
Probabilistic Elastic Part Model for Unsupervised Face Detector Adaptation

Haoxiang Li, Gang Hua

Stevens Institute of Technology

Hoboken, NJ 07030

{hli18, ghua}@stevens.edu

Zhe Lin, Jonathan Brandt, Jianchao Yang

Adobe Systems Inc.

San Jose, CA 95110

{zlin, jbrandt, jiayang}@adobe.com

Abstract

We propose an unsupervised detector adaptation algo-

rithm to adapt any offline trained face detector to a specific

collection of images, and hence achieve better accuracy.

The core of our detector adaptation algorithm is a prob-

abilistic elastic part (PEP) model, which is offline trained

with a set of face examples. It produces a statistically-

aligned part based face representation, namely the PEP

representation. To adapt a general face detector to a col-

lection of images, we compute the PEP representations of

the candidate detections from the general face detector, and

then train a discriminative classifier with the top positives

and negatives. Then we re-rank all the candidate detections

with this classifier. This way, a face detector tailored to the

statistics of the specific image collection is adapted from

the original detector. We present extensive results on three

datasets with two state-of-the-art face detectors. The signif-

icant improvement of detection accuracy over these state-

of-the-art face detectors strongly demonstrates the efficacy

of the proposed face detector adaptation algorithm.

1. Introduction

There are now a number of practical face detection so-

lutions as well as publicly available face detectors [25, 26,

18, 20]. In general, appearance-based detectors outperform

other peer solutions. In the appearance-based face detector,

models are usually learned from a large set of positive and

negative training images to capture the variations of faces

while keeping the model discriminative. As a result, state-

of-the-art face detectors are practical in a number of general

scenarios.

However, a drawback of current methods is that they may

not produce good enough results for a specific task, such as

detecting faces in a specific collection of images. Since fac-

tors affecting face detection such as scale, location, pose,

face expression, lighting conditions, etc. vary from task

to task, it requires non-trivial engineering efforts to make

a face detector work for extensive scenarios even with the

cutting-edge algorithms. While the design of a general face

detector is an important and attractive problem, to the end

users how a face detector performs on their photos matters

most. In this sense, how to adapt a general face detector

to a specific task (e.g. to a specific image collection) is an

important and realistic problem.

It can be straightforward to fit this detector adapta-

tion problem into a domain transfer learning framework.

For most of domain adaptation/transfer learning methods

[6, 11, 14, 24, 19, 15, 21], it is assumed that there are few

or no labels on the target domain while a large amount of

labeled data exist in the source domain. However, for the

face detector adaptation task it may not be possible to access

the training data since state-of-the-art detectors are usually

trained with massive data that cannot be easily transferred,

or is not publicly available. In this paper, we treat the gen-

eral face detector as a black box without access to its train-

ing data and approach to this problem with an online trained

classifier with a novel probabilistic elastic part (PEP) repre-

sentation.

Our approach consists of an offline phase and an online

phase. In the offline stage, we train a PEP model, which is

a local spatial-appearance feature based Gaussian mixture

model, from a set of face examples. Then we utilize the PEP

model to build the PEP representation for every candidate

detection extracted by the face detector. We argue that the

PEP representation statistically aligns faces and confines the

comparison between two faces within locally corresponding

face structures. Using the detection confidence scores from

the general face detector, we pick up the detections with

high confidence scores as positive candidates and regard de-

tections with low confidence scores as negative candidates.

Finally, over these positive and negative examples, with the

PEP representation, we train a discriminative classifier on-

line to induce a probability output to predict how likely a

candidate detection is right. We set the probability output

as the detection confidence score of the adapted detector.

Under this framework, we turn the detector adaptation

problem into a binary classification problem. As in any im-

age classification problem, the first step is to build an ap-

propriate image representation [12, 1, 23]. Since human
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faces could show varied appearances due to factors such as

expression, pose etc., we anticipate that an aligned visual

representation for face images would be robust to these vi-

sual variations, as it enables local comparison within the

same face structures. We approach this by building the PEP

representation as a statistically aligned visual representation

for face image with the help of an offline trained PEP model.

