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ABSTRACT 
Despite the increasing demand for offshore energy, 

structural components of offshore wind turbines (OWT), such as 

the tower and foundation, are considered the most critical parts 

of the turbine. In fact, uncertainties regarding load conditions, 

soil and structural properties highly undermine the OWT 

structural reliability. In this scenario, in order to obtain more 

accurate results, rigorous probabilistic analyses are necessary. 

In this study, a probabilistic analysis of the dynamic response of 

a monopile OWT is conducted by using a systematic uncertainty 

quantification (UQ) framework to deal with the uncertainty 

assessment of the model input parameters. The proposed 

dynamic model computes the dynamic response of the turbine 

due to wind and waves loads on the monopile structure utilizing 

a simple cantilever beam analytical model. The distributions of 

the model input parameters are determined using (1) non-

parametric statistics for a large dataset, and (2) the maximum 

entropy principle for a small dataset. Monte Carlo simulations 

are performed to propagate the uncertainties of the model inputs 

and to determine the system reliability expressed in terms of their 

probability of failure for the serviceability limit state design 

criterion. Finally, to demonstrate the shortcomings of traditional 

approaches that assume standard distributions to model 

uncertainties, a UQ approach modeling the uncertainties of the 

parameters using normal distributions is contrasted with our 

framework. From the results, significant differences between the 

distribution shape and values of the probability of failure can be 

observed; thus, it demonstrates the importance of developing 

probabilistic frameworks with systematic UQ to have more 

realistic approximations of the reliability of the OWT structure.   

 

Keywords: offshore wind turbines, probabilistic analysis, 

uncertainty quantification, structural reliability. 
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1. INTRODUCTION 
Renewable energies have arisen as a solid alternative to 

satisfy the growing demand for energy around the globe. Factors 

such as global warming, economic volatility of fossil fuels and 

technology developments have made renewable energies 

competitive to conventional energies. Among the variety of 

clean sources of energy, offshore wind power is the sector that 

has grown significantly over the last decades [1]. In contrast with 

onshore applications, offshore wind energy present significant 

advantages, such as the lower risk for human life, fewer space 

constraints, less turbulent winds, and wind availability at higher 

speeds [2]. Despite the associated benefits of offshore wind 

energy, the overall cost of the projects is higher than for the 

onshore counterparts. Offshore wind turbines (OWT) deal with 

issues regarding extreme environmental loads, and complicated 

geographical locations, which result in a noticeable impact over 

the design, installation, and maintenance of offshore wind plants 

[3].  In terms of design, the turbine foundation is critical and may 

reach a cost of the order of 25 to 35% of the whole system [4], 

[5]. Foundations are the elements of the structure that connect 

the upper part of the structure to the ground. Their function is to 

transmit the combinations of loads exerted over the structure to 

the ground and to provide the sufficient stiffness to reduce 

deformations at the lower level, which in turn, prevent large 

deformations at the highest parts of the structure. Nevertheless, 

the installation of OWT towers in poor quality terrains requires 

deeper substructure penetrations into the seabed, as well as 

stiffer and taller substructures to meet the design standards. 

Hence, despite the considerable the research made on the design 

of OWT foundations, there are no significant improvements in 

the system reliability, which leads to the necessity of research in 

this area. 

As seen in the literature, a significant number of studies 

which are primarily focused on the behavior of monopile-

foundations are found in comparison with other substructures. In 
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fact, monopiles are the most utilized OWT foundation type in 

shallow waters, (i.e., less than 30 meters depth) due to their 

simplicity in terms of manufacturing, installation, and 

deinstallation [2], [6]. The majority of the current models of 

monopile foundations rely on studies developed essentially for 

monopiles substructures designed for either oil or gas offshore 

platforms [7], [8]. However, these approaches are questioned by 

other authors because the intended purpose for an oil platform 

differs significantly from an OWT. Because of that, it is still 

necessary to identify the most sensitive parameters for OWT 

foundation that have a major impact on the foundation reliability. 

The standards to design foundations included in the main 

design codes are primarily divided into four criteria, namely, 

ultimate-limit state (ULS), resonance or the fundamental 

frequency criterion, fatigue limit state (FLS), and serviceability 

limit state (SLS) [4]–[6]. Among these criteria, the SLS, which 

define the maximum deflections and rotations that the structure 

may have, has been described as the most stringent. The SLS 

criteria gain more attention particularly due to the tendency of 

the offshore wind industry to build taller towers and larger blades 

which leads to excessive deflection at the wind turbine hub [3], 

[4], [6]. To satisfy this criterion, designers may be forced to 

increase the geometric parameters of the pile, which increase the 

material, transportation, and installation costs. Hence, more 

studies need to be conducted in order to establish the most 

appropriate combination of parameters that maximize the 

stiffness of the structure without increasing the overall cost of 

the turbine.  

