course, these additional modes
lead to probability intervals. The interpretation of rules and their combination is the same as in our approach.
Lakshmanan and Sadri show that for an important subclass of the programs under consideration, computation
of the least fixpoint takes polynomial time only. Negation has not yet been considered within this framework.

In [Poole 93a] and [Poole 93b], a system for probabilistic Datalog is described along with an efficient
evaluation algorithm. Here, events are independent by default, and disjointness of events must be stated
explicitly. As major restrictions, negation is not supported, and in case there are several rules for the same
predicate, the bodies must represent disjoint events. Thus, in terms of relational algebra, this approach neither
supports difference nor projection.

Based on Bayesian inference networks as described in [Pearl 88] (and thus also on intensional semantics),
the INQUERY system ([Turtle & Croft 91]) aims at a similar goal as pDI . This system also allows for more
powerful probabilistic inference than classic probabilistic IR models. However, INQUERY is still restricted
to propositional logic. On the other hand, any inference network that can be formulated in INQUERY also can
be expressed in pDI (by means of probabilistic rules). In terms of efficiency, INQUERY clearly outperforms

17

Hyspirit — mainly due to its limited expressiveness. Furthermore, the actual implementation uses extensional
semantics; thus, only tree-shaped inference structures are evaluated correctly.

A general probabilistic logic based on first order logics is described in [Halpern 90]. This approach allows
not only for attaching probabilities (points or intervals) to arbitrary formulas, but also for nesting probability
operators, e.g. stating that the probability that more than 70 % of all men like sports is 0.1. Furthermore, in
the logic calledL3, Halpern also allows for probabilistic statements for sets of individuals within a single
world. For example, stating that 50 % of all humans are female would mean that in each single world, 50 %
of all individuals known to be human are female (as in the probability structureM3 of example 7). However,
this approach is in conflict with the minimum model approach underlying all standard Datalog semantics:
For theL3-type of semantics, we would have to assume in the model of example 15, that there are additional
(unknown) individuals in each world, in order to have always 50 % women. So we think that this type of
probabilistic semantics cannot be combined with Datalog.

Based onL3, a probabilistic terminological logic named P-MIRTL is presented in [Sebastiani 94]. Due to
the restriction to terminological logics (instead of general first-order logics), the computational complexity of
the inference process is reduced. The probabilistic part of P-MIRTL is more expressive than that of pD, but
it also suffers from the general problem of probabilistic logics of giving only probability intervals for derived
formulas. Furthermore, no evaluation method for P-MIRTL programs has been presented so far. In order
to overcome these problems, in [Meghini et al. 98] a combination of a terminological logic for IR (called
MIRLOG) with fuzzy logic is described; this approach has also been implemented.

There is also a large number of papers dealing with the application of rule-based approaches to IR, but
without considering the intrinsic uncertainty and vagueness of IR. For example, the textbook [Parsaye et al.
89] describes a combination of IR, object-oriented databases, hypermedia and knowledge bases based on
production rules. Datalog-like rules are used for forming queries in the hypertext model described in [Garg
88].

8 Conclusions and outlook

In this paper, we have presented a probabilistic version of Datalog and shown its suitability for IR. Since
deterministic Datalog is a standard query language for deductive databases, pD can be used for querying
integrated IR and database systems — supporting even vague fact queries and imprecise data. We have
also shown that modular stratification significantly increases the expressiveness of probabilistic Datalog,
especially in order to specify conditional probabilities for recursive rules.

In comparison to classical IR models based on propositional logic, only pD offers the expressiveness
required for new IR applications. On the other hand, there is a number of more ambitious approaches for
probabilistic inference than ours, but none of them seems to be applicable to IR problems, mainly due to
problems of computational complexity. Thus, we think that pD is a good compromise between expressiveness
of the representation language and efficiency of the inference process.

Our implementation of pDI builds on the experience gained from deterministic Datalog systems. Thus,
the first phase of the inference process is rather efficient, whereas the probability computation in the second
phase suffers from the intrinsic complexity of probabilistic inference ([Cooper 90]). Our experiences so far
show that for typical applications, this occurs rather rarely.

