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ABSTRACT

Sequencing of RNAs (RNA-Seq) has revolutionized

the field of transcriptomics, but the reads obtained

often contain errors. Read error correction can have

a large impact on our ability to accurately assemble

transcripts. This is especially true for de novo

transcriptome analysis, where a reference genome

is not available. Current read error correction

methods, developed for DNA sequence data, cannot

handle the overlapping effects of non-uniform abun-

dance, polymorphisms and alternative splicing. Here

we present SEquencing Error CorrEction in Rna-seq

data (SEECER), a hiddenMarkovModel (HMM)–based

method, which is the first to successfully address

these problems. SEECER efficiently learns hundreds

of thousands of HMMs and uses these to correct

sequencing errors. Using human RNA-Seq data, we

show that SEECER greatly improves on previous

methods in terms of quality of read alignment to the

genomeand assembly accuracy. To illustrate the use-

fulness of SEECER for de novo transcriptome studies,

we generated new RNA-Seq data to study the de-

velopment of the sea cucumber Parastichopus

parvimensis. Our corrected assembled transcripts

shed new light on two important stages in sea

cucumber development. Comparison of the

assembled transcripts to known transcripts in other

species has also revealed novel transcripts that are

unique to sea cucumber, some of which we have ex-

perimentally validated.

Supporting website: http://sb.cs.cmu.edu/seecer/.

INTRODUCTION

Transcriptome analysis has been revolutionized by next-
generation sequencing technologies (1). The sequencing of

polyadenylated RNAs (RNA-Seq) is rapidly becoming
standard practice in the research community owing to its
ability to accurately measure RNA levels (2,3), detect
alternative splicing (4) and RNA editing (5), determine
allele (6) and isoform-specific expression (7,8) and
perform de novo transcriptome assembly (9–11).
Although RNA-Seq experiments are often more

accurate than their microarray predecessors (2,7), they
still exhibit a high error rate. These errors can have a
large impact on the downstream bioinformatics analysis
and lead to wrong conclusions regarding the set of
transcribed mRNAs. One class of errors concerns biases
in the abundance of read sequences due to RNA priming
preferences (12,13), fragment size selection (14,15) and
GC-content (16). Sequencing errors, which are a result
of mistakes in base calling of the sequencer (mismatch),
or the insertion or deletion of a base (indel), are another
important source of errors for which no general solution
for RNA-Seq is currently available. For example, error
rates of up to 3.8% were observed when using Illumina’s
GenomeAnalyzer (17).
A common approach to sequencing error removal is

read trimming of bad-quality bases from the read end to
improve downstream analysis (4,18). Such an approach
reduces the absolute amount of errors in the data but
can also lead to significant loss of data, which affects
our ability to identify lowly expressed transcripts.
A number of approaches were primarily proposed

for the correction of DNA sequencing data (19). These
methods use suffix trees (20,21), k-mer indices (22,23)
and multiple alignments (24). While successful, as we
show in ‘Results’ section, these approaches are not
always suited for RNA-Seq data. Unlike genome
sequencing, which often results in uniform coverage, tran-
scripts exhibit non-uniform expression levels. The only
error correction method that we are aware of that expli-
citly targets non-uniform coverage data is Hammer (25).
Unfortunately, Hammer cannot be used to correct reads,
as it only outputs corrected k-mers of much shorter length.
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Even after contacting the authors of Hammer and using
their implementation, we could not use it with standard
methods for read alignment or assembly, and we are not
aware of other articles that had. Finally, all the above
methods often fail at the border of alternatively spliced
exons, which may lead to false-positive corrections.
Other sequencing error correction methods have been

designed for tag-based sequencing or microRNA
sequencing where the read spans the complete tag or
transcript region under investigation (26–28). These
methods, including SEED (28), are based on clustering
similar read sequences, but do not consider partially
overlapping read sequences, alternative splicing and the
correction of indel errors.
Here we present the first general method for

SEquencing Error CorrEction in Rna-seq data
(SEECER) that specifically addresses the shortcomings
of previous approaches. SEECER is based on a probabil-
istic framework using hidden Markov models (HMMs).
SEECER can handle different coverage levels of tran-
scripts, joins partially overlapping reads into contigs to
improve error correction, avoids the association of reads
at exon borders of alternative splicing events and supports
the correction of mismatch and indel errors. Because
SEECER does not rely on a reference genome, it is applic-
able to de novo RNA-Seq. We tested SEECER using
diverse human RNA-Seq datasets and show that the
error correction greatly improves performance of the
downstream assembly and that it significantly outper-
forms previous approaches. We next used SEECER to
correct RNA-Seq data for the de novo transcriptome
assembly of the sea cucumber. The ability to accurately
analyze de novo RNA-Seq data allowed us to identify both
conserved and novel transcripts and provided important
insights into sea cucumber development.