Improvements in the deterministic models (both analytical 

and numerical) have been conducted to reduce the foundation 

cost considering the SLS criteria. Several researchers studied the 

interaction between soil and pile using finite element (FE) 

models and quasi-static loads [3], [9]. Posterior researches 

focused on the effects of the dynamic loading, due to wave and 

wind excitations, over the foundation response considering 

parked-conditions, which is the assumption that the rotor 

behaves as a lumped mass at the hub of the OWT [4], [10]. Zuo 

et al. [11] on the other hand, developed an FE model that enables 

the study of the dynamic response of an OWT, while including 

the effects that the blades exert over the OWT when they are 

rotating, i.e. non-parking condition. They found that the 

assumption of parking conditions, widely employed in early 

research, may result in serious effects on the deflections of the 

OWT structure. Although improvements in the deterministic 

models provide valuable information about the shortcomings in 

the monopile foundations, uncertainties in the model inputs are 

usually not taken into consideration. As a result, the reliability of 

the OWT may not be computed properly. 

Despite the recognized importance of uncertainty 

quantification (UQ) in the reliability of the system, few research 

works have been published which take into consideration the 

variability of the inputs parameters in OWT foundations [3], [5]. 

All these studies concluded that the system reached higher 

deflections employing probabilistic analysis in comparison with 

deterministic analysis. Moreover, the reliability of the system 

dropped down when additional sources of uncertainty, were 

added to the probabilistic analysis. Although these researches 

attempted to study the effects of uncertainties on the tower 

deflections, they do not provide a systematic procedure to 

quantify the uncertainties of the input parameters in an efficient 

manner other than just assuming probability distributions for 

these parameters. As a result, there is still a gap in the field of 

OWT foundations that must be addressed in order to allow 

design engineers to design cheaper OWT substructures without 

undermining the system reliability. 

In this study, a probabilistic analysis of the dynamic 

response of a monopile OWT is conducted by using a systematic 

UQ framework to deal with the uncertainty assessment of the 

model input parameters. The proposed dynamic model computes 

the dynamic response of the turbine due to wind and waves loads 

on the monopile structure utilizing a simple cantilever beam 

analytical model. The uncertainties of the model input 

parameters are determined considering the scenarios where: (1) 

significant amount of data is available using non-parametric 

statistics, and (2) few data are available by means of the 

maximum entropy principle (MaxEnt). Monte Carlo simulations 

are performed to propagate the uncertainties of the model inputs 

and determine the reliability of the system in terms of the SLS 

criteria. Comparison of our results with other approaches which 

assume that the model input parameters are normally distributed 

shows the validity of the proposed probabilistic framework to 

ensure the structural reliability of OWT.  

 

2. METHODOLOGY 
In this work, a probabilistic framework to determine the 

probability of failure of the structure based on the SLS criterion 

for a 5[MW] OWT with monopile foundation embedded in clay 

soil is developed. The framework is carried out in MATLAB and 

combines a deterministic model to determine the dynamic 

response of the turbine, and a probabilistic model to quantify and 

propagate the uncertainties into the deterministic model to obtain 

the probability density function (PDF) of the model response.  

 

2.1 Deterministic Model 
The framework used in the deterministic analysis is 

illustrated in FIGURE 1. The analysis is divided primarily in a 

load model and a dynamic model. The load model aims to 

determine the loads exerted on the structure due to the action of 

the environmental loads, whereas the second one aims to 

establish the maximum displacement at the hub of the OWT. The 

surrogate dynamic model, thereafter, is verified and its response 

is contrasted with the SLS design criterion.  

