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Probabilistic Decision Making for Collision Avoidance Systems:

Postponing Decisions

Stéphanie Lefèvre, Ruzena Bajcsy, and Christian Laugier

Abstract— For collision avoidance systems to be accepted by
human drivers, it is important to keep the rate of unnecessary
interventions very low. This is challenging since the decision
to intervene or not is based on incomplete and uncertain
information. The contribution of this paper is a decision making
strategy for collision avoidance systems which allows the system
to occasionally postpone a decision in order to collect more
information. The problem is formulated in the framework of
statistical decision theory, and the core of the algorithm is to
run a preposterior analysis to estimate the benefit of deciding
with the additional information. A final decision is made by
comparing this benefit with the cost of delaying the intervention.
The proposed approach is evaluated in simulation at a two-way
stop road intersection for stop sign violation scenarios. The
results show that the ability to postpone decisions leads to a
significant reduction of false alarms and does not impair the
ability of the collision avoidance system to prevent accidents.

I. INTRODUCTION

Active safety systems are increasingly present in com-

mercial vehicles, as part of a global effort to make roads

safer. The purpose of such systems is to avoid or mitigate

accidents through driver warnings or direct actions on the

commands of the vehicles (braking, steering). As illustrated

in Fig. 1, a typical Collision Avoidance (CA) system archi-

tecture is composed of input modules, processing modules,

and output modules. A situation assessment module fuses the

information obtained from different sensors and databases

(e.g. digital map) and provides an estimate of the true state

of the environment to a risk assessment module. The latter

uses this information to compute the collision risk of the

current situation. The role of the decision making module is

to decide based on the collision risk whether or not to in-

tervene (e.g. by warning the driver of an upcoming collision

or by applying the brakes autonomously). The decision is

forwarded to actuators or human-machine interfaces which

perform the required actions. The three processing modules

must take into account the uncertainties inherent to sensor

measurements and model imperfections.

A major challenge for the decision making module is that

it has to make decisions based on uncertain knowledge, and

that the timing of interventions is critical:
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Fig. 1. Collision Avoidance system architecture.

• If an intervention is triggered at a time when the

uncertainty about the occurrence of a collision is too

large, there is a chance that it will end up being a

false alarm. High false alarm rates are detrimental to

the driver acceptance of CA systems and can lead to

the user losing trust in the system [1].

• If the system waits until the last moment (certainty

about the occurrence of a collision) to trigger an in-

tervention, it might be too late to avoid the accident.

The decision to intervene or not relies on some metrics

which quantify the criticality of the situation. A number of

metrics have been proposed in the past, which are generally

based on a measure of the “Time-To-X” (or TTX) where

X corresponds to a relevant event in the near future. The

most standard indicator is the Time-To-Collision (or TTC),

which corresponds to the time remaining before a collision

occurs. The decision to intervene can be based on a threshold

on the TTC [2], [3], or on a comparison between the TTC

and the time it would take for the vehicle to come to a full

stop if emergency braking was applied [4]. As an alternative

the authors of [5] designed a function which takes as an

input the TTC and the speed of the ego vehicle and outputs

whether the driver can avoid the collision by braking, or by

steering, or if autonomous braking is needed. Similarly in [6]

the entire space of combined steering, braking and acceler-

ating maneuvers is considered when looking for collision-

free trajectories. It is also possible to adapt the collision

avoidance strategy based on the value of the TTC, e.g. when

the TTC is still large it might be preferable to inform or

warn the driver rather than to apply the brakes [7]. Another

metric closely related to the TTC is the Time-To-React

(or TTR), which corresponds to the time available for the

driver to act before the collision becomes unavoidable. The

idea is to simulate different driver actions (such as braking,

accelerating, steering) and to identify the latest moment at



which one of these maneuvers is able to avoid the collision

[8]. Recently it has been suggested to incorporate a model

of the driver’s acceptance of the intervention in the decision

making strategy [9]. The model assumes that an intervention

is more likely to be accepted if the driver judges the situation

to be critical, and the latter is estimated based on the driver’s

observations and predictions of the traffic situation.

