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Abstract 
 Energy is an increasingly important consideration in 

memory system design. Although caches can save energy in 

several ways, such as by decreasing execution time and 

reducing the number of main memory accesses, they also 

suffer from known inefficiencies: the last-level cache (LLC) 

tends to have a high miss ratio while simultaneously 

storing many blocks that are never referenced after being 

written back to LLC. These blocks contribute to dynamic 

energy while simultaneously causing cache pollution. 

 Because these blocks are not referenced before they are 

evicted, we can write them directly to memory rather than 

to the LLC. To do so, we must predict which blocks will not 

be referenced. Previous approaches rely on additional state 

at the LLC and/or extra communication.  

 We show that by predicting working set size per program 

counter (PC), we can decide which blocks have low 

probability of being referenced. Our approach makes the 

prediction based solely on the address stream as seen by 

the level-one data cache (L1D) and thus avoids storing or 

communicating PC values between levels of the cache 

hierarchy. We require no modifications to the LLC. 

 We adapt Flajolet and Martin’s probabilistic counting to 

keep the state small: two additional bits per L1D block, 

with an additional 6KB prediction table. This approach 

yields a large reduction in number of LLC writebacks: 25% 

fewer for SPEC on average, 80% fewer for graph500, and 

67% fewer for an in-memory hash table. 

1. Introduction 
“Half the money I spend on advertising is wasted; the 
trouble is I don’t know which half.” 

— Attributed to John Wanamaker 

“Half the energy I spend on caching is wasted; the 
trouble is I don’t know which half.” 

— This paper’s authors 

 
 Caches are an effective way to decrease execution time 

and reduce the number of main memory accesses, making 

them essential for both high performance and low energy. 

They are so successful that they have been recursively 

replicated: today’s systems have not only first- and second-

level caches, but third-level caches are becoming 

increasingly common as well. 

 Because caches are so essential, much effort has been 

expended in improving their performance and energy 

efficiency. However, there are several inefficiencies that 

last-level caches (LLCs) suffer from, chief among them a 

high local miss ratio and a large percentage of blocks 
that are never referenced before eviction. Previous 

studies have found and our experiments confirm that the 

miss ratio at the LLC is high for many common 

applications [2,15]. We find that for the SPEC 2006 

benchmarks, on average 50% of LLC accesses result in 

misses, and for memory-intensive applications such as an 

in-memory hash table, the miss ratio is much higher – over 

95%. At the same time, many of the blocks that are written 

to the LLC after eviction from the level-one data cache 

(L1D) are never re-referenced. We find that these useless 

blocks account for over 80% of the writebacks to the LLC 

for SPEC, and over 95% for memory-intensive workloads. 

 There have been a number of approaches proposed to 
remedy the problems caused by indiscriminately writing 

back all data evicted from L1 to L2 and L3. These 

approaches have included modifying the LLC replacement 

policy to preferentially evict blocks predicted to be dead 

[22], prefetching into predicted dead blocks [21], and doing 

cache bypassing – that is, choosing to evict some blocks 

from L1 straight to memory [11]. 

 A commonality of much previous work is that it makes 

decisions about insertion, bypass, and replacement policies 

at the LLC itself, and therefore any information from the 

executing process that might aid in the decision (such as 
program counter (PC) or instruction sequence) must be 

transferred between levels of cache, adding overheads in 

hardware and complexity. Many of these approaches do not 

use bypassing, instead varying only the insertion and 

replacement policies, which can reduce cache pollution, but 

do not eliminate useless writebacks to the cache – blocks 

are still written to the cache, they are simply evicted earlier. 

This is especially problematic with emerging technologies 

such as Spin-Transfer Torque RAM (STT-RAM), where 

writes are far more expensive than reads both in latency 

and energy [1]. 

  Even in approaches with bypassing, placing the decision 
at the LLC prevents reducing the traffic to the LLC. In 

hierarchies with multiple levels, logic must be replicated at 

each cache level where bypassing is possible. 

 An assumption behind much of the prior work is that the 

reuse behavior of blocks in the LLC can best be determined 

by observing behavior at the LLC itself. We offer the 

insight that LLC block locality can be predicted by 

observing the stream of addresses generated by the CPU. 

We dynamically determine the cardinality of the set of 

blocks referenced by each PC, because this gives an 

estimate of per-PC working set size. Predicted working set 
size is a good indication of temporal locality because if the 

working set does not fit into the cache, blocks will likely 

suffer from a high miss rate and a tendency to be evicted 

before being referenced. 
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 We show that by adding a working set prediction table in 

parallel with L1D accesses, we can effectively direct 

blocks to the appropriate level of the memory hierarchy 

upon L1D eviction. We therefore call our approach 

Directed Writebacks. 

 We use Flajolet and Martin’s theory result on 
probabilistic counting [9] to limit state in the prediction 

table. Probabilistic counting is well suited for our case, 

where we require only a coarse estimate of the number of 

blocks accessed per PC. We can tolerate several binary 

orders of magnitude of error because we are only trying to 

predict whether the working set is smaller or larger than the 

cache size. 

