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PROBABILISTIC ERROR ESTIMATION FOR NON-INTRUSIVE REDUCED

MODELS LEARNED FROM DATA OF SYSTEMS GOVERNED BY LINEAR

PARABOLIC PARTIAL DIFFERENTIAL EQUATIONS

Wayne Isaac Tan Uy* and Benjamin Peherstorfer

Abstract. This work derives a residual-based a posteriori error estimator for reduced models learned
with non-intrusive model reduction from data of high-dimensional systems governed by linear parabolic
partial differential equations with control inputs. It is shown that quantities that are necessary for
the error estimator can be either obtained exactly as the solutions of least-squares problems in a
non-intrusive way from data such as initial conditions, control inputs, and high-dimensional solution
trajectories or bounded in a probabilistic sense. The computational procedure follows an offline/online
decomposition. In the offline (training) phase, the high-dimensional system is judiciously solved in a
black-box fashion to generate data and to set up the error estimator. In the online phase, the estimator
is used to bound the error of the reduced-model predictions for new initial conditions and new control
inputs without recourse to the high-dimensional system. Numerical results demonstrate the workflow
of the proposed approach from data to reduced models to certified predictions.
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1. Introduction

Model reduction constructs reduced models that rapidly approximate solutions of differential equations by
solving in problem-dependent, low-dimensional subspaces of classical, high-dimensional (e.g., finite-element)
solution spaces [2, 12, 17, 32, 34]. Traditional model reduction methods typically are intrusive in the sense that
full knowledge about the underlying governing equations and their discretizations are required to derive reduced
models. In contrast, this work considers non-intrusive model reduction that aims to learn reduced models from
data with only little knowledge about the governing equations and their discretizations. However, constructing
reduced models is only one aspect of model reduction. Another aspect is deriving a posteriori error estimators
that bound the error of reduced-model predictions with respect to the high-dimensional solutions that are
obtained numerically with, e.g., finite-element methods [11, 15, 30, 37, 41–43]. This work builds on a posteriori

error estimators [11,15] from intrusive model reduction to establish error estimation for reduced models that are
learned with non-intrusive methods. The key contribution is to show that all quantities required for deriving the
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error estimator can be either obtained in a non-intrusive way via least-squares regression from initial conditions,
control inputs, and solution trajectories or bounded in a probabilistic sense, if the system of interest is known to
be governed by a linear parabolic partial differential equation (PDE) with control inputs. The key requirement
to make the estimator practical is that the high-dimensional system is queryable in the sense that during a
training (offline) phase one has access to a black box that one can feed with initial conditions and inputs and
that returns the corresponding numerical approximations of the high-dimensional solution trajectories. If one
considers learning reduced models from data as a machine learning task, then the proposed error estimator
can be considered as pre-asymptotic computable generalization bound [25] of the learned models because the
proposed estimator provides an upper bound on the error of the reduced model for initial conditions and inputs
that have not been seen during learning (training) the reduced model and the error-estimator quantities. The
bound is pre-asymptotic with respect to the number of data points and the dimension of the reduced model.

We review literature on non-intrusive and data-driven model reduction. First, the systems and control com-
munity has developed methods for identifying dynamical systems from frequency-response or impulse-response
data, e.g., the Loewner approach by Antoulas and collaborators [1,10,19], vector fitting [6,13], and eigensystem
realization [21,22]. In contrast, our approach will learn from time-domain data; not necessarily impulse-response
data. Second, dynamic mode decomposition [23,33,35,36,40] has been shown to successfully derive linear dynam-
ical systems that best fit data in the L2 norm. However, the authors are unaware of error estimators for models
derived with dynamic mode decomposition. Third, there is operator inference [29] that coincides with dynamic
mode decomposition in case of linear systems but is also applicable to data from systems with nonlinear terms;
see also the work on lift & learn for general nonlinear systems [31] and the work on dynamic reduced models
[28]. The error estimators proposed in the following will build on operator inference for non-intrusive model
reduction because, together with a particular data-sampling scheme [27], operator inference exactly recovers the
reduced models that are obtained via traditional intrusive model reduction. Thus, the learned models are the
traditional reduced models with well-studied properties known from intrusive model reduction.