MATERIALS AND METHODS

Overview of SEECER

Error correction of a read is done by trying to determine
its context (overlapping reads from the same transcript)
and using these to identify and correct errors. SEECER
builds a set of contigs from reads, where each contig is
theoretically a subsequence of a transcript. Ideally, we
would like each contig to be exactly one transcript.
However, in several cases, transcripts may share
common subsequences owing to sequence repeats or alter-
native splicings. In such cases, each contig in our model
represents an unbranched subsequence of some transcript.
We use a profile HMM to represent contigs. Such models

are appropriate for handling the various types of read
errors we anticipate (including substitutions and insertion/
deletion). Owing to several restrictions imposed by the read
data, even though we may need to handle a large number of
contigs, learning these HMMs can be done efficiently
(linearly in the size of the reads assigned to the contig).

Contig HMM

Profile HMM is a HMM that was originally developed to
model protein families to allow multiple sequence

alignment with gaps in the protein sequences
(see Supplement). Here, we extend profile HMMs to
model the sequencing of reads from a contig. We thus
call this a contig HMM. Each contig HMM includes a
consensus sequence based on the set of reads assigned to
this contig. The consensus is constructed from the most
probable output nucleotides of the match states. Using
this consensus sequence we can make correction to the
reads assigned to this contig HMM.

The core functionality of SEECER is constructing the
contig HMM from sequencing reads. We now outline the
details of each step in the following sections.

Pool of reads

We maintain a global pool P (Figure 1, step 0) of reads
during the execution of our method. SEECER creates
many threads, each independently builds a separate
contig HMM. For each such HMM, we start with a
random read as the seed and iteratively extend it using
overlapping reads. See supplement for discussion on
how to avoid collision between two HMMs.

Selecting an initial set of reads for a contig HMM

Using the seed read, we obtain an initial set of reads to use
for constructing the HMM contig (Figure 1, step 1). We
build a k-mer hash dictionary, where the keys are k-mers
and the values are the indices of the reads and the position
of the k-mers within them. This hash table could be large,
and hence we discard k-mers appearing in less than c reads
(here we use c=3). Counting of k-mers is efficiently done
using Jellyfish (29), a parallel k-mer counter. After
counting, only k-mers that appear at least c times are
stored in a hash table that also records the positions of
the k-mer within a read, and as a result, we keep memory
requirements as small as possible. Read sequences are
saved in the ReadStore from the SeqAn library (30).

SEECER starts the contig construction by selecting
(without replacement) a random read (or seed) s from
the pool P of reads. We use the dictionary to retrieve a
set S of reads S � Pð Þ such that each read in S shares at
least one k-mer with the seed s. At the same time, we
record the locations of the shared k-mers among the
reads to construct a multiple-sequence alignment AS .
For each column i (1 � i � n) of AS, let Ti be the nucleo-
tide that is the most frequent in that column. Let
T ¼ fT1, . . . ,Tng be set of such nucleotides from all
columns. Using our current alignment we define
mi ¼ fx 2 S : ASðx,iÞ 6¼ Tig, that is, mi is the set of reads
that have a mismatch with Ti. For each read x, we also
define mðxÞ ¼ fi : ASðx,iÞ 6¼ Tig. In other words, m(x) is
the set of columns for which x has a mismatch with T.

Cluster analysis of reads initially retrieved by
k-mer overlaps

Because it is only based on k-mer matches, our initial set
S is most likely from a mixture of different transcripts.
This situation arises from genomic repeats and alternative
splicing. To build a homogenous contig, we use cluster
analysis to identify the largest subset S� of S, which
satisfies a quality measure.
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To identify the largest subset, the main challenge is in
distinguishing genuine errors from other intrinsic differ-
ence such as repeats. Note that real biological differences
should be supported by a set of reads with similar
mismatches to the consensus. This means that we could
identify a set of reads associated with intrinsic differences
by looking at the intersections of mis. Based on this intu-
ition, we use a clustering algorithm (spectral clustering
(31) and a spectral relaxation of k-means (32)) to find
clusters of columns in M. These clusters are used to
identify coherent subsets of reads, which we then use as
the initial set for learning a contig HMM. See supplement
for details on how to extract a biologically similar subset
using this clustering method and on how to efficiently im-
plement the clustering step.

Learning the parameters of the contig HMM

SEECER has two learning options (Figure 1, step 3). In
the first one, we implemented online expectation
maximization (EM) algorithm (33) in which we restricted

the alignment to have at most v indels to speed up the
Forward–Backward algorithm. In the second one, we
estimate the parameters based on the alignment of reads
using k-mer positions. The first option is much slower
than the second because we have to run Forward–
Backward algorithm until the EM converges. The
second option is faster because we only need to do one
pass over all reads. Our experiments show that the second
option is good enough for correction and keeps the
runtime tractable because often the set of reads is consist-
ent and the amount of errors is low, therefore yielding a
good read alignment.