  Our prediction table entries are each 65 bits per PC plus a 

32 bit tag. For a 32KB L1D, a 1MB L2, and a 4MB LLC, 

we show that a 6KB structure per L1D is sufficiently large 

for reasonable prediction. Because this structure is not on 

the critical path for L1 accesses, it does not add any latency 
overhead for L1 hits. 

 We evaluate our design with an exclusive cache 

hierarchy in this work. Exclusive caches have significant 

effective storage size advantages in deep cache hierarchies 

[11,31]. Directed writebacks are also conceptually simpler 

with exclusive caches because blocks are guaranteed to 

only be found in one cache at a time. This allows bypassing 

dirty blocks to memory without needing to worry about 

stale copies causing consistency problems. We qualitatively 

discuss how to extend this work to other cache hierarchies 

in Section 7.2. 
 The contributions of this paper are: 

 demonstrating on real hardware that there are 

performance benefits to cache bypassing, even in 

the absence of hit rate improvement 

 the insight that cache block reuse behavior can be 

predicted without communicating with the cache 

itself, but rather by simply observing the PC and 

address streams of memory references 

 providing the first adaptation (to our knowledge) 

of theory's probabilistic counting to computer 

architecture (to coarsely estimate LLC working set 
size with small L1-like state) 

 proposing directed writebacks and demonstrating 

that a simple predictor added in parallel with the 

L1D miss path to direct writebacks to L2, L3, or 

memory can reduce energy and improve 

performance in an exclusive cache hierarchy 

 The paper is organized as follows: we start by 

characterizing LLC block behavior for several classes of 

workloads and its energy impact. We also motivate this 

work by demonstrating potential energy and performance 

improvement on real hardware. We then discuss 

probabilistic counting and show how it can be used to store 
working set size with very small area overhead, and 

evaluate the results, including in comparison with SHiP 

[33], another strategy for improving LLC behavior. Finally, 

we place our work in the context of related work. 

2. Characterization of LLC Behavior 

2.1 Workload Selection 
 We evaluate workloads from a variety of sources. The 
SPEC 2006 workloads have been previously characterized 

by Jaleel et al. [15] and Sandberg et al. [30], among others. 

Because we anticipate that directed writebacks will have 

greater benefits for applications with very large working 

sets, we also characterize graph500 [12] and a simple 

hashtable microbenchmark meant to approximate an in-

memory key-value store. To allow execution of large 

numbers of instructions, we use a Pin-based simulator [24] 

and run for 10 billion instructions. We validated it against 

results gathered using gem5 [4] with Ruby and previous 

work and find that our characterizations agree. Unless 

otherwise noted, we run hashtable with a 1GB table and 
graph500 with scale size 25 (equivalent to a storage size of 

approximately 8GB). In all cases, we assume two cores and 

a three-level exclusive cache hierarchy with parameters 

shown in Table 1. We assume for this evaluation that all 

levels of the hierarchy use a true LRU replacement policy. 

 We examine pairs of workloads in a multiprogrammed 

environment. We run with all pairs of workloads. 

 We target our work to large workloads, such as graph500 

and hashtable, but include SPEC 2006 to ensure that our 

 
Figure 2. Breakdown of hits/misses at L3 

 

 
Figure 1. Breakdown of hits/misses at L2 

 

Table 1. System configuration. 

L1D Private. 8-way 32KB. LRU. 

L2 Private. 16-way 1MB. LRU. 

L3 (LLC) Shared. 32-way 4MB. LRU. 
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approach does not cause undue performance degradation 

even for smaller workloads. 

2.2 LLC Local Miss Ratio 
 We investigate the L2 and L3 local miss ratio for a 

variety of applications and show our results in Figure 1 and 

Figure 2. We find that on average 60% of L2 accesses and 

over 65% of L3 accesses are misses for SPEC 2006. For 

graph500 and hashtable, more than 99.5% of accesses miss 

at L2, and more than 99% at L3. Our results are similar to 

those found by Jaleel et al. [15]. The high miss ratio 

indicates that there is potential for changes to the cache 

hierarchy to significantly improve hit rate and thus 

performance. 

2.3 Avoidable Writebacks 
  In addition to a high local miss ratio, a large percentage 
of blocks written to the L2 and L3 are evicted before they 

are used (each miss once the cache is full causes another 

block to be evicted unused). In an exclusive cache 

hierarchy, these writebacks are avoidable – that is, if we 

avoided doing the writebacks and instead directed the 

writeback to a different level of cache or to memory, we 

would not later incur an extra miss. 

2.4 Energy Impact of Avoidable Writebacks 
 Avoidable writebacks to the L2 and L3 contribute to 

execution energy in two major ways: the dynamic energy 

of doing needless cache writebacks, and the static energy 
when cache pollution results in increased run time. We 

discuss each in turn. 

 Dynamic energy: There is a cost in dynamic energy to 

doing cache writes. We model local L3 energy using Cacti 

[26]. As shown in Figure 3, we find that L3 local energy 

going to avoidable writes is approximately 57% on average 

for SPEC workloads. For graph500 and hashtable, over 

98% of L3 dynamic energy goes to avoidable writebacks. 

 Static energy: Avoidable writes also contribute to static 

energy by potentially increasing the execution time for the 

program. By storing useless blocks in the cache, there is 

less room for useful blocks, which can increase the miss 
rate and cause execution overheads. In addition, the 

writeback traffic to the cache can interfere with read 

requests for blocks, increasing miss latency. 

