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Abstract

We study the problem of probabilistic deduction with conditional constraints over basic

events. We show that globally complete probabilistic deduction with conditional constraints

over basic events is NP-hard. We then concentrate on the special case of probabilistic

deduction in conditional constraint trees. We elaborate very e�cient techniques for globally

complete probabilistic deduction. In detail, for conditional constraint trees with point

probabilities, we present a local approach to globally complete probabilistic deduction,

which runs in linear time in the size of the conditional constraint trees. For conditional

constraint trees with interval probabilities, we show that globally complete probabilistic

deduction can be done in a global approach by solving nonlinear programs. We show how

these nonlinear programs can be transformed into equivalent linear programs, which are

solvable in polynomial time in the size of the conditional constraint trees.

1. Introduction

Dealing with uncertain knowledge plays an important role in knowledge representation and
reasoning. There are many di�erent formalisms and methodologies for handling uncertainty.
Most of them are directly or indirectly based on probability theory.

In this paper, we focus on probabilistic deduction with conditional constraints over basic
events (that is, interval restrictions for conditional probabilities of elementary events). The
considered probabilistic deduction problems consist of a probabilistic knowledge base and
a probabilistic query. We give a classical example. As a probabilistic knowledge base, we
may take the probabilistic knowledge that all ostriches are birds, that the probability of
Tweety being a bird is greater than 0.90, and that the probability of Tweety being an ostrich
provided she is a bird is greater than 0.80. As a probabilistic query, we may now wonder
about the entailed greatest lower and least upper bound for the probability that Tweety
is an ostrich. The solution to this probabilistic deduction problem is 0.72 for the entailed
greatest lower bound and 1.00 for the entailed least upper bound.

More generally, probabilistic deduction with conditional constraints over propositional
events can be done in a global approach by linear programming or in a local approach by
the iterative application of inference rules. Note that it is immediately NP-hard, since it
generalizes the satis�ability problem for classical propositional logic (see Section 2.2).

Research on the global approach spread in particular after the important work on prob-
abilistic logic by Nilsson (1986) (see also the work by Paa�, 1988). The main focus was
on analyzing the computational complexity of satis�ability and entailment in probabilis-
tic logic and on developing e�cient linear programming algorithms for these problems.
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Georgakopoulos et al. (1988) show that the satis�ability problem in probabilistic logic is
NP-complete and propose to apply column generation techniques for its processing. This
approach was further developed by Kavvadias and Papadimitriou (1990), Jaumard et al.
(1991), Andersen and Hooker (1994), and Hansen et al. (1995). In particular, Jaumard et
al. (1991) report promising experimental results on the e�ciency in special cases of prob-
abilistic satis�ability and entailment. Moreover, Kavvadias and Papadimitriou (1990) and
Jaumard et al. (1991) identify special cases of probabilistic satis�ability that can be solved
in polynomial time. Other work on the global approach concentrates on reducing the num-
ber of linear constraints (Luo et al. 1996) and the number of variables (Lukasiewicz, 1997).
Finally, Fagin et al. (1992) present a sound and complete axiom system for reasoning about
probabilities that are expressed by linear inequalities over propositional events. They show
that the satis�ability problem in this quite expressive framework is still NP-complete.

In early work, Dubois and Prade (1988) use inference rules to model default reason-
ing with imprecise numerical and fuzzy quanti�ers. For this reason, subsequent research
on inference rules especially aims at analyzing patterns of human commonsense reasoning
(Dubois et al. 1990, 1993; Amarger et al. 1991; Th�one, 1994; Th�one et al. 1995). Frisch
and Haddawy (1994) discuss the use of inference rules for deduction in probabilistic logic.
Recent work on inference rules concentrates on integrating probabilistic knowledge into de-
scription logics (Heinsohn, 1994) and on analyzing the interplay between taxonomic and
probabilistic deduction (Lukasiewicz 1998a, 1999a).

We now summarize the main characteristics of the global and the local approach.

The global approach can be performed within quite rich probabilistic languages (Fagin
et al., 1992). Crucially, probabilistic deduction by linear programming is globally complete
(that is, it really provides the requested tightest bounds entailed by the whole probabilistic
knowledge base). However, a main drawback of the global approach is that it generally does
not provide useful explanatory information on the deduction process. Finally, results on
the special-case tractability of global approaches are driven by the technical possibilities of
linear programming techniques and not by the needs of arti�cial intelligence applications.
Hence, they do not seem to be very useful in the arti�cial intelligence context.

A main advantage of the local approach is that the deduced results can be explained
in a natural way by the sequence of applied inference rules (Amarger et al. 1991; Frisch
& Haddawy, 1994). However, the iterative application of inference rules is generally re-
stricted to quite narrow probabilistic languages. Moreover, it is very rarely and only within
very restricted languages globally complete (Frisch and Haddawy, 1994, give an example
of globally complete local probabilistic deduction in a very restricted framework). Finally,
as far as the computational complexity is concerned, there are very few experimental and
theoretical results on the special-case tractability of local approaches.

The main motivating idea of this paper is to elaborate e�cient local techniques for
globally complete probabilistic deduction. Inspired by previous work on inference rules, we
focus our research on the language of conditional constraints over basic events:

Dubois and Prade (1988) study the chaining of two bidirectional conditional constraints
over basic events (\quanti�ed syllogism rule") and some of its special cases. Dubois et
al. (1990) additionally discuss probabilistic deductions about conjunctions of basic events.
Furthermore, they describe the open problem of probabilistic deduction along a chain of
more than two bidirectional conditional constraints over basic events. In later work, Dubois
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et al. (1993) use a qualitative version of the \quanti�ed syllogism rule" in an approach to
reasoning with linguistic quanti�ers. Amarger et al. (1991) propose to apply the \quan-
ti�ed syllogism rule" and the \generalized Bayes' rule" to sets of bidirectional conditional
constraints over basic events. They report promising experimental results on the global com-
pleteness and the computational complexity of the presented deduction technique. However,
this deduction technique is generally not globally complete. Th�one (1994) examines trees of
bidirectional conditional constraints over basic events. He presents a linear-time deduction
technique that is based on a system of inference rules and that computes certain logically
entailed greatest lower bounds (in the technical notions of this paper, which will be de�ned
below, tight lower answers to conclusion-restricted queries are computed).

As a �rst contribution of this paper, we show that globally complete probabilistic de-
duction with conditional constraints over basic events is NP-hard. It is surprising that this
quite restricted class of probabilistic deduction problems is still computationally so di�-
cult. Hence, it is unlikely that there is an algorithm that e�ciently solves all probabilistic
deduction problems with conditional constraints over basic events. However, we can still
hope that there are e�cient special-case, average-case, or approximation algorithms.

In this paper, we then elaborate e�cient special-case algorithms. In detail, we concen-
trate on probabilistic deduction in conditional constraint trees. It is an interesting sub-
class of all probabilistic deduction problems with conditional constraints over basic events.
Conditional constraint trees are undirected trees with basic events as nodes and with bidi-
rectional conditional constraints over basic events as edges between the nodes (that is,
deduction in conditional constraint trees is a generalization of deduction along a chain of
bidirectional conditional constraints over basic events). Like Bayesian networks, conditional
constraint trees represent a well-structured probabilistic knowledge base. Di�erently from
Bayesian networks, they do not encode any probabilistic independencies.

As a main contribution of this paper, we have the following results. For conditional con-
straint trees with point probabilities, we present functions for deducing greatest lower and
least upper bounds in linear time in the size of the conditional constraint trees. Moreover, for
conditional constraint trees with interval probabilities, we show that greatest lower bounds
can be deduced in the same way, in linear time in the size of the conditional constraint trees.
However, computing least upper bounds turns out to be computationally more di�cult. It
can be done by solving special nonlinear programs. We show how these nonlinear programs
can be transformed into equivalent linear programs. The resulting linear programs have a
number of variables and inequalities linear and polynomial, respectively, in the size of the
conditional constraint trees. Thus, our way of deducing least upper bounds still runs in
polynomial time in the size of the conditional constraint trees, since linear programming
runs in polynomial time in the size of the linear programs.

Another important contribution of this paper is related to the question whether to
perform probabilistic deduction with conditional constraints by the iterative application of
inference rules or by linear programming. On the one hand, the idea of inference rules carries
us to very e�cient techniques for globally complete probabilistic deduction in conditional
constraint trees. In particular, the considered deduction problems generalize patterns of
commonsense reasoning. However, on the other hand, the corresponding proofs of soundness
and global completeness are technically quite complex. Hence, it seems unlikely that the
results of this work can be extended to signi�cantly more general probabilistic deduction
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problems. Note that a companion paper (1998a, 1999a) reports similar limits of the local
approach in probabilistic deduction under taxonomic knowledge.

The rest of this paper is organized as follows. In Section 2, we formulate the proba-
bilistic deduction problems considered in this work. Section 3 focuses on the probabilistic
satis�ability of conditional constraint trees. Section 4 deals with globally complete proba-
bilistic deduction in exact and general conditional constraint trees. In Section 5, we give a
comparison with Bayesian networks. Section 6 summarizes the main results of this work.

2. Formulating the Probabilistic Deduction Problem

In this section, we introduce the syntactic and semantic notions related to probabilistic
knowledge in general and to conditional constraint trees in particular.

2.1 Probabilistic Knowledge

Before focusing on the details of conditional constraint trees, we give a general introduction
to the kind of probabilistic knowledge considered in this work. We deal with conditional
constraints over propositional events. They represent interval restrictions for conditional
probabilities of propositional events. Note that the formal background introduced in this
section is commonly accepted in the literature (see especially the work by Frisch and Had-
dawy, 1994, for other work in the same spirit).

We assume a nonempty and �nite set of basic events B = fB1; B2; : : : ; Bng. The set of
conjunctive events CB is the closure of B under the Boolean operation ^. We abbreviate the
conjunctive event C^D by CD . The set of propositional events GB is the closure of B under
the Boolean operations ^ and :. We abbreviate the propositional events G ^H and :G
by GH and G, respectively. The false event B1 ^ :B1 and the true event :(B1 ^ :B1) are
abbreviated by ? and >, respectively. Conditional constraints are expressions of the form
(HjG)[u1; u2] with real numbers u1; u2 2 [0; 1] and propositional events G and H. In the
conditional constraint (HjG)[u1; u2], we call G the premise and H the conclusion.

To de�ne probabilistic interpretations of propositional events and of conditional con-
straints, we introduce atomic events and the binary relation ) between atomic and propo-
sitional events. The set of atomic events AB is de�ned by AB = fE1E2 � � �En jEi = Bi

or Ei = Bi for all i 2 [1 :n]g. Note that each atomic event can be interpreted as a possible
world (which corresponds to a mapping from B to ftrue; falseg). For all atomic events A
and all propositional events G, let A) G i� AG is a propositional contradiction.

A probabilistic interpretation Pr is a mapping from AB to [0; 1] such that all Pr(A) with
A 2 AB sum up to 1. Pr is extended in a well-de�ned way to propositional events G by:
Pr(G) is the sum of all Pr(A) with A 2 AB and A ) G. Pr is extended to conditional
constraints by: Pr j= (HjG)[u1; u2] i� u1 � Pr(G) � Pr(GH ) � u2 � Pr(G).

Note that conditional constraints characterize conditional probabilities of events, rather
than probabilities of conditional events (Coletti, 1994; Gilio & Scozzafava, 1994). Note also
that Pr(G) = 0 always entails Pr j= (HjG)[u1; u2]. This semantics of conditional probability
statements is also assumed by Halpern (1990) and by Frisch and Haddawy (1994).

The notions of models, satis�ability, and logical consequence for conditional constraints
are de�ned in the classical way. A probabilistic interpretation Pr is a model of a conditional
constraint (HjG)[u1; u2] i� Pr j= (HjG)[u1; u2]. Pr is a model of a set of conditional
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constraints KB , denoted Pr j= KB , i� Pr is a model of all (HjG)[u1; u2] 2 KB . KB is
satis�able i� a model of KB exists. (HjG)[u1; u2] is a logical consequence of KB; denoted
KB j= (HjG)[u1; u2], i� each model of KB is also a model of (HjG)[u1; u2].

For a conditional constraint (HjG)[u1; u2] and a set of conditional constraints KB , let
u denote the set of all real numbers u 2 [0; 1] for which there exists a model Pr of KB with
u � Pr(G) = Pr(GH ) and Pr(G) > 0. Now, we easily verify that (HjG)[u1; u2] is a logical
consequence of KB i� u1 � inf u and u2 � supu.

This observation yields a canonical notion of tightness for logical consequences of con-
ditional constraints. The conditional constraint (HjG)[u1; u2] is a tight logical consequence

of KB; denoted KB j=tight (HjG)[u1; u2], i� u1 = inf u and u2 = supu.

The set u is a closed interval in the real line (Frisch & Haddawy, 1994). Note that for
u = ;, we canonically de�ne inf u = max [0; 1] = 1 and supu = min [0; 1] = 0. Thus, u = ;
i� KB j= (Gj>)[0; 0] i� KB j=tight (HjG)[1; 0] i� KB j= (HjG)[u1; u2] for all u1; u2 2 [0; 1].

Based on the just introduced notion of tight logical consequence, probabilistic deduction
problems and their solutions are more formally speci�ed as follows.

A probabilistic knowledge base (B;KB) consists of a set of basic events B and a set of
conditional constraints KB over GB with u1 � u2 for all (HjG)[u1; u2] 2 KB . A probabilistic

query to a probabilistic knowledge base (B;KB) is an expression of the form 9(F jE)[x1; x2]
with E;F 2 GB and two di�erent variables x1 and x2. Its tight answer is the substitution
� = fx1=u1; x2=u2g with u1; u2 2 [0; 1] such that KB j=tight (F jE)[u1; u2] (we call �1 =
fx1=u1g the tight lower answer and �2 = fx2=u2g the tight upper answer). A correct answer

is a substitution � = fx1=u1; x2=u2g with u1; u2 2 [0; 1] such that KB j= (F jE)[u1; u2].
Finally, we de�ne the notions of soundness and of completeness related to inference

rules and to techniques for probabilistic deduction. An inference rule KB ` (HjG)[u1; u2] is
sound i� KB j= (HjG)[u1; u2], where (HjG)[u1; u2] is a conditional constraint and KB is a
set of conditional constraints. It is sound and locally complete i� KB j=tight (HjG)[u1; u2].
A technique for probabilistic deduction is sound for a set of probabilistic queriesQ i� it com-
putes a correct answer to any given query from Q. It is sound and globally complete for Q
i� it computes the tight answer to any given query from Q.

2.2 Computational Complexity

In the framework of conditional constraints over propositional events, the optimization prob-
lem of computing the tight answer to a probabilistic query is immediately NP-hard, since it
generalizes the satis�ability problem for classical propositional logic (the NP-complete prob-
lem of deciding whether a propositional formula in conjunctive normal form is satis�able;
see especially the survey by Garey and Johnson, 1979).

Surprisingly, the optimization problem of computing the tight answer to a probabilistic
query remains NP-hard even if we just consider conditional constraints over basic events:

Theorem 2.1 The optimization problem of computing the tight answer to a probabilistic

query over basic events that is directed to a probabilistic knowledge base over basic events

is NP-hard.

