
Probabilistic Demand Forecasting at Scale

Joos-Hendrik Böse, Valentin Flunkert, Jan Gasthaus, Tim Januschowski,
Dustin Lange, David Salinas, Sebastian Schelter, Matthias Seeger, Yuyang Wang

Amazon
{jooshenb,flunkert,gasthaus,tjnsch,langed,dsalina,sseb,matthis,yuyawang}@amazon.com

ABSTRACT
We present a platform built on large-scale, data-centric ma-
chine learning (ML) approaches, whose particular focus is
demand forecasting in retail. At its core, this platform en-
ables the training and application of probabilistic demand
forecasting models, and provides convenient abstractions and
support functionality for forecasting problems. The plat-
form comprises of a complex end-to-end machine learning
system built on Apache Spark, which includes data prepro-
cessing, feature engineering, distributed learning, as well as
evaluation, experimentation and ensembling. Furthermore,
it meets the demands of a production system and scales to
large catalogues containing millions of items.

We describe the challenges of building such a platform
and discuss our design decisions. We detail aspects on sev-
eral levels of the system, such as a set of general distributed
learning schemes, our machinery for ensembling predictions,
and a high-level dataflow abstraction for modeling complex
ML pipelines. To the best of our knowledge, we are not
aware of prior work on real-world demand forecasting sys-
tems which rivals our approach in terms of scalability.

1. INTRODUCTION
Forecasting product demand is one of the core challenges

in any retail business, and essentially answers the following
question: What is the probability distribution of the demand
of an item for a specific time horizon starting from a date in
the future? Among its many benefits, a predictive forecast
is a key enabler for a better customer experience through
the reduction of out-of-stock situations, and for lower costs
due to better planned inventory and less write-off items.

In this paper, we describe a machine learning platform for
probabilistic demand forecasting. At its core, this platform
is an execution engine for state-of-the-art demand forecast-
ing algorithms, which provides high-level abstractions for
data preparation, feature engineering, distributed training
and evaluation, as well as a set of tools for automating com-
mon tasks. It has been built to serve experimentation and,

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org.
Proceedings of the VLDB Endowment, Vol. 10, No. 12
Copyright 2017 VLDB Endowment 2150-8097/17/08.

at the same time, meet the demands of production use cases
which require forecasts for millions of items.

Algorithmic Challenges. While there exist many es-
tablished methods for computing forecasts for items with a
lifecycle of several years and stable promotional and seasonal
effects [19], large catalogues may additionally contain items
which exhibit a number of peculiarities that set them apart
from the typical demand forecasting scenario. Examples in-
clude short product cycles, a large ratio of highly seasonal
items, strong promotional effects, and very sparse demand
at the individual item level. Tackling demand forecasting
for such kinds of items requires the combination of time se-
ries methodology and machine learning methods. We adapt
known techniques and combine them with a set of features
produced from raw data.

System-Specific Challenges. Researchers are becom-
ing more and more aware of the difficulties of building and
maintaining complex end-to-end ML systems [25, 17]. In our
experience, the main challenge is to design a system which
on the one hand meets all requirements to run stably and
reliably in production scenarios but is on the other hand
still flexible enough to allow for rapid experimentation and
algorithm development. This experimentation is typically
iterative rather than one-shot, so that successful ML sys-
tems have to allow for rapid evaluation of different models
and features. Existing ML workbenches, such as Matlab,
R and NumPy have been designed for exactly this purpose.
The downside of these platforms is that, unless special care is
taken, the resulting solutions are neither scalable nor easily
maintainable, and the support for distributed computations
is limited. On the other hand, production-grade systems
written in a compiled language, if used properly, deliver so-
lutions that are fast, maintainable and stable. The price
for this robustness is usually increased code complexity and
the lack of many of the abstractions that make rapid ex-
perimentation possible. Because of this, often a hybrid ap-
proach is used: First, data scientists conduct prototyping
and experimentation using interactive, high-level platforms,
after which a different team of engineers re-implement their
code in a production environment to create a scalable and
maintainable solution for production. This works well when
(a) the experiments during prototyping can easily be per-
formed on a single machine, and (b) only iterative improve-
ments to the system are necessary after it has left the pro-
totyping stage. However, in large-scale machine learning
problems such as demand forecasting for large catalogues,
typically neither of these conditions is true: the tendency to
combine simple models with large datasets to deliver accu-

1694

rate solutions limits the effectiveness of small-scale experi-
ments, and iterating on initial solutions is usually required
as well as re-tuning of models to address model drift. Also,
frequent reimplementation of experimental code incurs high
overhead, is error-prone and limits the agility of the devel-
opment process. Therefore, it is highly desirable to have a
single system and codebase for both deployment and exper-
imentation.

Heterogeneous Operation Modes. The combination
of a unified codebase with the aforementioned challenges of
a real-world use case requires systems like ours to support a
variety of different operation modes. In general, these oper-
ation modes fall into two different categories: Firstly, ad-hoc
usages of the system, such as conducting single machine ex-
periments on small datasets to debug algorithms and fine-
tune models, or running a single learning algorithm on a
cluster to test model changes on a larger dataset. These ad-
hoc runs will typically be executed several times a day by
individual machine learning scientists. The main challenge
here is to make these runs easy to execute and provide re-
sults fast. Secondly, there will be a set of automated usages
of such a system, which typically leverage large clusters. The
most important of these cases will obviously be runs in pro-
duction scenarios which have to adhere to critical service
level agreements. Typically, these runs compute forecasts
for a large number of items using a predefined ensemble of
learning algorithms with a fixed set of features and hyper-
parameters. Further examples for resource-intensive opera-
tion modes are automatic model selection workloads, which
employ grid search or bayesian optimization techniques to
explore large spaces of features and hyperparameters. Re-
lated to these are workloads which explore and evaluate dif-
ferent assignments of items to learning algorithms in order
to determine well-working ensemble configurations. Finally,
whenever new system versions need to be released, so-called
‘backtest’ workloads must be executed. These backtests
compare several different ensemble configurations and soft-
ware versions, and require the generation of a vast amount
of pre-defined evaluations and reports.

In the remainder of this paper, we detail how we tackle
the aforementioned challenges and design a system that sup-
ports all the required operation modes. We start by intro-
ducing probabilistic demand forecasting (Section 2), and af-
terwards give an overview of the design and implementation
of our system (Section 3), which consists of loosely coupled
components that exchange data via a distributed filesystem.
In Section 4, we detail three technical aspects, which help
us to form an end-to-end ML system from the bottom up:
how to distributedly train machine learning models, how to
declaratively assign items to these models, and finally how
to define and execute the resulting complex ML pipelines.
We close the paper with an evaluation of the presented dis-
tributed learning schemes (Section 5) and a summary of our
learnings from building the platform (Section 6). In partic-
ular, we highlight the following properties of our system:

• Our modular system architecture, laying the founda-
tion for a complex end-to-end machine learning sys-
tem (Section 3).
• A set of distributed learning schemes implemented on

top of a distributed dataflow engine for computing dif-
ferent variations of global models (over all items) and
local models (over individual items) (Section 4.1).

• Machinery to produce ensemble predictions from com-
plex model combinations (Section 4.2).
• A high-level dataflow abstraction for modeling com-

plex ML pipelines (Section 4.3).