 In addition to reducing the execution time of the program 

performing the bypassing, bypassing can also reduce cache 

pollution affecting other programs running concurrently, 

preventing a program which trashes the L3 (a “gobbler” in 
the terminology of Sandberg et al. [30]) from slowing down 

other programs. Sandberg et al. have previously 
demonstrated an improvement with multiprogrammed 

SPEC workloads when bypassing is employed. 

 Finally, by reducing the amount of data stored in the L2 

and L3, bypassing can potentially pave the way toward 

using energy optimizations such as putting some cache 

ways to sleep to further reduce static energy. 

3. Analysis of Avoidable Writebacks 
 To determine whether we can predict where blocks 

should be directed upon writeback, we did a 

characterization of avoidable writebacks to L3. 

3.1 Program Counter Association 
 We examined the last PC used to access each block 

before eviction from L1D to see if there was a relationship 

between PC and L3 behavior. For SPEC, we find that on 

average, about 10% of blocks come from PCs that always 

generate avoidable writebacks to L3, and a further 35% 

come from blocks that do so at least 99% of the time. This 

suggests that by using a simple policy of always bypassing 
writebacks originating from these PCs, we could eliminate 

45% of avoidable writebacks to L3 while incurring very 

few additional misses.  

 Similar results were found by Holloway et al. [14], who 

examined problem stores – that is, static instructions that 

are responsible for many later load misses. They found that 

a few static instructions were responsible for many of the 

misses. Intuitively, these results make sense because many 

L3 misses or no-reuse blocks are likely caused by the same 

type of accesses: loads and stores to data structures that are 

too large to fit in the L3. Other previous works that have 

shown a correlation between access PC and L3 behavior 
include SHiP [33]. 

 The predictive value of the PC can be exploited to make 

effective decisions about the destination of directed 

writebacks from L1D. 

3.2 Software Approach on Existing Hardware 
 To estimate the potential benefits of directed writebacks 

in a real system, we ran tests on an AMD A8-3850 

processor with a 1MB private per-core L2 and no L3. This 

model has an exclusive cache hierarchy and limited support 

for software bypassing. When the processor encounters a 

non-temporal prefetch instruction (i.e. prefetchnta), it 

both prefetches the block to the L1D and also sets a sticky 

bit indicating that when the block is evicted, it should 

bypass the LLC. In this way, it implements directed 

writebacks to a limited extent. 

 We manually inserted prefetchnta instructions into 

two workloads: graph500 and hashtable. For graph500 we 

inserted four static instructions (using inline assembly) and 

 
Figure 3. Dynamic energy breakdown at L3. 
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for hashtable we inserted two, one in the get function and 

one in set. To distinguish between the impact of the 

additional prefetch vs. the bypass hint, we also created a 

version of the workloads with prefetch instead of 

prefetchnta. In all cases, the additional prefetch 

instruction was inserted directly before the access. We then 

ran the workloads using perf to collect performance 

counter data. The base implementation of graph500 ran for 

70 minutes, while hashtable ran for 8 minutes. 

 As shown in Figure 4, adding bypass hints drastically 

reduces the number of writebacks to the LLC, as expected, 

while just using prefetch does not reduce the number of 
LLC writebacks. In addition, Figure 5 shows that there is a 

substantial speedup – approximately 1.5X – for both 

graph500 and hashtable. We do not see a speedup for 

graph500 with just prefetch added, and for hashtable 

the speedup is less than with prefetchnta, indicating 

that it is indeed from bypassing and not the prefetching. 

 Interestingly, we do not see an increase in hit rate, 

indicating that the benefit is at least partially due to a 

decrease in writebacks to the LLC. When a writeback 

request is made to a full LLC (common case), a block must 

be evicted to memory, and when there is a high miss rate at 
L1D, this can result in saturating the bandwidth to memory, 

causing performance degradation. 

 These results suggest that directed writebacks can 

improve both performance and energy in a real system. 

However, because this approach requires annotating static 

instructions, we could not easily use it to evaluate our 

hardware directed writebacks mechanism. The remainder 

of the paper deals with the Pin-based cache model, but we 

include the results on real hardware to motivate this work. 

4. Directed Writebacks by Probabilistic 

Counting 
 As discussed in Section 3.1, PC is correlated with block 

reuse behavior. However, propagating and storing PC 

information at every level of the cache hierarchy adds 
overhead; therefore, it is desirable to make predictions 

upon L1D insertion, without any feedback from the other 

levels of cache. We hypothesize that if a single PC accesses 

more blocks than can fit in the entirety of a particular level 

of cache, it has poor locality and we will not benefit from 

storing blocks from this PC in that level. We thus use the 

PC and address stream to identify the working set size for 

each PC, and set a bit to direct the block to the appropriate 

cache or to memory upon eviction. In addition, we do not 

rely on any feedback from the cache hierarchy. 

4.1 Probabilistic Counting 
 To determine working set size, we keep a probabilistic 

count of the number of distinct cache blocks accessed per 

PC. Probabilistic counting algorithms are ideal for this use 

case because we do not require an exact count and can 

tolerate significant error, but are constrained to a very 

limited amount of state. This algorithm requires log2N bits 

of state to store N distinct events. 