One may argue that in comparison to other IR systems, our approach is very inefficient. However, the
expressiveness of these systems is rather limited. For example, for many typical IR queries (like some of
the examples in section 2), the final probabilities can be computed correctly without considering the event
expressions, thus avoiding any overhead in comparison to today’s experimental systems (see [Fuhr & R¨olleke
97] for a discussion of this point). Following these ideas, we are working on the development of query
optimization methods for queries of this type.

A general problem of IR systems is that there may be a potentially large number of answers to a query,
but mostly the user is interested only in the top-ranking elements. In contrast, database systems always

18

have to deliver the complete answer set. The latter assumption also underlies the query evaluation strategies
for Datalog that are used in Hyspirit, i.e. all elements yielding a nonzero probability are considered. Thus,
for many queries, e.g. a text search containing a frequent word or image retrieval based on some similarity
operator, a significant portion of the database has to be processed. For reducing the number of elements to
be considered for a query consisting of several conditions, one can either apply a horizontal or a vertical
strategy: In the first case, it is assumed that elements are already ranked according to decreasing probabilities
for single conditions; then the top-ranking elements for all conditions are processed in parallel until the
requested number of best answers to the query is determined (see e.g. [Pfeifer & Fuhr 95], [Fagin 96]).
The vertical strategy uses the most significant query conditions as filter and evaluates the remaining query
conditions only for the filtered elements (see e.g. [Moffat & Zobel 96]). We are aiming at including these
strategies in Hysprit.

Another area of further development is the expressiveness of pD, especially for deriving new probabilities.
So far, we can only compute probabilities for Boolean combinations of single events. However, in many
probabilistic IR models, conditional probabilities have to be derived from given probabilities (e.g. givenP (d)
andP (t, d), computeP (t|d)). Furthermore, one would like to derive probabilities from given deterministic
facts, (e.g. given relevance feedback data, estimate the probability that a term occurs in a relevant document);
a general strategy for solving this problem has been described in [W¨uthrich 93].

Acknowledgements

I wish to thank Christian Altenschmidt, Achim Oberreuter and Claus-Peter Klas who implemented the prob-
abilistic Datalog engine Hyspirit as part of their work for their diploma theses. My special thanks go to
Thomas R¨olleke for many fruitful discussions and the supervision of the students’ works. The formulation of
the semantics of pDI is based on a suggestion by Umberto Straccia.

References

Billingsley, P. (1979).Probability and Measure. John Wiley & Sons, Inc, New York.
Ceri, S.; Gottlob, G.; Tanca, L. (1990).Logic Programming and Databases. Springer, Berlin et al.
Cooper, G. (1990). The Computational Complexity of Probabilistic Inference Using Bayesian Belief Net-

works. Artificial Intelligence 42, pages 393–405.
Crestani, F.; Lalmas, M.; van Rijsbergen, C.; Campbell, I. (1998). “Is this document rele-

vant?...probably”. A survey of probabilistic models in Information retrieval.Computing Surveys 30. (To
appear).

Fagin, R. (1996). Combining Fuzzy Information from Multiple Systems. In:Proceedings of the Fifteenth
ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, pages 216–226. ACM,
New York.

Flickner, M.; Sawhney, H.; Niblack, W.; Ashley, J.; Huang, Q.; Dom, N.; Gorkani, M.; Hafner, J.; Lee,
D.; Petkovic, D.; Steele, D.; Yanker, P.(1995). Query by Image and Video Content: The QBIC System.
Computer 28(9), pages 23–32.

Fuhr, N.; Rölleke, T. (1997). A Probabilistic Relational Algebra for the Integration of Information Retrieval
and Database Systems.ACM Transactions on Information Systems 14(1), pages 32–66.

Fuhr, N.; Rölleke, T. (1998). HySpirit — a Probabilistic Inference Engine for Hypermedia Retrieval
in Large Databases. In: Schek, H.-J.; Saltor, F.; Ramos, I.; Alonso, G. (eds.):Proceedings of the 6th
International Conference on Extending Database Technology (EDBT), Valencia, Spain, Lecture Notes in
Computer Science, pages 24–38. Springer, Berlin et al.