 

2.1.1 Wind and Wave Load Models 
The main loads exerted on the structure correspond to 

environmental loads, aerodynamic and hydrodynamic, which in 

this work are assumed to be acting in the same direction that in 

turn represent the most conservative scenario [9], [10]. The wind 
load exerting on the structure is modeled using the thrust force 

which can be estimated using Eq. (1) as is suggested in [4], [5], 

[10]. The turbulent wind speed time series, 𝑈(𝑧, 𝑡), at rated 
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conditions (12 m/s) is simulated using the software FAST 

coupled with TurbSim  

 𝐹𝑈 = 0.5𝜋𝑅𝑡2𝜌𝑎𝑐𝑡𝑈2(𝑧, 𝑡).                       (1) 
 

The wave loads exerted on the pile are modeled as a point 

load at the mean sea level using the Morison’s equation that is 

given by 

 𝐹𝑤 = 𝐹𝑤𝑖 + 𝐹𝑤𝑑 ,                          (2) 
 

where the inertial and drag components of the wave loads, 𝐹𝑤𝑖 
and 𝐹𝑤𝑑 are 

 

                     𝐹𝑤𝑖 = ∫ 0.25𝜂(𝑧)−ℎ 𝜌𝑊𝑐𝑚𝜋𝐷2�̈�(𝑧, 𝑡) 𝑑𝑧               (3) 

 

         𝐹𝑤𝑑 = ∫ 0.5𝜂(𝑧)−ℎ ∗ 𝜌𝑊 ∗ 𝑐𝑑 ∗ 𝐷 ∗ |�̇�(𝑧, 𝑡)| �̇�(𝑧, 𝑡)𝑑𝑧  
  
(4) 

 

wherein the wave speed and acceleration, �̇�(𝑧, 𝑡) & �̈�(𝑧, 𝑡), 

components were computed assuming the Airy wave theory [5], 

[6], [9]. A summary of the rest of the parameters employed in 

this model such as air density, 𝜌𝑎, water density, 𝜌𝑤, thrust 

coefficient, 𝑐𝑡, turbine parameters, such as rotor radius, 𝑅𝑡, and 

material properties  are summarized in Table 1. 

 

 
FIGURE 1: DETERMINISTIC FRAMEWORK OF THE OWT 

MODEL 

2.1.2 Dynamic Model of the Monopile Structure 
The tower-pile structure is modeled as a single degree of 

freedom oscillator with constant thickness and fixed to the 

seabed. The model represented in equation (3) is employed to 

compute the tower displacement at a hub height using time 

intervals of 0.05s, and a time span of 30s. The selection of the 

analytical model arises from the need to curb the significant 

computational cost of that an FE transient analysis requires to 

obtain the turbine response; however, to ensure the accuracy of 

the proposed analytical dynamical model, a FE model is carried 

out in ANSYS to compare and verify the suitability of the 

proposed analytical model 

 𝑚�̈� + 𝑐�̇� + 𝑘𝑥 = 𝐹𝑈(𝑡) + 𝐹𝑤(𝑡).                       (5) 
 

Table 1: DETERMINISTIC PARAMETERS USED IN THE 

SIMULATIONS 

Parameter Value 

Air density (𝝆𝒂)   1.23 kg/m3 

Sea water density (𝝆𝒘)   1,027 kg/m3 

Thrust coefficient (𝒄𝒕)    0.75 

Drag coefficient (𝒄𝒅)    0.7 

Mass coefficient (𝒄𝒎)    2 

Turbulence intensity factor    16% 

Significant wave height   6 m 

Spectral peak frequency 0.1 Hz 

Rotor radius (𝑹𝒕) 63 m 

Tower and Pile diameter (D) 6 m 

Steel density (𝝆𝒔) 7850 kg/m3 

Damping ratio (ζ) 12% 

Young modulus (E)  200 GPa 

 

2.2 Probabilistic Model 
The probabilistic model presented in this work comprises a 

UQ scheme to systematically assess and propagate the 

uncertainties of the input random variables (RV) through the 

deterministic solvers, and a statistical certification measurement 

to establish the reliability of the structure based on the six RV 

employed in this analysis. A schematic illustration of the model 

can be seen in FIGURE 2, in which the light blue boxes represent 

the UQ of the model inputs and the yellow boxes the uncertainty 

propagation approach to obtain the PDF of the response. 

 

2.2.2 Uncertainty Quantification Scheme  
The proposed UQ scheme considered in this study can be 

seen in FIGURE 3. The first step in the scheme is to classify the 

type of information associated with the input random variables 

(RV). Based on that information, the UQ approach in terms of 

the PDF for each input parameter is selected. The information 

related to the input random variables can be divided into two 

main categories, namely, (1) theoretical information (e.g. 

support, mean, variance) and, (2) experimental-monitored 

information (significant datasets from experiments or field 

measurements). As a result, two different approaches are 

proposed to handle such uncertainties in the least bias fashion. 