 Here we provide a brief overview of Flajolet and 

Martin’s probabilistic counting [9,10]. It is a deep 

theoretical result with the original paper cited 800 times 

and the papers directly citing it being in turn cited over 

10,000 times (per Google Scholar). 

 The probabilistic counting algorithm states that a 

sequence of events can be counted by generating a random 
number for each event, setting the bit in the bit vector that 

corresponds with the most significant 1 in the random 

number, and then counting the number of set bits in the 

bitmap from MSB to LSB until a cleared bit is encountered. 

The intuition behind this approach is that every random 

number will have a 50% chance of having the first 1 be in 

the MSB position, 25% of it being in the next position, 

12.5% of it being in the position after, and so on. Thus, on 

average we would expect to see 2N+1 random numbers 

before bit N is set. We can therefore estimate that if the 

most significant 16 bits are set, then we expect to have seen 
216 = 64K distinct events. 

Figure 5. Speedup of graph500 and hashtable on 

hardware, using prefetch and non-temporal prefetch 

instructions 

 
Figure 4. Normalized writebacks to the LLC with the 

original binary, with prefetch instructions inserted, and 

with non-temporal prefetch instructions inserted. 
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Table 2. An example address stream and working set map 

modification for a single PC. 

Block 

Address 

Hashed 

Address 

Working Set 

Map 

Working Set 

Size Prediction 

Initial  0000000000 0 

0x40fe 1011111110 10000000000 21 = 2 

0x410b 0110110000 11000000000 22 = 4 

0x0f0e 1100011010 11000000000 22 = 4 

0x40fe 1011111110 11000000000 22 = 4 

0xabcd 0001010101 11010000000 2
2
 = 4 

 

  Flajolet and Martin discuss using this approach for 

counting distinct entities. In this case, each entity is hashed 

with a function that produces outputs that appear random 

but which are deterministic by input, preventing frequently 

occurring entities from inflating the count. 

 We use this approach to estimate working set size by 

hashing the address stream for each PC. We hash on the 
granularity of a cache block and perform the hash for every 

L1D insertion. The resulting bit vector is stored per PC, and 

when the working set is estimated to be larger than a level 

of the cache hierarchy, we choose to bypass all accesses 

from that PC. Table 2 shows the working set map and 

predicted working set size for a sample stream of 

references from a single PC. Note that in the final entry, the 

modification of the working set map from 1100… to 
1101… does not increase the predicted size, because there 

is a cleared bit before the added set bit. 

 We evaluate our proposal using SpookyHash [16], a 
public domain non-cryptographic hash function which has 

a fast software implementation. However, in a hardware 

implementation we would choose a non-cryptographic hash 

function that is fast and low-power to implement in 

hardware, such as one of the H3 class of functions [5,29]. 

4.2 Empirical Analysis of Probabilistic Counting 
 To better understand the properties of probabilistic 

counting, we tested how many distinct random numbers we 

needed to generate to reach a map with the first 20 bits set; 

that is, with predicted 220 = 1,048,576 values. We ran 1000 
trials. A histogram of our results can be seen in Figure 6. 

 We find that the average value is slightly higher than 

predicted: 1,246,372. However, the distribution has a long 

tail and the median is close to our desired value: 1,028,292. 

The minimum value is only 58,023 (over 4 binary orders of 

magnitude off) and the greatest is 7,431,854, or almost 3 

binary orders of magnitude in error. Hence, any design 

decision must take into account that the predicted working 

set size can be quite different from actual working set size, 

and that the distribution has a long tail. 

5. Hardware Design for Directed Writebacks 
 We will first describe a naïve version of the design for 

directed writebacks, and then show how it can be refined. 

We make two additions to the traditional exclusive cache 

design. First, we add 2 bits per line to the L1D to indicate 

whether the block should be directed to memory, to L3, or 

to L2 upon eviction. Second, we add the working set size 

prediction table, a table of PCs and working set maps, in 
parallel with the L1D miss access path. In contrast to 

previous approaches, we make no changes to the L2 or L3. 

An overview of our design is shown in Figure 7. 

 The working set size prediction table is a small structure 

added in parallel with the L1D which is accessed on L1D 

misses. Each entry contains a working set map, which in 

our naïve implementation is 32 bits; we discuss the size of 

the map further in Section 5.5. We also tag each entry with 

32 bits of the PC. In total, each entry is 64 bits. Because the 

prediction table is located at L1D, in contrast to most 

previous work which places it at the L2 or L3, it must be 
replicated for every core. However, this has the benefit that 

it makes it simple to disable the policy for a specific 

process (similar to a hardware prefetcher). 

 Our additions do not affect L1D access time because the 

hash function and prediction table are not on the critical 

path; the predictor can return the prediction to the L1D 

after the cache fill is completed, since it is only relevant on 

 
Figure 6. Distribution of number of values before map predicts 1 (binary) million. The vertical bar shows the expected value. 
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Figure 7. High-level diagram of the 

L1D and working set size prediction 

table. The cache and the table are 

shown as direct-mapped for the sake 

of clarity. 

 

The hit pathway is not shown, as it is 

unchanged from the baseline design. 