In this paper we introduce the possibility for the Collision

Avoidance system to postpone the decision to intervene. Our

objective is to implement the fact that in some situations

the new observations obtained by waiting will reduce the

uncertainty about the occurrence of a collision, therefore the

decision will be more reliable if it is made later using this

additional information. The important question is whether

the potential gain brought by the additional information out-

weighs the cost of waiting. In order to answer this question,

our decision making approach runs a preposterior analysis

to determine the expected value and cost of the additional

information. In Section II some background on statistical

decision making is presented. Section III introduces the

proposed approach for a decision making strategy which

allows the CA system to postpone the decision to intervene,

and Section IV describes a possible implementation. The

approach was evaluated in simulation for stop sign violation

scenarios, and the results are provided in Section V.

II. BACKGROUND: PREPOSTERIOR ANALYSIS FOR

DECISION MAKING

A. Statistical decision theory

Statistical decision theory is concerned with helping a

decision maker select the best alternative to a problem in

the presence of uncertain knowledge [10], [11]. A decision

making problem is defined by the following basic elements:

• The alternatives to choose from, represented by the

random variable A = {a ∈ A}.

• The state of nature (or state of the world), about which

uncertain knowledge is available, represented by the

random variable X = {x ∈ X}.

• The cost function c(x, a), defined for each combination

of alternatives and states of nature (x, a) ∈ X ×A.
• A decision criterion, used to select an alternative based

on statistical knowledge about the state of nature and the
cost function. An example decision criterion is to select
the alternative a∗ ∈ A which minimizes the expected
cost. When X is discrete, a∗ is defined as:

a
∗ = argmin

a∈A

∑

x

c(x, a)× P (x|y) (1)

where y represents the information from which a prob-

ability distribution on X is inferred.

B. Deciding with additional information

Moreover the decision maker is sometimes faced with an

additional choice: whether or not to collect additional infor-

mation before making the decision. The use of additional

information might reduce the uncertainty about the state of

nature and therefore help select a better alternative. However

access to additional information usually has a cost, whether

it is monetary (cost of running a survey) or time-related

(cost of postponing the decision for the purpose of data

collection). The question to be solved is whether the cost

of additional information outweighs the potential gain that

more information would bring. This analysis is sometimes

called preposterior analysis because it attempts to estimate

what improvement would be brought by a data sample before

seeing the actual data sample.

The value of the additional information can be quantified

by means of the Expected Value of Sample Information

(EVSI). It corresponds to the additional expected payoff

possible through knowledge of the additional information

and is computed in three steps as follows:

Step 1: Compute the expected cost of the optimal decision

without using the additional information:

EC = min
a∈A

∑

x

c(x, a)× P (x|y) (2)

Step 2: Compute the expected cost of the optimal decision

using the additional information, by integrating over all the

predicted possible outcomes of the information sample and

using the posterior probabilities for the states of nature:

ÊC =

ˆ

ŷ

P (ŷ)× [min
a∈A

∑

x

c(x, a)× P (x|y, ŷ)] dŷ (3)

where the random variable Ŷ = {ŷ ∈ Ŷ} represents the

predicted additional information sample.

Step 3: Subtract the two expected costs to obtain the expected

gain of using additional information:

EV SI = EC − ÊC (4)

The decision about whether or not to use additional

information to make the decision is then made by comparing

the EVSI with the cost of the additional information.

III. PROPOSED APPROACH: PREPOSTERIOR ANALYSIS

FOR COLLISION AVOIDANCE SYSTEMS

We propose to apply the framework described above to

Collision Avoidance (CA) systems. The contribution of this

paper is to propose a strategy for the decision making module

(see Fig. 1) which gives the possibility to postpone the

decision making in cases where the following two conditions

are fulfilled:

Condition 1: It is estimated that the additional observa-

tions obtained by waiting until time t+ 1 would reduce the

uncertainty about the occurrence of a collision in the future

and therefore lead to a better decision.