Fuhr, N. (1992). Probabilistic Models in Information Retrieval.The Computer Journal 35(3), pages 243–
255.

19

Fuhr, N. (1996). Object-Oriented and Database Concepts for the Design of Networked Information Re-
trieval Systems. In: Barker, K.;̈Ozsu, M. (eds.):Proceedings of the Fifth International Conference on
Information and Knowledge Management, pages 164–172. ACM, New York.

Garg, P. (1988). Abstraction mechanisms in hypertext.Communications of the ACM 31(7), pages 862–870.
van Gelder, A.; Ross, K.; Schlipf, J. (1991). The Well-Founded Semantics for General Logic Programs.

Journal of the ACM 38(3), pages 620–650.
Halpern, J. Y. (1990). An Analysis of First-Order Logics of Probability.Artificial Intelligence 46, pages

311–350.
Harman, D. (1995). Overview of the Second Text Retrieval Conference (TREC-2).Information Processing

and Management 31(03), pages 271–290.
Hermes, T.; Klauck, C.; Kreys̈, J.; Zhang, J. (1995). Image Retrieval for Information Systems. In:SPIE

Proceedings Vol. 2420 (Storage and Retrieval for Image and Video Databases III). San Jose, CA, USA.
Kolaitis, P. (1991). The Expressive Power of Stratified Programs.Information and Computation 90, pages

50–66.
Lakshmanan, L.; Sadri, F. (1994). Probabilistic Deductive Databases. In:Proc. Int. Logic Programming

Symp., (ILPS’94). MIT Press, Ithaca, NY.
Lakshmanan, L.; Leone, N.; Ross, R.; Subrahmanian, V. (1997). ProbView: a flexible probabilistic

database system.ACM Transactions on Database Systems 22(3), pages 419–469.
Meghini, C.; Sebastiani, F.; Straccia, U.(1998). MIRLOG: A Logic for Multimedia Information Retrieval.

In: Crestani, F.; Lalmas, M.; van Rijsbergen, C. (eds.):Logic and Uncertainty in Information Retrieval:
Advanced models for the representation and retrieval of information. Kluwer Academic Publishers, Boston
et al.

Moffat, A.; Zobel, J. (1996). Self-indexing inverted files for fast text retrieval.ACM Transactions on
Information Systems 14(4), pages 349–379.

Ng, R.; Subrahmanian, V. S.(1993). A Semantical Framework for Supporting Subjective and Conditional
Probabilities in Deductive Databases.Journal of Automated Reasoning 10, pages 191–235.

Ng, R.; Subrahmanian, V. S.(1994). Stable Semantics for Probabilistic Deductive Databases.Information
and Computation 110, pages 42–83.

Parsaye, K.; Chignell, M.; Khoshafian, S.; Wong, H.(1989).Intelligent Databases. Wiley, New York.
Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan

Kaufman, San Mateo, California.
Pfeifer, U.; Fuhr, N. (1995). Efficient Processing of Vague Queries using a Data Stream Approach. In:Pro-

ceedings of the 18th International ACM SIGIR Conference on Research and Development in Information
Retrieval, pages 189–198. ACM, New York.

Poole, D. (1993a). Logic Programming, Abduction and Probability.New Generation Computing 11(3),
pages 377–400.

Poole, D. (1993b). Probabilistic Horn abduction and Bayesian networks.Artificial Intelligence 64, pages
81–129.

van Rijsbergen, C. J. (1986). A Non-Classical Logic for Information Retrieval.The Computer Journal
29(6), pages 481–485.

Rölleke, T.; Blömer, M. (1997). Probabilistic Logical Information Retrieval for Content, Hypertext, and
Database Querying. In: Fuhr, N.; Dittrich, G.; Tochtermann, K. (eds.):Hypertext — Information Retrieval
— Multimedia (HIM). Theorien, Modelle und Implementierungen integrierter elektronischer Information-
ssysteme, pages 147–160. Universit¨atsverlag Konstanz. http://ls1-www.cs.uni-dortmund.de/HIM97/.