 

The insertion pathway shows the 

steps that take place when an L1D 

access misses and must be inserted in 

the L1D. Note that some of the steps 

may overlap (e.g. the data request 

can overlap the accesses to the 

working set size prediction table). 

 

The eviction pathway shows the steps 

that take place when a block is 

evicted from the L1D. The only 

change from baseline is checking the 

eviction direction bits and directing 

the writeback accordingly. 

 

 

an eviction. The hashing logic and prediction table are 

accessed only on L1D miss. 
 This approach requires no communication between the 

L1D and other levels of the hierarchy, in contrast with 

previous work. In the version we model, we make no 

changes to replacement policies at any level; however, we 

discuss the possibility of using information from the 

working set size prediction table to improve insertion and 

replacement decisions in Section 7.1. 

5.1 Working Set Size Selection 
We evaluated a range of probabilistic working set sizes 

to determine when directed writebacks should be sent to 

each level of the memory hierarchy. Although the caches 

are a known size in our system – 1MB and 4MB, 
respectively – we do not want to simply bypass when the 

working set size is predicted to be greater than 1 or 4MB. 

As seen in Section 4.2, predicted working set size can have 

significant error. In addition, the penalty for a block 

bypassing a cache where it would have hit is far higher than 

that of writing back a block that will be evicted before use. 

We predict that because of this asymmetric penalty, we 

should choose to bypass only when we think there is high 

probability that the working set size is bigger than the 

cache. We choose to have directed writebacks to the L2 

when the predicted working set size is less than 16MB, to 
L3 when the predicted working set size is less than 64MB, 

and to memory otherwise. 

5.2 Prediction Table Size 
 We next determine an appropriate size for the working 

set size prediction table. We choose to map multiple PCs to 

the same entry, similar to what a branch prediction table 

does. However, there is an important distinction between 

branch predictors and our predictor: the branch predictor 

learns from feedback, while our predictor does not receive 

any feedback. In addition, the penalty for erroneously 

predicting that a block should bypass a level of cache is 

much greater than failing to bypass an avoidable write. 

Because sharing entries between different PCs can result in 
erroneously decision to bypass, we cannot share entries 

between different PCs. 

 Instead, we use a small set-associative buffer, tagged by 

32 bits of the PC, to store working set maps. We use a 

modified LRU policy to determine which entry to evict. 

Because it takes many accesses to populate the buffer, we 

supplement LRU eviction to bias in favor of keeping 

entries which correspond to known large working sets. 

 We find that a 4-way structure with 512 entries has a 

very small number of populated evictions – for 20 billion 

instructions, we find that on average 4 and at most 33 

populated entries are evicted. 

5.3 Reducing Prediction Error 
 Probabilistic counting has a large standard deviation, as 

noted in Section 4.2. This error can be reduced by 

populating multiple maps and combining their results for 

the estimated working set size. This technique is discussed 
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in Flajolet and Martin [9] and reduces the error by a factor 

proportionate to the square root of the number of maps. 

 To avoid needing multiple hash functions, we use the 

log(M) least significant bits of the hashed value to select 

one of M hash maps. We then expect each individual map 

to predict 1/M of the size of the working set for the PC. To 
simplify the logic, rather than averaging the number of bits 

set, we choose to predict the working set size based on a 

vote between the hash maps. 

 For our results, we use 4 hash maps. If each map is 32 

bits, this results in a total of 128 bits per predictor entry. 

We predict that the working set is 4 times the largest 

working set that at least 3 of the 4 maps predict. 

5.4 Temporality 
 Some programs may have phase behavior or PCs that 

access many addresses, but in a blocked pattern. We would 

like to distinguish between PCs that access N distinct 

addresses out of N accesses, as opposed to those that access 
N distinct addresses in greater than N accesses. For 

example, a PC that accesses 1 GB of addresses but in a 

blocked fashion of 512 KB at a time should be cached in 

the L2, but the bitmap will progressively become more 

populated until our predictor sets the blocks to bypass. 

 By periodically clearing the bitmaps, we can limit the 

working set we track to the previous N accesses. However, 

we wish to do this without having to pay the overhead of 

training every time we clear the map. Therefore, we use 

two maps: one that is updated upon misses, and the other 

which is used to decide the destination for the directed 
writeback. We switch between the two maps with a 

probability proportional to the size of the working set we 

wish to predict. For example, if we wish to predict when 1 

million distinct accesses have occurred, we switch with a 

probability of 1 in 4 million. Upon switching, we clear the 

map. 

 Because the working set size we wish to predict is 

different for deciding whether to bypass the L2 and L3, we 

need a mechanism to reset the bitmap with a different 

frequency for the two predicted working set sizes. To do 

this, we simply clear the most significant bits of the 

working set with a probability proportional to the size of 
the L2. This allows us to include a notion of temporal 

locality in our decision. 

5.5 Improvement: Smaller Working Set Maps 
 In the implementation described above, we use 2 128-bit 

working set maps per entry, for a total of 256 bits per entry. 

We will now show how to reduce this to 64 bits per entry. 