Proof. The NP-complete decision problem of graph 3-colorability (Garey & Johnson, 1979)
can be polynomially-reduced to the optimization problem of computing the tight answer
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to a probabilistic query over basic events that is directed to a probabilistic knowledge base
over basic events. The proof follows similar lines to the proof of NP-hardness of 2PSAT
given by Georgakopoulos et al. (1988).

Let (V;E) be a �nite undirected graph. We construct a probabilistic knowledge base
(B;KB) as follows. We initialize (B;KB) with (fBg; ;). For each node v 2 V , we increase
B by the new basic events B1

v , B
2
v , and B3

v . For each node v 2 V and for each i 2 f1; 2; 3g,
we increase KB by (BjBi

v)[1; 1] and (Bi
vjB)[1=3; 1=3]. For each node v 2 V and for each

i; j 2 f1; 2; 3g with i < j, we increase KB by (Bj
vjB

i
v)[0; 0]. For each edge fu; vg 2 E and for

each i 2 f1; 2; 3g, we increase KB by (Bi
vjB

i
u)[0; 0]. It is easy to see that the probabilistic

knowledge base (B;KB) can be constructed in polynomial time in the size of (V;E).

Now, we show that (V;E) is 3-colorable i� fx1=1; x2=1g is the tight answer to the
probabilistic query 9(BjB)[x1; x2] to (B;KB), or equivalently, i� KB is satis�able:

If (V;E) is 3-colorable, then there exists a mapping c1 from V to f1; 2; 3g with c1(u) 6=
c1(v) for all edges fu; vg 2 E. Thus, if � is a cyclic permutation of the members in f1; 2; 3g
and if c2; c3 : V ! f1; 2; 3g are de�ned by c2(v) = �(c1(v)) and c3(v) = �(c2(v)) for all
nodes v 2 V , then also c2(u) 6= c2(v) and c3(u) 6= c3(v) for all edges fu; vg 2 E. For
j 2 f1; 2; 3g, let Aj 2 AB such that Aj ) B and Aj ) Bi

v i� cj(v) = i for all nodes v 2 V
and i 2 f1; 2; 3g. If Pr : AB ! [0; 1] is de�ned by Pr(A) = 1=3 for all A 2 fA1; A2; A3g and
by Pr(A) = 0 for all A 2 AB n fA1; A2; A3g, then Pr is a model of KB .

Conversely, if there is a model Pr of KB , then there is an atomic event A 2 AB with
Pr(A) > 0. Thus, if c : V ! f1; 2; 3g is de�ned by c(v) = i i� A) Bi

v for all nodes v 2 V ,
then c(u) 6= c(v) for all edges fu; vg 2 E. Hence, (V;E) is 3-colorable. 2

Hence, it is unlikely that there is an e�cient algorithm for computing the tight answer
to all probabilistic queries over basic events that are directed to any given probabilistic
knowledge base over basic events. However, there may still be e�cient algorithms for
solving more specialized probabilistic deduction problems.

The rest of this work deals with probabilistic deduction in conditional constraint trees.
The next section provides a motivating example, which gives evidence of the practical
importance of this kind of probabilistic deduction problems.

2.3 Motivating Example

A senior student in mathematics describes her experience about being successful at the uni-
versity as follows. The success of a student (su) is in
uenced by how well-informed (wi) and
how well-prepared (wp) the student is. Well-informedness can be reached by interviewing
professors (pr) or by asking senior students (st). Being well-prepared is in
uenced by how
much time is invested in books (bo), exercises (ex), and hobbies (ho).

It is estimated that the probability of a student being successful given she is well-
informed lies between 0.60 and 0.70, that the probability of a student being well-informed
given she is successful is greater than 0.85, that the probability of a student being successful
given she is well-prepared is greater than 0.95, and that the probability of a student being
well-prepared given she is successful is greater than 0.95.

This probabilistic knowledge completed by further probabilistic estimations is given by
the probabilistic knowledge base (B;KB) in Fig. 1, where B is the set of nodes fsu;wi;wp; pr;
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st; bo; ex; hog and KB is the least set of conditional constraints that contains (Y jX)[u1; u2]
for each arrow from X to Y labeled with u1; u2.

su wp ex

st

.85,1

.6,.7 .95,1 .85,.9

.85,.9

ho

.6,.7.95,1 .35,.4

pr bo

.95,1

.95,1

.05,.1.95,1 .95,1

.35,.4

wi

Figure 1: A Conditional Constraint Tree

We may wonder whether it is useful for being successful at the university to interview the
professors, to study on books, to spend the time on one's hobbies, or to do both studying
on books and spending the time on one's hobbies. This can be expressed by the prob-
abilistic queries 9(sujpr)[x1; x2], 9(sujbo)[x1; x2], 9(sujho)[x1; x2], and 9(sujbo ho)[x1; x2],
which yield the tight answers fx1=0:00, x2=1:00g, fx1=0:90; x2=1:00g, fx1=0:30; x2=0:46g,
and fx1=0:71; x2=1:00g, respectively.

We may wonder whether successful students at the university interviewed their profes-
sors, whether they studied on books, whether they spent their time with their hobbies, or
whether they both studied on books and spent their time with their hobbies. This can be
expressed by the probabilistic queries 9(prjsu)[x1; x2], 9(bojsu)[x1; x2], 9(hojsu)[x1; x2], and
9(bo hojsu)[x1; x2], which yield the tight answers fx1=0:00, x2=0:17g, fx1=0:90; x2=1:00g,
fx1=0:30; x2=0:45g, and fx1=0:25; x2=0:45g, respectively.

2.4 Conditional Constraint Trees

We formally de�ne conditional constraint trees and queries to conditional constraint trees.
We provide some additional examples, which are subsequently used as running examples.

A (general) conditional constraint tree is a probabilistic knowledge base (B;KB) for
which an undirected tree (a singly connected undirected graph) (B;$) exists such that
KB contains exactly one pair of conditional constraints (BjA)[u1; u2] and (AjB)[v1; v2] with
u1; v1 > 0 for each pair of adjacent nodes A and B (note that B = fBg implies KB = ;).
A basic event B 2 B is called a leaf in (B;KB) i� it has exactly one neighbor in (B;$).
A conditional constraint tree is exact i� u1 = u2 for all (BjA)[u1; u2] 2 KB .

A query to a conditional constraint tree is a probabilistic query 9(F jE)[x1; x2] with two
conjunctive events E and F that are disjoint in their basic events and such that all paths
from a basic event in E to a basic event in F have at least one basic event in common.
A query 9(F jE)[x1; x2] to a conditional constraint tree is premise-restricted i� E is a basic
event. It is conclusion-restricted i� F is a basic event. It is strongly conclusion-restricted

i� F is the only basic event that is contained in all paths from a basic event in E to F .
It is complete i� EF contains exactly the leaves of (B;$).
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Fig. 2 shows two conditional constraint trees of which the one on the left side is exact.
9(STUjMNQR)[x1; x2] is a query, while 9(MSjQU)[x1; x2] is not a query to the conditional
constraint trees of Fig. 2. Furthermore, 9(STUjM)[x1; x2] is a premise-restricted query,
9(OjQRSTU)[x1; x2] a strongly conclusion-restricted query, and 9(QRSTUjM)[x1; x2] a prem-
ise-restricted complete query to the conditional constraint trees of Fig. 2.

1)

1

1

.8,.9

.3,.4 .9,1

.9,1

.8,.9.9,1

.8,.9

.9,1.8,.9

1

1

.85

.95

.95

.95

.85

.85

.85 .95

.95

.15 .95

.55

.85

.5,.6

.1,.2

.8,.9 .9,1

.9,1

M O

P

Q

R

S

T

U

M N O

P

Q

R

S

T

U

2)

.35

N

Figure 2: Two Conditional Constraint Trees

For conditional constraint trees (B;KB), conjunctive events C, and basic events B, we
write C)B i� there exists a path G1; G2; : : : ; Gk from a basic event G1 in C to the basic
event Gk=B such that (Gi+1jGi)[1; 1]2KB for all i 2 [1 : k � 1]. We write B)C i� for
all paths G1; G2; : : : ; Gk from the basic event G1=B to a basic event Gk in C, it holds
(Gi+1jGi)[1; 1]2KB for all i 2 [1 : k � 1]. That is, the conditions C)B and B)C
immediately entail KB j= (BjC)[1; 1] and KB j= (CjB)[1; 1], respectively.

Note that the restriction u1; v1 > 0 for all (BjA)[u1; u2], (AjB)[v1; v2] 2 KB is just made
for technical convenience. The deduction technique of Section 4 can easily be generalized
to conditional constraint trees (B;KB) that satisfy only the restriction u1> 0 i� v1> 0 for
all (BjA)[u1; u2]; (AjB)[v1; v2] 2 KB (Lukasiewicz, 1996).

The restriction that for each query 9(F jE)[x1; x2], all paths from a basic event in E
to a basic event in F have at least one basic event in common is crucial for the deduction
technique of Section 4. It assures that the problem of computing the tight answer to a
complete query can be reduced to the problems of computing the tight answer to a premise-
restricted complete query and the tight answer to a strongly conclusion-restricted complete
query. Note that this restriction is trivially satis�ed by all premise- and conclusion-restricted
queries (for example, by all the queries in Section 2.3).

Especially tight answers to conclusion-restricted queries seem to be quite important in
practice. They may be used to characterize the probability of uncertain basic events given
a collection of basic events that are known with certainty.
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3. Probabilistic Satis�ability

In this section, we show that conditional constraint trees have the nice property that they
are always satis�able. That is, within conditional constraint trees, the user is prevented
from specifying inconsistent probabilistic knowledge.

First, note that conditional constraint trees always have a trivial model in which the
probability of the conjunction of all negated basic events is one and in which the probability
of all the other atomic events is zero.

The next lemma shows that, given a model Pr of a conditional constraint tree and a
real number s from [0; 1], we can construct a new model Pr s by setting Pr s(A) = s �Pr(A)
for all atomic events A that are di�erent from the conjunction of all negated basic events.
Note that Pr0 coincides with the trivial model and that Pr1 is identical to Pr . This lemma
is crucial for inductively constructing models of conditional constraint trees.

Lemma 3.1 Let (B;KB) be a conditional constraint tree with B = fB1; B2; : : : ; Bng. Let

Pr be a model of KB and let s be a real number from [0; 1].

The mapping Prs : AB ! [0; 1] with Prs(A) = s � Pr(A) for all A 2 AB n fB1B2 � � �Bng
and Prs(B1B2 � � �Bn) = s � Pr(B1B2 � � �Bn)� s+ 1 is a model of KB.

Proof. We easily verify that Prs is a probabilistic interpretation. It remains to show that
Prs is also a model of KB . Let (HjG)[u1; u2] 2 KB . Since Pr is a model of KB , we have
Pr j= (HjG)[u1; u2], hence u1 �Pr(G) � Pr(GH ) � u2 �Pr(G), and thus also u1s �Pr(G) �
s � Pr(GH ) � u2s � Pr(G). Since neither B1B2 � � �Bn ) G nor B1B2 � � �Bn ) GH , we get
u1 � Prs(G) � Prs(GH ) � u2 � Prs(G) and thus Prs j= (HjG)[u1; u2]. 2

Finally, the following theorem shows that conditional constraint trees always have a
nontrivial model in which all the basic events have a probability greater than zero.

Theorem 3.2 Let (B;KB) be a conditional constraint tree with B = fB1; B2; : : : ; Bng.
There is a model Pr of KB with Pr(B1B2 � � �Bn) > 0.

Proof. It is su�cient to show the claim for exact conditional constraint trees. The claim
is proved by induction on the number of basic events.

Basis: for (B;KB) = (fBg; ;), a model Pr of KB with Pr(B) > 0 is given by B;B 7! 0; 1
(note that B;B 7! 0; 1 is an abbreviation for Pr(B) = 0 and Pr(B) = 1).

Induction: let (B;KB) = (B1 [B2;KB1 [KB2) with two exact conditional constraint trees
(B1;KB1) = (fB;Cg; f(CjB)[u; u]; (BjC)[v; v]g) and (B2;KB2) = (fC;D1; : : : ;Dkg;KB2)
such that B1 \ B2 = fCg. A model Pr1 of KB1 with Pr1(BC ) > 0 is given by:

BC;BC;BC;BC 7! uv
u+v ;

v�uv
u+v ;

u�uv
u+v ;

uv
u+v :

By the induction hypothesis, there is a model Pr2 of KB2 (that is de�ned on the atomic
events over B2) with Pr2(CD1 � � �Dk)> 0. By Lemma 3.1, we can assume Pr2(C) = Pr1(C).
A probabilistic interpretation Pr on the atomic events over B is now de�ned by:

Pr(AbAcA2) = Pr1(AbAc)�Pr2(AcA2)
Pr2(Ac)
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for all atomic events Ab, Ac, and A2 over fBg, fCg, and B2 n fCg, respectively. We easily
verify that Pr(AbAc) = Pr1(AbAc) and Pr(AcA2 ) = Pr2(AcA2 ) for all atomic events
Ab, Ac, and A2 over fBg, fCg, and B2 n fCg, respectively. Hence, Pr is a model of KB .
Moreover, Pr1(BC ) > 0 and Pr2(CD1 � � �Dk) > 0 entails Pr(BCD1 � � �Dk) > 0. 2

4. Probabilistic Deduction

In this section, we present techniques for computing tight answers to queries directed to
exact and general conditional constraint trees, and we analyze their computational com-
plexity. More precisely, the problem of computing the tight answer to a query is reduced to
the problem of computing the tight answer to a complete query. The latter problem is then
reduced to the problems of computing the tight answer to a premise-restricted complete
query and the tight answer to a strongly conclusion-restricted complete query.

4.1 Premise-Restricted Complete Queries

4.1.1 Exact Conditional Constraint Trees

We now focus on the problem of computing tight answers to premise-restricted complete
queries that are directed to exact conditional constraint trees.

Let (B;KB) be an exact conditional constraint tree and let 9(F jE)[x1; x2] be a premise-
restricted complete query. To compute the tight answer to 9(F jE)[x1; x2], we start by
de�ning a directed tree (that is, a directed acyclic graph in which each node has exactly
one parent, except for the root, which does not have any):

A! B i� A$ B and A is closer to E than B.

This directed tree (B;!) is uniquely determined by the conditional constraint tree and the
premise-restricted complete query. Fig. 3 shows (B;!) for the premise-restricted complete
query 9(QRSTUjM)[x1; x2] to the exact conditional constraint tree in Fig. 2, left side.

Now, the set of nodes B is partitioned into several strata. The lowest stratum contains
only nodes with no children in (B;!), the highest stratum contains the nodes with no
parents in (B;!) (that is, exactly the node of the premise E of the query). Fig. 3 also
shows the di�erent strata in our example.