Consensus extension using Entropy

We discard positions in the contig HMM with high
entropy of the emission probabilities in the match states.
Entropy is a probabilistic statistic, which captures the un-
certainty in the discrete distribution of emissions.
Positions with high entropy (default max entropy=0.6)
indicate that the initial alignment estimation is not reliable

Figure 1. An overview of SEECER. Step 1: We select a random read that has not yet been assigned to any contig HMM. Next, we extract all reads
with at least k consecutive nucleotides that overlap with the selected read. Step 2: We cluster all reads and then select the most coherent subset as the
initial set of the contig HMM. Step 3: We learn an initial HMM using the alignment specified by the k-mer matches of selected reads. Step 4: We use
the consensus sequence defined by the contig HMM to extract additional reads from our unassigned set. These additional reads are used to extend
the HMM in both directions. Step 5: When no more reads can be found to extend the HMM, we determine for each of the reads that were used to
construct the HMM the likelihood of being generated by this contig HMM. For those with a likelihood above a certain threshold, we use the HMM
consensus to correct errors. Step 6: We remove the reads that are assigned or corrected from the unassigned pool. See ‘Materials and Methods’
section for complete details.
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because the set of reads is not consistent. For example, at
splitting positions in alternative splicing events, reads
from different isoforms may be retrieved, which will lead
to high entropy. By discarding these ambiguities, we
improve the contig quality and reduce false-positive
corrections.

Contig extension

Before contig extension (Figure 1, step 4) all parameters
learned for the HMM thus far are fixed. We iteratively
extend the contig HMM by repeatedly retrieving more
reads sharing k-mers with the new consensus using the
dictionary. Each additional read is partially aligned to
the HMM, and read bases that are not overlapping the
HMM are used to learn the newly extended columns of
the HMM, repeating cluster analysis and entropy compu-
tation. This iterative process stops when we cannot
retrieve any new reads or extend the consensus further.

Probabilistic assignment and correction of reads

After the construction of the contig HMM, each read that
was used in the construction is aligned to the HMM using
Viterbi’s algorithm. Reads whose log-likelihood of being
generated by the contig HMM exceeds a threshold of �1
are considered ‘assigned’ to that HMM. We also restrict
the number of corrections for a single read to five to avoid
making false-positive corrections. Finally, assigned reads
are removed from the pool of reads (Figure 1, step 6).

Handling of ambiguous bases and poly-A tails

We remove ambiguous bases (Ns) from the read sequences
before running SEECER by randomly substituting an N
with one of the nucleotides (A,T,G,C). However, if there
are regions with many Ns in a read, we discard the whole
read unless these regions occur at the end, in which case,
we truncate and keep the read if the new truncated length
is at least half of the original. Reads that have >70% of
their bases all As or all Ts are also discarded, as they likely
originate from sequenced poly-A tails.

Human datasets and comparison with other methods

Three human paired-end RNA-seq datasets were down-
loaded for the comparisons: 55 M reads of length 45 bp
(ID SRX011546, http://www.ncbi.nlm.nih.gov/sra/) (6),
64 M reads of length 76 bp (34) were downloaded from
the GEO database (35) (Accession: GSM759888) and 145
M reads of length 101 bp from the ENCODE consortium
(http://genome.ucsc.edu/cgi-bin/hgFileUi?g=wgEncode
CshlLongRnaSeq). The spliced alignment of reads was
performed using TopHat version 1.3.3 and Bowtie
version 0.12.5 (36). Number of aligned reads is reported
for uniquely mapped reads as described in (3).
Quake version 0.3 (22) was run as suggested in the

manual for RNA-Seq data, the k-mer size was set to 18
and the automatic cutoff mode was disabled, instead all
k-mers with count 1 were classified as erroneous. The
other programs were run as follows: Coral version 1.4
(24) with the -illumina option, HiTEC 64 bit version

1.0.2 (21) with options 57000000 4, and Echo version
1.12 (23) with options –ncpu 8 -nh 1024 -b 2000000.

To measure the accuracy of the read error correction
methods, we used Tophat to align original and corrected
reads to the human reference sequence. Using the refer-
ence sequence as ground truth, we used the following
definitions (37): a false positive was a base that was
changed (corrected) although it was correct in the
original read. A true positive was a base that was corrected
to the nucleotide in the reference. A false negative was a
base that was not corrected even though it is wrong, while
a true negative was a base that was left uncorrected and
aligned with the reference. The gain metric was computed
as explained in (37).

De novo RNA-Seq assembly

We used Oases (version 0.2.5) for the de novo RNA-Seq
assembly for the human and sea cucumber datasets.
Similar to (11), we conducted a merged assembly for
k=21, . . . , 35 using default parameters. SEED (version
1.5.1) was run with default parameters, and the resulting
cluster sequences were used as input to Oases as described
in (28). The evaluation of the human assemblies was con-
ducted by aligning assembled transfrags to the human
genome with Blat version 34 (38) and comparing with
Ensembl 65 transcript annotation to derive 80% and
full-length covered transcripts, as previously described
(11). The evaluation metrics were computed using
custom scripts.