Condition 2: It is estimated that the collision will still

be avoidable by the CA system if it intervenes at time t+1
instead of time t.

The expected benefit of the proposed strategy is a reduc-

tion of the rate of false alarms (thanks to Condition 1), while

reaching the same collision avoidance rate as strategies which

do not give the possibility to postpone the decision (thanks

to Condition 2).



A. Formulation of the decision problem

We formulate the problem as a “statistical decision making

with additional information” problem [10], [11] with the

following elements:

• The state of nature is defined as the occurrence of a

collision involving the ego vehicle at some point in the

time period [t, t + T ], where t is the current time and

T is the time horizon considered by the CA system:
X = {collision, ¬collision} (5)

In the context of CA systems, the probability distri-

bution on the state of nature is provided by a risk

assessment module as illustrated in Fig. 1. The time

horizon T is generally set as a compromise between

computation time and risk to miss a conflict [7].

• The alternatives to choose from are for the CA system

to intervene or not:
A = {intervene, ¬intervene} (6)

• The cost function is defined such that both unnecessary
interventions of the CA system and failures to intervene
are penalized:

c(x, intervene) =

{
0 if x = collision

c1 if x = ¬collision
(7)

c(x,¬intervene) =

{
c2 if x = collision

0 if x = ¬collision
(8)

• The decision criterion implements the two conditions

stated in the introduction of this section. It is based

on the comparison between the value and the cost of

additional information. The former is represented by

the Expected Value of Sample Information (EVSI). The

latter is represented by the Expected Cost of Waiting

(ECW), a metric which quantifies the effect of waiting

on the ability of the CA system to avoid the collision.

IF (EV SI > 0) AND (ECW = 0)
postpone decision until t+ 1

ELSE
make decision using Eq. 1

(9)

The computation of EVSI and ECW are detailed below.

B. Value of additional information:

The Expected Value of Sample Information (EVSI) is

computed as in Eq. 4 by subtracting the expected costs of

deciding with and without additional information.

The expected cost EC of deciding without additional

information is computed as the expected cost of making a

decision using the observations obtained from the sensors

until the current time t:
EC = min

a∈A

∑

x

c(x, a)× P (x|z0:t) (10)

with zt the observations provided by the sensors at time t.

The expected cost ÊC of deciding with additional infor-

mation is computed as the expected cost of making a decision

using the observations obtained from the sensors until the

current time t and the observations that would be obtained

if we waited until time t+ 1:

ÊC =

ˆ

zt+1

P (zt+1)× [min
a∈A

∑

x

c(x, a)× P (x|z0:t+1)] dzt+1

(11)

with Zt+1 = {zt+1 ∈ Z} a random variable representing the

observations provided by the sensors at time t+ 1.

C. Cost of additional information

The Expected Cost of Waiting (ECW) is computed as the

difference between the probability that the CA system will

be able to avoid the potential collision if it intervenes now

and if it intervenes at time t+ 1.

D. Summary

The proposed decision making strategy relies on the

computation of several terms:

• In order to compute the Expected Value of Sample

Information (EVSI) it is necessary to calculate the

collision probability P (x|z0:t), the collision probability

P (x|z0:t+1), and the probability of a future observation

P (zt+1).
• In order to compute the Expected Cost of Waiting

(ECW) it is necessary to estimate whether the CA

system will be able to avoid the potential collision if

it intervenes now and if it intervenes at time t+ 1.

IV. IMPLEMENTATION

There are numerous examples in the literature of al-

gorithms which can compute the terms listed above. In

this section we describe one possible implementation which

builds on our previous work on risk assessment [12].

A. Probabilistic motion model

In this previous work the joint motion of vehicles in a

traffic scene is modeled by a Dynamic Bayesian Network

(DBN) using four categories of variables:

• Int represents the maneuver being performed by vehicle

n at time t (e.g. keep lane, change lanes). We call it I

as in “Intention”, since the maneuver performed by a

vehicle reflects the intended maneuver of the driver.