At each node of (B;!), we compute certain tightest bounds that are logically entailed
by KB . More precisely, the tightest bounds at a node B are computed locally, by exploiting
the tightest bounds that have previously been computed at the children of B. Hence, we
iteratively compute the tightest bounds at the nodes of each stratum, starting with the
nodes of the lowest stratum and terminating with the nodes of the highest stratum. We
distinguish three di�erent ways of computing tightest bounds at a node:

� initialization of a leaf (Leaf),

� chaining of an arrow and a subtree via a common node (Chaining),

� fusion of subtrees via a common node (Fusion).

Let us consider again the premise-restricted complete query 9(QRSTUjM)[x1; x2] to the
exact conditional constraint tree in Fig. 2, left side. Fig. 4 illustrates the three di�erent ways
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Figure 3: Directed Tree (B;!)

of computing tightest bounds at a node (the common nodes for Chaining and Fusion are
�lled black). Table 1 shows the greatest lower and the least upper bounds that are computed
at each node B of each stratum. More precisely, these bounds are �1 = inf Pr(BD)=Pr (B),
�2 = supPr(BD)=Pr (B), �2 = supPr(BD)=Pr (B), and 
2 = supPr(D)=Pr(B) subject to
Pr j= KB and Pr(B) > 0. Table 1 also shows the requested tight answer fx1=0:02; x2=0:17g,
which is given by the tightest bounds �1 and �2 that are computed at the premise M.

strata B D �1 �2 �2 
2

S S 1:0000 1:0000 0:0000 1:0000 (Leaf)
0 T T 1:0000 1:0000 0:0000 1:0000 (Leaf)

U U 1:0000 1:0000 0:0000 1:0000 (Leaf)

P S 0:8500 0:8500 0:0447 0:8947 (Chaining)
1 P T 0:8500 0:8500 0:0447 0:8947 (Chaining)

P U 0:8500 0:8500 0:0000 0:8500 (Chaining)

P STU 0:5500 0:8500 0:0000 0:8500 (Fusion)
1 Q Q 1:0000 1:0000 0:0000 1:0000 (Leaf)

R R 1:0000 1:0000 0:0000 1:0000 (Leaf)

O STU 0:4474 0:7605 0:0447 0:7605 (Chaining)
2 O Q 0:9500 0:9500 0:0500 1:0000 (Chaining)

O R 0:9500 0:9500 5:3833 6:3333 (Chaining)

2 O QRSTU 0:3474 0:7605 0:0447 0:7605 (Fusion)

3 N QRSTU 0:1911 0:4183 0:0246 0:4183 (Chaining)

4 M QRSTU 0:0169 0:1722 0:0719 0:1722 (Chaining)

Table 1: Locally Computed Tightest Bounds
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Figure 4: Local Computations in (B;!)
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We now focus on the technical details. We present the functions H �
1 , H

�
2 , H

�
2 , and H



2 ,

which compute the described greatest lower and least upper bounds. For this purpose, we
need the following de�nitions. Let Pr(C jB) denote u for all (CjB)[u; u] 2 KB .

A node B is a leaf if it does not have any children. For all leaves B, let B" = B. For all
the other nodes B, let B" be the conjunction of all the children of B. For all leaves C, let
L(C) = C. For all the other conjunctive events C, let L(C) be the conjunction of all the
leaves that are in C or that are descendants of a node in C.

In the sequel, let B be a node and let C = B". The case C = B refers to the initialization
of the leaf B, the case C = B1 with a node B1 6= B to the chaining of the arrow B ! B1

and a subtree via the common node B1, and the case C = B1B2 : : : Bk with k > 1 nodes
B1; B2; : : : ; Bk to the fusion of k subtrees via the common node B.

We de�ne the function H �
1 for computing greatest lower bounds: let H �

1 (B;C) = �1

(note that �1 will coincide with the greatest lower bound of Pr(BL(C )) =Pr (B) subject to
Pr j= KB and Pr(B) > 0), where �1 in Leaf (C = B), Chaining (C = B1), and Fusion

(C = B1B2 : : : Bk with k > 1) is given as follows:

Leaf:

�1 = 1

Chaining:

�1 = max(0;Pr (C jB) � (1 +
H�
1 (C;C")�1
Pr(B jC) ))

Fusion:

�1 = max(0; 1 � k +
kP
i=1

H �
1 (B;Bi))

To express that H �
1 computes greatest lower bounds, we need the following de�nitions.

Let B(B;C) comprise B, all nodes in C and all descendants of a node in C. Let KB(B;C)
be the set of all conditional constraints of KB over B(B;C). Let Mo(B;C) be the set of all
models of KB(B;C) that are de�ned on the atomic events over B(B;C).

Now, the function H �
1 is sound and globally complete with respect to B and C i�

H �
1 (B;C) = �1 is the greatest lower bound of Pr(BL(C )) =Pr (B) subject to Pr 2 Mo(B;C)

and Pr(B) > 0. Thus, the next theorem shows soundness and global completeness of H �
1 .

Theorem 4.1

a) For all probabilistic interpretations Pr 2 Mo(B;C), it holds �1 � Pr(B) � Pr(BL(C)).

b) There exists a probabilistic interpretation Pr 2 Mo(B;C) with Pr(B) > 0, �1 �Pr(B) =
Pr(BL(C )), and Pr(BL(C)) = 0 i� L(C))B.

Proof. The proof is given in full detail in Appendix B. 2

Next, we present the functions H �
2 , H

�
2 , and H



2 for computing least upper bounds. Note

that H �
2 , H

�
2 , and H 


2 show the crucial result that for exact conditional constraint trees,
there are local probabilistic deduction techniques that are sound and globally complete.
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In detail, let H �
2 (B;C) = �2, H

�
2 (B;C) = �2, and H



2 (B;C) = 
2 (note that �2, �2,

and 
2 will coincide with the least upper bound of Pr(BL(C )) =Pr (B), Pr(BL(C )) =Pr (B),
and Pr(L(C )) =Pr (B), respectively, subject to Pr j= KB and Pr(B) > 0), where �2, �2,
and 
2 in Leaf (C = B), Chaining (C = B1), and Fusion (C = B1B2 : : : Bk with k > 1)
are given as follows:

Leaf:

�2 = 1

�2 = 0


2 = 1

Chaining:

�2 = min(1;Pr (C jB) �
H



2 (C;C

")
Pr(BjC) ; 1� Pr(C jB) � (1�

H�
2 (C;C")
Pr(BjC) );

Pr(C jB) � (1 +
H

�
2 (C;C

")
Pr(BjC) ))

�2 = min(Pr(C jB) � (
H

�
2 (C;C")+1
Pr(BjC) � 1); Pr(C jB) �

H


2 (C;C

")
Pr(BjC) )


2 = Pr(C jB) �
H



2 (C;C

")
Pr(BjC)

Fusion:

�2 = min
i2[1:k]

H �
2 (B;Bi)

�2 = min
i2[1:k]

H �
2 (B;Bi)


2 = min( min
i2[1:k]

H 

2 (B;Bi); min

i;j2[1:k];i6=j
(H �

2 (B;Bi) +H �
2 (B;Bj)))

The functions H �
2 , H

�
2 , and H 


2 are sound and globally complete with respect to B

and C i� H �
2 (B;C) = �2, H

�
2 (B;C) = �2, and H 


2 (B;C) = 
2 are the least upper bounds
of Pr(BL(C )) =Pr (B), Pr(BL(C )) =Pr(B), and Pr(L(C )) =Pr (B), respectively, subject
to Pr 2 Mo(B;C) and Pr(B) > 0. Hence, the following theorem shows soundness and

global completeness of H �
2 , H

�
2 , and H 


2 (actually, it shows even more to enable a proof by

induction on the recursive de�nition of H �
2 , H

�
2 , and H 


2 ).

Theorem 4.2

a) For all probabilistic interpretations Pr 2 Mo(B;C), it holds Pr(BL(C)) � �2 � Pr(B),
Pr(BL(C)) � �2 � Pr(B), and Pr(L(C)) � 
2 � Pr(B).

b) There exists a probabilistic interpretation Pr 2 Mo(B;C) with Pr(B) > 0, Pr(BL(C)) =
�2 � Pr(B), and Pr(L(C)) = 
2 � Pr(B).

c) There exists a probabilistic interpretation Pr 2 Mo(B;C) with Pr(B) > 0, Pr(BL(C)) =
�2 � Pr(B), and Pr(L(C)) = 
2 � Pr(B).
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Proof. The proof is given in full detail in Appendix B. 2

Note that Theorem 4.2 also shows that H 

2 (B;Bi) � H �

2 (B;Bi) + H �
2 (B;Bi) for all

i 2 [1 :k]. Thus, the expression mini;j2[1:k];i6=j(H
�
2 (B;Bi) + H �

2 (B;Bj)) in the de�nition of

2 in Fusion can be replaced by �2 + �2 for an increased e�ciency in computing 
2 by
exploiting the already computed values of �2 and �2.

Brie
y, by Theorems 4.1 and 4.2, the tight answer to the premise-restricted complete
query 9(F jE)[x1; x2] is given by fx1=H

�
1 (E;E

"); x2=H
�
2 (E;E

")g.

4.1.2 Conditional Constraint Trees

We now focus on computing the tight answer to premise-restricted complete queries to
general conditional constraint trees. In the sequel, let (B;KB) be a conditional constraint
tree and let 9(F jE)[x1; x2] be a premise-restricted complete query.

We may think that the local deduction technique for exact conditional constraint trees
of Section 4.1.1 can easily be generalized to conditional constraint trees. In fact, this is true
as far as the computation of greatest lower bounds is concerned. However, the computation
of least upper bounds cannot be generalized that easily from exact conditional constraint
trees to conditional constraint trees. More precisely, generalizing the computation of least
upper bounds results in solving nonlinear programs. These nonlinear programs and our way
to solve them are illustrated by the following chaining example.

Let the conditional constraint tree (B;KB) be given by B=fM;N;O;Pg and KB =
f(NjM)[u1; u2]; (MjN)[v1; v2], (OjN)[x1; x2], (NjO)[y1; y2], (PjO)[r1; r2], (OjP)[s1; s2]g. Let us
consider the premise-restricted complete query 9(PjM)[z1; z2].

By Theorem 4.2 and some straightforward arithmetic transformations, the requested
least upper bound is the maximum of z subject to u 2 [u1; u2], v 2 [v1; v2], x 2 [x1; x2],
y 2 [y1; y2], r 2 [r1; r2], s 2 [s1; s2], and the nonlinear inequalities in (1) to (5):

z � 1(1)

z � 1� u+ u
v �

ux
v + uxr

vy(2)

z � 1� u+ ux
v � uxr

vy + uxr
vys(3)

z � u� ux
v + ux

vy �
uxr
vy + uxr

vys(4)

z � uxr
vys(5)

In this system of nonlinear inequalities, all upper bounds of z are monotonically decreasing
in v, y, and s. Hence, we can equivalently maximize z subject to u 2 [u1; u2], x 2 [x1; x2],
r 2 [r1; r2], and the nonlinear inequalities in (6) to (10):

z � 1(6)

z � 1� u+ u
v1
� ux

v1
+ uxr

v1y1
(7)

z � 1� u+ ux
v1
� uxr

v1y1
+ uxr

v1y1s1
(8)

z � u� ux
v1

+ ux
v1y1

� uxr
v1y1

+ uxr
v1y1s1

(9)

z � uxr
v1y1s1

(10)

For example, the requested least upper bound for u1 = u2 = u and x1 = x2 = x is shown in
Fig. 5 for u; x 2 [0; 1], r1 = r2 = 0:15, v1 = 0:8, y1 = 0:8, and s1 2 f0:05; 0:1g. The requested
least upper bound for u1 < u2 or x1 < x2 is the maximum value over [u1; u2]� [x1; x2].
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Figure 5: Least Upper Bound z2 in the Chaining Example
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We now transform this nonlinear program into an equivalent linear program (by re-
placing 1, u, ux, and uxr by the new variables xM, xN, xO, and xP, respectively). More
precisely, the maximum of z subject to u 2 [u1; u2], x 2 [x1; x2], r 2 [r1; r2], and the non-
linear inequalities in (6) to (10) coincides with the maximum of z subject to the following
system of linear inequalities over z and xB � 0 (B 2 B):

z � xM

z � xM + 1�v1
v1

� xN � y1
v1y1

� xO + s1
v1y1s1

� xP

z � xM � v1
v1
� xN + y1

v1y1
� xO + 1�s1

v1y1s1
� xP

z � v1
v1
� xN + 1�y1

v1y1
� xO + 1�s1

v1y1s1
� xP

z � 1
v1y1s1

� xP

1 � xM � 1

u1 � xM � xN � u2 � xM

x1 � xN � xO � x2 � xN

r1 � xO � xP � r2 � xO

More generally, tight upper answers to premise-restricted complete queries to conditional
constraint trees can be computed by solving similar nonlinear programs, which can similarly
be transformed into linear programs.

For example, let us consider the premise-restricted complete query 9(QRSTUjM)[x1; x2]
to the conditional constraint tree in Fig. 2, right side. The requested least upper bound
is the maximum of x subject to the system of linear inequalities in Fig. 6 (we actually
generated 72 linear inequalities of which 31 were trivially subsumed by others). Note that
the nine variables xM to xU correspond to the nine nodes M to U.

x � xM

x � 25
18xQ

x � 25
2 xR

x � 25
18xS

x � 25
18xT

x � 25
18xU

x � xN +
1
9xP

x � xN +
1
9xQ

x � xN +
1
9xR

x � 5
4xO + 5

36xP

x � 5
4xO + 5

36xQ

x � 5
4xO + 45

4 xR

x � 5
4xP +

5
36xQ

x � 5
36xP +

5
4xQ

x � 5
36xP +

5
4xR

x � 5
36xQ + 5

4xR

x � xM � xN +
5
4xO + 5

36xR

x � xM + 1
4xN �

5
4xO + 5

4xP

x � xM + 1
4xN �

5
4xO + 5

4xQ

x � xM + 1
4xN �

5
4xO + 5

4xR

x � xM + 1
4xN �

5
4xP +

25
18xS

x � xM + 1
4xN �

5
4xP +

25
18xT

x � xM + 1
4xN �

5
4xP +

25
18xU

1 � xM � 1

3
10xM � xN � 2

5xM
1
2xN � xO � 3

5xN
9
10xO � xR � xO
9
10xO � xQ � xO
4
5xO � xP � 9

10xO
4
5xP � xS � 9

10xP
4
5xP � xT � 9

10xP
4
5xP � xU � 9

10xP

Figure 6: Generated Linear Inequalities in the Chaining Example

Thus, in this example, the tight upper answer is computed by solving a linear program
that has 10 variables and 72 linear inequalities. Note that computing the tight upper answer
by the classical linear programming approach would result in solving a linear program that
has 29 = 512 variables and 4 � 9� 2 = 34 linear inequalities (see Section 4.6).
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Let us now focus on the technical details. We subsequently generalize the function H�
1

of Section 4.1.1 in a straightforward way to compute greatest lower bounds in conditional
constraint trees. Moreover, we present a linear program for computing the requested least
upper bound in conditional constraint trees.

Let Pr1(C jB) denote u1 for all (CjB)[u1; u2] 2 KB . In the sequel, let B be a node and
let C = B". Again, the cases C = B, C = B1 with a node B1 6= B, and C = B1B2 : : : Bk

with k > 1 nodes B1; B2; : : : ; Bk refer to Leaf, Chaining, and Fusion, respectively.