The first approach arises from the information theory and is 

called MaxEnt. This method aims to establish the PDF of the 

input RV that maximizes the PDF entropy based on the level of 

information collected at the moment of the analysis. 

Mathematically, the MaxEnt is expressed by 
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 𝑆 = − ∫ 𝑓𝑋 (𝑥)𝑙𝑛 𝑓𝑋(𝑥) 𝑑𝑥                              (6) 

 

where 𝑓𝑋(𝑥) is the joint PDF of the random vector 𝑋 composed 

by the input RV, and respect the 𝑀 + 1 constraints defined by 

the known information about 𝑋 

 ∫ 𝑔𝑘(𝑥) 𝑓𝑋(𝑥) 𝑑𝑥 = 𝑚𝑘 ,                             (7) 

 

where 𝑔𝑘(𝑥) and 𝑚𝑘 for 𝑘 = 0,1, … , 𝑀 are known real functions 

and values, respectively with 𝑔0(𝑥) = 1 and 𝑚0 = 1. The 

maximization problem is solved using the Lagrange multipliers 𝜆𝑘 for 𝑘 = 0,1, … , 𝑀 as [12], [13] 

 𝑓𝑋(𝑥) = 𝕀[𝑎,𝑏](𝑥)exp (−𝜆0) exp[∑ −𝜆𝑘𝑁𝑘=1 𝑔𝑘(𝑥)]    (8) 

 

where [a, b] is the know information about the support of the 

RV. The second approach uses non-parametric (NP) techniques 

to establish the uncertainty of the input RV. In the present study, 

the NP techniques used are the kernel density estimator (KDE) 

and empirical cumulative distribution function (ECDF). NP 

approaches produce a realistic representation of the random 

process that generates the population data only when the sampled 

data is proved to be statistically significant. The significance of 

a dataset is tested using the mean-square convergence criterion. 

This criterion, essentially, look at the convergence of the sample 

statistics (mean and standard deviation) at a certain number of 

samples 𝑛 𝑐, which is independent of the size of the dataset [13]. 

As mentioned before, seven parameters from the load 

models (𝜌𝑤 , 𝜌𝑎 , 𝑐𝑡, 𝑐𝑑 , 𝑐𝑚, 𝑈(𝑥, 𝑡)) and three from the dynamic 

model (𝜌𝑠, ζ, 𝐸), are considered as independent random variables. 

Furthermore, two deterministic models are considered for 

uncertainty propagation (FIGURE 2). The PDFs of air and water 

densities are determined using MaxEnt with the obtained 

information for their respective supports and mean values. The 

PDFs of the thrust, drag, and mass coefficients are also modeled 

using MaxEnt, but including an extra piece of information 

related to the support for the coefficient of variation (COV). 

Additionally, the variability of the wind inflow is modeled 

following a similar approach, in which the turbulence intensity 

factor (TIF) is assumed to be proportional to the COV of the 

wind speed. The Young modulus (E), on the contrary, is the only 

one estimated using a kernel density approach - that is-  because 

a significant data set of  E for structural steel was available for 

this analysis[14]. A summary of all RVs considered in the 

simulations, the available information, and the method used to 

model their uncertainties can be found in Table 2. 

Once the PDF of the input RVs are determined either by the 

MaxEnt or the KDE, random samples are drawn from each 

PDFs using the inverse transform method. Those samples are 

then used to propagate uncertainties in the input RVs to the 

response parameters using Monte Carlo simulation (MCS). The 

last step of the framework is post processing, in which the 

samples of the response parameters are employed to construct 

the non-parametric PDFs using KDE and ECDF [13].

 
FIGURE 2: PROBABILISTIC FRAMEWORK OF THE OWT 

MODEL 

 

 

 
FIGURE 3: UNCERTAINTY QUANTIFICATION SCHEME OF 

THE RANDOM VARIABLES CONSIDERED IN THIS STUDY 
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2.3 Statistical Certification (Probabilistic Response) 
The statistical certification of the results is represented in 

terms of a confidence bound plot, and the structural probability 

of failure associated with the SLS criterion. In this work, a 98% 

confidence bound plot is developed based on the sample 

information at each time step of the displacement stochastic 

process PDF {𝑋𝑑(𝑥, 𝑡)}. On the other hand, the probability of 

failure of the structure, 𝑝𝑓 (which is also defined as 1 − 𝑅, where 𝑅 is the reliability of the structure), is determined by computing 

the probability that the limit state function, 𝑍, of the response 

would be equal to zero for a time step 𝑡𝑖 [10]  