2. BACKGROUND: PROBABILISTIC
DEMAND FORECASTING

The demand forecasting problem constitutes in predicting
the demand for a group of items at a certain range of days in
the future, given demand data for all items up to the present,
as well as other input data sources. In a retail context,
demand in the past typically refers to customer orders. Note
that this is an approximation as demand is actually partially
unobserved: orders for an item are subject to the item’s
availability. We represent demand at daily grain: zit ∈ N
for item i at day t. Users require probabilistic forecasts of
total demand for a group of items i ∈ I at certain lead times1

tL and spans δS in the form of the probability distribution of

ZI;(tL,δS) =
∑
i∈I

tL+δS−1∑
t=tL

zit (1)

A sensible requirement of a forecasting system is consis-
tency: the predicted distribution of ZI;(tL,δ1+δ2) should be
the same as that of ZI;(tL,δ1) + ZI;(tL+δ1,δ2). Moreover,
users should be able to query any quantile of the forecast
distribution, (e.g., the median or the 90-th percentile) for
any combination of lead time and span, as well as any group
of items I. Forecasting draws from two different bodies
of scientific work: (1) Time series methodology (ARIMA,
exponential smoothing), developed in statistics and econo-
metrics. These approaches are well researched, address ex-
trapolation (time gap between training and test), temporal
dynamics, and predictive distributions. Most methods are
data-poor (so additional input data does not help much),
and have few parameters to be learned. (2) Machine learning
methods (classification, curve fitting): conceptually simple
models are fit to training data, then evaluated on test data.
Such techniques are data-rich, can ingest many data sources
(e.g., price, holidays, brand, color). Training algorithms are

1Here, we assume that lead times tL are absolute dates in
the future, while spans δS are ranges (number of days).

D
ec

20
13

M
ar

20
14

Ju
n

20
14

S
ep

20
14

D
ec

20
14

M
ar

20
15

Ju
n

20
15

S
ep

20
15

unobservedDays

Figure 1: Visualization of a probabilistic demand forecast.
The black line denotes the actual demand, while the green
and red lines denote quantiles of the forecasted demand
distribution (10th percentile, median and 90th percentile).
Green lines denote the model samples in the training range,
while the red lines show the actual probabilistic forecast on
data unseen by the model. Note that demand can be par-
tially unobserved (due to out-of-stock situations).

1695

able to rapidly adapt to fluctuations in signals. However,
extrapolation is not typically served, since training and test
data are assumed to be i.i.d., and point predictions (‘best
guesses’) are the norm.

Neither of the two approaches suffices in isolation for state-
of-the-art forecasting in large catalogues. The key modelling
challenge for us is to combine best practices from both dis-
ciplines, in order to provide probabilistic forecasts in a data-
rich scenario. Further challenges include: (i) Sales data is
intermittent, often slow. In very large catalogues, sets of
items can exist that only sell very rarely, implying zit = 0
for a majority of days. Yet, many of these can have inter-
mittent sales: bursts separated by stretches of zeros. Stan-
dard time series methodology is ill-equipped for such data
due to its inherent distributional assumptions. (ii) Large
number of new items. At any given time, a large body of
items can be new, being online for less than a season. In
ML terms, we face a ‘cold start’ problem. It may therefore
be required to learn linkages between new and established
items. (iii) Scale. Large catalogues can contain millions of
items, potentially in different marketplaces. For a typical
demand history of hundreds of days and several dozens of
features, a forecasting system therefore may face hundreds
of billions of training points.

Let us highlight two modelling decisions we made. First,
we deal with demand that has a non-standard distribution
by introducing the so-called multi-stage likelihood. We use
this likelihood in all our feature-based models, in particu-
lar generalized linear models (GLMs). At stage 0, a logis-
tic regression model decides zit = 0 versus zit > 0, either
emitting zit = 0 or handing over to stage 1, where a sec-
ond classifier decides zit = 1 versus zit > 1. Finally, if
zit > 1, we use Poisson regression on the transformed target
zit − 2. For GLMs with such a likelihood, we draw on well-
researched, stable, numerically safe convex optimization ap-
proaches. Second, we represent distributional forecasts by
sample paths. For each item i in a dataset, we sample de-
mand values [zit] over a prediction range, and repeat this
process many times. Distributional queries (such as a spe-
cific quantile for demand at a lead time of x weeks and a
span of y weeks) are answered by averaging over the sam-
ples. Sample-based representations are flexible and easy to
use, and queries are answered consistently. The potentially
high storage costs are mitigated by exploiting the high spar-
sity of samples. Furthermore, sample paths also allow for
easy combination of model outputs. As an example, Fig-
ure 1 shows a visualization of such a probabilistic forecast
computed by our system.

3. SYSTEM ARCHITECTURE
In this section, we give a summary of the system architec-

ture as illustrated in Figure 2. Our platform is implemented
on top of Apache Spark [30] and leverages its popular ab-
straction for distributed computing. As already stated, we
designed our platform as a unified system with a single code-
base for experimentational and large-scale use cases. In the
following, we describe its main components. All of these
components are loosely coupled, so that they can run in-
dependently from each other, while exchanging data via a
distributed filesystem.

Data Integration Component. The Data Integration Com-
ponent allows for access to several external data sources,
typically from distributed storage, provides data cleaning

and enrichment, and joins the input data to a distributed
de-normalized table where each row contains all data for an
item.

Forecasting Component. The forecasting component is the
“heart” of our platform. It consists of a routing compo-
nent, a feature transformation component, learning algo-
rithms, and an orchestration layer that leverages a highlevel
dataflow abstraction to model ML pipelines. The routing
component assigns groups of items to one or more dedi-
cated learning algorithms. Each learner has a feature trans-
formation flow as well as pre- and postprocessing logic as-
sociated with it. The feature transformation turns data
into sparse matrices and provides customizable as well as
standard transformations (crossing, binning, normalization,
etc.) along the way. A learner invocation consists of a
training and a prediction phase, where the former phase
uses sparse linear algebra tools and convex optimization li-
braries, and the latter applies sampling methods. The final
output of each learner run are sample paths as described in
Section 2. The outputs of all learners are then consolidated
into a single set of sample paths by means of ensembling.
The forecasting component additionally supports generat-
ing reports which provide visualizations and summaries of
learner internals.

Evaluation Component. The evaluation component con-
solidates all evaluation-related code in a central place. This
is crucial to guarantee consistency and safe-guard against
errors. For ML applications, errors in evaluations are much
more grave than errors in models or algorithms, which is why
extra care needs to be taken. Consistency, for example, is
important in handling edge cases, and for non-standard def-
initions such as quantiles of count distributions. The evalu-
ation component operates on sample paths generated by the
forecast component. Sample paths allow for easy aggrega-
tion across time and items, and make quantile computation
easy. Note however, that computing evaluations can be very
expensive, therefore we typically compute a host of metrics
at the same time to avoid multiple scans over the data, and
persist the resulting evaluation data. Additionally, we treat
reporting as a separate step that provides summarizations
and visualizations of the evaluation data.

Output Generation Component. The output generation
component consumes the sample paths produced by the fore-
casting component, enriches them with useful end-user infor-
mation and allows us to convert the sample paths to several
external formats.

Analysis/Research Layer. The analysis and research layer
contains tools for real-time interaction and experimentation.
An ‘Interactive-Shell’ powers interactive experiments as well
as data exploration. It consists of an enriched Spark-shell
with useful abstractions for common tasks such as data load-
ing. Moreover, it also allows access to a custom, light-weight
plotting library.