We de�ne the generalized function H �
1 for computing greatest lower bounds in con-

ditional constraint trees: let H �
1 (B;C) = �1 (note that �1 will coincide with the greatest

lower bound of Pr(BL(C )) =Pr (B) subject to Pr j= KB and Pr(B) > 0), where �1 in Leaf
(C = B), Chaining (C = B1), and Fusion (C = B1B2 : : : Bk with k > 1) is given by:

Leaf:

�1 = 1

Chaining:

�1 = max(0;Pr 1(C jB) � (1 +
H�
1 (C;C")�1
Pr1(B jC) ))

Fusion:

�1 = max(0; 1 � k +
kP
i=1

H �
1 (B;Bi))

H �
1 is sound and globally complete with respect to B and C i� H �

1 (B;C) = �1 is the
greatest lower bound of Pr(BL(C )) =Pr (B) subject to Pr 2 Mo(B;C) and Pr(B) > 0.
Thus, the next theorem shows soundness and global completeness of H �

1 .

Theorem 4.3

a) For all probabilistic interpretations Pr 2 Mo(B;C), it holds �1 � Pr(B) � Pr(BL(C)).

b) There exists a probabilistic interpretation Pr 2 Mo(B;C) with Pr(B) > 0, �1 �Pr(B) =
Pr(BL(C )), and Pr(BL(C)) = 0 i� L(C))B.

Proof. The claims follow from Theorem 4.1. 2

Next, we focus on the requested least upper bound, which is computed by solving a
linear program as described in the two examples.

We start by de�ning the functions I�, I�, and I
 over the variables xB (B 2 B). Let
I�(B;C) = �2, I

�(B;C) = �2, and I
(B;C) = 
2, where �2, �2, and 
2 in Leaf (C = B),
Chaining (C = B1), and Fusion (C = B1B2 : : : Bk with k > 1) are given as follows:

Leaf:

�2 = xB

�2 = 0


2 = xB
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Chaining:

�2 = min(xB;
I
(C;C")
Pr1(BjC) ; xC + I�(C;C")

Pr1(BjC) ; xB � xC + I�(C;C")
Pr1(BjC) )

�2 = min(1�Pr1(BjC)
Pr1(BjC) � xC + I�(C;C")

Pr1(BjC) ;
I
(C;C")
Pr1(BjC) )


2 = I
(C;C")
Pr1(BjC)

Fusion:

�2 = min
i2[1:k]

I�(B;Bi)

�2 = min
i2[1:k]

I�(B;Bi)


2 = min( min
i2[1:k]

I
(B;Bi); min
i;j2[1:k];i6=j

(I�(B;Bi) + I�(B;Bj)))

The system of linear inequalities J(B;C) is de�ned as the least set of linear inequalities
over xG � 0 (G 2 B(B;C)) that contains 1 � xB � 1 and u1 � xG � xH � u2 � xG for all
(HjG)[u1; u2] 2 KB(B;C) with G! H (that is, G is the parent of H).

The intuition behind these de�nitions can now be described as follows.
Each xG (G 2 B(B;C)) that satis�es J(B;C) corresponds to the exact conditional con-

straint tree (B(B;C);KB 0(B;C)), whereKB 0(B;C) contains the pair (HjG)[xH=xG; xH=xG]
and (GjH)[v1; v1] for each pair (HjG)[u1; u2]; (GjH)[v1; v2] 2 KB(B;C) with G! H.

We will show that the least upper bound of Pr(BL(C))=Pr (B), Pr(BL(C))=Pr (B),
and Pr(L(C))=Pr (B) subject to Pr j= KB 0(B;C) and Pr(B) > 0 is given by I�(B;C),
I�(B;C), and I
(B;C), respectively. It will then follow that the least upper bound of
Pr(BL(C))=Pr(B), Pr(BL(C))=Pr(B), and Pr(L(C))=Pr (B) subject to Pr j= KB(B;C)
and Pr(B) > 0 is given by the maximum of I�(B;C), I�(B;C), and I
(B;C), respectively,
subject to all xG (G 2 B(B;C)) satisfying J(B;C).

That is, we implicitly performed the variable transformation described in the two ex-
amples. This transformation is indeed correct for conditional constraint trees:

Lemma 4.4

a) If xG (G 2 B(B;C)) satis�es J(B;C), then for all conditional constraints (HjG)[u1; u2] 2
KB(B;C) such that G! H, there exists uH 2 [u1; u2] with xH = uH � xG .

b) Let uH 2 [u1; u2] for all (HjG)[u1; u2] 2 KB(B;C) such that G ! H. There exists xG
(G 2 B(B;C)) with J(B;C) and xH = uH � xG for all nodes H with parent G.

Proof. a) For all nodes H with parent G, let uH be de�ned by uH = xH = xG.

b) Let xB = 1, and for all nodes H with parent G, let xH be de�ned by xH = uH � xG. 2

We are now ready to formulate an optimization problem for computing the requested
least upper bound.

Theorem 4.5 Let X2 be the maximum of x subject to x � I�(E;E") and J(E;E").

a) Pr(EL(E")) � X2 � Pr(E) for all Pr 2 Mo(E;E").

b) There exists Pr 2 Mo(E;E") with Pr(E) > 0 and Pr(EL(E ")) = X2 � Pr(E).
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Proof. Let Pr(BjC) = v1 for all (BjC)[v1; v2] 2 KB such that B ! C. By Theorem 4.2,
the requested least upper bound is the maximum of x subject to x � H �

2 (E;E
") and

Pr(CjB) = uC 2 [u1; u2] for all (CjB)[u1; u2] 2 KB such that B ! C. By Lemma 4.4, we
can equivalently maximize x subject to x � I�(E;E") and J(E;E"). 2

We now wonder how to solve the generated optimization problem, since I�(E;E") may
still contain min-operations that cannot be tackled by linear programming. Moreover, given
a method for solving this optimization problem, we are also interested in a rough idea on
the overall time complexity of computing the requested least upper bound this way. Finally,
we are interested in possible improvements to increase e�ciency. These topics are discussed
in the rest of this section.

If I�(E;E") does not contain any min-operations at all, then the generated optimization
problem is already a linear program. Otherwise, it can easily be transformed into a linear
program. In a �rst transformation step, all inner min-operations are eliminated. This can
easily be done due to the well-structuredness of I�(E;E"). In a second step, the only
remaining outer min-operation is eliminated by introducing exactly one linear inequality
for each contained operand. In these linear inequalities, the operands of the outer min-
operation are upper bounds of x.

To get a rough idea on the time complexity of computing the requested least upper
bound this way, we must analyze the size of the generated linear programs. It is given
by the number of variables, the number of linear inequalities in J(E;E"), and the num-
ber of linear inequalities extracted from x � I�(E;E"). The latter is quite worrying,
since I
(B;C) in Fusion seems to produce many min-operands. Moreover, I
(B;C) in
Fusion contains I�(B;Bi), and I�(B;C) in Chaining contains I
(C;C"). So, due to
this crossed dependency, the overall number of generated linear inequalities is likely to
`explode' for trees that branch very often.

To avoid these problems, we introduce the auxiliary functions J�, J� , and J
 over the
variables xB (B 2 B). Let J�(B;C) = �02, J

�(B;C) = �02, and J

(B;C) = 
02, where �

0
2, �

0
2,

and 
02 in Leaf (C = B), Chaining (C = B1), and Fusion (C = B1B2 : : : Bk with k > 1)
are given as follows:

Leaf:

�02 = xB

�02 = 0


02 = xB

Chaining:

�02 = min(xB; xC + J�(C;C")
Pr1(BjC) ; xB � xC + J�(C;C")

Pr1(BjC) )

�02 = 1�Pr1(BjC)
Pr1(BjC) � xC + J�(C;C")

Pr1(BjC)


02 = J
(C;C")
Pr1(BjC)
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Fusion:

�02 = min
i2[1:k]

J�(B;Bi)

�02 = min
i2[1:k]

J�(B;Bi)


02 = min( min
i2[1:k]

J
(B;Bi); min
i;j2[1:k];i6=j

(J�(B;Bi) + J�(B;Bj)))

Note that �02 in Chaining can be separated into the cases C" = C and C" 6= C. Since
simply �02 = xC for C" = C, we reduce the number of generated linear inequalities this way.

The next lemma shows that the functions I�, I� , and I
 can be expressed in terms of
the auxiliary functions J�, J�, and J
 .

Lemma 4.6 For all xB (B 2 B) that satisfy J(E;E"):

�2 = min(�02; 

0
2), �2 = min(�02; 


0
2), and 
2 = 
02 :

Proof sketch. The claim can be proved by induction on the recursive de�nition of the
functions I�, I�, and I
 . 2

Brie
y, by Theorem 4.3, Theorem 4.5, and Lemma 4.6, the tight answer to the premise-
restricted complete query 9(F jE)[x1; x2] is given by fx1=H

�
1 (E;E

"); x2=X2g, where X2 is
the maximum of x subject to x � J�(E;E"), x � J
(E;E"), and J(E;E").

In our example, we get fx1=0:00; x2=0:27g as the tight answer to the premise-restricted
complete query 9(QRSTUjM)[x1; x2] to the conditional constraint tree in Fig. 2, right side.

The time complexity of computing the requested greatest lower bound and especially
the requested least upper bound this way is analyzed in Section 4.5.

4.2 Strongly Conclusion-Restricted Complete Queries

We now focus on computing the tight answer to strongly conclusion-restricted complete
queries to general conditional constraint trees. In the sequel, let (B;KB) be a conditional
constraint tree and let 9(F jE)[x1; x2] be a strongly conclusion-restricted complete query.

The tight upper answer to 9(F jE)[x1; x2] is always given by fx2=1g. To compute the
tight lower answer to 9(F jE)[x1; x2], we �rst compute the tight lower answer fy1=u1g to the
premise-restricted complete query 9(EjF )[y1; y2]. We then distinguish the following cases:

If u1 > 0, then the tight lower answer to 9(F jE)[x1; x2] is computed locally by a function
H�

1 (like the tight lower answer to premise-restricted complete queries in Section 4.1.2).
If u1 = 0 and E ) F , then the tight lower answer to 9(F jE)[x1; x2] is given by fx1=1g.
Otherwise, the tight lower answer to 9(F jE)[x1; x2] is given by fx1=0g.

We now focus on the technical details. Let (B;!) be the directed graph that belongs
to the premise-restricted complete query 9(EjF )[y1; y2] (see Section 4.1.1). Let Pr1(BjC)
denote v1 for all (BjC)[v1; v2] 2 KB . In the sequel, let B be a node and let C = B". Again,
the cases C = B, C = B1 with a node B1 6= B, and C = B1B2 : : : Bk with k > 1 nodes
B1; B2; : : : ; Bk refer to Leaf, Chaining, and Fusion, respectively.

We de�ne the functionH �
1 for computing greatest lower bounds in the case H �

1 (B;C) > 0
as follows. Let H �

1 (B;C) = �1 (note that �1 will coincide with the greatest lower bound
of Pr(BL(C )) =Pr (L(C)) subject to Pr j= KB and Pr(L(C)) > 0), where �1 in Leaf
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(C = B), Chaining (C = B1), and Fusion (C = B1B2 : : : Bk with k > 1) is given as
follows (note that H �

1 (C;C
") and H �

1 (B;Bi) are de�ned like in Section 4.1.2):

Leaf:

�1 = 1

Chaining:

�1 = H �
1 (C;C

") � (1 + Pr1(BjC)�1
H�
1 (C;C")

)

Fusion:

�1 =

0
BB@1 +

min
i2[1:k]

H�
1 (B;Bi)�(1=H �

1 (B;Bi)�1)

1�k+
kP

i=1

H�
1 (B;Bi)

1
CCA

�1

By induction on the de�nition of H �
1 , it is easy to see that H �

1 (B;C) > 0 entails that �1
is de�ned and that �1 > 0 (note that H �

1 (B;C) = �1 in Leaf, Chaining, and Fusion is
de�ned like in Section 4.1.2). In this case, H �

1 is sound and globally complete with respect
to B and C i� H �

1 (B;C) = �1 is the greatest lower bound of Pr(BL(C )) =Pr (L(C)) subject
to Pr 2 Mo(B;C) and Pr(L(C)) > 0. Thus, the next theorem shows soundness and global
completeness of H �

1 . It also shows that, for C = B1B2 : : : Bk with k > 1, the least upper
bound of Pr(BL(C )) =Pr (L(C)) subject to Pr 2 Mo(B;C) and Pr(L(C)) > 0 is given by 1.

Theorem 4.7

a) If �1 > 0, then for all Pr 2 Mo(B;C), it holds �1 � Pr(L(C)) � Pr(BL(C)).

b) If �1 > 0, then there is a probabilistic interpretation Pr 2 Mo(B;C) with Pr(B) > 0,
Pr(L(C)) > 0, �1 � Pr(L(C)) = Pr(BL(C)), and �1 � Pr(B) = Pr(BL(C )).

c) If �1 > 0 and C = B1B2 : : : Bk with k > 1, then there is some Pr 2 Mo(B;C) with
Pr(B) > 0, Pr(L(C)) > 0, 1 � Pr(L(C)) = Pr(BL(C)), and �1 � Pr(B) = Pr(BL(C )).

d) If �1=0 and C =B1B2 : : : Bk with k > 1, then for each "> 0 there is some Pr 2Mo(B;C)
with Pr(B) > 0, Pr(L(C)) > 0, 1 � Pr(L(C)) = Pr(BL(C)), and " � Pr(B) � Pr(BL(C )).

Proof. The proof is given in full detail in Appendix C. 2

We are now ready to give the following characterization of tight answers to strongly
conclusion-restricted complete queries to conditional constraint trees.

Theorem 4.8 Let (B;KB) be a conditional constraint tree and let 9(F jE)[x1; x2] be a

strongly conclusion-restricted complete query. Let the tight lower answer to the premise-

restricted complete query 9(EjF )[y1; y2] be given by fy1=u1g.

(1) If u1 > 0, then the tight answer to 9(F jE)[x1; x2] is given by fx1=H
�
1 (F; F

"); x2=1g.

(2) If u1 = 0 and E ) F , then the tight answer to 9(F jE)[x1; x2] is given by fx1=1; x2=1g.

(3) Otherwise, the tight answer to 9(F jE)[x1; x2] is given by fx1=0; x2=1g.

Proof. The proof is given in full detail in Appendix C. 2
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4.3 Complete Queries

We now show that the problem of computing tight answers to complete queries can be
reduced to the problems of computing tight answers to premise-restricted complete queries
and of computing tight answers to strongly conclusion-restricted complete queries.