 Since we treat all predicted working sets below 4MB the 

same, we require that the first 16 bits are set. Because the 
probability of each bit being set is twice as high as the one 

to its right, it is very likely that if bits 13, 14, and 15 are set, 

then 31-16 are set as well. Similarly, 32 bits is sufficient to 

predict up to 232 blocks, which corresponds to 256GB of 

memory. Since this is much larger than current cache 

capacity, these bits could be truncated as well. We show 

this in Figure 8, where the most significant bits have a very 

high probability of being set for ranges we are interested in, 

and the least significant bits have a high probability of 

being 0. It is only the highlighted bits that help us predict 

working set size.  
 We modified the working set map to take a 32 bit hashed 

address, as before, but to only set a bit in the working set 

map if the first 1 was between bits 15 and 7, corresponding 

to a working set size of between 4MB and 1GB. This 

results in working set maps that are only 8 bits each; with 4 

working set maps used in each voting group and a test and 

train set for each entry, this results in 64 bits per entry. 

5.6  Prediction Error Discussion 
 In general, we err on the side of writing back useless 

blocks rather than bypassing them. This approach has 

several implications beyond dealing with the asymmetrical 

penalty for bypassing useful blocks and writing back 
useless blocks. 

 A non-intuitive consideration is that having a working set 

greater than the cache capacity does not necessarily mean 

that bypassing all accesses will maximize hit rate. For 

example, if the addresses accessed are random and the 

working set is twice the size of the cache, we would expect 

that writing all blocks to cache would result in a 50% hit 

rate from that PC, versus 0% when all blocks bypass. 

 We demonstrate this relationship with the hash table 

benchmark in Figure 9, using data from real execution on 

an AMD machine with 32KB L1D and 1MB LLC. As can 

 
Figure 9. LLC local hit ratio for a hashtable ranging in 

size from 1KB to 1GB. L1D size is 32KB and LLC Size 

is 1MB. 

 
Figure 8. Breakdown of the bitmap: only the highlighted 

bits are helpful for predicting working set size. 
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be seen, LLC local hit ratio is very high when the working 

set is too large for the L1D but fits in the LLC: for table 

sizes of 32KB to 1MB. However, even when the table size 

is twice the capacity of the LLC (2MB), we see that the hit 

ratio does not drop to 0; rather it drops to 50%. Even when 

the hash table size is 16 times the LLC, we still see 
approximately 6% hit rate. 

 Ideally, if application working set size is twice the size of 

a cache, we would like to direct ½ of the evictions to that 

cache and ½ onwards: if the accesses are randomly 

distributed, then we would have the 50% hit rate from the 

baseline case, as well as the 50% reduction in LLC 

writebacks from the evict-to-memory case. If the accesses 

are sequential, writing back half the data is even better; we 

expect to see 50% hit rate vs. 0% hit rate for the no-bypass 

case. 

 By clearing the bitmaps probabilistically and selecting 

our threshold size for bypassing conservatively, we are 
likely to write blocks back to the caches during some 

intervals even for PCs that sometimes bypass. However, the 

above explains why this can actually have benefits in terms 

of hit rate. 

5.7 Variability 
 Because the working set prediction map is probabilistic, 

there is increased variability in program execution time. 

Because of this, our approach may not be well-suited for 

real-time systems with hard deadlines. However, caches 

themselves complicate the calculation of worst-case 

execution times, and our approach is no worse than for 
other cache prediction strategies. 

 An extension to prevent unacceptable performance 

degradation for critical applications or for applications 

which perform poorly with directed writebacks is to allow 

the system to disable directed writebacks via an 

architectural register, similar to how hardware prefetching 

can be turned off in current systems. This has the additional 

benefit of allowing the system to control the priorities of 

different applications; by disabling directed writebacks for 

an application with strict quality of service guarantees 

while using directed writeback to prevent other applications 

from polluting the caches. 

5.8 Context Switches 
 Although our evaluation is Pin-based and as such is 

limited to user mode, it is important for a hardware design 

to take context switches into account. Our directed 

writeback predictor requires ~6KB of state to perform well 

with our cache hierarchy. This is too much state to save on 

a context switch; in addition, we would prefer that our 

approach not require system modifications. However, we 

also do not want to flush all state on a context switch, 

because it requires many accesses to repopulate the 

working set size prediction table. Therefore, we advocate 
tagging the table by physical address of the PC to allow 

state to persist across context switches. Then, once the 

process is rescheduled, it may still have entries persisting in 

the prediction table, especially since populated entries are 

less likely to be evicted with our replacement policy. 

6. Evaluation 

6.1 Methodology 
 We use a 3-level exclusive cache model fed by Pin 

traces, as described in Section 2.1. We run each 

configuration for all pairs of workloads; all runs are 

multiprogrammed. Our cache configuration uses LRU, and 

consists of 32LB private L1Ds, 1MB private L2s, and a 

4MB shared L3. We use traces with 10 billion instructions, 

for a total of 20 billion instructions per workload pair. 

 In addition to running the baseline and our approach, we 

also compare against SHiP. SHiP uses PC information at 

the LLC to determine whether a line should be inserted in 

MRU or LRU position. We implemented SHiP in our 
model to compare it to our approach, although there are 

some important differences: SHiP only operates at the LLC 

and not the L2, and it does not do bypassing. Originally, 

SHiP was designed for inclusive caches, so we modified it 

slightly for an exclusive cache hierarchy. We update the 

Signature History Counter Table on either L3 hit or 

 
Figure 10. Writebacks to L2 and L3 by configuration, 

normalized to the baseline. 