• En
t represents the maneuver that vehicle n is expected

to perform at time t according to the traffic laws (e.g.

keep lane, change lanes). We call it E as in “Expecta-

tion”, since it represents the expected maneuver.

• Φn
t represents the physical state of vehicle n at time t

(e.g. position, speed).

• Zn
t represents the measurements available about vehicle

n at time t. They often correspond to a noisy version

of a subset of the physical state variables.

Int , En
t , and Φn

t are hidden variables, while Zn
t is observable.

For more clarity in the equations, in the remaining of

this paper factored stated will be used to represent the

conjunction of variables for the N vehicles in the scene,

e.g. Zt , (Z1
t ...Z

N
t ).



The proposed joint distribution of the DBN over all the

vehicles is as follows [12]:

P (E0:T I0:TΦ0:TZ0:T ) = P (E0I0Φ0Z0)

×
T∏

t=1

×
N∏

n=1

[P (En
t |It−1Φt−1)× P (Int |I

n
t−1E

n
t )

×P (Φn
t |Φ

n
t−1I

n
t )× P (Zn

t |Φ
n
t )] (12)

which corresponds to a classic Markov state-space model

linking Int , Φn
t , and Zn

t , augmented by the expected maneu-

ver En
t which is derived from the previous situational context

(It−1Φt−1) and has an influence on the intended maneuver

Int . For the interested reader more details about this model

can be found in the previously published papers describing

this DBN [12], [13].

B. Bayesian inference for risk estimation

Inference on variables in the DBN described above is

performed using a particle filter, which means that at each

timestep the probability density function of the hidden vari-

ables It, Et, and Φt is approximated by a set of weighted

samples called particles. The set of Nparticles particles at

time t is denoted:

{Hi,t, wi,t}i=1:Nparticles
(13)

with Hi,t = (ItEtΦt) the state of particle i at time t and

wi,t the weight of particle i at time t.

The risk estimation algorithm proposed in [12] exploits

the fact that 90% of road accidents are caused by driver

error [14]. The probability of a collision is computed as the

probability that the intention of drivers differ from what is

expected of them, i.e. P (∃n ∈ N : Int 6= En
t |z0:t). Using the

particle filter, this inference can be performed by summing up

the weights of the current particles which verify the condition

(∃n ∈ N : Int 6= En
t ):

P ([X = collision]|z0:t) =
∑

i: (∃n∈N : Int 6=En
t )

wi,t (14)

C. Value of additional information

In this section we describe how the probabilistic motion

model described above can be used to compute the terms

P (x|z0:t+1) and P (zt+1) which are needed to compute the

EVSI (see Section III-D).

The probability of future observations P (zt+1) can be

calculated in two steps. The first one is to run the prediction

step in the particle filter to obtain a probability distribution

on Φt+1. The second step is to use the sensor model P (Z|Φ)
to compute the probability of an observation zt+1.

Following this, the collision probability at time t+ 1 can

be computed in two steps. The first step is to execute the

update step in the particle filter with observations zt+1. The

second step is to sum up the weights of the particles which

verify the condition (∃n ∈ N : Int+1 6= En
t+1):

P ([X = collision]|z0:t+1) =
∑

i: (∃n∈N : In
t+1

6=En
t+1

)

wi,t+1
(15)

D. Cost of additional information

In this section we describe how the probabilistic motion

model described above can be used to estimate the ability of

the CA system to avoid a collision, in order to compute the

ECW (see Section III-D).

First of all we define the Time-To-Collision (TTC), and the

Time-To-Stop (TTS). The TTC can be computed as the time

that is left until a collision occurs if both vehicles involved

in the collision continue on the same course and at the same

speed [15]. The TTS corresponds to the time needed by a

vehicle to reach a full stop after the CA system intervenes. If

we consider a CA system where the intervention consists in

applying the brakes autonomously, the TTS can be computed

as follows [16]:

TTSt =
st

δ
+ Tmachine (16)

with st the speed of the ego vehicle at time t, δ = 7m/s² the

deceleration applied by the CA system, and Tmachine = 0.4 s

the average braking system response time [16]. If instead

we consider a CA system where the intervention consists in

warning the driver, the response time of the driver has to be

taken into account in the computation of the TTS [16].