Rölleke, T.; Fuhr, N. (1997). Probabilistic Reasoning for Large Scale Databases. In: Dittrich, K.; Geppert,
A. (eds.): Datenbanksysteme in Büro, Technik und Wissenschaft (BTW’97), pages 118–132. Springer,
Berlin et al.

Ross, K. (1994). Modular Stratification and Magic Sets for Datalog Programs with Negation.Journal of the
ACM 41(6), pages 1216–1266.

20

Sagonas, K.; Swift, T.; Warren, D. (1994). XSB as an Efficient Deductive Database Engine. In: Snodgrass,
R. T.; M., W. (eds.):Proceedings of the 1994 ACM SIGMOD. International Conference on Management
of Data., pages 442–453. ACM, New York.

Sebastiani, F.(1994). A Probabilistic Terminological Logic for Modelling Information Retrieval. In: Croft,
W. B.; van Rijsbergen, C. J. (eds.):Proceedings of the Seventeenth Annual International ACM SIGIR Con-
ference on Research and Development in Information Retrieval, pages 122–131. Springer-Verlag, London,
et al.

Turtle, H.; Croft, W. (1991). Evaluation of an Inference Network-Based Retrieval Model.ACM Transac-
tions on Information Systems 9(3), pages 187–222.

Ullman, J. D. (1988). Principles of Database and Knowledge-Base Systems, volume I. Computer Science
Press, Rockville (Md.).

Wong, S.; Yao, Y. (1995). On Modeling Information Retrieval with Probabilistic Inference.ACM Transac-
tions on Information Systems 13(1), pages 38–68.

Wüthrich, B. (1993). On the Learning of Rule Uncertainties and their Integration into Probabilistic Knowl-
edge Bases.Journal of Intelligent Information Systems 2, pages 245–264.

A Definition of modular stratification

Here we cite the definition of modular stratification from [Ross 94].
Definition 18 We say a predicatep depends upona predicateq if there is a sequence of rulesr0, . . . , rn−1

with predicatesp0, . . . , pn−1 in the head, respectively, such that
1. p = p0 andq = pn, and
2. for i = 1, . . . , n, pi appears (positively or negatively) in the body ofri−1.

We sayp depends onq throughk negations if exactlyk of the appearances ofp1, p2, . . . , pn in r0, . . . , rn−1,
respectively, are negative. We sayp dependsnegativelyon q if p depends onq through at least one negation.
A predicatep is mutually recursive witha predicateq if p depends uponq andq depends uponp. 2

Definition 19 LetF be a component (i.e., a subset of the rules) of a logic programP . We sayF is acomplete
component if for every predicatep appearing in the head of a rule inF ,
• all rules inP with headp are inF , and
• if p is mutually recursive with a predicateq, then all rules inP with headq are inF .

If the predicatep appears in the head of a rule inF then we sayp belongs toF . If the predicateq appears in
the body of a rule inF , but does not belong toF , then we sayq is used byF . If an atomA has predicatep,
andp belongs toF , then we may say thatA also belongs toF . 2

Definition 20 (Reduction of a component) LetF be a program component, and letS be the set of predicates
used byF . LetM be a two-valued interpretation over the universeU for the predicates inS.

Form IU (F), the instantiation ofF with respect toU , by substituting terms fromU for all variables in
the rules ofF in every possible way. Delete fromIU (F) all rules having a subgoalQ whose predicate in
S, but for whichQ is false inM . From the remaining rules, delete all (both positive and negative) subgoals
having predicates inS (these subgoals must be true inM) to leave a set of instantiated rulesRM (F). We
call RM (F) thereduction ofF moduloM . 2

Definition 21 (Modular Stratification) Let≺ be the dependency relation between components. We say the
programP is modularly stratifiedif, for every componentF of P ,

1. There is a total well-founded modelM for the union of all componentsF ′ ≺ F , and
2. The reduction ofF moduloM is locally stratified. 2

21