In our framework, we augment every local feature ex-

tracted from face image with its spatial location in the im-

age. The PEP model formulated as a special Gaussian mix-

ture model with spherical Gaussian components is trained

over the spatial-augmented local features from the offline

training faces. As a result, a weighted mixture component

in the PEP model captures the appearance of a face struc-

ture (e.g. the nose) as well as the location of the structure

on the face (e.g. center of the face). In this sense, given a

face image as a set of spatial-augmented local features, to

align the features to the PEP model is to align features to

the face structures described by the mixture components.

We find this process in our framework is well-aligned to

the working model of receptive field in the area of biology,

by regarding a Gaussian component as a statistical recep-

tive field (See Section 4.1). In brief, given a face image as a

set of spatial-augmented local features, one weighted Gaus-

sian mixture component picks one feature which activates

it. And we concatenate all the activation features to build

PEP representation of the face image. After that we train

the discriminative classifier on these PEP representations.

In short, our contributions are three-fold: (1) we intro-

duce a novel PEP representation for face image; (2) we

apply the PEP representation in an unsupervised detector

adaptation framework and demonstrate its effectiveness in

improving the face detection performance; (3) empirically,

we show that the proposed adaptation method improves two

state-of-the-art face detectors on two personal photo albums

and a standard face detection benchmark by a large margin.

This paper is organized as follows. In Section 2, we re-

view related methods. In Section 3, we explain the unsu-

pervised detector adaptation work-flow and we introduce

the probabilistic elastic part model in Section 4. We then

present our experimental results in Section 5 and conclude

in Section 6.

2. Related Work

Our problem can be viewed as an instance of the do-

main adaptation problem [6, 11, 14, 24, 19, 15, 21]. Spe-

cially, we can formulate the target problem as one of adapt-

ing the general face detector pre-trained on a source domain

to the testing photos which are from a different distribution

as the target domain. One common approach to handle un-

labeled data in unsupervised domain adaptation is to utilize

the training labels in the source domain [19, 6]. Gopalan

et al. [6] propose to learn the transformation between the

source and target domain subspace to train a discrimina-

tive classifier from the projected training data in the target

domain. Tang et al. [19] mix the confident detections in

the target domain with training data in the source domain

to train the classifier. Another line of related methods turn

to estimate the labels of unlabeled data. It can be done by

exploiting the spatio-temporal information in the video de-

tector adaptation setting[15, 14]. In a surveillance camera

environment labels can be estimated by building a gener-

ative model for the foreground and background through a

long time adaptation [17]. These approaches are not ap-

plicable to our scenario because the pre-trained detector is

treated as a black box without access to its massive train-

ing data and we aim at adapting it to a specific collection of

photos, which do not have dense temporal correlation as in

videos.

The more relevant works to ours is Jain et al. [11] and

Wang et al. [21]. Jain et al. [11] reclassify detections near

the decision boundary using a Gaussian process regression

scheme in an unsupervised framework. A disadvantage of

their work is that the Gaussian process regression model

is trained repeatedly which can be computationally expen-

sive, while in our method, the classifier is trained only once.

Wang et al. [21] approach the pedestrian detector adapta-

tion with an online non-parametric classifier on binary rep-

resentations of candidate detections. Both theirs and our

method try to explore the correlation within the testing pho-

tos to improve the detection. On one hand their method is

proposed for pedestrian detector adaptation while ours are

for face detector adaptation. On the other hand, our method

with the PEP representation is stronger in addressing large

intra-class (between different faces) variations. Considering

its similar work-flow to ours, we compare with this method

in our experiments and the results support this interpreta-

tion.

From another perspective, our work can be partially ex-

plained as a self-taught learning framework. As introduced

in [16], a self-taught learning algorithm learns a higher-

level representation from low cost unlabeled data and rein-

terprets images in the higher-level representation, resulting

in improved classification accuracy. Similarly, in this pa-

per a set of faces is used to learn the PEP model, which is

subsequently leveraged to build a new representation, the

PEP representation, for candidate detections and ultimately

improve the final classification accuracy.