 



 

9 

 

eviction, and we do not use set sampling but rather train 

with all sets. We use the hashed PC as the signature. 

6.2 L2 and L3 Writebacks 
 We observe the number of writebacks to the L2 and L3 

to measure the benefit of directed writebacks compared to 

the baseline and SHiP, neither of which do any bypassing. 
The results are shown in Figure 10; lower is better. 

 For SPEC, the benefits are relatively small; we eliminate 

approximately a quarter of writebacks at L2 and L3. 

However, for graph500 and hashtable, where most blocks 

written back to the L2 and L3 are evicted before use, we 

see greater benefits. For graph500, directed writebacks 

eliminates more than 97% of L2 and 80% of L3 writebacks. 

For hashtable, directed writebacks reduces writes by 70% 

at L2 and 67% at L3. 

 Finding: The directed writebacks approach dramatically 

reduces the number of writebacks to L2 and L3, especially 

for workloads with very large working sets. 

6.3 Usefulness of Stored Blocks 
 In the previous section we showed that directed 

writebacks avoids writing many blocks back to L2 and L3; 

we now show what percentage of the blocks that were 

bypassed would have been referenced before eviction. We 

determine the eventual outcome of every block written 

back to the L2 and L3 in the baseline: it can either leave the 

level of cache through satisfying a request from the L1D (a 

hit) or by being evicted. We show the breakdown of block 

fates in Figure 11; a breakdown by SPEC benchmark is in 

Figure 12.  

 Most of the writebacks to L2 and L3 that our technique 

eliminates are to blocks that would otherwise be evicted 

unused. We see benefits for all three classes of workloads, 

but they are much greater benefits for graph500 and the 
hash table, where the working sets are large. For a few 

SPEC workloads (perlbench and zeusmp), our technique 

actually causes an increase in writebacks to the LLC. This 

occurs when blocks that would have hit in the L2 are 

bypassed to the L3. However, this effect only occurs for 

two benchmarks, and in most cases our design decreases 

the number of writebacks. 

 We also compare to SHiP, and find that in general, SHiP 

has a higher L3 hit rate than directed writebacks for SPEC. 

However, SHiP does not perform bypassing, and thus 

cannot reduce writebacks. In addition, the large workloads 

we study are not able to significantly benefit from SHiP. 
 Finding: Directed writebacks reduce the number of 

writebacks to L2 and L3, particularly for workloads with 

very large working sets, such as graph500 and the hash 

table. In general, the bypassed writebacks do not result in a 

significant increase in misses, because the bypassed blocks 

would not have been referenced before eviction. 

6.4 Hardware Overhead 
 The hardware overhead of directed writebacks has two 

components: the directed writeback prediction table and the 

 
Figure 11. Outcome of blocks written to L2 and L3 in each configuration, normalized to baseline, showing the effect of bypassed 

blocks in directed writebacks. A block may leave the cache either as a result of a request from the L1D (hit) or by being evicted. 
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added eviction direction bits in the L1D. The prediction 

table consists of 512 entries, each containing 2 groups of 4 

8-bit maps, a 32-bit PC tag, and 1 bit to select between 

test/train bitmaps. This is a total of approximately 6KB. 

The eviction direction bits in the L1D are 2 bits per cache 

line, for a total of 128 bytes for a 32KB cache. 

 For comparison, there are also two sources of hardware 

overhead for SHiP: the Signature History Counter Table, 

and the storage of the 14-bit PC signature at each level of 

the cache hierarchy. SHiP uses a 16K-entry table, for a total 
of approximately 32KB of overhead. The extra bits in the 

cache add approximately 1KB of overhead to each 32-KB 

L1D, 32KB to each 1 MB L2, and 128KB to the 4 MB L3. 

 Although SHiP has a larger prediction table, it requires 

only one for the entire system, while our approach requires 

one per L1D. In addition, 6KB is a large structure to add at 

the L1D. However, this is less serious than it appears. This 

table is accessed only on the miss pathway, which means 

that it only needs to be as fast as a L2 hit. 

7. Extensions 
 We touch upon two possible extensions of this work. 

7.1 Replacement Policy 
 Although we evaluated this approach only in the context 

of bypassing writebacks, it is clear that knowing 
approximate working set size could have other applications 

as well. For example, it could be used to modify 

replacement policies by selecting insertion position in an 

LRU or pseudo-LRU policy. 

 In particular, blocks associated with PCs with predicted 

working set sizes close to the size of the cache could be 

inserted there in LRU position. This avoids pollution but 

has a smaller penalty for misprediction. Alternately, set 

dueling could be used to adjust the bypass policy or disable 

directed writebacks for workloads with a high rate of 

mispredictions that blocks should bypass. 

 
Figure 12. Outcome of blocks written to L2 and L3 in baseline/SHiP, showing effect of bypassed blocks in directed writebacks. 