The probability that the potential collision can be avoided

if the CA system intervenes now can be computed by

summing the weights of the current particles which verify

the condition (TTCt > TTSt). Similarly, the probability

that the potential collision can be avoided if the CA system

intervenes at time t+1 can be computed using the particles

predicted for time t + 1 instead of the current particles. As

a result the ECW can be computed as:

ECW =
∑

i: (TTCt>TTSt)

wi,t −
∑

i: (TTCt+1>TTSt+1)

wi,t+1 (17)

V. EVALUATION

The implementation described in Section IV was run on

a dual core 2.26 GHz processor PC, with 400 particles in

the filter and with new observations zt made available every

200 ms. In its current non-optimized state the code runs at

1.5Hz when run on one core only, however the particle filter

code is highly parallelizable and it is expected that it would

run approximately two times faster if it was run on both

cores, and four times faster on a four cores computer.

A. Scenarios

Tests were run in simulation for collision scenarios and

no-collision scenarios at a two-way stop road intersection.

The PreScan simulator [17] was used to generate trajec-

tories belonging to four different scenarios. All of the

scenarios involve an “Ego Vehicle” (EV) driving on the

main road towards the intersection and an “Other Vehicle”

(OV) approaching the intersection from a secondary road

and performing various maneuvers, as illustrated in Fig. 2.

Scenarios 1, 2, and 3 are collision scenarios where the EV

and the OV collide after the OV violated the stop sign.



Fig. 2. The four simulated scenarios. For each scenario the maneuver of
the “Ego Vehicle” (EV) is shown in plain green and the maneuver of the
“Other Vehicle” (OV) is shown in dotted red.

Scenario 4 is a no-collision scenario where the OV stops

at the stop line and yields to the EV. A total of 250 collision

instances and 300 no-collision instances were simulated, by

varying the speed profiles of the two vehicles.

At each timestep the EV has access to information zt about

the position, orientation, and speed of itself and the OV. In

the real world this information could for example be obtained

via vehicle-to-vehicle communication [13].

B. Decision making strategies

We consider a CA system which can apply the brakes

on the EV to try to avoid collisions, and we compare the

performances of two decision making strategies.

The baseline strategy follows the classic approach de-

scribed in Section II-A which is to select the alternative

a∗ ∈ A which minimizes the expected cost, without con-

sidering the potential value of additional information to

make a decision. It is interesting to note that this strategy

is equivalent to making the CA system intervene whenever

the collision probability (see Eq. 14) exceeds a predefined

threshold λ with λ = c1
c1+c2

[18]. This strategy was used in

our previous work [12], and a precision / recall analysis led

us to set the threshold to λ = 0.3. Here we use this previous

result and set the costs such that c1 = λ
1−λ

×c2 with λ = 0.3.

The proposed strategy corresponds to the algorithm de-

scribed in Section IV, and uses the same costs c1 and c2
as the baseline strategy. The difference is that the proposed

strategy can postpone the decision if it estimates that waiting

would bring useful additional information and still leave

enough time for the CA system to avoid the collision.

C. Performance metrics

The performances of the two strategies are compared

based on three metrics:

• The rate of missed interventions: NM
NC

, with NM the

number of collision instances where the CA system

never intervened before the collision occurred and NC

the number of collision instances.

Baseline approach Proposed approach

Missed interventions 0.0% 0.0%

Avoided collisions 81.2% 81.2%

False alarms 6.5% 3.9%

Fig. 3. Performances of the proposed approach and the baseline approach.

• The rate of avoided collisions: NA
NC

, with NA the

number of collision instances where the CA system

intervened and successfully avoided the collision and

NC the number of collision instances.

• The rate of false alarms: NF
NN

with NF the number of

no-collision instances where the CA system intervened

and NN the number of no-collision instances.