4. SYSTEM INTERNALS
Next, we turn our focus onto the details of the plat-

form and discuss three features, which live on different lev-
els on the system and in combination, allow us to form an
end-to-end machine learning application: (i) A set of gen-
eral distributed learning schemes, which allow us to inte-
grate and scale-out a large class of learning algorithms (Sec-
tion 4.1). (ii) Learners typically target specific bands of

1696

Analysis / Research

Distributed Filesystem

Pipeline

ForecastingData Integration Evaluation Output Generation

Dataset Resolution

Data Cleaning

Join Processing

Dataset Generation

Sanity Checks

Gating Generation

Backtest Metrics

Plotting / Reporting

Bundle Generation

Filtering

Execution MetricsPost-Processing Item Routing

Reporting

Learning
Algorithms

Ensembling

Reporting
and Plotting

Interactive
Shell

Automated
Feature Selection

Hyperparameter
Tuning Configuration

Datasets for Demand
and Item Features

Reports on
Algorithm Internals

Prediction
SamplePaths

Evaluation Data
and Reports

Feature
Transformation

Figure 2: System Architecture: At its core, the platform consists of four loosely coupled components which all run on Apache
Spark and exchange data via a distributed filesystem. The Data Integration Component fetches data from several data sources,
cleans and joins this data and produces datasets comprised of item features and historical demand. The Forecasting Component
contains most of the machine learning logic. It transforms the demand data into feature matrix representation and allows us
to train a variety of forecasting models on the data. Finally, it ensembles the resulting predictions and generates a dataset
of sample paths. The sample paths are consumed by the Evaluation Component and the Output Generation Component.
The former allows us to run sanity checks on the predictions, to compute a huge variety of evaluation metrics and derive
configurations for ensembles. The latter prepares the sample path data for potential external consumers. Furthermore, there
is an orthogonal analysis component that allows users to run the forecasters in interactive mode and enables several model
selection techniques such as automated feature selection.

items and new learners must be ramped-up slowly; there-
fore we provide flexible machinery to route items to learning
algorithms (Section 4.2). (iii) Our system’s different opera-
tion modes require us to define and execute complex end-to-
end ML pipelines; we present a high-level dataflow abstrac-
tion to declaratively model such dataflows (Section 4.3).

4.1 Distributed Learning Schemes
In standard ML problems such as classification, the data

typically consists of a large set of labeled observations, and
we aim to learn a generalizing function to predict this la-
bel for unseen observations. In forecasting however, the ML
problem at hand is more complex. We have to compute a
probabilistic forecast for each individual item in the dataset,
and we are provided with daily observations (in terms of de-
mand or item features for the respective day) on a per-item
level. As a result, we effectively have to handle time as ad-
ditional dimension in the data compared to standard ML
problems. Therefore, there exists a variety of approaches
to tackle the forecasting problem: in classical approaches, a
single (local) model per item time series is computed. How-
ever, in many cases it might be beneficial to employ global
learners that consider groups of items, for example in or-
der to tackle cold-start problems. Therefore, we employ a
range of learning approaches that allow for different blend-
ings of local and global learning. Our platform offers a vari-

ety of schemes for distributed learning of forecasting models,
which learners leverage in every operation mode. Examples
include conventional large-scale ML approaches like learn-
ing an individual model per instance in an embarassingly
parallel manner, as well as learning a global model for all
instances via batch gradient descent [9, 3]. Furthermore,
we support two additional schemes which address the het-
erogenity of the data (e.g., different item groups). For the
schemes discussed, we assume that the optimization prob-
lems we want to solve for learning forecasting models on a
collection of items I compose of the following, well-known
building blocks: a convex and differentiable function li(w)
for computing the loss with respect to the features Xi of
a single item i and the model parameters w, as well as a
convex regularizer r(w). Regularization depends on a hy-
perparameter which we omit from our notation for the sake
of simplicity. In case of the multi-stage likelihood and max-
imum likelihood learning, a typical choice is a squared loss
function and an `2 regularizer.

Local learning. In this setting, we train a single model
per item i parameterized by a weight vector wi, indepen-
dently of all other items. This means that we solve an opti-
mization problem

argmin
wi

li(wi) + r(wi)

for every item i in isolation. We execute this scheme in a

1697

simple data parallel manner with a map operator (Figure 3).
In the map operator, the learner is provided with the fea-
tures Xi related to an item i and learns the weight vector wi
for it.

While the parallel execution of this scheme is trivial, it
allows us to easily scale out powerful algorithms not cov-
ered in this writeup, such as maximum likelihood parameter
learning in state space models with non-Gaussian likelihood,
using approximate Bayesian inference [26].

(X1 ,z1)

(X2 ,z2)

(X3 ,z3)

(X4 ,z4)

(X5 ,z5)

w1

w2

w3

w4

w5

Figure 3: Local learning: embarassingly parallel execution
with a map operator.

Global learning. Here we train a global model, param-
eterized by a weight vector w, for all items, resulting in the
optimization problem

argmin
w

∑
i∈I

li(w) + r(w)

Our system applies distributed L-BFGS [7] to minimize this
equation, an approach common in industry (e.g., the Ml-
lib [20] library analogously trains generalized linear mod-
els). L-BFGS is executed via an iterative map-reduce-update
scheme (Figure 4). At the beginning of an iteration, the
current version of the weight vector w is broadcasted to all
worker machines in the cluster. Next, each worker k com-
putes the sum of the gradients

∑
i∈Ik
∇li(w) for every item i

in the worker’s partition Ik of the data. This happens in
parallel for all K partitions of the data (with

⋃K
k=1 Ik = I

and Ii ∩Ij = ∅ ∀i 6= j). The parallel gradient computation
is conducted via a map operation over the input. Next, the
system runs a global aggregation via a reduce operator, in
which the gradient contributions are summed up and com-
bined with∇r(w) on the master. The master then computes
the next version of the weight vector w (using its approx-
imation to the inverse Hessian and line search) and starts
the subsequent iteration.

(X1 ,z1)

(X2 ,z2)

(X3 ,z3)

(X4 ,z4)

(X5 ,z5)

w

Figure 4: Global learning: distributed L-BFGS executed
with iterative map-reduce-update

Local learning with hierarchical regularization. We
support an extension to local learning which allows models
to share statistical strength between items. The idea is to
use a regularizer that shrinks the weight vector towards vec-
tors learned at higher levels, incorporating the weights of
many items. In the example, we employ a two-level hierar-
chy2, introducing a set of parameter vectors wg for G groups
of items, as well as a global vector w. This hierarchy results
in the following joint optimization problem for all items:

argmin
w,{wg},{wi}

[∑
i∈I

li(wi)+r(wi−wg(i)−w)
]
+
∑
g∈G

r(wg)+r(w)

We again employ an iterative map-reduce-update scheme for
the learning procedure. We alternate between a local learn-
ing step for the item specific weight vectors wi and a global
hierarchical aggregation step to re-compute the group spe-
cific weights wg and the global weight vector w (Figure 5).
The current versions of the vectors wg and w are broad-
casted to the workers in the cluster, which execute the local
learning step within a map operation. Our system conducts
the subsequent hierarchical aggregation with a reduce op-
eration that first re-computes the group specific vectors wg
from the item specific weights wi and then re-computes the
overall weights w from the group vectors wg. For `2 regular-
ization, these re-computations can be done in closed form.
Finally, the updated set of vectors wg and w are broadcasted
to the workers to start the next iteration.

(X1 ,z1)

(X2 ,z2)

(X3 ,z3)

(X4 ,z4)

(X5 ,z5)

w1

w2

w3

w4

w5

wr1

wr2

w

Figure 5: Local learning with hierarchical regularization: al-
ternation between embarassingly parallel local learning and
a global hierarchical aggregation step.

Global-local learning. The fourth distributed learn-
ing scheme comprises of a hybrid between global and local
learning. The features as well as the weight vector which
parameterizes the model here consist of a global part and a
local part. In the case of the parameter vectors, the global
part w is shared by all items and local parts vi are specific to
individual items i. Analogously, a global regularizer R(w)
and local regularizers ri(vi) are applied, which leads to the
optimization problem:

argmin
w,{vi}

R(w) +
[∑
i∈I

li(w, vi) + ri(vi)
]

On the technical side, this allows us to operate on a smaller
shared vector than in the standard global setting. On the
algorithmic side, this approach provides the freedom to use
different sets of features for different kinds of items and to
keep these features local to the items that exhibit them.