Breakdown of SPEC benchmarks. For L2, each set of bars has the baseline on the left and directed writebacks on the right; for L3, 

there are three bars: baseline, SHiP, and directed writebacks. 
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7.2 Inclusive Caches 
 It is straightforward to implement directed writebacks in 

an exclusive cache hierarchy, because when a block is 

evicted from the L1D, it is guaranteed not to be in the LLC. 

However this is not the case for inclusive and non-inclusive 

hierarchies. Here we briefly discuss how directed 
writebacks can be modified to work with these caches. 

 For non-inclusive caches, a block may be in both L1D 

and the LLC. If there is a stale copy in the LLC, we must 

invalidate it by sending an invalidation when we direct a 

dirty block to bypass a level of the cache. Even in this case, 

we will still get some of the benefits of reduced writeback 

traffic, because an invalidate message is less expensive 

than writing back data and, if the block is not present, 

needing to evict another block. 

 For inclusive caches, the block must already be resident 

in all levels of the cache hierarchy. However, we can 

invalidate it early to reduce cache pollution. In addition, if 
the block is dirty, we can choose to invalidate it at the LLC 

rather than writing back the updated copy. Alternately, 

“inclusive” caches with some ways that contain only tags 
have been proposed to maintain the coherence benefits of 

inclusive caches while allowing techniques like bypassing 

[2,3,34]. These caches with dataless ways can be 

augmented with directed writebacks. 

8. Related Work 
 The idea of preventing useless blocks from polluting the 

LLC and of implementing cache bypassing for energy and 

performance reasons is not new. We summarize related 

work and how ours differs from it. 

 There have been many cache management proposals that 

have aimed to discover temporal and spatial locality with 

the goal of reducing LLC pollution. One prominent 

example is SHiP [33], which used a variety of policies 

including PC-based to predict whether lines would have 

near-immediate or distant reuse intervals. There are several 
disadvantages to this approach: first, it requires that a 

signature be stored along with each block in every level of 

cache and communicated between them; it also does not 

eliminate useless writes but only helps mitigate their 

effects. 

 Jiménez [17] proposes an approach to select between 

several Insertion-Promotion Vectors (IPVs), which 

determine order of insertion and promotion of LLC blocks. 

The IPVs are chosen using an off-line genetic approach, 

and then selected between with set-dueling. Other 

approaches that modify insertion policy include Qureshi et 
al. [27] and Keramidas et al. [20]. 

 The Reuse Cache [2] distinguishes between temporal and 

re-use locality, and does not store blocks without reuse 

locality in the LLC. It stores tags for all blocks, but only 

stores data for ¼ of them – those that show reuse locality. It 

relies on the insight that one extra miss for a frequently 

accessed block will not significantly degrade performance. 

However, it is unsuited for the class of applications that use 

the LLC well, because it reduces LLC capacity. Gupta et al. 

[13] propose a similar bypass scheme for inclusive caches. 

 Guar et al. [11] use trip count and use count to do bypass 

and insertion in exclusive LLCs. Their approach involves 

maintaining a per-block trip counter. 

 PriSM [25] aims to control per-core LLC occupancy by 
changing eviction probabilities, because this provides more 

flexibility than way-partitioning. 

 Kharbutli et al. [23] augment each LLC cache line with 

an event counter to keep track of number of accesses to a 

set between accesses to a particular entry, and also track the 

number of accesses to a cache line. They then use this 

information to improve the replacement algorithm, as well 

as doing bypassing. This approach requires 21 bits per 

cache line, plus a 40KB prediction table. This approach 

also does not allow setting different policies for different 

processes. 

 Sandberg et al. [30] demonstrate that a significant 
performance improvement can be attained by adding non-

temporal prefetch instructions to workloads. Their 

approach relies on profiling with a representative data set, 

and requires recompilation, in contrast with ours, which is 

automatic and in hardware. However, the benefits they 

demonstrated on real machines are likely to also apply with 

our approach, since both are ultimately PC-based. 

 Tyson et al. [32] and Dybdahl and Stenström [7] use 

counter-based prediction tables to determine when to 

bypass blocks. 

 Some previous approaches focus on L1D bypassing. Chi 
and Dietz [6] present an early work on selective cache 

bypassing; they use compiler support. Etsion et al. [8] point 

out that if a resident block in a cache is chosen at random, it 

is unlikely to be a highly-referenced block, but if an access 

is chosen at random, it is likely to be to a highly-referenced 

block. They use this insight to determine the core working 

set. Johnson et al. [18,19] use a Memory Address Table to 

count the number of references to a memory region. Rivers 

et al. [28] compare address vs. PC-based prediction. 

 Probabilistic counting for cardinality was initially 

developed by Flajolet and Martin [9] and has subsequently 

been analyzed and improved upon by many theoreticians. 
However, to our knowledge, it has not been applied in the 

field of computer architecture. 

9. Conclusion 
 With directed writebacks, we provide a simple way to 

reduce the number of writebacks to the L2 and L3, which 

can be useful for several reasons. It limits interference 
between workloads, reduces dynamic energy, and reduces 

the traffic and hence contention between L2, L3, and 

memory. We show how a small predictor can be used to 

eliminate writebacks to many blocks that would otherwise 

be evicted before use, without adding significant overhead. 

We also show how probabilistic counting can be applied to 

computer architecture. 
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