D. Results

The performances of the proposed approach and the base-

line approach are shown in Fig. 3, and commented below.

Missed interventions and avoided collisions: As expected

the rate of missed interventions and avoided collisions is

identical for the two approaches, since the proposed strategy

postpones a decision only if the collision is still avoidable at

time t + 1. The non-avoided collisions (18.8% of collision

instances) correspond to instances where the CA system

intervened but emergency braking was not enough to avoid

the collision. Typically, this happens when the OV slows

down as if to stop when approaching the intersection and

then accelerates at the last moment instead of stopping.

False alarms: In our dataset the possibility to delay

decisions leads to a 40% reduction of false alarms. If the

driver acceptance was studied for CA systems using the

proposed and the baseline decision making strategies, we

expect that this difference in the false alarms rate would

have a strong impact.

Decisions: We further analyze the results obtained for the

proposed approach by looking at the reasons behind the

decisions made by the system in different situations. We

define 3 cases:

1) The system postpones the decision, i.e. (EV SI > 0)
and (ECW = 0).

2) The system estimates that it would be too dangerous

to postpone the decision, i.e. (ECW > 0).
3) The system estimates that the additional information

obtained by postponing the decision would not help

make a better decision, i.e. (EV SI = 0).

For the 250 collision instances, the percentage of instances

belonging to each of these 3 cases is displayed in Fig. 4.

When the time-to-collision is larger than 5 s, approximately

10% of the decisions are postponed by the system. The rea-

son why a large majority of the decisions are not postponed

is that the system considers that the additional information

would not be useful. Indeed when the vehicles are far away

from the intersection it is difficult to predict whether the

drivers intend to stop, and waiting 200 ms will not bring in-

formation which will help discriminate between violating and



Fig. 4. Decisions made by the proposed approach as a function of the time
remaining before the collision.

compliant behaviors. When the time-to-collision becomes

closer to 4 s the percentage of postponed decisions increases

to reach 36%. This rise coincides with a decrease of the “Not

useful” cases, since the motion of a vehicle contains more

hints about the drivers’ intention to stop as the vehicles get

closer to the intersection. As the time-to-collision becomes

closer to 3 s we observe a steep rise of the “Too dangerous”

curve, as it becomes more and more difficult to avoid the

collision. As a consequence of this rise, the percentage of

postponed decisions quickly declines even if using additional

information becomes more and more useful. For a time-

to-collision between 2 s and 3 s no decision gets postponed

since it would be too dangerous, while the system estimates

that waiting would provide useful additional information.

Finally when the time-to-collision is below 2 s postponing

the decision becomes less and less useful, since the intentions

of the drivers to stop or not at the intersection are already

obvious. Postponing the decision would also be dangerous,

and the system never does so.

For the 300 no-collision instances, we found that every

false alarm was generated in situations where (EV SI > 0)
and (ECW > 0). This means that the system estimates

that the additional information which would be obtained by

waiting would help make a better decision, but the decision

does not get postponed because it would be too dangerous.

VI. CONCLUSIONS AND FUTURE WORK

This paper presented a decision making strategy for Col-

lision Avoidance systems which can postpone the decision

to intervene in order to collect additional information. The

core idea is that in some situations the information which

would be obtained by waiting would reduce the uncertainty

about the occurrence of a collision, and therefore help make

a better decision. The algorithm was tested in simulation at

a two-way stop intersection for collision scenarios and no-

collision scenarios involving two vehicles. A comparative

evaluation with a decision making strategy which does

not allow postponing decisions showed that our approach

generates fewer false alarms and avoids as many collisions.

The algorithm presented in this paper considers that de-

cisions can be postponed as long as the collision is still

avoidable. For driver acceptance and safety reasons, in future

work we wish to take into account the comfort of the driver

in the decision making process. In particular the algorithm

will be modified so that the cost of postponing a decision is

larger if it implies a stronger deceleration. We also plan to

show the generality of the approach by applying it to other

scenarios (e.g. obstacle avoidance on the highway) and with

other state-of-the-art risk assessment strategies.
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