2note that the proposed approach allows for hierarchies of
arbitrary depth

1698

We employ a nested minimization approach, which we again
execute via iterative map-reduce-update (Figure 6). In this
nested minimization approach, we push the minimization
over vi into the sum, i.e.:

argmin
w

R(w)+
∑
i∈I

L̃i(w) with L̃i(w) := min
vi

[
li(w, vi)+ri(vi)

]
Note that the resulting global optimization problem is still
convex, as minimization preserves convexity. In order to
make this approach effective in practice, the inner optimiza-
tion problems need to be solved as quickly as possible, as
they are required for every evaluation of the global objective
function (e.g., also during line searches in L-BFGS). In our
experience it is sufficient to solve these inner problems to a
fairly low tolerance and apply a hard limit on the number
of inner iterations.

(X1 ,z1)

(X2 ,z2)

(X3 ,z3)

(X4 ,z4)

(X5 ,z5)

v1

v2

v3

v4

v5

w

Figure 6: Global-local learning: Nested minimization, where
every outer iteration re-computes shared global parts of the
model and internally runs several embarassingly parallel in-
ner iterations of learning the local parts of the model.

While individual learning algorithms form the core of our
platform and dictate its prediction quality, they only consti-
tute a single building block in a large end-to-end ML appli-
cation from a systems perspective. In the following sections,
we move up in the hierarchy and discuss our machinery for
assigning items to learners and for modeling complex end-
to-end ML pipelines.

4.2 Routing and Ensembling
Our platform has to be able to deal with numerous models

which reflect the heterogeneity of the demand in many sce-
narios and the resulting diversity of the forecasting problem.
For example, some models might be tailored towards specific
groups of items such as new items, or items that share char-
acteristics like seasonality. Furthermore, some models might
only perform well during specific time periods in the predic-
tion range, e.g., christmas. Usually, users try out a small
set of baseline algorithms and add more specialized learners
over time to improve prediction accuracy for certain subsets
of items. Therefore, our system contains a routing compo-
nent that controls the ‘gating’, the assignment of items to
different learners both for training and prediction.

Gating. We leverage declarative rules comprised of pred-
icates on item-based attributes (e.g., denoting the product
group of an item) to specify the routing. These rules can ei-
ther be manually defined or learnt from experimental evalua-
tions on backtest datasets. The routing mechanism requires
the definition of training as well as prediction routing rules
to define the sets of items that a learner uses for training as
well as for prediction. Here, the training set is often larger

itemRouting {

variableDefinitions { ... }

training {
GLMFast = [

{ satisfies = [velocity_medium],
include = true },

{ satisfies = [velocity_fast],
include = true },

{ include = false }],
Base = [{ include = true }],
Zero = [{ include = false }]

}

prediction {
{ satisfies = [likely_inactive],

learners = { Zero = 1.0 } },
...
{ satisfies = [velocity_fast ,

cat_PHONE , xmas],
learners = { GLMFast = 0.5,

Base = 0.5 } }
...
{ learners = { Base = 1.0 } }

}
}

Listing 1: Declarative routing configuration based on item
attributes for an ensemble of three learning algorithms.

than the prediction set, especially for learners that embody
information sharing between items (Section 4.1). The defi-
nition of the routing rules is a manual process, because the
attributes used in the predicates of the routing rules must be
determined before we derive the routing. Typical examples
of attributes for routing predicates are the mean weekly de-
mand or age of an item. More advanced routing attributes
can be obtained from a previously trained classifier for ex-
ample.

Generation of Gating Rules. Given the routing at-
tributes, we employ an automated way to derive the gating
for a set of pre-determined buckets (subsets of items). For
each such bucket, we generate a forecast from every learner
for all contained items, compute aggregate evaluation met-
rics (e.g., the aggregate P90 quantile loss), and finally pick
the best performing learner.

Ensembling. This gating mechanism also enables users
to leverage multiple learners for predicting the demand of
a single item. The main usage scenario of this functional-
ity is to generate ensemble predictions from different learn-
ers. Since learners emit samples as prediction output in
our architecture, ensembling boils down to mixing the sam-
ples obtained from different learners. Another important
function of the ensembling mechanism is to provide fallback
predictions in rare cases where an individual learner fails to
generate samples for an item.

Example. Listing 1 illustrates a small hypothetical ex-
ample of a declarative routing configuration. The configura-
tion starts with the definition of boolean variables which will
be used to decide upon the routing of items, contained in the
variableDefinitions block. We omit its details for brevity,
and describe the variables used in the example configura-
tion. First, there is a set of variables called velocity slow,
velocity medium and velocity fast denoting in which pre-

1699

defined range of mean weekly historical sales an item falls.
Next, there are catalogue specific variables, e.g., cat PHONE

which denotes that an item belongs to the phone category.
Furthermore, there are complex variables such as likely -

inactive whose value depends on the output of a previously
trained classifier that predicts if an item will not sell any-
more (e.g., because the item is not produced anymore, but
the system is not aware of this information). Additionally,
there is the attribute xmas which does not depend on the
item itself, but on specific dates in the forecasting range,
e.g. a couple of weeks before christmas.

We employ three learning algorithms in the example: an
algorithm called Zero, which constantly predicts zero sales
(and is only useful for inactive items), a simple baseline
learner called Base, and a GLM with hierarchical regular-
ization (Section 4.1) denoted GLMFast, which we assume is
tuned for high velocity items. The training block dictates
the assignment of items to learning algorithms in the train-
ing phase. A list of statements must be provided for every
configured learner. Then, for each item in the dataset, the
statements are processed as follows: we find the first state-
ment for which the conjunction of variables in the satis-

fies clause evaluates to true, and include the item in the
training set for the learning depending on the value of the
corresponding include clause. In the example, the training
set for the GLM consists of all items with fast or medium
velocity, the baseline learner is trained on all items, and the
zero forecaster on none, as it does not require training.

The prediction block consists of a list of statements,
which are evaluated for every item and every day in the
forecasting range. In contrast to the training block, an item
can only have a single match here. The first statement with
a matching satisfies clause defines how the predictions
samples for the item on the respective day are generated: we
compute prediction samples from all the learning algorithms
specified in the learners clause and combine the samples
according to the given probability distribution. In our ex-
ample, we gate all the items that received the likely inac-

tive symbol to the Zero model so that we get a prediction
of constant zeros. The next clause dictates that during the
christmas period all phone items (cat PHONE) with a high
number of sales in the past (as indicated by the veloc-

ity fast symbol) get a 50/50 mix of predictions from the
baseline model and the GLM. Finally all items that have
not been captured by any statement yet receive their pre-
dictions from the baseline model (as indicated by the last
statement). A further noteworthy advantage of this declar-
ative routing machinery is that we can compute a complete
table of item assignments which is very useful for debugging
and reporting.

4.3 High-Level Dataflow Abstraction
While training models and assigning sets of items to them

is crucial for a demand forecasting system, actual workloads
comprise of many more operations (e.g., pre-processing, re-
port generation, persistence of intermediate results, etc.),
that need to be orchestrated, typically in the form of some
kind of pipeline. It has been acknowleged that implementing
complex ML pipelines for real-world systems poses a huge
challenge [25]. Static pipelines usually lack flexibility: al-
though their behavior can be partially influenced through
configuration values, adapting these pipelines to certain op-
eration modes such as ensembles of many learning algo-

rithms becomes difficult. Over time, pipelines have a ten-
dency to become increasingly complex: sources of complex-
ity in our scenario are the need for backtests on many differ-
ent forecast start dates or the comparison of many ensemble
configurations. Furthermore, static pipelines sometimes im-
pose performance overheads, as they apply hardcoded ex-
ecution strategies, typically aimed at guaranteeing robust
runs on the whole input data. However, in ad-hoc execution
modes on small datasets, these strategies can often cause
redundant work (e.g., the re-computation of predictions or
the repetition of feature transformations for many learners
which operate on the same features). Moreover, certain
system functionality, such as the routing, is not required
in ad-hoc operation modes such as experiments with sin-
gle learners. While some researchers propose to define cus-
tom domain-specific languages for such scenarios [16], we
choose a more lightweight path by implementing an addi-
tional dataflow abstraction on top of Spark, which resides
on a lower level than a custom language, but still enables
flexible modeling and a set of optimizations. This dataflow
abstraction enables us to lazily declare a pipeline, which the
system executes afterwards. During execution, the system
can automatically apply inspections and optimizations. As
a side effect, the resulting abstraction enforces sound engi-
neering principles such as encapsulation and separation of
concerns.