Sea cucumber sequencing and validation

Gravid Parastichopus parvimensis adults were spawned by
heat shock and embryos grown in artificial sea water at
15�C. Total RNA was extracted from 2-day-old gastrula
and 6-day-old larvae using the Total Mammalian RNA
Miniprep kit (Sigma). RNA was sent to the Wistar
Institute for library preparation with Illumina adaptors
and 72-bp paired-end sequencing was performed on a
Solexa Genome Analyzer II. First strand cDNA synthesis
was performed with the iScript Select cDNA Synthesis Kit
(BioRad).

From the top 100 expressed transfrags that were
expressed in both time points, 14 were randomly
selected, seven with a match to either RefSeq or
Swissprot and seven without a match. For the validation,
PCR primers were designed with Primer3Plus (39) to
amplify �300–500 bp products corresponding to the 14
selected transfrags (primer sequences are provided in
Supplementary Table S11). The PCR was performed
using GoTaq (Promega) standard protocols on RNA
samples from the first time point.

Sea cucumber transcriptome analysis

For peptide searches, we used Blastx (40) with an
E-value cutoff of 10�5 to avoid spurious alignments in
Swissprot (41) and the Sea Urchin known proteome
(SPU_peptide.fasta at http://www.spbase.org/SpBase/
download/). Similarly, for the search in Refseq (42), we
used Blastn with the same cutoff. The expression of all
assembled transfrags was quantified using RNA-seq by
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expectation maximization (RSEM) with default param-
eters (43) after read alignment of the reads to the
transfrags with Bowtie (44). The Gene Ontology (GO)
annotation for the known and predicted
Sea Urchin proteome was downloaded from SpBase
(annotation.build6.tar at http://www.spbase.org/SpBase/
download/). GO enrichment analysis was done using
FuncAssociate 2.0 (45) with a multiple-testing corrected
P-value cutoff of 0.05.

Computational infrastructures

SEECER and other error correction methods were run
with an 8 core Intel Xeon CPU with 2.40GHz and 128
GB RAM. The de novo assembly with Oases was run on a
48 core AMD Opteron machine with 265GB RAM.

The running time of SEECER is discussed in
Supplements (Supplementary Table S5).

Data access

The new RNA-Seq datasets for the transcriptome of
P. parvimensis were deposited on NCBI Sequence Read
Archive (SRA) under the Accession SRA052605.

RESULTS

SEECER: A HMM-based RNA-Seq error
correction method

Figure 1 presents a high-level overview of SEECER’s read
error correction. The overall goal is to model each contig
with a HMM allowing us to model substitutions, inser-
tions and deletions. We start by selecting a random read
from the set of reads that have not yet been assigned to
any HMM contig. Next, we extract (using a fast hashing
of k-mers method) all reads that overlap with the selected
read in at least k nucleotides. Because the subset of
overlapping reads can be derived from alternatively
spliced or repeated segments, we next perform clustering
of these reads selecting the most coherent subset (see
‘Materials and Methods’ section) for forming the initial
set of our HMM contig. Using this set, we learn an initial
HMM using the alignment specified by the k-mer matches.
This learning step can either directly rely on the multiple
alignment of reads or use standard HMM learning
(Expectation Maximization) but with a limited number
of indels to keep the run time of the Forward–Backward
algorithm linear (see ‘Materials and Methods’ section).
Next, we use the consensus sequence defined by the
HMM to extract more reads from our unassigned set by
looking for those that overlap the current consensus in k
or more nucleotides. These additional reads likely overlap
the edges of the HMM (because those overlapping the
center have been previously retrieved) and so they can
be used to extend the HMM in both directions in a
similar manner to the method used to construct the
initial HMM. This process (learning HMM, retrieving
new overlapping reads, etc.) repeats until no more reads
overlap the current HMM or the entropy at the edges of
the HMM exceeds a predefined threshold (see ‘Materials
and Methods’ section).

When the algorithm terminates for a HMM, we deter-
mine for each of the reads that were used to construct the
HMM how likely it is that they have been generated by
this contig HMM. For those reads where this likelihood is
above a certain threshold, we use the HMM consensus to
correct errors in places where the read sequence disagrees
with the HMM. We use several filtering steps to avoid
false-positive corrections including testing for the
number of similar errors at the same position, the
entropy of a position in the HMM and the number of
corrections made to a single read. See ‘Materials and
Methods’ section for complete details.