3. Unsupervised Detector Adaptation

General face detectors are typically not perfect, so they

may have false positives and/or missed detections. By set-

ting the detection threshold to a low level, we can achieve

reasonable recall but the precision will be low. So, start-

ing with a candidate set of detections with high recall but

possibly low precision, our goal is to find a subset of de-
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Figure 1. Our unsupervised detector adaptation work-flow

tections with high recall and precision. Formally, given a

set of test images, we denote the extracted candidate detec-

tions from a general face detector as T = {t1, t2, . . . , tM}.

Here, we set the detection threshold lower to retrieve many

detections and thereby ensure a relatively high recall rate.

We assume the face detector generates confidence scores

for candidate detections, otherwise we will resort to the ac-

tivation score (See Section 4.3) of the candidate detections

over the probabilistic model trained offline as the detec-

tion confidence scores. For now, we assume each ti, i =
1, . . . ,M is associated with a detection confidence score

S = {si, i = 1, . . . ,M}. Without losing generality, we

assume that T and S are already sorted in descending order

that si > si+1, i = 1, . . . ,M − 1. Two thresholds are man-

ually chosen here: λh and λl (these thresholds are stable

properties of a given detector so they can be automatically

estimated through cross-validation on a third dataset). λh

denotes the threshold that detections with confidence score

higher then λh is expected to be faces with high confidence

(top positives). Similarly, candidates with confidence score

lower than λl are supposed to be false alarms confidently

(top negatives). Here we denote H as the top positives and

N as the top negatives, i.e.,

H = {ti : si > λh, i = 1, . . . ,M}

N = {ti : si < λl, i = 1, . . . ,M}.

We expect to have a balanced setting of H and N . So we

keep C = min(|H|, |N |) candidates from these two sets as

the final top positives and negatives, i.e.,

H = {t1, t2, . . . , tC},

N = {tM−C+1, tM−C+2, . . . , tM},

C < M/2

Intuitively, H are typical faces and N are typical false

alarms. The better the face detector is the more reliable

is this assumption. In our scenario, the face detector is

treated as a black-box. In order to improve the perfor-

mance of detection, we re-evaluate the detections by as-

signing a new confidence score to each candidate detec-

tion Ŝ = {ŝi}, i = 1, . . . ,M . In the sense that the new

confidence score ŝi for ti is defined as the probability that

ti is a face (positive) and we have H and N as estimated

positive and negative examples. We can re-interpret the re-

evaluation problem as binary classification with probability

estimation. We can easily train a discriminative classifier

online given the H and N as training data to predict the

probability that ti is positive.

The high-level work-flow is shown in Figure 1. In prac-

tice, detections, as regions on the original image, are ex-

tracted as “face” images, processed into sets of features and

built into PEP representations.

4. Probabilistic Elastic Part Model

The effectiveness of the online discriminative classifier

depends directly on the descriptive power of the PEP rep-

resentations. In this paper, we firstly train a probabilistic

model offline to assist the online representations building

process.

We use a set of general faces to train the offline proba-

bilistic model — a Gaussian Mixture Model (GMM) with

spatial information encoded. The training corpus here can

be any set of general faces which are very easy to col-

lect from the Internet or existing face datasets. Faces

are roughly aligned with the funneling method [7] to re-

duce pose variations. Then face images are processed

into spatial-augmented features through a feature extraction

pipeline. In this step, we extract dense patches over mul-

tiple scales and augment the local image patch descriptor

with the spatial location of the image patch to build a set of

spatial-appearance features for every face image as in [13].

To balance the strength of the spatial and appearance

constraints, the Gaussian components are confined to be

spherical [13]. So an offline trained GMM with K com-

ponents is denoted as

P (f |Θ) =
K∑

k=1

ωkG(f |µk, σ
2
kI), (1)

where Θ = (ω1, µ1, σ1, . . . , ωK , µK , σK); I is an identity

matrix; ωk is the mixture weight and G(µk, σ
2
kI) is a Gaus-

sian distribution with mean µk and variance σ2
kI.