Dataflow Abstraction. Dataflows have proven them-
selves as a useful abstraction for general distributed, data-
intensive computing [8, 1, 6]. We therefore introduce a sim-
ple dataflow abstraction for our forecasting flows to model
our platform’s different operation modes. We define a flow
as a directed, acyclic graph (DAG), denoted G = (V,E),
where the vertex set V is comprised of so-called sources and
operations, and the edges E denote flow of data between ver-
tices. A source represents a second-order function fr → O,
where the user-defined first-order function (UDF) fr pro-
duces an output of type O. An operation is a second-order
function I × fo → O, which given an input of type I and
a user-defined first-order function fo : I → O produces an
output of type O. All supplied UDFs must be determin-
istic and side-effect free. Furthermore, we provide a set of
materialization operations, which are functions: I → I with
pre-defined side effects (such as persisting a dataset in the
DFS or caching it in memory). Operations can contain dis-
tributed as well as non-distributed computations. Naturally,
the output type of the operations pointing to a vertex must
match its input type, (or the combination of the output
types, in case of multiple incoming edges). Flows are lazily
constructed and executed by the system afterwards. The
runtime executes a flow by recursively invoking the oper-
ations, similar to a depth-first walk starting from the leaf
vertices of the DAG. The main components of our dataflow
implementation are the abstract types Source and Opera-

tion. These are extended to implement different operations
common to the ML pipeline. Flows are built from a compo-
sition of sources and operations, which applies type checks
at compile time. The composability of the flow allows for a
simple way to create different versions of our pipeline. Rout-
ing is not needed in single learner experiments for example,
and we can define a flow that simply omits this step.

Automated Inspection & Optimization. Dataflow
abstractions are commonly used to apply automatic opti-
mizations to programs and queries (e.g, query optimization

1700

Source(Items)

RemoveNewItems

A

RemoveNewItems

A

TransformItemFeatures

PredictWithGlobalLearner

RDD[FeatureMatrix]

CreateReport

TransformItemFeatures

RDD[Item]

EnsemblePredictions

RDD[SamplePath]

PersistRDD

PredictWithLocalLearner

RDD[FeatureMatrix]

RDD[SamplePath]

RDD[SamplePath] RDD[SamplePath]

RDD[Item]

/* Lazily construct a flow for an ensemble */
val allItems = SourceFrom(...)

val featuresForLocal =
 TransformItemFeatures(RemoveNewItems(allItems))

val samplesFromLocal =
 PredictWithLocalLearner(featuresForLocal)

val featuresForGlobal =
 TransformItemFeatures(RemoveNewItems(allItems))

val samplesFromGlobal =
 PredictWithGlobalLearner(featuresForGlobal)

val ensembledSamples =
 EnsemblePredictions(samplesFromLocal,
 samplesFromGlobal))

val persistedSamples = PersistRDD(ensembledSamples)
val report = CreateReport(ensembledSamples)

/* Optimize and execute the flow */
flowExecutor.executeFlow(persistedSamples, report)

Source(Items)

RemoveNewItems

A

PredictWithLocalLearner

EnsemblePredictions

RDD[SamplePath]

CreateReport

TransformItemFeatures

RDD[Item]

PersistRDD

Cache

RDD[FeatureMatrix]

Cache

RDD[SamplePath]

RDD[T]

PredictWithGlobalLearner

RDD[T]

RDD[T] RDD[T]

RDD[SamplePath]

1 lazy, declarative flow construction 3 execution of rewritten DAG2 optimization of resulting DAG

Figure 7: Toy example for ML dataflows in our platform: (1) ML dataflows are defined lazily in code by composing sources and
operators. Finally, the sinks of the constructed DAG are passed to an executor. (2) Our system operates on the intermediate
DAG representation and applies optimization techniques such as common subexpression elimination and cache point selection.
In this example, the duplicated operators RemoveNewItems and TransformItemFeatures are merged into a single pipeline, and
a cache operator is injected after all operators whose RDD output is read more than once. (3) The rewritten DAG is executed
on Apache Spark.

in relational databases), usually by having the system rea-
son about the computation using algebraic properties of the
operators. While our proposed abstraction lacks algebraic
properties, it still enables a set of general inspections and
optimizations (similar to the functionality offered in Key-
stoneML [27]). For example, one of the biggest perfor-
mance hazards in Spark-based applications is the implic-
itly triggered re-computation of distributed datasets that
occurs if a non-cached distributed dataset is accessed mul-
tiple times (which even worse, can also trigger transitive
re-computations). In a complex application, where refer-
ences to distributed datasets are passed around frequently
between different modules, its often not possible to locally
(e.g., inside a method body) make all required caching de-
cisions, as putting one dataset into the cache can result in
the unwanted eviction of other data; furthermore potential
performance gains also depend on the shape of the input
data and the cluster. We are not aware of an easy-to-use
automatic way that Spark provides to even detect these re-
computations other than manually parsing them from its
event log. Our operator abstraction on the other hand allows
us to detect re-computations in cases, where an operator
outputs a distributed dataset. Our runtime, which executes
the dataflow, can detect such outputs during the depth-first
walk through the DAG, check whether the dataset is cur-
rently cached (by interacting with the Spark cache), and
record the number of consumptions of uncached operation
outputs. A current limitation of this approach is that it
cannot detect re-computations inside UDFs.

Furthermore, backtests and ensemble computations, which
involve multiple learners, require us to execute tasks mul-
tiple times, such as reading the input data, filtering it ac-

cording to routing rules and transforming the data to ma-
trices. In many cases, this work is redundant, e.g., when
we train different learners which use the same feature set.
The dataflow abstraction allows us to detect such cases. By
definition, the output of an operation is determined only by
its UDF and its inputs. We can identify common operator
subtrees (that have sources as leafs) in the DAGs for mul-
tiple learners, execute the subtree only once and re-use the
result afterwards. Note that this is a special case of the
well known common subexpression elimination applied by
compilers. Another optimization targets a long-term goal of
the dataflow abstraction: we want to have the system in-
ject performance-critical materialization operators (e.g., for
caching) automatically in suitable places in the dataflow.
This allows the system to tackle the re-computation prob-
lem. Such an injection is not trivial however, as adding
cache points is not always beneficial, e.g. there might be
cases where it is cheaper to re-compute data and the mem-
ory consumed by the caching is also not available for other
expensive system operations such as distributed shuffles. We
experiment with a simple approach for cache point injection,
where we inject a cache operator after every operator whose
output is consumed more than once. However, we find that
this does not reliably decrease runtime, which we attribute
to the fact that Spark’s cache competes for memory within
its ‘block manager’ that also holds the results of distributed
shuffles.