Robustness and comparison with other methods

We first tested SEECER on human data to compare it
with other approaches that are widely used for other
sequencing data (primarily DNA sequencing as mentioned
above). Unlike de novo RNA-Seq data, when analyzing
human data, we can use a reference genome to determine
the accuracy of the resulting corrections and assembly. An
established metric to measure the success of error correc-
tion after read alignment is the gain metric (19), which is
defined as the ratio of newly created versus correctly
removed errors (see ‘Materials and Methods’ section).
Before testing SEECER on the human data, we used a

subset of �34 million reads to assess the influence of the
two main parameters for SEECER, the length of k for the
initial hashing phase and the value for the maximum
entropy at a position. Our experiments show that k=17
works best for this subset (Supplementary Figures S1 and
S2) with stable results for similar values. The maximum
entropy was set to 0.6, as lower entropy values resulted in
fewer corrections because fewer contigs could be con-
structed (Supplementary Figure S3).
We next have used these parameters to compare

SEECER with four other methods for correcting the
reads by initially testing their ability to improve the
unique alignment of reads to the human genome after
correction (see ‘Materials and Methods’ section). We
used three diverse datasets to compare SEECER with
the k-mer–based methods Quake (22) and ECHO (23),
Coral (24), which relies on multiple alignments of reads
for correction, as well as with HiTEC (21), which builds a
suffix tree and automatically estimates parameters for
correction.
The first dataset we used was derived from human T-cell

RNA sequencing resulting in 55 million paired-end reads
of length 45 bp (6). In Table 1, we list important statistics
regarding the success of the error correction methods.
Using SEECER, the number of aligned reads increased
by 8.4% when compared with the uncorrected reads,
much higher than Quake (3.6%), Coral (4.5%) and
ECHO (1.3%). Unlike the other methods, error correction
with HiTEC did not result in a higher number of reads
mapped. Similarly, the number of reads that align without
mismatch errors to the reference sequence using SEECER
increased by 50%, which was by far the biggest improve-
ment for all methods tested (Supplementary Figure S4).
None of the error correction methods uses paired-end in-
formation, and therefore the number of properly aligned
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read pairs can serve as a good indicator for the accuracy of
the error correction. Again, SEECER error corrected
reads showed the highest improvement with 15% more
pairs properly aligned. The gain metric shows the
normalized difference between true-positive and
false-positive corrections (Supplementary Table S1) and,
again, SEECER outperforms the other methods. In
addition, we investigated the error bias in terms of read
positions and forward/reverse read strands. Figure 2
presents the distribution of mismatches following
TopHat alignments relative to the read positions before
and after error correction by SEECER. As can be seen,
the previously reported bias that higher error rates are
found at read ends for Illumina data (17), is observed in
our data as well. However, after SEECER error correc-
tion, much of this bias is removed, and the corrected reads
have a more uniform distribution of mismatches along the
read positions. See Supplementary Figures S6–S9 for
details on other types of corrections made by SEECER.
To further test the influence of error correction on

downstream analysis, we investigated the ability to
identify homozygous single-nucleotide polymorphisms
(SNPs) before and after error correction. This analysis
demonstrates the usefulness of error correction for such
downstream SNP studies and, in particular, shows that
using SEECER corrected reads leads to the identification
of the highest number of SNPs. See Supplementary Table
S6 and Supplementary Figure S10 for details.
While the ability to align individual reads is important,

another important goal of de novo RNA-Seq experiments
is transcriptome assembly. To test the impact of error cor-
rection on downstream assembly, we used the Oases de
novo assembler (11). In addition to the read-based error
correction methods we compared with above, we have
compared with SEED read clustering and subsequent
Oases assembly as previously suggested (28). In Table 1,
the results for the human T-cell data are shown. An im-
portant metric for assembly comparisons is the number of
full-length assembled transcripts. Compared with the
original reads, after SEECER error correction, 21%
more transcripts are reconstructed to full length.
SEECER also leads to a 46% increase of detected alter-
native isoforms (Supplementary Table S4). An example of
how Oases benefits from the SEECER error correction is
shown in Figure 3 for the gene EIF3CL (see also
Supplementary Results). Quake, Echo and Coral led to

a lower improvement of assembled full-length transcripts
with 13, 9.6 and 19.6%, respectively, whereas SEED and
HiTEC resulted in a reduction of full-length reconstructed
transcripts of �22 and �2.7%, respectively. The clustering
approach used by SEED discards some of the data, which
leads to loss of lowly to mid-level expressed transcripts
(Supplementary Figure S5). The correction of the human
dataset with SEECER took �12.25 h, whereas the
assembly with Oases took 19 h.

Additional comparisons using larger datasets with
longer reads

To test the scalability of SEECER when using datasets
with more reads and longer read length, we further
tested SEECER on two additional human datatsets: a
HeLa cell line dataset of 64M reads of length 76 bp
(GEO Accession: GSM759888) (34) and 145M reads of
length 101 bp from the ENCODE consortium (see
‘Materials and Methods’ section). Owing to the time re-
quirements of the assembly step, we have only focused
here on the top three performing methods in our
original analysis (SEECER, Quake and Coral).
SEECER scales well, and for both datasets, it achieves
the best performance for the number of aligned reads,
read pairs, full-length assembly and gain (Tables 2 and
3). Additional information about the number of true-posi-
tive and false-positive corrections can be found in
Supplementary Tables S2 and S3. While SEECER
memory requirements scaled more or less linearly with
the size of the dataset, Coral’s requirements did not
scale in a similar manner. Specifically, we could not run
Coral on the largest dataset (Table 3) because its memory
requirements were beyond the available memory on the
machine we used to test all methods.