In detail, a complete query is premise-restricted, it is strongly conclusion-restricted,
or it can be reduced to premise-restricted complete queries and to strongly conclusion-
restricted complete queries. For example, given the complete query 9(STUjMQR)[x1; x2]
to the conditional constraint tree in Fig. 2, right side, we �rst compute the tight answer
fy1=u1; y2=u2g to the premise-restricted complete query 9(MQRjO)[y1; y2] (directed to the
corresponding subtree) and the tight answer fz1=v1; z2=v2g to the strongly conclusion-re-
stricted complete query 9(OjMQR)[z1; z2] (directed to the corresponding subtree). We then
generate a new conditional constraint tree by replacing the subtree over the nodes M, N,
O, Q, and R by the pair of conditional constraints (BjO)[u1; u2] and (OjB)[v1; v2] over the
nodes B and O (note that B represents MQR). Finally, we compute the tight answer to the
premise-restricted complete query 9(STUjB)[x1; x2] to the new conditional constraint tree.

Note that this reduction can always be done, since for each query 9(F jE)[x1; x2], all
paths from a basic event in E to a basic event in F have at least one basic event in common.

Theorem 4.9 Let (B;KB) be a conditional constraint tree and let 9(F jE)[x1; x2] be a com-
plete query that is not premise-restricted and not strongly conclusion-restricted.

a) There exists a basic event G 2 B and two conditional constraint trees (B1;KB1) and

(B2;KB2) such that B1 \ B2 = fGg, B1 [ B2 = B, and 9(GjE)[z1; z2] is a strongly conclu-

sion-restricted complete query to (B1;KB1).

b) Let the tight answer to the premise-restricted complete query 9(EjG)[y1; y2] to (B1;KB1)
be given by fy1=u1; y2=u2g and let the tight answer to the strongly conclusion-restricted

complete query 9(GjE)[z1; z2] to (B1;KB1) be given by fz1=v1; z2=v2g.

(1) If u1 > 0, then also v1 > 0 and the tight answer to the complete query 9(F jE)[x1; x2]
to (B;KB) coincides with the tight answer to the premise-restricted complete query

9(F jB)[x1; x2] to (B2 [ fBg;KB2 [ f(BjG)[u1; u2]; (GjB)[v1; v2]g), where B is a new

basic event with B 62 B2. In particular, for exact conditional constraint trees (B;KB),
the tight answer to the complete query 9(F jE)[x1; x2] is given by:

fx1=max(0; v1 �
v1
u1

+ v1s1
u1

); x2=min(1; 1 � v1 +
v1s2
u1

; t2
t2�s2+u1

)g ;

where s1 = H �
1 (G;G

"), s2 = H �
2 (G;G

"), and t2 = H 

2 (G;G

") (note that H �
1 , H

�
2 , and

H 

2 are de�ned like in Section 4.1.1).

(2) If u1=0, v1=1, and G)F , then the tight answer to the complete query 9(F jE)[x1; x2]
to (B;KB) is given by fx1=1; x2=1g.

(3) Otherwise, the tight answer to the complete query 9(F jE)[x1; x2] to (B;KB) is given
by fx1=0; x2=1g.

Proof. The proof is given in full detail in Appendix D. 2
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4.4 Queries

The problem of computing tight answers to queries can be reduced to the more specialized
problem of calculating tight answers to complete queries.

More precisely, given a query 9(F jE)[x1; x2] to a conditional constraint tree (B;KB),
a complete query 9(F 0jE0)[x1; x2] to a conditional constraint tree (B

0;KB 0) is generated by:

1. While (B;KB) contains a leaf B that is not contained in EF : remove B from B and
remove the corresponding pair (CjB)[u1; u2]; (BjC)[v1; v2] 2 KB from KB .

2. While EF contains a basic event B that is not a leaf in (B;KB): increase B by a new
basic event B0, increase KB by the pair (B0jB)[1; 1] and (BjB0)[1; 1], and replace each
occurrence of B in 9(F jE)[x1; x2] by the new basic event B0.

It remains to show that the generated probabilistic deduction problem has the same
solution as the original probabilistic deduction problem:

Theorem 4.10 The tight answer to the query 9(F jE)[x1; x2] to (B;KB) coincides with the

tight answer to the complete query 9(F 0jE0)[x1; x2] to (B0;KB 0).

Proof. Let (B00;KB 00) be the conditional constraint tree that is generated in step 1 and let
(F jE)[u1; u2] be a tight logical consequence of KB

00. We now show that (F jE)[u1; u2] is also
a tight logical consequence of KB . First, (F jE)[u1; u2] is a logical consequence of KB , since
KB 00 is a subset of KB . Moreover, each model Pr 00 of KB 00 (that is de�ned on all atomic
events over B00) can be extended to a model Pr of KB (that is de�ned on all atomic events
over B) with Pr(A) = s �Pr 00(A) for all atomic events A over B00 that are di�erent from the
conjunction of all negated basic events in B00, where s is a real number from (0; 1]. This
model can be constructed inductively like in the proof of Theorem 3.2. Thus, for u 2 [u1; u2],
Pr 00(E) > 0 and u � Pr 00(E) = Pr 00(EF ) entails Pr(E) > 0 and u � Pr(E) = Pr(EF ).

Finally, (F jE)[u1; u2] is a tight logical consequence of KB 00 i� (F 0jE0)[u1; u2] is a tight
logical consequence of KB 0, since we just introduce synonyms for basic events in step 2. 2

4.5 Computational Complexity

4.5.1 Exact Conditional Constraint Trees

We now show that for exact conditional constraint trees, our technique to compute the tight
answer to queries runs in linear time in the number of nodes of the tree. In the sequel, let
(B;KB) be an exact conditional constraint tree and let n denote its number of nodes.

Lemma 4.11 The tight answer to a premise-restricted or strongly conclusion-restricted

complete query can be computed in linear time in n.

Proof. For exact conditional constraint trees, our approach to compute the tight upper
answer to premise-restricted complete queries by H�

2 , H
�
2 , and H


2 runs in time O(n):
The directed tree can be computed in time O(n). An initialization of a leaf with a

constant number of assignments is performed exactly for each leaf of the directed tree, a
chaining with a constant number of arithmetic operations is performed exactly for each
arrow of the directed tree. Hence, initializing all leaves and performing all chainings runs
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in time O(n). A fusion is done for each branching of the directed tree, using linear time in
the number of branches. Thus, all fusions together run in time O(n).

Even for general conditional constraint trees, the tight lower answer to premise-restricted
complete queries, and hence also the tight answer to strongly conclusion-restricted complete
queries, is analogously computed in time O(n). 2

Theorem 4.12 The tight answer to a query can be computed in linear time in n.

Proof. We assume that the set of basic events B is totally ordered and that the basic events
in the conjunctive events E and F of the query 9(F jE)[x1; x2] are written in this order.

First, the query is reduced to a complete query according to Section 4.4. This reduction
can be done in time O(n). Now, if the generated complete query is premise-restricted or
strongly conclusion-restricted, then the claim follows immediately from Lemma 4.11.

Otherwise, the generated complete query is reduced to premise-restricted and strongly
conclusion-restricted complete queries according to Section 4.3. Also this reduction can be
done in time O(n), since the basic event G in Theorem 4.9 a) is computable in time O(n).
Hence, the claim follows from Theorem 4.9 and Lemma 4.11. Note that t2 = H 


2 (G;G
") in

Theorem 4.9 b) (1) can also be computed in time O(n). 2

4.5.2 Conditional Constraint Trees

For general conditional constraint trees, our technique to compute the tight lower answer
to queries runs still in linear time, while our technique to compute the tight upper answer
to queries runs in polynomial time in the number of nodes of the tree. In the sequel, let
(B;KB) be a general conditional constraint tree and let n denote its number of nodes.

Lemma 4.13

a) The tight lower answer to a premise-restricted complete query and the tight answer to a
strongly conclusion-restricted complete query can be computed in linear time in n.

b) The tight upper answer to a premise-restricted complete query can be computed in poly-

nomial time in n.

Proof. a) The claim is already shown in the proof of Lemma 4.11.

b) Our linear programming technique to compute the tight upper answer to premise-
restricted complete queries runs in polynomial time in n:

Linear programming runs in polynomial time in the size of the linear programs (Pa-
padimitriou & Steiglitz, 1982; Schrijver, 1986), where the size of a linear program is given
by its number of variables and its number of linear inequalities.

We now show that the size of our linear programs in Section 4.1.2 is polynomial in n.
The number of variables is n + 1. The number of linear inequalities in J(E;E") is 2n.
By induction on the recursive de�nition of J�, J�, and J
 , it can be shown that the
number of min-operands in J�(B;C), J�(B;C), and J
(B;C) is limited by jB(B;C)j2,
jB(B;C)j, and jB(B;C)j4, respectively. Hence, the number of linear inequalities extracted
from x � J�(E;E") and x � J
(E;E") is limited by jB(E;E")j2 + jB(E;E")j4 = n2 + n4.
Thus, the overall number of generated linear inequalities l is limited by lu = 2n+ n2 + n4.
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Finally, note that lu is a very rough upper bound for l, in many conditional constraint
trees (especially in those that branch very rarely), l is much lower than lu. For example,
taking a complete binary tree with n = 127 nodes, we get only l = 19 964 compared to
lu = 260 161 024. In the example of Section 4.1.2 with n = 9 nodes, we get only l = 72
compared to lu = 6660. Another example is a tree that is degenerated to a chain of basic
events. In this case, we even get l = 5n+ 1, that is, the overall number of generated linear
inequalities is linear in n. 2

Theorem 4.14

a) The tight lower answer to a query can be computed in linear time in n.

b) The tight upper answer to a query can be computed in polynomial time in n.

Proof. We assume that the set of basic events B is totally ordered and that the basic events
in the conjunctive events E and F of the query 9(F jE)[x1; x2] are written in this order.

Like in the proof of Theorem 4.12, the query is reduced to a complete query according
to Section 4.4. This reduction can be done in time O(n). Now, if the generated com-
plete query is premise-restricted or strongly conclusion-restricted, then the claims follow
immediately from Lemma 4.13.

Otherwise, the generated complete query is reduced to premise-restricted and strongly
conclusion-restricted complete queries according to Section 4.3. Again, this reduction can
be done in time O(n), since the basic event G in Theorem 4.9 a) is computable in time O(n).
Thus, the claims follow from Theorem 4.9 and Lemma 4.13. Note that in Theorem 4.9 b) (1),
the tight lower answer to 9(F jB)[x1; x2] can be computed without u2 and v2. 2

4.6 Comparison with the Classical Linear Programming Approach

As a comparison, we now brie
y describe how probabilistic deduction in conditional con-
straint trees can be done by the classical linear programming approach (Paa�, 1988; van
der Gaag, 1991; Amarger et al. 1991; Hansen et al. 1995). In the sequel, let 9(F jE)[x1; x2]
be a query to an exact or general conditional constraint tree (B;KB) over n nodes.

The tight answer to 9(F jE)[x1; x2] can be computed by solving two linear programs. In
detail, the requested greatest lower and least upper bound are given by the optimal values
of the following two linear programs with xA � 0 (A 2 AB) and opt 2 fmin;maxg:

opt
P

A2AB; A)EF xA subject to

P
A2AB; A)E xA = 1

P
A2AB; A)GH xA � u1 �

P
A2AB; A)G xA for all (HjG)[u1; u2] 2 KB

P
A2AB; A)GH xA � u2 �

P
A2AB; A)G xA for all (HjG)[u1; u2] 2 KB

That is, the tight answer is computed by solving two linear programs with 2n variables
and 4n � 2 linear inequalities. For example, the tight answer to the premise-restricted
complete query 9(QRSTUjM)[x1; x2] to the conditional constraint trees in Fig. 2 yields two
linear programs with 29 = 512 variables and 4 � 9� 2 = 34 linear inequalities.
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Hence, if we now solve these two linear programs by the standard simplex method or
the standard interior-point technique, then we need immediately exponential time in n. It
is still an open question whether column generation techniques can help to solve the two
linear programs in less than exponential time in n in the worst case.

5. Comparison with Bayesian Networks

In this section, we brie
y discuss the relationship between conditional constraint trees and
Bayesian networks (Pearl, 1988).

A Bayesian network is de�ned by a directed acyclic graph G over discrete random vari-
ables X1;X2; : : : ;Xn as nodes and by a conditional probability distribution Pr(Xijpa(Xi))
for each random variable Xi and each instantiation pa(Xi) of its parents pa(Xi). It speci�es
a unique joint probability distribution Pr over X1;X2; : : : ;Xn by:

Pr(X1;X2; : : : ;Xn) =
nY
i=1

Pr(Xijpa(Xi)) :

That is, the joint probability distribution Pr is uniquely determined by the conditional
distributions Pr(Xijpa(Xi)) and certain conditional independencies encoded in G.

Hence, Bayesian trees (that is, Bayesian networks that have a directed tree as associated
directed acyclic graph) with only binary random variables seem to be very close to exact
conditional constraint trees. However, exact and general conditional constraint trees are
associated with an undirected tree that does not encode any independencies! For this rea-
son, exact and general conditional constraint trees describe convex sets of joint probability
distributions rather than single joint probability distributions.

But, would it be possible to additionally assume certain independencies? Of course, with
each exact or general conditional constraint tree (B;KB), we can associate all probabilistic
interpretations Pr that are models of KB and that have additionally the undirected tree
(B;$) as an I-map (Pearl, 1988). That is, we would have independencies without causal
directionality like in Markov trees (Pearl, 1988). However, this idea does not carry us
to a single probabilistic interpretation (neither for exact conditional constraint trees, nor
for general conditional constraint trees), and it is an interesting topic of future research to
investigate how the computation of tight answers in exact and general conditional constraint
trees changes under this kind of independencies (which yield tighter bounds, since they
reduce the number of models of exact and general conditional constraint trees).

Finally, if we additionally �x the probability of exactly one node, then an exact condi-
tional constraint tree under the described independencies speci�es exactly one probabilistic
interpretation (note that, to keep satis�ability, the probability of a node must respect certain
upper bounds, which are entailed by the exact conditional constraint tree). But, such exact
conditional constraint trees are in fact Bayesian trees with only binary random variables.

6. Summary and Conclusions

We showed that globally complete probabilistic deduction with conditional constraints over
basic events is NP-hard. We then concentrated on the special case of probabilistic deduction
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in exact and general conditional constraint trees. We presented very e�cient techniques for
globally complete probabilistic deduction. More precisely, for exact conditional constraint
trees, we presented a local approach that runs in linear time in the size of the conditional
constraint trees. For general conditional constraint trees, we introduced a global approach
that runs in polynomial time in the size of the conditional constraint trees.

Probabilistic deduction in conditional constraint trees is motivated by previous work
in the literature on inference rules. It generalizes patterns of commonsense reasoning that
have been thoroughly studied in this work. Hence, we presented a new class of tractable
probabilistic deduction problems, which are driven by arti�cial intelligence applications.

It is also important to note that the deduction process in exact and general conditional
constraint trees can easily be elucidated in a graphical way. For example, the computation
of the tight answer to the premise-restricted complete query 9(QRSTUjM)[x1; x2] to the
exact conditional constraint tree in Fig. 2, left side, can be illustrated by labeling each node
of the directed tree in Fig. 3 with the corresponding tightest bounds of Table 1.

Like Bayesian networks, conditional constraint trees are well-structured probabilistic
knowledge bases that have an intuitive graphical representation. Di�erently from Bayesian
networks, conditional constraint trees do not encode any probabilistic independencies. Thus,
they can also be understood as a complement to Bayesian networks, useful for restricted
applications in which well-structured independencies do not hold or are di�cult to access.