Given a set of features extracted from training faces, we

use Expectation-Maximization (EM) algorithm to learn the

GMM parameters Θ [5]. Since the features have spatial
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information encoded, the GMM captures both the appear-

ance and spatial distribution of face structures such as nose,

left eye corner, right eye corner, etc. Intuitively, a weighted

Gaussian mixture component describes the average appear-

ance of a certain face structure and its location jointly.

4.1. PEP representation

As in the classical image classification pipeline, we first

build a more descriptive and structured PEP representation

for each face image. In our framework, the PEP represen-

tation statistically aligns a face image to the mixture com-

ponents. In this sense, comparison between PEP represen-

tations consists of a set of local comparisons. Each local

comparison is conducted between features aligned to a mix-

ture component, or in other words, between features that

describe the same face structure (See Figure 3).

We can explain the feature alignment process in a bio-

logical manner. In biology, a strong response of the neu-

ron could suggest that a stimuli hit on the center receptive

field [9]. In our framework, we define the response of a

feature over a statistical receptive field as the probability

of the feature over the mixture component since this value

measures how likely the feature describes the expected face

structure. Similar to the biological model, a strong response

of a feature over the statistical receptive field means the fea-

ture “hit” the mixture component. We treat the one draws

the highest probability over a mixture component as the ac-

tivation feature of the component and say the feature acti-

vates the component. To align a face image (a feature set

F) to the GMM, we make each Gaussian mixture compo-

nent find its activation feature from F . Technically, given a

set of features F = {fi}
|F |
1 , the k-th mixture model picked

fgk(F) if

gk(F) = argmax
i

ωkG(fi|µk, σ
2
kI). (2)

This process is illustrated in Figure 2. In Figure 3 we can

easily observe how features are aligned to the mixture com-

ponents. The effect of the spatial constraint is that face

structures similar in appearance but different in location can

be differentiated from each other. For example, in row (2)

and (k) in Figure 3, while the left and right brows look sim-

ilar in appearance, the spatial constraint prevents them from

mixing together and the elasticity makes sure that they are

not compared to other nearby structures. Furthermore, de-

tails of faces that describe the same face structure with a

slight offset can be captured, as depicted in row (3) and (4).

Following Equation 2, K Gaussian components pick K
activation features given a face image. As shown in Fig-

ure 3, the appearance part of the K activation features is

concatenated in the sequence of Gaussian mixture model as

the PEP representation of the face image F , i.e., represen-

tation of F is

fa(F) = [fg1 fg2 . . . fgK ]. (3)

1

4

K
2

...
6

3

5

1

4

K
2

...
6

3

5

1

4

K
2

...
6

3

5

1

4

K
2

...
6

3

5

Figure 2. Activation features of two faces over some mixture com-

ponents. Each row shows the activation process for a mixture com-

ponent (illustrated in the right-most column); the highlighted part

on the face represents the location of the activation feature, right

to the face image we visualize the response of all features of a

face over the mixture component; similar to a receptive field the

lightest point on the response visualization locates the activation

feature on the face image.

(1)

(2)

(3)

(4)

(K-2)

(K-1)

(K)

a b c d e f
a b

c d

e f

Figure 3. PEP representations of six images (we use a larger patch

size for better visualization) built by a K components GMM. Each

column is the PEP representation for a face (showing the appear-

ance part), each row shows the activation features. We can see

(across the row) element-wise comparison between PEP represen-

tations actually consist of local comparison within the same face

structure.

Note that we removed the encoded spatial information from

features {fgi} in formulating the PEP representation and the

number of activation features is always the same to the size

of GMM. That is, the same GMM produces unified repre-

sentation for feature sets of different size.

4.2. Online Classifier

Once we build PEP representations for all candidate de-

tections, consider H and N as sets of positive and negative

796796



(a) E-Album (b) G-Album (c) FDDB

Figure 4. Example photos in the E-Album, G-Album and FDDB

examples respectively, we train a Support Vector Machine

(SVM) as an online discriminative classifier. The SVM with

probability estimation support [22] is trained with Gaussian

Radial Basis Function (RBF) kernel. Applying the trained

classifier to every candidate detection, a new detection con-

fidence score ŝi is computed for ti.