 𝑍 = SLS − 𝑋𝑑(𝑥, 𝑡𝑖).                                       (9) 

 

Table 2: INFORMATION ABOUT THE RANDOM VARIABLES 

USED IN THE SIMULATIONS 

RV Information Method 𝝆𝒘 
Mean: 1,027 kg/m3 

Limits: [1,020-1,030] kg/m3 
MaxEnt 𝝆𝒂 

Mean: 1.23 kg/m3 

Limits: [1.146-1.315] kg/m3 
MaxEnt 

𝒄𝒕 Mean: 0.75 

Limits: [0 -1] 

COV: [0.2-10] % 

MaxEnt 

𝒄𝒅 

Mean: 0.7 

Limits: [0 -1] 

COV: [0.2-10] % 

MaxEnt 

𝒄𝒎 

Mean: 0.2 

Limits: [0-1] 

COV = [0.2-10] % 

MaxEnt 

𝑼(𝒙, 𝒕𝒊) 

Mean: 𝑈(𝑡𝑖) 

Limits: [𝑈(𝑡𝑖)+/- 0.4*𝑈(𝑡𝑖)] 

              TIF = [10-22] % 

MaxEnt 

𝝆𝒔 
Mean: 7850 kg/m3 

Limits: [5495-10205] kg/m3 

COV = [0.5-15] % 

MaxEnt 

ζ 
Mean: 0.16 

Limits: [0.72-1.68] 

COV = [0.5-15] % 

MaxEnt 

E Dataset of 41[samples] 
Non-

Parametric 

 

3. RESULTS AND DISCUSSION 
In this work a probabilistic framework considering an 

analytical dynamic model to compute the total displacement at 

hub height applied for an OWT is proposed.  

 
3.1 Deterministic Results 

The verification of the analytical model using an FE model 

can be seen in FIGURE 4. From the graph, it is apparent that 

after the transient effects from 0 to 8 seconds approximately, the 

FE model and the analytical model responses have virtually the 

same mean and relatively follows the same trend. Hence, the 

proposed analytical may be employed as a suitable 

approximation for computing the turbine response instead of 

computationally expensive FE simulations, wherein several 

simulations are required. 

 

 
FIGURE 4: DETERMINISTIC SOLUTION OF THE TOWER 

DISPLACEMENT AT THE HUB HIGHT USING THE FINITE 

ELEMENT MODEL AND THE ANALYTICAL MODEL  

3.2 UQ Results 
       FIGURE 5 shows the PDFs (and the random samples drew 

out of them) of the input RVs determined using either the 

MaxEnt or the KDE approaches. For the air density and seawater 

density PDFs shown in FIGURE 5(a) and (b) the MaxEnt with 

information about their support and mean values are used; as a 

result, truncated exponential distributions with the curve rise 

close to the mean value are obtained. In FIGURE 5(c), (d), (e), 

(f)   and (g), the parameters 𝑐𝑡, 𝑐𝑑, 𝑐𝑚, 𝜌𝑠 and ξ, are determined 

using the MaxEnt with information regarding their mean, limits 

and a variable coefficient of variation (COV) ranging from 2 to 

15%. From the graphs, it is clearly seen that the shape of the 

MaxEnt PDF determined out this information shows a defined 

bell curve, wherein the peak of the distribution coincides the 

model parameter mean value. Despite the apparent similarities 

with either a Gaussian distribution or any other standard 

distribution, the MaxEnt PDFs are calculated considering the 

maximum level of uncertainty based on the available 

information. Consequently, the MaxEnt, in contrast with 

assumed distributions, ensures the minimum level of bias on the 

analysis. 

On the other hand, FIGURE 5(h) shows the PDF obtained 

using the KDE for a statistically significant sample of the 

material Young modulus. FIGURE 6 shows the convergence 

plots of three random arrangements of the same dataset in order 

to find the number of samples wherein convergence is achieved, 

which is approximately 35 samples for the analyzed dataset. It is 

important to mention that although NP methods are the best 

estimators when data is available, the failure to establish the 

convergence of the dataset would produce a bias non-parametric 

approximation of the true distribution. Therefore, when mean-

squared convergence is not achieved, NP methods may result in 

inaccurate probability distributions for the hub height 

displacement. 
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FIGURE 5: PROBABILITY DENSITIES OF THE MODEL INPUT 