We now review literature on error estimators developed for intrusive model reduction. First, the reduced-
basis community has developed error estimators for elliptic PDEs [30] and parabolic PDEs [11] with affine
parameter dependence, time-dependent viscous Burgers’ equation [20,26], and linear evolution equations [14,15],
among others. For systems that are nonlinear and/or have non-affine parameter dependence, error bounds have
been established for reduced models with empirical interpolation in, e.g., [4, 7, 16, 44]. These error estimators
typically depend on the dual norm of the reduced-model residual and on other quantities of the underlying PDE
discretizations such as coercivity and inf-sup stability constants [18] that require knowledge about the weak form
of the governing equations that are unavailable in the setting of non-intrusive model reduction where one has
access to data alone. The work [38] proposes a probabilistic error bound involving randomized residuals which
overcomes the need to compute constants in the error estimators; however, the reduced models are constructed
with traditional intrusive model reduction and, in particular, residuals are computed in an intrusive way which
conflicts with non-intrusive model reduction. In the systems and control community, the discrepancy between the
high-dimensional solutions of systems of ordinary differential equations and reduced-model solutions is bounded
in terms of the transfer functions, see, e.g., [9, 45].

This manuscript is organized as follows: Section 2 outlines preliminaries on spatial and temporal discretiza-
tion of linear parabolic PDEs and intrusive model reduction. Section 3 describes the proposed error estimator
for reduced models learned with operator inference from data. First, least-squares problems are derived to infer
residual-norm operators from data. Second, constants required for error estimation are bounded in a proba-
bilistic sense. These two novel components are combined together with an intrusive error estimator [15] into a
computational procedure that realizes the full workflow from data to reduced models to certification of reduced-
model predictions, under certain conditions that are made precise. Numerical results are presented in Section 4
and conclusions are drawn in Section 5.
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2. Preliminaries

Section 2.1 reviews linear parabolic PDEs with spatial and time discretization discussed in Sections 2.2
and 2.3, respectively. The continuous-time problem is transformed into a discrete linear time-invariant system.
Intrusive model reduction is then recalled in Section 2.4. Section 2.5 outlines the problem formulation.

2.1. Linear parabolic PDEs with time-independent coefficients

Let Ω ⊂ R
m be a bounded domain and let T = (0, T ) be a time interval with T > 0 fixed. Consider the linear

parabolic PDE on (x, t) ∈ Ω × T given by

∂

∂t
w(x, t) = ∇ ·

(

bT (x)∇w(x, t)
)

− c(x) · ∇w(x, t) − d(x)w(x, t) + R(x), (2.1)

w(x, t) = 0 for x ∈ ΓD,

bT (x)∇w(x, t) · n = uj(t) for x ∈ Γj
N , j = 1, . . . , nΓ,

w(x, 0) = h(x),

where w : Ω × T → R is the solution, b : Ω → R
m×m, c : Ω → R

m, d : Ω → R are time-independent coefficients,
R : Ω → R is the source term and the boundary ∂Ω is decomposed into the nΓ disjoint segments ∪nΓ

j=1Γ
j
N = ΓN

with Neumann conditions and the remaining portion ΓD with Dirichlet condition. The control inputs are
{uj(t)}nΓ

j=1 for t ∈ T . Define [·]i as the i-th component of a vector and [·]ij as the (i, j)-th component of a matrix.

Let further [b]ij , [c]i, d ∈ L∞(Ω) for i, j ∈ {1, . . . ,m}, R, h ∈ L2(Ω), and uj ∈ L2(T ) for j = 1, . . . , nΓ where
L2, L∞ correspond to the space of square-integrable and essentially bounded measurable functions, respectively.
For (2.1) to be parabolic, it is required that for any ξ ∈ R

m and x ∈ Ω, there exists a constant θ > 0 such that
ξT b(x)ξ ≥ θ‖ξ‖2

2 [8].

2.2. Spatial discretization

For the Sobolev space H1(Ω), define V = {v ∈ H1(Ω)
∣
∣ v|ΓD

= 0} which is equipped with the norm ‖ · ‖V .
Denote by C0(T ;L2(Ω)) the space of continuous functions w(t) : T → L2(Ω) with maxt∈T ‖w(t)‖L2(Ω) < ∞
and L2(T ;V) the space of all strongly measurable functions w(t) : T → V for which (

∫

T
‖w(t)‖2

V dt)1/2 < ∞.
We seek w ∈ C0(T ;L2(Ω)) ∩ L2(T ;V) such that

∫

Ω

v
∂

∂t
w dx = −a(w, v) + f(v) ∀v ∈ V (2.2)

where

a(w, v) =

∫

Ω

∇v ·
(

bT∇w
)

dx +

∫

Ω

v[∇w · c + wd] dx

and

f(v) =

∫

Ω

vR dx +

nΓ∑

j=1

uj(t)