Assembly of error corrected RNA-Seq sea cucumber data

The sea urchin Strongylocentrotus purpuratus is a model
system for understanding the genetic mechanisms of em-
bryonic development, e.g. (46). Other species of echino-
derms, including the Californian warty sea cucumber
P. parvimensis (Figure 4A), are being developed as com-
parative developmental model systems, e.g. (47). This
work, however, is limited by the absence of a sequenced
genome for the sea cucumber. It is thus critical for com-
parative studies that methods are developed to

Table 1. Evaluation using a RNA-Seq dataset of 55M paired-end 45-bp reads of human T cells

Method Original SEECER Quake SEED Coral HiTEC Echo

Aligned reads (M) 31.2 33.8 (+8.4%) 32.3(+3.6%) – 32.6 (+4.5%) 31.2 (+0.0%) 31.6 (+1.3%)
Proper read pairs (M) 22.1 25.5 (+15.1%) 23.4 (+5.8%) – 24.0 (+8.7%) 22.1 (�0.0%) 22.7 (+2.5%)
Zero error reads (M) 18.3 27.3 (+49.6%) 22 (+20.4%) – 23.9 (+30.7%) 18.3 (0.1%) 19.6 (+7.2%)
Gain – 0.56 0.25 – 0.38 0.00 0.024
Assembly full length 1749 2120 (+21%) 1979 (+13%) 1358 (�22%) 2092 (+19.6%) 1713 (�2.7%) 1916 (+9.6%)
Assembly 80% length 13 852 14 833 (+7%) 14 267 (+3%) 9686 (�30%) 14 643 (+5.7%) 13450 (�2.9%) 14 273 (+3.0%)
Memory (GB) – 27 32 – 34.3 49 72
Time (hours) – 12.25 7.25 – 2.42 6.33 13.7

Percentages in brackets denote performance compared with original data.
‘–’ means not applicable.
The evaluation is based on Ensembl 65 annotation.
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inexpensively obtain highly accurate transcriptomes for
organism for which no sequenced genome exists.

To test how SEECER can help in this direction, we have
produced two new datasets for the transcriptome of
P. parvimensis. These datasets allow us to determine the
expressed mRNAs at the embryonic gastrula (time point
1) and feeding larval (time point 2) stages, which provides
insights into the development of this species. Illumina
paired-end 72-nt sequencing was conducted and resulted
in 88 641 446 and 85 575 446 reads for time points 1 and 2,
respectively. We have next used SEECER to correct errors

in these datasets, resulting in 28 655 078 and 25 546 050
corrections for 19 465 515 and 17 305 905 reads, respect-
ively. Each corrected read set was then used to produce a
de novo RNA-Seq assembly. Error correction took �4.7
and �4.6 h, whereas de novo assembly took �11.3 and
�13 h for time points 1 and 2. In all, 850 056 transcript
fragments (transfrags) were assembled for the embryonic
stages (time 1) and 682 913 transfrags for the larval
(time 2) stage using Oases (see ‘Materials and Methods’
section).
The only other echinoderm with a sequenced genome is

the sea urchin S. purpuratus, which last shared a common
ancestor with sea cucumbers �350 million years ago (48).
Thus, we initially analyzed the similarity between the
transfrags we obtained and sea urchin proteins. For the
embryonic and larva stages 261 405 and 189 101 transfrags
mapped to fragments of 13 330 and 11 793 distinct known
peptides in sea urchin (minimum length 50 amino acids for
each match). Although we only sequenced RNAs from
two developmental stages, thereby not sampling much of
the long developmental process and many adult tissues of
these organisms, the assembled transfrags from both time
points nonetheless matched to >50% of known sea urchin
peptides. This suggests both that we have achieved a high-
sequence coverage in the assembly, and that many of the
sea cucumber genes are already being expressed during
early development. In addition, the fact that 14% of
these matches were restricted to only one of the two
time points suggests that we are able to detect stage-spe-
cific developmentally regulated genes, an important re-
quirement for developmental studies (see Figure 4B). To
illustrate the usefulness of de novo sequencing, we next
performed a GO enrichment analysis for sea urchins’
peptides matched to both time points, and those
matched only to time point 1 or time point 2. The
results are presented in Supplementary Tables S7–S9.
Time point 1 embryos are undergoing active develop-