4.3. Activation Score

An optional step in the proposed framework is to calcu-

late the activation score as the initial confidence score in

case the general face detector does not provide a detection

confidence score. We re-use the offline trained GMM in a

generative manner to calculate the activation score Sa(ti)
for a candidate detection ti, which is defined as the total

response of all the activation features, i.e.,

Sa(ti) =

K∑

k=1

log max
i

ωkG(fi|µk, σ
2
kI), (4)

where F = {fi}
|F |
1 is the set of features of detection ti.

5. Experiments

We verified the proposed method with the Viola-Jones

(VJ) detector [20] and the XZJY detector [18], over the E-

Album [3], G-Album[4] and FDDB face detection bench-

marks [10]. We also tested the Wang et al. [21] detec-

tor adaptation algorithm over the albums for comparison.

E-Album contains 108 photos with 145 labeled faces; G-

Album contains 512 photos with 873 labeled faces; FDDB

contains 5171 faces in 2845 images taken from uncon-

strained environment.

We explore the factors which could influence the final

performance such as, the top positive and negative thresh-

olds and number of mixture components K. To demonstrate

the statistical alignment introduced by PEP representation

contributes to performance improvement, we design a base-

line experiment by concatenating the local features directly

as the face representation. The experimental results strongly

support the proposed method and suggest that the PEP rep-

resentation is a very effective visual representation for face

image.

One of our motivations is to exploit within dataset cor-

relation to help improve face detection. In this sense, our

method is more suitable for detector adaptation on personal

albums, since the same person might appear in many pho-

tos within an album. E-Album has stronger in-dataset cor-

relation since the number of different individuals in this

album is limited, in other words face of the same person

appear many times in E-Album. Compared to the albums,

the FDDB benchmark contains far fewer repeated faces of

the same person, so that it shows larger in-class variations.

However we observe that we can still boost the face detector

performance by a large margin since the PEP representation

enlarges the gap between faces and non-faces.

In practice, our method is quite efficient. Comparing to

the detection time of state-of-the-art detectors such as the

XZJY detector, which can take 10 seconds per image on

the albums, the time taken by our adaptation process is mi-

nor. We extract SIFT features on the candidate detections

instead of the whole image, and it takes 0.8 seconds for one

candidate detection. After the feature extraction step, on our

machine 1, it takes 0.01 seconds for one image on average.

For example, it takes 14 seconds for G-Album including the

PEP representation building, online classifier training and

re-ranking of 1428 candidate detections. On the E-Album,

it takes 3.5 seconds for the 271 candidates.

5.1. Settings

We use the OpenCV implementation of Viola-Jones face

detector 2 and the XZJY face detector [18] which achieved

the state of the art results on the FDDB and UCI datasets.We

train the PEP offline with face images from the face dataset

Labeled Face in the Wild [8], in which faces are roughly

aligned with the funneling method. In the online classifier

training stage, we use the LibSVM [2] implementation 3.

We evaluate the results with the Receiver operating char-

acteristic (ROC) curves, where the y-axis denotes the true

positive rate or recall rate, the x-axis is the total number of

false alarms (number of detections∗ (1−precision)). A

good face detector should have high true positive rate at a

low false alarm level. For the specific parameters, we resize

the detections into 150 × 150 images and densely extract

128-dimensional SIFT features in a 8 × 8 sliding window

with 8-pixel spacing in 3 scales with a scaling factor 0.9. In

the sliding window its two-dimensional locations are scaled

by 2 and concatenated to the extracted SIFT feature as the

spatial-augmented feature, resulting in a total of 130 dimen-

sions.