Example. Figure 7 shows a toy example of computing en-
semble predictions from two learners based on our dataflow
abstraction. The Scala code on the left side illustrates how
a flow is lazily constructed from a set of predefined opera-
tors which internally execute several Spark operations. In

1701

the example, a set of items is read via the SourceFrom op-
eration. Next, the pipeline for a fictitious ‘global learner’
is set up: we remove new items with the RemoveNewItems

operator, apply feature transformations with a Transfor-

mItemFeatures operator, and finally compute predictions
by invoking the PredictWithGlobalLearner operator. We
define a similar pipeline for a second fictitious ‘local learner’.
The output of these learners is consumed by an Ensem-

blePredictions operator, which combines them according
to some ensemble definition. Finally, the ensembled pre-
dictions are written to stable storage by the PersistRDD

operator, and a report is generated for them by a Cre-

ateReport operator. In the end, we instruct the system to
execute the lazily constructed dataflow via the flowExecu-

tor.execute(...) instruction, which is presented with the
sinks of the dataflow graph. Internally, our system converts
the code to a DAG representation and applies the afore-
mentioned optimizations. The subgraphs for both learners
share the operator subexpression SourceFrom → Remove-

NewItems → TransformItemFeatures, which gets merged
into a single instance whose output is consumed by both
learners. Next, the system applies a simple cache point injec-
tion strategy: we inject a cache operator after any operator
that produces an RDD which is read more than once (and
therefore might be re-computed). In our example such op-
erators are TransformItemFeatures and EnsemblePredic-

tions The resulting rewritten DAG, which the system will
execute, is shown on the right of Figure 7.

5. EVALUATION
For our experimental evaluation, we focus on the dis-

tributed learning schemes from Section 4.1. All experiments
are run using Spark 1.4, Hadoop 2.4 and the reference L-
BFGS-B Fortran implementation. To the best of our knowl-
edge, there exists no publicly available forecasting system
that would be suitable for comparing to ours.

5.1 Scalability
We investigate the scalability of the scheme for local learn-

ing with hierarchical regularization, described in Section 4.1.
We decide to concentrate on this scheme because we find
it to be the most popular choice amongst our users; fur-
thermore, the scalability of the global learning scheme is
already well researched [4]. In our instantiation, the model
applies a two-level hierarchy, where the first level is based
on item categories and the second level comprises a global
regularization. Locally, we learn generalized linear models
for the multi-stage likelihood described in Section 2, using
L-BFGS [7] as optimization algorithm and three outer iter-
ations per stage.

All scalability experiments are run using ‘m3.2xlarge’ EC2
instances with 8 cores and 30 GB RAM each, and data is
read from the S3 filesystem. The input data to the system
for each item is its demand history plus a matrix of ∼ 300
sparse features for a year in the past. We train three differ-
ent models for each item (which together allow us to sample
from our multi-stage distribution). We configure Spark to
run with a degree of parallelism equal to the number of
worker cores in the cluster, as our workload is dominated by
computationally intensive learning operations.

Scalability with increasing data size. We fix the clus-
ter size to 25 machines, execute the model computation with
the hierarchical learner for an increasing number of items

1 2 3 4 5
#items (millions)

0

200

400

600

800

ru
nt

im
e

(s
ec

on
ds

)

Figure 8: Linear speedup
for an increasing number of
input items on a fixed-size
cluster of 25 machines.

5 | 1 10 | 2 15 | 3 20 | 4 25 | 5
#machines | #items (millions)

0

200

400

600

800

ru
nt

im
e

(s
ec

on
ds

)

Figure 9: Effect of propor-
tionally increasing cluster
and data size.

(from one to five million), and measure the runtime of the
model training phase, whose input are item feature matri-
ces, which are materialized in memory. Figure 8 shows the
resulting execution times, ranging from 232 seconds to 832
seconds. We observe a linear running time increase, which
is what we expect, as the majority of work is embarassingly
parallel local model training, and distributed computations
are only necessary for the aggregation steps that re-compute
the hierarchical regularization vectors. These distributed
aggregations are fast, because we execute them with a tree
aggregration on the relatively small weight vectors.

Scalability with increasing data and cluster size.
Next, we focus on the scalability effects of increasing the
number of worker machines in the cluster proportionally to
a growing amount of input items. We start with five workers
and one million items and increase this workload up to 25
worker machines and five million items. Figure 9 illustrates
the resulting mean execution times. Ideally, we would see
a constant runtime. However, its is not possible to reach
this ideal scale-out for many reasons (such as network over-
heads). This effect has also been observed in other large-
scale ML systems [11, 24]. Nevertheless, we see that our
system achieves a steady controlled increase in execution
time with growing data and cluster size.

Impact of increasing the time dimension of the
feature matrices. In this last scalability experiment, we
investigate the effects of increasing the time dimension of the
feature matrices for the items in our forecasting workloads.
We use a fixed cluster size of 25 machines, a fixed set of
four million items and vary the size of the feature matrices
we generate. In order to achieve this variation, we have
our system generate feature matrices for different history
lengths of 90, 180, 270 and finally 365 days. Figure 10 shows
the resulting runtimes. We again see a linear running time
increase, yet increasing the time dimension of the feature
matrices has a much weaker impact on the runtime than
increasing the number of items. This is because the time
dimension of the feature matrices only affects the the local
learning steps. The dimensionality of the weight vectors is
not impacted by that, therefore there is no reduction of the
amount of distributed work that has to be conducted. This
means that our system is well suited to handle increasing
item histories.

5.2 Adaptability to Optimization Algorithms
We showcase the power of the abstraction underlying our

distributed learning schemes, which supports users in sep-
arating the modelling of the ML problem from the actual
learning procedure. Here we choose the global-local op-
timization problem introduced in Section 4.1 as example.
In our codebase, users can implement predefined interfaces

1702

100 150 200 250 300 350
model history length (days)

0

200

400

600

800

ru
nt

im
e

(s
ec

on
ds

)

Figure 10: Modest linear
runtime increase for grow-
ing item histories.

Figure 11: Convergence
rates of alternating direc-
tions, batch gradient de-
scent and nested minimiza-
tion (axis labels omitted
due to non-public nature of
the target metric).

for modelling the ML problem at hand (e.g., their imple-
mentation has to compute value and derivatives of the loss
function for individual items), and can choose from an exist-
ing set of optimization algorithms (or implement their own)
for learning the parameters of the ML problem. For the
global-local problem, we compare the nested minimization
approach detailed in Section 4.1 to standard batch gradi-
ent descent (BGD) and an ‘alternating directions’ (AltDir)
approach. In the latter approach, we alternate between par-
tially optimizing the global-local optimization problem with
respect to the global parameters w (keeping all local pa-
rameters vi fixed), and optimizing for all local parameters
vi while keeping w fixed. As the optimization problem de-
composes over the local vi, the latter step can be performed
independently for each item i in an embarassingly parallel
manner.

For the comparison, we set up the problem with ∼ 1000
sparse global features and ∼ 10 dense local features, and
apply it to ∼ 1 million items each with about 800 days of
training data. We run this set of experiments on a cluster
consisting of 100 4-core EC2 instances with 32 GB RAM
each. Both the alternating and the nested minimization use
10 inner iterations for each outer iteration. The results are
shown in Figure 11. We see that the nested approach using
L-BFGS converges much more quickly than the other two
algorithms. We attribute the fact that the nested approach
outperforms the alternating approach so drastically to its
ability to re-use the approximation to the inverse Hessian it
has built up throughout the entire optimization.

6. LEARNINGS
We summarize several of our learnings from building this

platform, both technical and operational in nature.
Shortcomings of Apache Spark. Our platform is built

on Apache Spark, which in principle allows running large-
scale data processing workloads on compute clusters of vary-
ing size with the same code. In practice, this can be diffi-
cult, as Spark programs represent hardcoded physical ex-
ecution plans that are usually tailored to run robustly in
production setups, and therefore naturally result in huge
overheads when run on smaller data. Spark is built on the
idea of repeatable transformations on immutable data struc-
tures [30], which greatly simplifies scheduling and fault tol-
erance. Yet, we encountered cases where a carefully tailored
way to update state local to a machine instead of always
producing copies would be very beneficial in terms of per-

formance (e.g., in the repeated updates for the local state of
the global-local learning scheme in Section 4.1).