ment including cell movements involved with gastrulation.
Larval stages (time point 2) meanwhile are actively
swimming and feeding in the water column. As can be
seen in the GO analysis, many differences in expression
between these stages are of mRNAs that encode for
proteins involved in energy metabolism, which is likely
due to a switch in how sessile non-feeding embryos and
motile feeding larvae use energy resources. We also find an
enrichment of expression of genes involved in RNA
splicing and translation control in time point 1
(embryos), which may be related to the active transcrip-
tional processing requirements of early embryogenesis.
This analysis thus provides an entry point into under-
standing these important processes.
Although 62–65% of transfrags matched known sea

urchin peptides, 297 173 and 255 672 sea cucumber
transfrags for time points 1 and 2 did not significantly
match any sea urchin peptide (see ‘Materials and
Methods’ section). We computed the expression levels of
the assembled transfrags and investigated the top 100 ex-
pressed transfrags that we could not match to sea urchin
peptides from both time points in more detail (see
‘Materials and Methods’ section). In the top 100, 28 and
9 transfrags matched to the RefSeq and Swissprot
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Figure 2. The distribution of mismatches to the reference of pair-
mapped reads (using TopHat alignment) of the 55M paired-end
45 bp reads of human T cells dataset: only reads that are aligned
both before and after error correction are shown.
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databases, respectively. Still, we were unable to match 64
transfrags expressed in both time points to any known
entry in these databases. To further test the accuracy of
our correction and assembly and whether the non-
matched transfrags are indeed novel expressed RNAs,
we have performed additional follow-up experiments.
We selected 14 transfrags that were highly expressed in
both time points and performed RT-PCR analysis on
these to confirm that the predicted products could be

amplified from sea cucumber–derived embryonic cDNA
(Figure 4C and Supplementary Table S11). Of the 14,
seven were derived from transfrags that matched known
peptides and the other seven were derived from transfrags
with no match to any of the databases we looked at. As
can be seen in Figure 4C, all 14 transfrags were success-
fully validated, indicating that these are indeed expressed
mRNAs and lending support to our correction and
assembly procedure.

Figure 3. An illustrating example how Oases benefits from SEECER error correction. Top: Tophat read alignments in the EIF3CL gene for exons 9–
13 before (first track) and after (second track) SEECER correction with human data. Colored dots highlight positions with deviations to the
reference sequence in the gray read alignments. Bottom: Summary view of the whole region displaying the longest transfrag assembled. Oases
assembled the transcript ENST00000380876 (EIF3CL) to 95% of its length with SEECER corrected data (red transfrag), whereas it was only
assembled to 45% of its length when using the original data (blue transfrag).

Table 2. Evaluation using a RNA-Seq dataset of 64M paired-end 76-bp reads of HeLa cell lines

Method Original SEECER Quake Coral

Aligned reads (M) 28.9 30.9 (+6.9%) 30.6 (+5.9%) 29.5 (+2.1%)
Proper pairs (M) 19.4 21.4 (+10.4%) 20.8 (+7.2%) 20.0 (+2.8%)
Zero error reads (M) 13.7 16.9 (+23.4%) 15.5 (+12.7%) 14.9 (+8.7%)
Gain – 0.21 0.11 0.07
Assembly full 4067 4422 (+8.7%) 4113 (+1.1%) 4378 (+7.65%)
Assembly 80% 25 647 26 507 (+3.4%) 25 644 (�0.0%) 26 414 (+2.99%)
Memory (GB) – 52 32 37.3
Time (hours) – 20.33 1 3.5

Percentages in brackets denote performance compared with original data.
‘–’ means not applicable.
The evaluation is based on Ensembl 65 annotation.
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DISCUSSION

We have developed and tested SEECER, a new method
based on profile HMMs to perform error correction in
RNA-Seq data. Our method does not require a reference
genome. We first learn a contig HMM using a subset of
reads and use the HMM to correct errors in reads that are
likely associated with the HMM. Our method can handle
non-uniform coverage and alternative splicing, both key
challenges when performing RNA-Seq. We tested
SEECER using complex human RNA-Seq data and
have shown that it outperforms several other error correc-
tion methods that have been used for RNA-Seq data, in
some cases leading to a large improvement in our ability
to correctly identify full-length transcripts. We next
applied it to perform de novo transcriptome correction
and assembly of sea cucumber expression data, providing
new insights regarding the development of this species and
identifying novel transcripts that cannot be matched to

proteins in other species. We note that although a recent
report of a 454 sequencing analysis of mixed embryo,
larval and adult tissues provides some coverage of an un-
related species, the Japanese sea cucumber Apostichopus
japonicas (49), to the best of our knowledge, this is the first
published transcriptome of P. parvimensis.
Our analysis of the sea cucumber data indicates that we

were able to obtain good transcriptome coverage. The ex-
pressed genes from the two developmental stages matched
50% of the protein-coding regions of sea urchin. In
addition, de novo correction and assembly was able to ac-
curately detect taxon-specific transcripts. This is critical
for comparative development studies, which, in the
absence of a genome sequence, often rely on gene discov-
ery from homology searches in related model species. Full
appreciation of the role of species-specific genes is essen-
tial to understand the developmental origins of animal
diversity.
Although one of the main motivations for developing