Conditional constraint trees are quite restricted in their expressive power. However, in
more general probabilistic knowledge bases, probabilistic deduction in conditional contraint
trees may always act as local inference rules. For example, in case we desire explanatory
information on some speci�c local deductions from a subset of the whole knowledge base
(which could especially be useful in the design phase of a probabilistic knowledge base).

An important conclusion of this paper concerns the question whether to perform prob-
abilistic deduction by the iterative application of inference rules or by linear programming.
The techniques of this paper have been elaborated by following the idea of inference rules in
probabilistic deduction. Hence, on the one hand, this paper shows that the idea of inference
rules can indeed bring us to e�cient techniques for globally complete probabilistic deduction
in restricted settings. However, on the other hand, given the technical complexity of the
corresponding proofs, it seems unlikely that these results can be extended to probabilistic
knowledge bases that are signi�cantly more general than conditional constraint trees.

That is, as far as signi�cantly more general probabilistic deduction problems with con-
ditional constraints are concerned, the iterative application of inference rules does not seem
to be very promising for globally complete probabilistic deduction. Note that a similar
conclusion is drawn in a companion paper (1998a, 1999a), which shows the limits of locally
complete inference rules for probabilistic deduction under taxonomic knowledge.

For example, probabilistic deduction from probabilistic logic programs that do not as-
sume probabilistic independencies (Ng & Subrahmanian 1993, 1994; Lukasiewicz, 1998d)
should better not be done by the iterative application of inference rules. Note that much
more promising techniques are, for example, global techniques by linear programming
(Lukasiewicz, 1998d) and in particular approximation techniques based on truth-functional
many-valued logics (Lukasiewicz 1998b, 1999b).
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Appendix A. Preliminaries of the Proofs for Sections 4.1 to 4.3

In this section, we make some technical preparations for the proofs of Theorems 4.1, 4.2,
4.7, 4.8, and 4.9. In the sequel, we use the notation

x1;1 x1;2 r1

x2;1 x2;2 r2

c1 c2

as an abbreviation of the following system of equations:

x1;1 + x1;2 = r1

x2;1 + x2;2 = r2

x1;1 + x2;1 = c1

x1;2 + x2;2 = c2 :
(11)

The next lemma provides the optimal values of two linear programs to be solved in the
proofs of Theorems 4.1, 4.2, 4.7, 4.8, and 4.9.

Lemma A.1 Let r1; r2; c1; c2 � 0 with r1 + r2 = c1 + c2. For all i; j 2 f1; 2g:

a) min(ri; cj) = max xi;j subject to (11) and xn;m � 0 for all n;m 2 f1; 2g.

b) max(0; ri � c3�j) = min xi;j subject to (11) and xn;m � 0 for all n;m 2 f1; 2g.

Proof. The claims can easily be veri�ed (Lukasiewicz, 1996). 2

Let us assume that a conditional constraint tree is the union of two subtrees that have
just one node in common. A model of each subtree and a third model related to the
common node can now be combined to a model of the whole conditional constraint tree.
This important result follows from the next lemma.

Lemma A.2 Let B1 and B2 be sets of basic events with B1\B2 = ;. Let B0 be a new basic

event that is not contained in B1 [ B2. Let Pr1 and Pr2 be probabilistic interpretations on

the atomic events over B1[fB0g and B2[fB0g, respectively. Let B1 and B2 be conjunctive

events over B1 and B2, respectively. Let Pr0 be a probabilistic interpretation on the atomic
events over fB0; B1; B2g with Pr0(H0H1 ) = Pr1(H0H1 ) and Pr0(H0H2 ) = Pr2(H0H2 ) for
all atomic events H0, H1, and H2 over fB0g, fB1g, and fB2g, respectively.

There is a probabilistic interpretation Pr on the atomic events over B1[B2[fB0g with:

Pr(H0H1H2 ) = Pr0(H0H1H2 );

Pr(H0A1 ) = Pr1(H0A1 ); and Pr(H0A2 ) = Pr2(H0A2 )
(12)
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for all atomic events H0, H1, H2, A1, and A2 over the sets of basic events fB0g, fB1g,
fB2g, B1, and B2, respectively.

Proof. Let the probabilistic interpretation Pr on the atomic events over B1 [ B2 [ fB0g
be de�ned as follows:

Pr(H0A1A2 ) =

8<
:
Pr0(H0H1H2 ) �

Pr1(H0A1 )
Pr1(H0H1 )

� Pr2(H0A2 )
Pr2(H0H2 )

if Pr1(H0H1 ) � Pr2(H0H2 ) > 0

0 if Pr1(H0H1 ) � Pr2(H0H2 ) = 0

for all atomic events H0, A1, and A2 over fB0g, B1, and B2, respectively, with atomic events
H1 over fB1g and H2 over fB2g such that A1 ) H1 and A2 ) H2.

Now, we must show that Pr satis�es (12). Let H0, H1, and H2 be atomic events over
fB0g, fB1g, and fB2g, respectively. For Pr1(H0H1 ) > 0 and Pr2(H0H2 ) > 0, we get:

Pr(H0H1H2 ) =
P

A12AB1 ; A1)H1

A22AB2 ; A2)H2

Pr0(H0H1H2 ) �
Pr1(H0A1 )
Pr1(H0H1 )

� Pr2(H0A2 )
Pr2(H0H2 )

= Pr0(H0H1H2 ) :

For Pr1(H0H1 ) = 0 or Pr2(H0H2 ) = 0, we get Pr(H0H1H2 ) = 0 = Pr0(H0H1H2 ).

Let H0, H1, and A1 be atomic events over fB0g, fB1g, and B1, respectively, with
A1 ) H1. For Pr1(H0H1 ) > 0, Pr2(H0B2 ) > 0, and Pr2(H0B2 ) > 0, it holds:

Pr(H0A1 ) =
P

A22AB2 ; A2)B2

Pr0(H0H1B2 ) �
Pr1(H0A1 )
Pr1(H0H1 )

� Pr2(H0A2 )
Pr2(H0B2 )

+
P

A22AB2 ; A2)B2

Pr0(H0H1B2 ) �
Pr1(H0A1 )
Pr1(H0H1 )

� Pr2(H0A2 )

Pr2(H0B2 )

= Pr0(H0H1 ) �
Pr1(H0A1 )
Pr1(H0H1 )

= Pr1(H0A1 ) :

For Pr1(H0H1 ) > 0, Pr2(H0B2 ) > 0, and Pr2(H0B2 ) = 0, we get:

Pr(H0A1 ) =
P

A22AB2 ; A2)B2

Pr0(H0H1B2 ) �
Pr1(H0A1 )
Pr1(H0H1 )

� Pr2(H0A2 )
Pr2(H0B2 )

= Pr0(H0H1 ) �
Pr1(H0A1 )
Pr1(H0H1 )

= Pr1(H0A1 ) :

The proof is similar for Pr1(H0H1 ) > 0, Pr2(H0B2 ) = 0, and Pr2(H0B2 ) > 0.

For Pr1(H0H1 ) = 0, we get Pr(H0A1 ) = 0 = Pr1(H0A1 ).

Finally, the proof of Pr(H0A2 ) = Pr2(H0A2 ) for all atomic events H0 over fB0g and
A2 over B2 can be done analogously. 2

Appendix B. Proofs for Section 4.1

In this section, we give the proofs of Theorems 4.1 and 4.2. That is, we show the global
soundness and the global completeness of the functions H �

1 , H
�
2 , H

�
2 , and H 


2 . The proofs

are done by induction on the recursive de�nition of H �
1 , H

�
2 , H

�
2 , and H 


2 .
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To prove global soundness, we just have to show the local soundness of the computations
in Leaf, Chaining, and Fusion. To prove global completeness, we construct two models
of the conditional constraint tree, one related to the greatest lower bound and another one
related to the least upper bound computed in Leaf, Chaining, and Fusion.

For Leaf, such a model is trivially given. For Chaining, we combine a model of the
arrow, a model of the subtree, and a model connected to the common node to a model of the
extended conditional constraint tree. For Fusion, we combine models of the subtrees and
a model connected to the common node to a model of the extended conditional constraint
tree. More precisely, for Chaining and Fusion, the models of the subtrees are related to
previously computed tightest bounds, while the model connected to the common node is
related to the tightest bounds computed in the running Chaining or Fusion.

We need the following technical preparations. The next lemma helps us to show the
global completeness of the functions H �

2 , H
�
2 , and H 


2 in Chaining and Fusion.

Lemma B.3 a) For all real numbers u; v 2 (0; 1], x2 2 [0; 1], and x2; z2 2 [0;1) with

x2; x2 � z2 and z2 � x2 + x2, there is some x 2 [z2 � x2; x2] with:

min(1; uz2v ; 1� u+ ux
v ; u�

ux
v + uz2

v ) = min(1; uz2v ; 1� u+ ux2
v ; u+ ux2

v ) :(13)

b) For v2; x2 2 [0; 1] and v2; x2; w2; z2 2 [0;1) with v2 � w2, v2 � w2, x2 � z2, x2 � z2,
w2 � v2 + v2, and z2 � x2 + x2, there is v 2 [w2 � v2; v2] and x 2 [z2 � x2; x2] with:

min(w2; z2; v + z2 � x; x+ w2 � v) = min(w2; z2; v2 + x2; x2 + v2)

min(v; x) = min(v2; x2) :
(14)

Proof. The claims can easily be veri�ed (Lukasiewicz, 1996). 2

The following lemma helps us to prove the local soundness and the local completeness
of the functions H �

1 , H
�
2 , H

�
2 , and H 


2 in Chaining and Fusion.

Lemma B.4 a) Let u; v 2 (0; 1], x 2 [0; 1], and x 2 [0;1). For all probabilistic inter-

pretations Pr with Pr(B) > 0, the conditions u � Pr(B) = Pr(BC ), v � Pr(C) = Pr(BC ),
x � Pr(C) = Pr(CL(C ")), and x � Pr(C) = Pr(CL(C ")) are equivalent to:

Pr(B C L(C"))
Pr(B)

Pr(B CL(C"))
Pr(B)

Pr(B C)
Pr(B)

Pr(BC L(C"))
Pr(B)

Pr(BCL(C "))
Pr(B) 1� u

Pr(C L(C"))
Pr(B)

ux
v

Pr(BCL(C"))
Pr(B)

Pr(BCL(C "))
Pr(B)

u
v � u

Pr(BCL(C"))
Pr(B)

Pr(BCL(C "))
Pr(B) u

u
v �

ux
v

ux
v

b) Let v; x 2 [0; 1] and v; x 2 [0;1). For all probabilistic interpretations Pr with Pr(B) > 0,
the conditions v � Pr(B) = Pr(BL(G)), v � Pr(B) = Pr(BL(G)), x � Pr(B) = Pr(BL(H )),
and x � Pr(B) = Pr(BL(H )) are equivalent to:

Pr(B L(G)L(H))
Pr(B)

Pr(B L(G)L(H))
Pr(B)

Pr(B L(G))
Pr(B)

Pr(BL(G)L(H))
Pr(B)

Pr(BL(G)L(H ))
Pr(B) v

Pr(B L(H))
Pr(B) x

Pr(BL(G)L(H))
Pr(B)

Pr(BL(G)L(H ))
Pr(B) 1� v

Pr(BL(G)L(H))
Pr(B)

Pr(BL(G)L(H ))
Pr(B) v

1� x x
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Proof. The claims can be veri�ed by straightforward arithmetic transformations based on
the properties of probabilistic interpretations. 2

After these preparations, we are now ready to prove the global soundness and the global
completeness of the functions H �

1 , H
�
2 , H

�
2 , and H 


2 .

Proof of Theorem 4.1. The claims are proved by induction on the recursive de�nition
of H �

1 . The case C = B1 : : : Bk is tackled by iteratively splitting C into two conjunctive
events. Thus, it is reduced to C = GH with conjunctive events G and H that are disjoint in
their basic events. For C=B1, we de�ne u = Pr(CjB), v = Pr(BjC), and x1 = H �

1 (C;C
").

For C = B1 : : : Bk, hence C = GH , let v1 = H �
1 (B;G) and x1 = H �

1 (B;H).

a) All models Pr 2 Mo(B;C) with Pr(B) = 0 satisfy the indicated condition. In the sequel,
let Pr 2 Mo(B;C) with Pr(B) > 0.

Basis: Let C = B. Since C = L(C), we get:

�1 � Pr(B) = 1 � Pr(B) = Pr(BC ) = Pr(BL(C)) :

Induction: Let C = B1. For all models Pr2 2 Mo(C;C"), we get by the induction hypothesis
x1 � Pr2(C) � Pr2(CL(C

")). Thus, Pr satis�es the same conditions. Since L(C") = L(C)
and by Lemmata A.1 and B.4 a), we then get:

�1 � Pr(B) = max(0; u � u
v +

ux1
v ) � Pr(B) � Pr(BL(C")) = Pr(BL(C)) :

Let C=GH . For all Pr1 2Mo(B;G) and Pr2 2Mo(B;H), we get by the induction
hypothesis v1 � Pr1(B) � Pr1(BL(G)) and x1 � Pr2(B) � Pr2(BL(H)). Thus, Pr satis�es
the same conditions. Since L(G)L(H) = L(GH) = L(C) and by Lemmata A.1 and B.4 b):

max(0; v1 + x1 � 1) � Pr(B) � Pr(BL(G)L(H)) = Pr(BL(C)) :

b)

Basis: Let C =B. A model Pr 2Mo(B;C) such that Pr(B)> 0, 1 � Pr(B)=�1 � Pr(B) =
Pr(BL(C)), and Pr(BL(C)) = 0 is given by B;B 7! 0; 1.

Induction: Let C = B1. Let the model Pr1 of f(CjB)[u; u]; (BjC)[v; v]g with Pr1(B)> 0
and Pr1(C) > 0 be de�ned like in the proof of Theorem 3.2.