Benefits of declarative programmable learner gat-
ing. We discuss our experiences in working with the declar-
ative routing mechanism described in Section 4.2. A major
challenge in most real-world ML applications is the highly
heterogeneous nature of real-world data. We described some
of the reasons for heterogeneity in demand data in Section 2.
A common pattern that we observed in usage of our system
is that people first establish cheap baseline methods that
produce forecasts for all items in a dataset, and later con-
centrate on more specialized algorithms to improve the pre-
diction accuracy for certain important subsets of the data.
Such an approach is a perfect use case for our gating ma-
chinery, which allows users to specify such assignments in a
declarative and easily maintainable way. Furthermore, the
gating process can be automated by generating the gating
rules from experimentation results as we describe in Sec-
tion 4.2. If ensembling is used, the gating rules allow for a
simple way to communicate the provenance of a computed
prediction to consumers of these forecasts. Another major
benefit of the routing mechanism for our users is perfor-
mance optimization, since it allows users to run complex
and computationally expensive learners only on small, im-
portant subsets of items, while the bulk of items is routed
to cheaper baseline learners.

Automation of model selection. Another operational
problem faced in almost any ML scenario is the automation
of model selection, e.g., to parameterize ML models for dif-
ferent deployment scenarios. Our system has a high degree
of automation via tools such as greedy forward feature se-
lection and hyper-parameter optimization via Bayesian op-
timization approaches. Nevertheless, a fair bit of manual
work is still needed. Further automatization hinges on a
trusted objective function and an ability to iterate quickly
over many models. While we have identified scores for some
sub-problems, it is an open question to find a score that cap-
tures all human intuition on what makes a forecast good.
Even with a perfect score, the scale of many problems faced
in industry use cases incurs potentially long runtimes of ex-
pensive learners and thus further prevents the system from
“killing the problem with iron”, e.g., from simply running
extensive grid searches for all incorporated models. Finding
smart ways to reduce the runtime of model selection work-
loads is a general problem however, and currently becoming
an active area of research [16].

7. RELATED WORK
We compare our system to previously proposed platforms

for large-scale machine learning from the research world,
and consider the question whether these systems would have
been a suitable base to implement our use case on top of.
Afterwards, we review related work on data management
for end-to-end machine learning, and finally briefly discuss
related literature on forecasting problems. A set of general
platforms for distributed machine learning have been pro-
posed in recent years. SystemML [11] allows users to specify
ML programs in a declarative, R-like language. These pro-
grams will automatically be optimized and executed by a
massively parallel dataflow system running on a cluster. In
contrast to most scalable ML systems, SystemML internally
uses blocked matrices as physical data representation, and

1703

its operators are built to consume and produce such ma-
trix blocks. Featurewise, SystemML could have been a can-
didate system for our implementation, yet it was not pub-
licly available when the development on our platform began,
and its language provides much less flexibility in comparison
to Scala (especially for data integration tasks like ingestion
from internal formats). Furthermore, there is no explicit
support for time series data in SystemML. A related system
is Samsara [22], which offers a Scala DSL for distributed ma-
trix operations, optimizes the resulting programs, and runs
them on a dataflow system. While Samsara allows for eas-
ier integration of external code than SystemML, due to it
running natively in Scala, it also does not offer dedicated
support for time series data.

MLBase [15] is a proposal for a comprehensive distributed
ML platform built on Apache Spark [30]. The vision was
to provide users with machinery for simple and declarative
specification of ML tasks. Internally, these tasks should then
be translated to so-called ‘logical learning plans’. An opti-
mizer conducts automatic model selection for these plans to
determine a well working algorithm, hyperparameters and
features for the ML task. The proposed vision resulted in
the development of the Mllib library [20]. Mllib contains
a collection of carefully implemented, scalable algorithms
for standard machine learning problems such as classifica-
tion, regression and recommendation mining. It also allows
its users to declaratively define ML ‘pipelines’ consisting of
steps like feature generation, learning or evaluation. In con-
trast to SystemML, it does not allow for the declarative
specification of algorithms however. In our experience, ex-
perimentation, algorithm debugging and model selection are
the most time consuming and difficult to scale tasks in a
large-scale ML system, and in our case call for a far more
advanced machinery than what Mllib has to offer (e.g., be-
cause different buying scenarios need to be taken into ac-
count in the evaluation of forecasts). Mllib’s main goal is to
provide a mature collection of standard algorithms, which
conflicts with our use case that is very different from stan-
dard ML problems, and requires the design of custom al-
gorithms. Graphlab [18] is a fast, distributed ML platform,
built on the idea of asynchronously scheduling model up-
dates based on the dependency graph of the data. However,
the graph-parallel abstraction does not match our forecast-
ing models well. Furthermore, Graphlab lacks general ab-
stractions for distributed data processing to handle tasks
like feature extraction and feature transformation.

Scientists are becoming more and more aware of challeng-
ing research questions of building and maintaining complex,
real world, end-to-end ML systems [25, 17, 23]. While the
initial research focus has been on the efficient training of ML
models on large datasets, a set of orthogonal problems is cur-
rently being identified and addressed. Examples include the
automated selection, management and provenance tracking
of ML models [16, 29]. Another field of interest that we also
faced in our system (see Section 4.3) is the modeling and ex-
ecution of complex ML workflows. Many approaches [20, 27]
build on variants of the popular pipeline abstraction in sci-
kit learn [21]. Recent work addresses questions like the au-
tomatic optimization of such pipelines [27] and efficient ways
to execute different versions of the contained operators [28].
KeystoneML [27] offers a larger set of optimizations than
our dataflow abstraction, however it lacks support for rout-
ing and ensembling, which quickly become important when

working with heterogeneous real-world datasets.
In contrast to general purpose machine learning platforms

and systems, we are not aware of public literature on de-
mand forecasting from a platforms/systems perspective apart.
Literature is limited to technology overviews [12] or white
papers on industry solutions by enterprise software/ana-
lytics providers such as BlueYonder, Oracle, SAP or SAS.
These solutions do not address the scale and particularity of
our demand forecasting problem. However, general interest
in demand forecasting seems to be rising, e.g., [13, 14].

8. CONCLUSION
We have presented a novel retail demand forecasting sys-

tem which contains state-of-the-art machine learning ap-
proaches and a rich infrastructure to support experimenta-
tion. At the same time, it meets the requirements of produc-
tion use cases. We highlight three general learnings from our
work: (i) It is greatly beneficial to have a single codebase for
scalable execution and experimentation. Over the course of
its history, this approach has proven to be very powerful by
enabling rapid agile development. (ii) Following sound ML
principles has allowed us to reach great accuracy in forecast-
ing and extend our system to many different learners. (iii)
A strong focus on experimentation and backtests is crucial,
as these scenarios are most demanding in terms of resource
consumption and scalability.

From our experience in developing the platform however,
we also conclude that there is still a tremendous amount of
systems knowledge necessary for building scalable machine
learning systems. A single unfortunate choice of a join strat-
egy or materialization point in a dataflow can have severe
negative effects on the scalability and runtime of an algo-
rithm implementation. This problem is deeply related to
the fact that Apache Spark still requires its users to hard-
code physical plans when programming via the resilient dis-
tributed datasets abtracion. Typically, the resulting exe-
cution plans are designed to be robust on large datasets
in demanding scenarios, which means that they result in
overheads when one runs such pipelines on small subsets
of the input data for experimentation purposes. In many
cases, it is difficult to switch such workloads to abstrac-
tions that allow Spark to optimize the computations (such
as DataFrames [2]), as forecasting code needs to work with
many complex objects, e.g., feature matrices representing
different feature vectors and time-series, which are difficult
to fit into a denormalized, relational representation.