SEECER are applications of de novo RNA-Seq, the
human data are useful because alignments allow us to
explore the accuracy of the methods, and it is thus a
common practice for testing sequencing error correction
approaches (19). However, we would like to point out that
the classification into false and true positives/negatives is
based on the human reference sequence, which may miss
haplotype allels. Thus, the false-positive rates reported in
the tables may be slightly higher than the real false-posi-
tive rates. Nevertheless, we doubt that this approach
favors any of the methods because none of them use the
reference sequence for performing corrections.
The genome read error correction methods Quake and

Coral were able to correct many reads but resulted in a
large number of false negatives, as indicated by their lower
rates of aligned reads and the drop in the gain statistic
compared with SEECER. Coral was the closest to

Figure 4. De novo assembly of sea cucumber data. (A) A living sea cucumber Parastichopus parvimensis. (B) Distribution of BlastX matches of sea
cucumber transfrags to known sea urchin peptides. The percentages represent the subset of sea urchin peptides that we have significantly matched to
at least one transfrag in time point 1 and/or time point 2 and those that were not matched to any transfrag. (C) Ethidium bromide–stained image of
PCR products amplified from sea cucumber cDNA. Primer pairs were designed against 14 assembled transfrags, seven of which matched to known
peptides of RNAs (top row), and seven other that had no match in the database (bottom row). Standard ladders of 100-bp size are in the first and
last lanes. Each lane is followed by the appropriate no template control to demonstrate that amplification was not due to non-specific contamination.

Table 3. Evaluation using a RNA-Seq dataset of 145M paired-end

101-bp reads from the long RNA-seq of IMR90 cell lines from

ENCODE Consortium

Method Original SEECER Quake Coral

Aligned reads (M) 119.0 123.1 (+3.47%) 121.9 (+2.46%) –
Proper pairs (M) 81.1 85.4 (+5.4%) 83.5 (+2.9%) –
Zero error reads (M) 76.2 105.3 (+38.2%) 92.4 (+21.3%) –
Gain – 0.58 0.32 –
Assembly full 13 148 18 851 (+43.4%) 14 968 (+13.84%) –
Assembly 80% 61 522 61 178 (�0.6%) 62 231 (+1.2%) –
Memory (GB) – 113 60 >130
Time (hours) – 40.25 3 –

Percentages in brackets denote performance compared with original
data.
‘–’ means not applicable.
The evaluation is based on Ensembl 65 annotation.
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SEECER in terms of the resulting number of full-length
assembled transcripts for two of the three datasets.
However, Coral seems to suffer from lack of scalability,
which may be problematic as dataset size increase. Indeed,
its memory requirements for the largest dataset we
analyzed were larger than the capacity of our machine
cluster.
Our experiments have shown that read clustering leads

to a loss of assembled full-length transcripts, especially for
low-to-mid level expressed transcripts, because parts of
the data are discarded. Owing to non-uniform expression
levels in RNA-Seq data, error correction sensitivity critic-
ally depends on a method’s ability to detect errors. The
performance drop for HiTEC and ECHO, compared with
the other methods tested, may be explained by their
uniform coverage assumption leading to missing higher
frequency errors in highly expressed genes. In contrast,
Quake and Coral do not have these strong assumptions
and perform much better. However, unlike SEECER, they
do not use a probabilistic HMM model and read cluster-
ing. These steps allowed SEECER to outperform all other
methods in the number of alignable reads, full-length
assemblies and false-negative rate with only linear
increase in memory requirements for larger datasets.
While we have focused here on the improvement to

RNA assembly following error correction, it has been
shown that de novo assemblies allow reliable detection of
genes that are differentially expressed between two condi-
tions (50). Thus, by improving the resulting assembly,
SEECER is likely to improve downstream differential ex-
pression analyses as well.
There are many directions to improve SEECER further

by using base call quality scores to improve performance
on lowly expressed transcripts or using the paired-end in-
formation to improve construction of contigs. Currently,
SEECER was designed to work without an available ref-
erence sequence (de novo RNA-Seq), but an available ref-
erence sequence could help with correction of repetitive
regions and lowly expressed transcripts.
Finally, while we have primarily developed SEECER

for RNA-Seq data, it may also prove useful for single-
cell and single-molecule sequencing. In other studies,
including metagenomics and ribosome profiling experi-
ments, researchers encounter sequencing data where the
coverage is non-uniform and as such SEECER, which
does not assume uniformity, can improve the analysis of
these data as well.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Tables 1–11, Supplementary Methods,
Supplementary Results, Supplementary Figures 1–11 and
Supplementary References [51–55].
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