We now choose an appropriate model Pr2 2 Mo(C;C"). Let us �rst consider the
case x1> 0, v=1, or not L(C"))C. By the induction hypothesis, there exists a model
Pr2 2Mo(C;C") with Pr2(C) > 0, x1 � Pr2(C) = Pr2(CL(C

")), and Pr2(CL(C
")) = 0

i� L(C"))C. Let us next assume x1=0, v < 1, and L(C"))C. By Theorem 3.2, there
exists a model Pr 002 2 Mo(C;C") with Pr 002(CL(C

")) > 0. By the induction hypothesis,
there exists a model Pr 02 2Mo(C;C") with Pr 02(C) > 0 and 0 � Pr 02(C) = Pr 02(CL(C

")).
Hence, there exists a model Pr2 2 Mo(C;C") with Pr2(C) > 0 and

min(1� v;Pr 002(CL(C
")) =Pr 002(C)) � Pr2(C) = Pr2(CL(C

")) :

By Lemma 3.1, we can choose Pr1 and Pr2 with Pr1(C) = Pr2(C) and Pr1(BC) �
Pr2(CL(C

")). By Lemmata A.1 and B.4 a), we can choose the probabilistic interpretation
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Pr0 over fB;C;L(C")g with Pr0(A1) = Pr1(A1) and Pr0(A2) = Pr2(A2) for all atomic
events A1 and A2 over fB;Cg and fC;L(C

")g, respectively, such that:

Pr0(BCL(C
")) = max(0;Pr 2(CL(C

"))� Pr1(BC)) = 0

Pr0(BCL(C
")) = max(0;Pr 2(CL(C

"))� Pr1(BC)) :

By Lemma A.2 with B1 = fBg, B2 = B(C;C")nfCg, B0 = C, B1 = B, and B2 = L(C"),
there exists a probabilistic interpretation Pr over B(B;C) with (12). Hence, it holds Pr 2
Mo(B;C) and Pr(B) > 0. By Lemma B.4 a), we get:

�1 � Pr(B) = max(0; u � u
v +

ux1
v ) � Pr(B) = Pr(BL(C")) = Pr(BL(C)) :

Moreover, it is easy to see that Pr(BL(C)) = 0 i� L(C))B.
Let C = GH . By the induction hypothesis, there are models Pr1 2 Mo(B;G) and

Pr2 2 Mo(B;H) with Pr1(B) > 0, Pr2(B) > 0, v1 � Pr1(B) = Pr1(BL(G)), x1 � Pr2(B) =
Pr2(BL(H)), Pr1(BL(G)) = 0 i� L(G))B, and Pr2(BL(H)) = 0 i� L(H))B.

By Lemma 3.1, we can choose Pr1 and Pr2 with Pr1(B) = Pr2(B) and Pr1(B L(G)) �
Pr2(BL(H). By Lemmata A.1 and B.4 b), we can choose the probabilistic interpretation
Pr0 over fB;L(G); L(H)g with Pr0(A1) = Pr1(A1) and Pr0(A2) = Pr2(A2) for all atomic
events A1 and A2 over fB;L(G)g and fB;L(H)g, respectively, such that:

Pr0(BL(G)L(H)) = min(Pr2(BL(H));Pr 1(BL(G))

Pr0(BL(G)L(H)) = max(0;Pr 2(BL(H))� Pr1(BL(G))) :

By Lemma A.2 with B1 = B(B;G)nfBg, B2 = B(B;H)nfBg, B0 = B, B1 = L(G), and
B2 = L(H), there exists a probabilistic interpretation Pr over B(B;C) with (12). Hence,
it holds Pr 2 Mo(B;C) and Pr(B) > 0. By Lemma B.4 b), we get:

max(0; v1 + x1 � 1) � Pr(B) = Pr(BL(G)L(H)) = Pr(BL(C)) :

Moreover, it is easy to see that Pr(BL(C)) = 0 i� L(C))B. 2

Proof of Theorem 4.2. The claims are proved by induction on the recursive de�nition of
H �
2 , H

�
2 , and H 


2 . Again, the case C = B1 : : : Bk is tackled by iteratively splitting C into
two conjunctive events. Thus, it is reduced to C = GH with conjunctive events G and H
that are disjoint in their basic events. For C = B1 let u = Pr(CjB), v = Pr(BjC), and

x2 = H �
2 (C;C

"); x2 = H �
2 (C;C

"); z2 = H 

2 (C;C

") :

For C = B1 : : : Bk, hence C = GH , we de�ne:

v2 = H �
2 (B;G); v2 = H �

2 (B;G); w2 = H 

2 (B;G)

x2 = H �
2 (B;H); x2 = H �

2 (B;H); z2 = H 

2 (B;H) :

a) For Pr 2 Mo(B;C) with Pr(B) = 0, we get Pr(N) = 0 for all N 2 B(B;C). Thus, Pr
satis�es the indicated conditions. Next, let Pr 2 Mo(B;C) with Pr(B) > 0.
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Basis: Let C = B. Since L(C) = C, we get:

Pr(BL(C)) = Pr(BC ) = 1 � Pr(B) = �2 � Pr(B)

Pr(BL(C)) = Pr(BC) = 0 � Pr(B) = �2 � Pr(B)

Pr(L(C)) = Pr(C) = 1 � Pr(B) = 
2 � Pr(B) :

Induction: Let C = B1. For all models Pr2 2 Mo(C;C"), we get by the induction hypothesis
Pr2(CL(C

")) � x2 � Pr2(C), Pr2(CL(C
")) � x2 � Pr2(C), and Pr2(L(C

")) � z2 � Pr2(C).
Hence, Pr satis�es the same conditions. Since L(C) = L(C") and by Lemmata A.1 and
B.4 a), we then get:

Pr(BL(C)) = Pr(BL(C")) � min(1; uz2v ; 1� u+ ux2
v ; u+ ux2

v ) � Pr(B) = �2 � Pr(B)

Pr(BL(C)) = Pr(BL(C")) � min(ux2v + u
v � u; uz2v ) � Pr(B) = �2 � Pr(B)

Pr(L(C)) = Pr(L(C")) � uz2
v � Pr(B) = 
2 � Pr(B) :

Let C = GH . For all models Pr1 2 Mo(B;G) and all models Pr2 2 Mo(B;H), we get
by the induction hypothesis:

Pr1(BL(G)) � v2 � Pr1(B); Pr2(BL(H)) � x2 � Pr2(B)

Pr1(BL(G)) � v2 � Pr1(B); Pr2(BL(H)) � x2 � Pr2(B)

Pr1(L(G)) � w2 � Pr1(B); Pr2(L(H)) � z2 � Pr2(B) :

Thus, Pr satis�es the same conditions. Since L(C) = L(GH) = L(G)L(H) and by Lem-
mata A.1 and B.4 b), we get:

Pr(BL(C)) = Pr(BL(G)L(H)) � min(v2; x2) � Pr(B)

Pr(BL(C)) = Pr(BL(G)L(H)) � min(v2; x2) � Pr(B)

Pr(L(C)) = Pr(L(G)L(H)) � min(w2; z2; v2 + x2; x2 + v2) � Pr(B) :

b) and c)

Basis: Let C = B. A model Pr 2 Mo(B;C) with Pr(B) > 0 satisfying Pr(BL(C)) =
1 �Pr(B) = �2 �Pr(B), Pr(BL(C)) = 0 �Pr(B) = �2 �Pr(B), and Pr(L(C)) = 1 �Pr(B) =

2 � Pr(B) is given by B;B 7! 0; 1.

Induction: Let C = B1. Let the model Pr1 of f(CjB)[u; u]; (BjC)[v; v]g with Pr1(B) > 0
and Pr1(C) > 0 be de�ned like in the proof of Theorem 3.2.

For the proof of c), by the induction hypothesis, there is some Pr2 2Mo(C;C") with
Pr2(C)> 0, Pr2(CL(C

")) = x2 � Pr2(C), and Pr2(L(C
")) = z2 � Pr2(C).

By Lemma 3.1, we can choose Pr1 and Pr2 with Pr1(C) = Pr2(C) and Pr1(BC) �
Pr2(CL(C

")). By Lemma A.1, we can choose the probabilistic interpretation Pr0 over
fB;C;L(C")g with Pr0(A1) = Pr1(A1) and Pr0(A2) = Pr2(A2) for all atomic events A1

and A2 over fB;Cg and fC;L(C
")g, respectively, such that:

Pr0(BCL(C")) = min(Pr1(BC);Pr 2(CL(C
"))) = Pr2(CL(C

"))

Pr0(BCL(C ")) = min(Pr1(BC);Pr2(CL(C
"))) :
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By Lemma A.2 with B1 = fBg, B2 = B(C;C") n fCg, B0 = C, B1 = B, and B2 =
L(C"), there is a probabilistic interpretation Pr over B(B;C) with (12). Hence, it holds
Pr 2 Mo(B;C) and Pr(B) > 0. By Lemma B.4 a), we get:

Pr(BL(C)) = Pr(BL(C")) = min(ux2v + u
v � u; uz2v ) � Pr(B) = �2 � Pr(B)

Pr(L(C)) = Pr(L(C")) = uz2
v � Pr(B) = 
2 � Pr(B) :

For the proof of b), by the induction hypothesis, there are models Pr1;2 ;Pr 2;2 2
Mo(C;C") with Pr1;2(C) > 0, Pr2;2(C) > 0, and

Pr1;2(CL(C
")) = x2 � Pr1;2(C); Pr1;2(L(C

")) = z2 � Pr1;2(C)

Pr2;2(CL(C
")) = x2 � Pr2;2(C); Pr2;2(L(C

")) = z2 � Pr2;2(C) :
(15)

These conditions already entail x2 � z2 and x2 � z2. With the results from a), we addi-
tionally get z2 � x2 + x2. By Lemma B.3 a), there is x 2 [z2 � x2; x2] with (13). By (15),
there is Pr2 2 Mo(C;C") with Pr2(C) > 0 and

Pr2(CL(C
")) = x � Pr2(C); Pr2(L(C

")) = z2 � Pr2(C) :

By Lemma 3.1, we can choose Pr1 and Pr2 with Pr1(C) = Pr2(C). By Lemma A.1, we
can choose the probabilistic interpretation Pr0 over fB;C;L(C

")g with Pr0(A1) = Pr1(A1)
and Pr0(A2) = Pr2(A2) for all atomic events A1 and A2 over fB;Cg and fC;L(C")g,
respectively, such that:

Pr0(BCL(C
")) = min(Pr1(BC);Pr2(CL(C

")))

Pr0(BCL(C
")) = min(Pr1(BC );Pr2(CL(C

"))) :

By Lemma A.2 with B1 = fBg, B2 = B(C;C") n fCg, B0 = C, B1 = B, and B2 =
L(C"), there is a probabilistic interpretation Pr over B(B;C) with (12). Hence, it holds
Pr 2 Mo(B;C) and Pr(B) > 0. By Lemma B.4 a), we get:

Pr(BL(C)) = Pr(BL(C")) = min(1; uz2v ; 1� u+ ux2
v ; u+ ux2

v ) � Pr(B) = �2 � Pr(B)

Pr(L(C)) = Pr(L(C")) = uz2
v � Pr(B) = 
2 � Pr(B) :

Let C = GH . We just show b), the claim in c) can be proved analogously. By the in-
duction hypothesis, there are models Pr1;1 ;Pr2;1 2 Mo(B;G) and Pr1;2 ;Pr2;2 2 Mo(B;H)
with Pr1;1(B) > 0, Pr2;1(B) > 0, Pr1;2(B) > 0, Pr2;2(B) > 0, and

Pr1;1(BL(G)) = v2 � Pr1;1(B); Pr1;1(L(G)) = w2 � Pr1;1(B)

Pr2;1(BL(G)) = v2 � Pr2;1(B); Pr2;1(L(G)) = w2 � Pr2;1(B)

Pr1;2(BL(H)) = x2 � Pr1;2(B); Pr1;2(L(H)) = z2 � Pr1;2(B)

Pr2;2(BL(H)) = x2 � Pr2;2(B); Pr2;2(L(H)) = z2 � Pr2;2(B) :

(16)

These conditions already entail v2 � w2, v2 � w2, x2 � z2, and x2 � z2. With the results
from a), we additionally get w2 � v2 + v2 and z2 � x2 + x2. By Lemma B.3 b), there is
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v 2 [w2 � v2; v2] and x 2 [z2 � x2; x2] with (14). By (16), there is Pr1 2 Mo(B;G) and
Pr2 2 Mo(B;H) with Pr1(B) > 0, Pr2(B) > 0, and

Pr1(BL(G)) = v � Pr1(B); Pr1(L(G)) = w2 � Pr1(B)

Pr2(BL(H)) = x � Pr2(B); Pr2(L(H)) = z2 � Pr2(B) :

By Lemma 3.1, we can choose Pr1 and Pr2 with Pr1(B) = Pr2(B). By Lemma A.1,
we can choose the probabilistic interpretation Pr0 over fB;L(G); L(H)g with Pr0(A1) =
Pr1(A1) and Pr0(A2) = Pr2(A2) for all atomic events A1 and A2 over fB;L(G)g and
fB;L(H)g, respectively, such that:

Pr0(BL(G)L(H )) = min(Pr1(BL(G));Pr2(BL(H)))

Pr0(BL(G)L(H )) = min(Pr1(BL(G));Pr2(BL(H))) :

By Lemma A.2 with B1 = B(B;G) n fBg, B2 = B(B;H) n fBg, B0 = B, B1 = L(G),
and B2 = L(H), there is a probabilistic interpretation Pr over B(B;C) with (12). Hence,
it holds Pr 2 Mo(B;C) and Pr(B) > 0. By Lemma B.4 b), we get:

Pr(BL(C)) = Pr(BL(G)L(H)) = min(v2; x2) � Pr(B)

Pr(L(C)) = Pr(L(G)L(H)) = min(w2; z2; v2 + x2; x2 + v2) � Pr(B) : 2

Finally, note that computing least upper bounds is more di�cult than computing great-
est lower bounds, since for each edge B ! C, by Lemmata 3.1 and B.4 a), the greatest lower
bound of Pr(BCL(C"))=Pr (B) subject to Pr 2Mo(B;C) and Pr(B)> 0 is always 0, but
the least upper bound of Pr(BCL(C"))=Pr(B) subject to Pr 2Mo(B;C) and Pr(B)> 0 is
generally not 1.

Appendix C. Proofs for Section 4.2

In this section, we give the proofs of Theorems 4.7 and 4.8.

We need some technical preparations as follows. The next lemma helps us to show the
local soundness of the function H �

1 in Fusion.

Lemma C.5 For all real numbers u1; u; v1; v; x1; x; y1; y 2 (0; 1] with u1 � u, v1 � v,
x1 � x, y1 � y, and u1 + x1 > 1, it holds:

min(u=v � u; x=y � x) = (u + x� 1) � min(u1=v1 � u1; x1=y1 � x1) = (u1 + x1 � 1) :

Proof. The claim can easily be veri�ed (Lukasiewicz, 1996). 2

The following lemma helps us to show the local soundness and the local completeness
of the function H �

1 in Chaining and Fusion.

Lemma C.6 a) Let u, v, x, and y be real numbers from (0; 1]. For all probabilistic inter-

pretations Pr with Pr(L(C")) > 0, the conditions u�Pr (B) = Pr(BC ), v�Pr (C) = Pr(BC ),
x � Pr(C) = Pr(CL(C ")), and y � Pr(L(C")) = Pr(CL(C ")) are equivalent to:
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Pr(B C L(C"))
Pr(L(C"))

Pr(BCL(C"))
Pr(L(C"))

Pr(BC)
Pr(L(C"))

Pr(BC L(C"))
Pr(L(C"))

Pr(BCL(C "))
Pr(L(C"))

yv
xu �

yv
x

Pr(C L(C"))
Pr(L(C"))

1� y

Pr(BCL(C"))
Pr(L(C"))

Pr(BCL(C "))
Pr(L(C"))

y
x �

yv
x

Pr(BCL(C"))
Pr(L(C"))

Pr(BCL(C "))
Pr(L(C"))

yv
x

y
x � y y

b) Let u, v, x, and y be real numbers from (0; 1]. For all probabilistic interpretations Pr

with Pr(B) > 0, the conditions u � Pr(B) = Pr(BL(G)), v � Pr(L(G)) = Pr(BL(G)),
x � Pr(B) = Pr(BL(H )), and y � Pr(L(H)) = Pr(BL(H )) are equivalent to:

Pr(BL(G)L(H))
Pr(B)

Pr(B L(G)L(H))
Pr(B)

Pr(BL(G))
Pr(B)

Pr(BL(G)L(H))
Pr(B)

Pr(BL(G)L(H ))
Pr(B)

u
v � u

Pr(B L(H))
Pr(B)

x
y � x

Pr(BL(G)L(H))
Pr(B)

Pr(BL(G)L(H ))
Pr(B) 1� u

Pr(BL(G)L(H))
Pr(B)

Pr(BL(G)L(H ))
Pr(B) u

1� x x

Proof. The claims can be veri�ed by straightforward arithmetic transformations based on
the properties of probabilistic interpretations. 2

We are now ready to prove Theorems 4.7 and 4.8.