RANDOM VARIABLES: (a) AIR DENSITY, (b) SEA WATER 

DENSITY, (c) THRUST COEFFICIENT, (d) DRAG COEFFICIENT, 

(e) MASS COEFFICIENT, (f) YOUNG MODULUS, (g) STEEL 

DENSITY, AND (h) DAMPING RATIO  

 

 
FIGURE 6: CONVERGENCE OF THE ESTIMATORS: (a) MEAN 

VALUE AND (b) STANDARD DEVIATION) OF THE YOUNG 

MODULUS DATASET USING THE MEAN-SQUARE CRITERION 

 

 
FIGURE 7: PROBABILISTIC RESULTS FOR THE OWT HUB 

DISPLACEMENT WITH 98% CONFIDENCE BOUND 

 

3.3 Probabilistic Results 
       FIGURE 7 shows the 98% confidence bound of the mean 

displacement response of the turbine at the hub height. The 

confidence bound indicates that 98% of the points around the 

sample mean (blue line) are included in the band. Such limits 

may vary if (1) more sources of uncertainty are added in the 

analysis, i.e. wave load, or (2) more accurate information, i.e. 

experiments, regarding the parameters included in the analysis 

are included. Both cases are considered as future research. 

 

3.3.1 Effects of Simplified UQ Schemes in the 
Probabilistic Response  
       In an attempt to quantitative illustrate the shortcoming of the 

utilization of a simplified UQ scheme, the proposed framework 

is contrasted with a simulation that is carried out assuming 

normality for the RVs considering in this study. FIGURE 8, for 

instance, shows the differences between the PDFs and samples 

when the model parameter distributions are determined using the 

MaxEnt (FIGURE 8a) and arbitrarily assumed as a normal 

distribution (FIGURE 8b). From the graph, it is clearly seen the 

scattering of the samples (from 0.8 to 1.7 approximately) 

generated from the normal distribution is considerably larger 

than the ones out of the MaxEnt distribution counterpart (roughly 

1.15 to 1.3). Such differences may add bias and extra variability 

to the analysis because the samples generated outside of the 

stated air density limits, i.e.1.15 to 1.3, are rarely or highly 

unlikely to be observed in reality. 

       In addition, the selection of the approach has significant 

importance in the determination of the probability of failure 

based on the SLS criterion. In order to show the influence of 

applying other approaches, a reliability analysis is conducted at 𝑡𝑖 = 4[𝑠]. The results of the prior analysis, such as the entire  

cumulative distribution function (CDF) of the 𝑍 function (Z), 

and a zoom of the left tail of the CDF that highlight the PF of the 

OWT structure can be seen in FIGURE 9(a) and (b), 

(a) (b)

(c) (d)

(e)

(h)

(f)

(g)
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respectively. From FIGURE 9(a) it is apparent that the CDF 

computed based on a normal distribution (NCDF) differs 

significantly from the ECDF computed from the samples 

obtained from MC simulations in the tails, in which the value of 

the 𝑃𝑓 (or reliability) is established. Such offset can be illustrated 

in detail in FIGURE 9(b), in which it is clearly seen that the 𝑃𝑓 

calculated utilizing the NCDF (5.5%) is considerably lower than 

the 𝑃𝑓 obtained from the ECDF (8.8%). As a result, the arbitrary 

assumption of distributions can result in an underestimation of 

the structural probability of failure, which in turn may mean an 

underestimation of the reliability of the structure. 

 

 
FIGURE 8: PROBABILITY DENSITIES OF THE AIR DENSITY 

USING: (a) MAXENT AND, (b) NORMAL DISTRIBUTION 

 

 
FIGURE 9: CDF COMPARISON OF THE LIMIT STATE 

FUNCTION OF THE DISPLACEMENT AT 5[s]: (a) ENTIRE CDF 

AND, (b) ZOOM OF THE CDF LEFT TAIL.  
 

4. CONCLUSION 
       In conclusion, the inherent variability of the parameters that 

comprise the different models to determine the OWT dynamic 

response can yield the highest values than their deterministic 

counterpart. Additionally, the arbitrary selection of PDF can 

produce misleading estimations of the reliability of the system. 

Therefore, further research will have (1) a more realistic 

deterministic model, which will include the tower shadowing 

effects, a stochastic wave model and soil model; (2) a more 

accurate stochastic model that accounts for more sources of 

uncertainties; (3) and other failure modes, i.e. fatigue. All the 

aforementioned strategies aim to improve the proposed UQ 

framework in order to obtain more robust reliability estimations. 
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