5.2. Results on person photo albums

As shown in Figure 5 the proposed method improves the

performance of the Viola-Jones (VJ) detector and the XZJY

detector by a large margin and outperforms the Wang et al.

detector adaptation algorithm significantly. On E-Album,

1Intel(R) Xeon(R) E5645 12 Cores
2We simply choose the number of neighbor rectangles around a candi-

date detection as the detection confidence score.
3The LibSVM provides the implementation of probability estimation

introduced in [22]
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Figure 5. ROC Curves over E-Album, G-Album

Wang et al.’s method is able to effectively exploit intra-

dataset correlations to improve accuracy. However, our pro-

posed method consistently improves accuracy by a much

greater margin. On G-Album, the performance of Wang et

al.’s method actually drops relative to the non-adapted de-

tector. However in this case, our proposed method improves

performance again significantly. One possible explanation

of the drop of Wang et al.’s performance in this case is that

their representation is unable to enlarge inter-class variance

in the presence of greater intra-class variance.

Influence of thresholds The thresholds λh and λl deter-

mine the number of top positive and negative examples for

online classifier training. To investigate the sensitivity of the

algorithm to these threshold values, we vary the thresholds

of the detector to get the H and N . The lower boundary

of the Viola-Jones detector confidence score in our case is

fixed as 1 by design while the upper boundary can be very

large, we fix λl = 3 and alter λh to explore how our method

performs with respect to different high thresholds λh
4.

The experimental results are shown in Figure 6. We ob-

serve our method is robust to the choice of λh within a rea-

sonable range.

Influence of the PEP We tested 128, 256, 512 and 1024
mixture components for the PEP and compared the overall

performance. We observe that generally more mixture com-

ponents make the performance more stable. As long as we

4We make the cascade stages thresholds lower for a higher recall
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Figure 6. ROC Curves over E-Album and G-Album for different

λh

have enough mixture components (256 in our case), the per-

formance is robust to the choice of this parameter, as shown

in Figure 7.

Concatenated SIFT as baseline We design this baseline

experiment to show that the PEP representation is important

in the performance improvement. For each face image, the

baseline representation is built by concatenating all SIFT

features from left to right, top to bottom, while in the PEP

representation a set of features (possibly with duplicates)

is selected by mixture components and concatenated. As

shown in Figure 8, the contribution of PEP representation

in our detector adaptation framework is significant.

5.3. Results on FDDB dataset

FDDB is a dataset designed as a benchmark for face

detection algorithms [10]. Images in this dataset are ex-

tracted from news articles and display large variations in

pose, background and appearance. Several existing face de-

tection algorithms are tested on the FDDB dataset and the

results are published on the website. The evaluation proce-

dure is standardized and researchers are expected to use the

same evaluation program to report the results.

Since this dataset provides images in 10 separate folds.

We perform two types of adaptation on FDDB. The first one

is the all-folds adaptation where all images in the 10 folds

are put together and we train only one online classifier for

all 10 folds. The second type is fold-by-fold adaptation in
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which we repeat the proposed method on each fold sepa-

rately and have 10 different online classifiers. We observe

in the experiments the all-folds way achieve a better perfor-

mance since with the same threshold more top positive and

negative examples can be obtained for the online classifier

training.

As shown in Figure 9, the result from our method adapt-

ing the OpenCV’s frontal face detector achieved very com-

petitive results to the state-the-art detectors 5. We even out-

perform state-of-the-arts detectors with non-trivial margin

5We are using the up-to-date OpenCV implementation of the Viola-

Jones detector which in our case outperformed what the author of FDDB

reported a lot.
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Figure 9. Performance comparison on FDDB by adapting Viola-

Jones face detector

in the continuous score evaluation.

Another interesting question could be whether we could

boost a very strong face detector on FDDB which is of less

intra-class correlation and larger inter-class variance. As

shown in Figure 10, using the XZJY detector which is the

current state-of-the-art on the FDDB as the starting point,

after adaptation, the detection performance is improved by

a measurable margin.

6. Conclusion

In this paper, we propose an unsupervised detector adap-

tation framework with an effective PEP representation for

face images. We verified the proposed framework with two

state-of-the-art face detectors on two person albums and a

challenging unconstrained face detection benchmark, and

demonstrate that the proposed method can improve the two

general face detectors on a specific task by a significant mar-

gin.
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