Proof of Theorem 4.7. The claims are proved by induction on the recursive de�nition of
H�

1 . The proof for C = B1B2 : : : Bk with k > 1 is done for k = 2. It can easily be generalized
to k � 2. For C =B1, we de�ne u1 = Pr1(CjB), v1 = Pr1(BjC), x1 = H �

1 (C;C
"), and

y1 = H �
1 (C;C

"). Note that �1 > 0 entails x1; y1 > 0 and v1 + x1 > 1. For C = B1B2,
we de�ne G = B1, H = B2, u1 = H �

1 (B;G), v1 = H �
1 (B;G), x1 = H �

1 (B;H), and
y1 = H �

1 (B;H). Note that �1 > 0 entails u1; v1; x1; y1 > 0 and u1 + x1 > 1.

a) All models Pr 2 Mo(B;C) with Pr(L(C)) = 0 satisfy the indicated condition. In the
sequel, let Pr 2 Mo(B;C) with Pr(L(C)) > 0 and thus also Pr(B) > 0.

Basis: Let C = B. Since C = L(C), we get:

�1 � Pr(L(C)) = 1 � Pr(L(C)) = Pr(CL(C)) = Pr(BL(C)) :

Induction: Let C = B1. For all models Pr2 2 Mo(C;C"), we get x1�Pr2(C) � Pr2(CL(C
"))

by Theorem 4.3 a), and y1 �Pr2(L(C
")) � Pr2(CL(C

")) by the induction hypothesis. Thus,
Pr satis�es the same conditions. Since L(C") = L(C) and by Lemmata A.1 and C.6 a):

�1 = y1 �
y1
x1

+ y1v1
x1

� Pr(CL(C")) =Pr (L(C")) = Pr(CL(C)) =Pr (L(C)) :

Let C = GH . For all models Pr1 2 Mo(B;G) and Pr2 2 Mo(B;H), we get by
Theorem 4.3 a) and by the induction hypothesis, respectively:

u1 � Pr1(B) � Pr1(BL(G)); x1 � Pr2(B) � Pr2(BL(H))

v1 � Pr1(L(G)) � Pr1(BL(G)); y1 � Pr2(L(H)) � Pr2(BL(H)) :
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Hence, Pr satis�es the same conditions. Since L(G)L(H) = L(GH) = L(C) and by Lem-
mata A.1, C.5, and C.6 b), we then get:

�1 = 1 = (1 + min(u1=v1�u1; x1=y1�x1)
u1+x1�1

) � 1 = (1 + Pr(BL(G)L(H))=Pr (B)
Pr(BL(G)L(H))=Pr (B) ) = Pr(BL(C))

Pr(L(C)) :

b)

Basis: Let C = B. A model Pr 2 Mo(B;C) such that Pr(B) > 0, Pr(L(C)) > 0,
1 � Pr(L(C)) = Pr(BL(C)), and 1 � Pr(B) = Pr(BL(C)) is given by B;B 7! 0; 1.

Induction: Let C =B1. Let the model Pr1 of f(CjB)[u1; u1]; (BjC)[v1; v1]g with Pr1(B)> 0
and Pr1(C) > 0 be de�ned like in the proof of Theorem 3.2.

By the induction hypothesis, there is Pr2 2Mo(C;C") with Pr2(C)> 0, Pr2(L(C
"))> 0,

y1 � Pr2(L(C
")) = Pr2(CL(C

")), and x1 � Pr2(C) = Pr2(CL(C
")). By Lemma 3.1, we can

choose Pr1 and Pr2 such that Pr1(C) = Pr2(C) and Pr1(BC) � Pr2(CL(C
")). By Lem-

mata A.1 and C.6 a), we can choose the probabilistic interpretation Pr0 over fB;C;L(C
")g

with Pr0(A1) = Pr1(A1) and Pr0(A2) = Pr2(A2) for all atomic events A1 and A2 over
fB;Cg and fC;L(C")g, respectively, such that:

Pr0(BCL(C
")) = max(0;Pr 2(CL(C

"))� Pr1(BC)) = 0

Pr0(BCL(C
")) = max(0;Pr 2(CL(C

"))� Pr1(BC)) :

By Lemma A.2 with B1 = fBg, B2 = B(C;C")nfCg, B0 = C, B1 = B, and B2 = L(C"),
there exists a probabilistic interpretation Pr over B(B;C) with (12). Hence, it holds Pr 2
Mo(B;C), Pr(B) > 0, and Pr(L(C)) > 0. Moreover, by Lemma C.6 a), we get:

�1 = y1 �
y1
x1

+ y1v1
x1

= Pr(CL(C")) =Pr (L(C")) = Pr(CL(C)) =Pr(L(C))

�1 = u1 �
u1
v1

+ u1x1
v1

= Pr(CL(C")) =Pr (C) = Pr(CL(C)) =Pr(C) :

Let C = GH . By the induction hypothesis, there are models Pr1 2 Mo(B;G) and
Pr2 2 Mo(B;H) with Pr1(B) > 0, Pr2(B) > 0, Pr1(L(G)) > 0, Pr2(L(H)) > 0, and

u1 � Pr1(B) = Pr1(BL(G)); x1 � Pr2(B) = Pr2(BL(H))

v1 � Pr1(L(G)) = Pr1(BL(G)); y1 � Pr2(L(H)) = Pr2(BL(H)) :

By Lemma 3.1, we can choose Pr1 and Pr2 with Pr1(B) = Pr2(B) and Pr1(B L(G)) �
Pr2(BL(H). By Lemmata A.1 and C.6 b), we can choose the probabilistic interpretation
Pr0 over fB;L(G); L(H)g with Pr0(A1) = Pr1(A1) and Pr0(A2) = Pr2(A2) for all atomic
events A1 and A2 over fB;L(G)g and fB;L(H)g, respectively, such that:

Pr0(BL(G)L(H)) = min(Pr2(BL(H));Pr 1(BL(G)))

Pr0(BL(G)L(H)) = max(0;Pr 2(BL(H))� Pr1(BL(G))) :

By Lemma A.2 with B1 = B(B;G)nfBg, B2 = B(B;H)nfBg, B0 = B, B1 = L(G), and
B2 = L(H), there exists a probabilistic interpretation Pr over B(B;C) with (12). Hence,
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it holds Pr 2 Mo(B;C) and Pr(B) > 0. By Lemma C.6 b), we get Pr(L(C)) > 0 and

�1 = 1 = (1 + min(u1=v1�u1; x1=y1�x1)
u1+x1�1

) = 1 = (1 + Pr(BL(G)L(H))=Pr (B)
Pr(BL(G)L(H))=Pr (B) ) = Pr(BL(C))

Pr(L(C))

�1 = u1 + x1 � 1 = Pr(BL(G)L(H))
Pr(B) = Pr(BL(C))

Pr(B) :

c) Let C = GH . By Theorem 4.3 b), there exist Pr1 2 Mo(B;G) and Pr2 2 Mo(B;H) with
Pr1(B) > 0, Pr2(B) > 0, u1 � Pr1(B) = Pr1(BL(G)), and x1 � Pr2(B) = Pr2(BL(H)). By
Lemma 3.1, we can choose Pr1 and Pr2 such that Pr1(B) = Pr2(B) and Pr1(B L(G)) �
Pr2(BL(H). By Lemmata A.1 and C.6 b), we can choose the probabilistic interpretation
Pr0 over fB;L(G); L(H)g with Pr0(A1) = Pr1(A1) and Pr0(A2) = Pr2(A2) for all atomic
events A1 and A2 over fB;L(G)g and fB;L(H)g, respectively, such that:

Pr0(BL(G)L(H)) = max(0;Pr 2(BL(H)� Pr1(B L(G))) = 0

Pr0(BL(G)L(H)) = max(0;Pr 2(BL(H))� Pr1(BL(G))) :

By Lemma A.2 with B1 = B(B;G)nfBg, B2 = B(B;H)nfBg, B0 = B, B1 = L(G), and
B2 = L(H), there exists a probabilistic interpretation Pr over B(B;C) with (12). Hence,
it holds Pr 2 Mo(B;C) and Pr(B) > 0. By Lemma C.6 b), we get Pr(L(C)) > 0 and

1 = Pr(BL(G)L(H)) =Pr (L(G)L(H)) = Pr(BL(C)) =Pr (L(C))

�1 = Pr(BL(G)L(H)) =Pr (B)) = Pr(BL(C)) =Pr (B) :

d) Let C = GH . By Theorem 3.2, there is a model Pr 000 2 Mo(B;C) with Pr 000(BL(C)) > 0.
By Theorem 4.3 b), there is a model Pr 00 2Mo(B;C) with Pr 00(B)> 0 and 0 � Pr 00(B) =
�1 � Pr

00(B) = Pr 00(BL(C)). Hence, there is a model Pr 0 2 Mo(B;C) with Pr 0(B) > 0 and

min(";Pr 000(BL(C)) =Pr 000(B)) � Pr 0(B) = Pr 0(BL(C)) :

Let the models Pr1 2Mo(B;G) and Pr2 2 Mo(B;H) be de�ned by Pr1(A1) = Pr 0(A1) and
Pr2(A2) = Pr 0(A2) for all atomic events A1 and A2 over B(B;G) and B(B;H), respectively.
By Lemma 3.1, we can choose Pr1 and Pr2 such that Pr1(B) = Pr2(B) and Pr1(B L(G)) �
Pr2(BL(H). By Lemmata A.1 and C.6 b), we can choose the probabilistic interpretation
Pr0 over fB;L(G); L(H)g with Pr0(A1) = Pr1(A1) and Pr0(A2) = Pr2(A2) for all atomic
events A1 and A2 over fB;L(G)g and fB;L(H)g, respectively, such that:

Pr0(BL(G)L(H)) = max(0;Pr 2(BL(H)� Pr1(B L(G))) = 0

Pr0(BL(G)L(H)) = min(";Pr 000(BL(C)) =Pr 000(B)) � Pr0(B) :

By Lemma A.2 with B1 = B(B;G) n fBg, B2 = B(B;H) n fBg, B0 = B, B1 = L(G), and
B2 = L(H), there is a probabilistic interpretation Pr over B(B;C) with (12). Hence, it holds
Pr 2Mo(B;C), Pr(B)> 0, Pr(L(C))> 0, Pr(BL(C))= 0, and " � Pr(B)�Pr(BL(C )). 2

Proof of Theorem 4.8. For u1 > 0, the claim is immediate by Theorem 4.7 a) to c).
Let u1 = 0 and E ) F . It holds 1�Pr(E) = Pr(EF ) for all models Pr of KB . Moreover,

by Theorem 3.2, there exists a model Pr of KB with Pr(E) > 0.
Let u1 = 0 and not E ) F . By Theorem 4.3 b), there exists a model Pr of KB

with Pr(E)> 0 and Pr(EF )= 0. By Theorem 4.7 d), there exists a model Pr of KB with
Pr(E)> 0 and 1 � Pr(E) = Pr(EF ). 2
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Appendix D. Proofs for Section 4.3

In this section, we give the proof of Theorem 4.9.

The next lemma will help us to show the global tightness of the computed lower bound
in the case (3) of Theorem 4.9 b).

Lemma D.7 Let x 2 [0; 1] and v; x 2 [0;1). For all probabilistic interpretations Pr with
Pr(G) > 0, the conditions Pr(EG) = 0, v � Pr(G) = Pr(EG), x � Pr(G) = Pr(GF ), and
x � Pr(G) = Pr(GF ) are equivalent to:

Pr(EGF )
Pr(G)

Pr(EGF )
Pr(G)

Pr(EG)
Pr(G)

Pr(EGF )
Pr(G)

Pr(EGF )
Pr(G) v

Pr(GF )
Pr(G) x

Pr(EGF )
Pr(G)

Pr(EGF )
Pr(G) 1

Pr(EGF )
Pr(G)

Pr(EGF )
Pr(G) 0

1� x x

Proof. The claim can be veri�ed by straightforward arithmetic transformations based on
the properties of probabilistic interpretations. 2

We are now ready to prove Theorem 4.9.

Proof of Theorem 4.9. a) By the de�nition of queries to conditional constraint trees, all
paths from a basic event in E to a basic event in F have at least one basic event in common.
Hence, we can choose the basic event G from all such basic events in common such that
9(GjE)[z1; z2] is a strongly conclusion-restricted complete query to a subtree.

b) For u1 > 0, the claim follows from Theorem 4.7 a) to c). For the special case of exact
conditional constraint trees (B;KB), the claim then follows from Theorems 4.3 and 4:5.

Let u1 = 0, v1 = 1, and G) F . It holds 1 � Pr(E) = Pr(EF ) for all models Pr of KB .
Moreover, by Theorem 3.2, there exists a model Pr of KB with Pr(E) > 0.

Let u1 = 0, v1 = 0, and G ) F . It is easy to see that by (1) and Theorem 4.7 d), the
tight upper answer is given by fx2=1g. We now show that the tight lower answer is given by
fx1=0g. By Theorem 4.3 b), there exists a model Pr1 of KB1 with Pr1(E) > 0, Pr1(G) > 0,
and Pr1(EG) = 0. By Theorem 3.2, there exists a model Pr2 of KB2 with Pr2(G) > 0. By
Lemma 3.1, we can choose Pr1 and Pr2 with Pr1(G) = Pr2(G) and Pr1(E G) � Pr2(GF ).
By Lemmata A.1 and D.7, we can choose the probabilistic interpretation Pr0 over fE;G;Fg
with Pr0(A1) = Pr1(A1) and Pr0(A2) = Pr2(A2) for all atomic events A1 and A2 over
fE;Gg and fG;Fg, respectively, such that:

Pr0(EGF ) = max(0;Pr 2(GF )� Pr1(E G)) = 0

Pr0(EGF ) = 0 :

By Lemma A.2, there exists a probabilistic interpretation Pr over B with (12) for all atomic
events H0, H1, H2, A1, and A2 over the sets of basic events fGg, fEg, fFg, B1 n fGg, and
B2 n fGg, respectively. Hence, Pr is a model of KB with Pr(E) > 0 and Pr(EF ) = 0.

For u1 = 0 and not G) F , the claim follows from (1) and Theorem 4.7 d). 2
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