In order to increase both the flexibility and performance of
our system, we aim to build on recent research for optimizing
ML workloads, especially for experimental tasks. Examples
of such optimization aims include the increase of task paral-
lelism [5] as well as enabling intelligent materialization and
re-use of intermediate results [31, 16]. Additionally, we will
explore how to integrate deep neural network learners that
promise to be more accurate than state-of-the-art models,
while requiring minimal feature engineering [10].

9. ACKNOWLEDGEMENTS
We would like to thank Ed Banti, Alessya Labzhinova,

Telmo Menezes, Borys Marchenko, Thoralf Klein, Kokhi
Nishio, Victor Suen, Syama Rangapuram, Simone Forte,
Jean-Baptiste Cordonnier, Johannes Kirschnick and Stephan
Seufert for their contributions.

1704

10. REFERENCES
[1] A. Alexandrov, R. Bergmann, S. Ewen, J.-C. Freytag,

F. Hueske, A. Heise, O. Kao, M. Leich, U. Leser,
V. Markl, et al. The stratosphere platform for big
data analytics. VLDB Journal, 23(6):939–964, 2014.

[2] M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu,
J. K. Bradley, X. Meng, T. Kaftan, M. J. Franklin,
A. Ghodsi, et al. Spark sql: Relational data processing
in spark. In SIGMOD, pages 1383–1394, 2015.

[3] M. Bilenko, T. Finley, S. Katzenberger, S. Kochman,
D. Mahajan, S. Narayanamurthy, J. Wang, S. Wang,
and M. Weimer. Towards Production-Grade,
Platform-Independent Distributed ML. In Machine
Learning Systems Workshop at ICML, 2016.

[4] M. Bilenko, T. Finley, S. Katzenberger, S. Kochman,
D. Mahajan, S. Narayanamurthy, J. Wang, S. Wang,
and M. Weimer. Towards Production-Grade,
Platform-Independent Distributed ML. In Machine
Learning Systems Workshop at ICML, 2016.

[5] M. Boehm, S. Tatikonda, B. Reinwald, P. Sen,
Y. Tian, D. R. Burdick, and S. Vaithyanathan. Hybrid
parallelization strategies for large-scale machine
learning in systemml. PVLDB, 7(7):553–564, 2014.

[6] V. Borkar, M. Carey, R. Grover, N. Onose, and
R. Vernica. Hyracks: A flexible and extensible
foundation for data-intensive computing. In ICDE,
pages 1151–1162, 2011.

[7] R. H. Byrd, P. Lu, J. Nocedal, and C. Zhu. A limited
memory algorithm for bound constrained
optimization. SIAM Journal, 16(5):1190–1208, 1995.

[8] R. Chaiken, B. Jenkins, P.-Å. Larson, B. Ramsey,
D. Shakib, S. Weaver, and J. Zhou. Scope: easy and
efficient parallel processing of massive data sets.
PVLDB, 1(2):1265–1276, 2008.

[9] C. Chu, S. K. Kim, Y.-A. Lin, Y. Yu, G. Bradski,
A. Y. Ng, and K. Olukotun. Map-reduce for machine
learning on multicore. NIPS, 19:281, 2007.

[10] V. Flunkert, D. Salinas, and J. Gasthaus. DeepAR:
Probabilistic Forecasting with Autoregressive
Recurrent Networks. arXiv preprint arXiv:1704.04110,
2017.

[11] A. Ghoting, R. Krishnamurthy, E. Pednault,
B. Reinwald, V. Sindhwani, S. Tatikonda, Y. Tian,
and S. Vaithyanathan. Systemml: Declarative machine
learning on mapreduce. In ICDE, pages 231–242, 2011.

[12] T. Januschowski, S. Kolassa, M. Lorenz, and
C. Schwarz. Forecasting with in-memory technology.
Foresight, 2013.

[13] A. Jha, S. Ray, B. Seaman, and I. S. Dhillon.
Clustering to forecast sparse time-series data. In
ICDE, 2015.

[14] kaggle.com. Rossmann store sales.
https://www.kaggle.com/c/rossmann-store-sales.

[15] T. Kraska, A. Talwalkar, J. C. Duchi, R. Griffith,
M. J. Franklin, and M. I. Jordan. Mlbase: A
distributed machine-learning system. In CIDR, 2013.

[16] A. Kumar, R. McCann, J. Naughton, and J. M. Patel.
Model selection management systems: The next
frontier of advanced analytics. SIGMOD Record, 2015.

[17] J. Lin and A. Kolcz. Large-scale machine learning at
twitter. In SIGMOD, pages 793–804, 2012.

[18] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin,
A. Kyrola, and J. M. Hellerstein. Distributed
graphlab: a framework for machine learning and data
mining in the cloud. VLDB, 5(8):716–727, 2012.

[19] S. Makridakis, S. C. Wheelwright, and R. J.
Hyndman. Forecasting methods and applications. John
Wiley & Sons, 2008.

[20] X. Meng, J. Bradley, B. Yavuz, E. Sparks,
S. Venkataraman, D. Liu, J. Freeman, D. Tsai,
M. Amde, S. Owen, et al. Mllib: Machine learning in
apache spark. JMLR, 17(34):1–7, 2016.

[21] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, et al. Scikit-learn: Machine
learning in python. JMLR, 12:2825–2830, 2011.

[22] S. Schelter, A. Palumbo, S. Quinn, S. Marthi, and
A. Musselman. Samsara: Declarative Machine
Learning on Distributed Dataflow Systems. In
Machine Learning Systems Workshop at NIPS, 2016.

[23] S. Schelter, V. Satuluri, and R. Zadeh. Factorbird - a
parameter server approach to distributed matrix
factorization. Distributed Machine Learning and
Matrix Computations Workshop at NIPS, 2014.

[24] S. Schelter, J. Soto, V. Markl, D. Burdick,
B. Reinwald, and A. Evfimievski. Efficient sample
generation for scalable meta learning. In ICDE, pages
1191–1202, 2015.

[25] D. Sculley, G. Holt, D. Golovin, E. Davydov,
T. Phillips, D. Ebner, V. Chaudhary, M. Young, J.-F.
Crespo, and D. Dennison. Hidden technical debt in
machine learning systems. In NIPS, pages 2503–2511,
2015.

[26] M. Seeger, D. Salinas, and V. Valentin Flunkert.
Bayesian Intermittent Demand Forecasting for Large
Inventories. In NIPS, 2016.

[27] E. R. Sparks, S. Venkataraman, T. Kaftan, M. J.
Franklin, and B. Recht. Keystoneml: Optimizing
pipelines for large-scale advanced analytics. ICDE,
2017.

[28] T. Van der Weide, O. Smirnov, M. Zielinski,
D. Papadopoulos, and T. van Kasteren. Versioned
machine learning pipelines for batch experimentation.
In Machine Learning Systems workshop at NIPS, 2016.

[29] M. Vartak, H. Subramanyam, W.-E. Lee,
S. Viswanathan, S. Husnoo, S. Madden, and
M. Zaharia. Modeldb: A system for machine learning
model management. In Workshop on
Human-In-the-Loop Data Analytics at SIGMOD,
pages 14:1–14:3, 2016.

[30] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma,
M. McCauley, M. J. Franklin, S. Shenker, and
I. Stoica. Resilient distributed datasets: A
fault-tolerant abstraction for in-memory cluster
computing. In NSDI, pages 2–2, 2012.

[31] C. Zhang, A. Kumar, and C. Ré. Materialization
optimizations for feature selection workloads. In
SIGMOD, pages 265–276. ACM, 2014.

1705

	Introduction
	Background: Probabilistic Demand Forecasting
	System Architecture
	System Internals
	Distributed Learning Schemes
	Routing and Ensembling
	High-Level Dataflow Abstraction

	Evaluation
	Scalability
	Adaptability to Optimization Algorithms

	Learnings
	Related Work
	Conclusion
	Acknowledgements
	References