∫

Γj

N

v dΓN ,

see [8,17,39] for details. In the following, we assume that the bilinear form a in (2.2) is coercive and continuous,
i.e., ∃ α > 0 and γ < ∞ for which a(v, v) ≥ α‖v‖2

V and a(w, v) ≤ γ‖w‖V‖v‖V for v, w ∈ V and f in (2.2) is
continuous. To discretize (2.2), consider a finite-dimensional approximation space VN ⊂ V with basis {ϕi}N

i=1

such that for w ∈ VN , w(x, t) =
∑N

i=1 wi(t)ϕi(x). Setting v = ϕi, i = 1, . . . , N in (2.2) results in

M
dw(t)

dt
= Kw(t) + Fu(t) (2.3)
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where w(t) = [w1(t), . . . , wN (t)]T ∈ R
N , M ∈ R

N×N such that [M ]ij =
∫

Ω
ϕjϕi dx, K ∈ R

N×N such that
[K]ij = −a(ϕj , ϕi), u(t) = [1, u1(t), . . . , unΓ

(t)]T ∈ R
p with p = nΓ + 1, while

F =






∫

Ω
ϕ1R dx

∫

Γ1
N

ϕ1 dΓN . . .
∫

Γ
nΓ
N

ϕ1 dΓN

...
...

. . .
...

∫

Ω
ϕNR dx

∫

Γ1
N

ϕN dΓN . . .
∫

Γ
nΓ
N

ϕN dΓN




 ∈ R

N×p.

If the source term R = 0, p = nΓ and the resulting u(t),F are obtained by truncating the first component of
u(t) and the first column of F defined above.

2.3. Time discretization

To temporally discretize the time-continuous system (2.3), let {tk}K
k=0 ⊂ T be equally spaced points with

tk+1 − tk = δt and denote by wk,uk the discrete time approximations to w(tk),u(tk). A one-step scheme can
be expressed as

wk+1 − wk

δt
= βM−1(Kwk+1 + Fuk+1) + (1 − β)M−1(Kwk + Fuk), β ∈ [0, 1] (2.4)

in which we recover the forward Euler, backward Euler, and Crank–Nicolson method with β = 0, β = 1, and
β = 1

2 , respectively. We rewrite (2.4) as

wk+1 = Awk + Bgk+1 (2.5)

with

A =
(
IN − βδtM−1K

)−1 (
IN + (1 − β)δtM−1K

)
,

B =
(
IN − βδtM−1K

)−1
δtM−1F ,

gk+1 = βuk+1 + (1 − β)uk,

and the N × N identity matrix IN . Note that gk+1 = uk for β = 0 while gk+1 = uk+1 for β = 1. We refer to
W = [w0, . . . ,wK ] as a trajectory. We further define G as the set of input trajectories G = [g1, . . . , gK ] ∈ R

p×K

of arbitrary but finite length K so that
∑K

k=1[gk]2i < ∞ for i = 1, . . . , p, i.e., each component of the discrete-time
input has finite norm on the time interval T . Since uj ∈ L2(T ), we only consider input trajectories G ∈ G. In
the following, we restrict ourselves to equidistant time discretizations. Non-equidistant discretizations in time of
(2.3) lead to time-varying systems instead of the time-invariant system (2.5) that we consider here; see Section 5
for a discussion about the extension of the proposed approach to time-varying systems.

2.4. Traditional (intrusive) model reduction

Model reduction seeks an approximate solution to (2.5) which lies in a low-dimensional subspace Vn spanned
by the columns of V n = [v1, . . . ,vn] ∈ R

N×n with n � N . Various approaches exist for constructing the low-
dimensional subspace, see, e.g., [2, 12, 17, 32, 34]. In the following, we use the proper orthogonal decomposition
(POD) to construct V n. Let [w0, . . . ,wK ] be the snapshot matrix whose columns are the states wk. The basis
V n for Vn is derived from the left singular vectors of the snapshot matrix corresponding to the n largest singular
values. Via Galerkin projection, the low-dimensional (reduced) system can then be derived as

w̃k+1 = Ãw̃k + B̃gk+1 (2.6)

where
Ã = V T

nAV n ∈ R
n×n, B̃ = V T

nB ∈ R
n×p. (2.7)

The low-dimensional solution w̃k approximates the solution wk to (2.5) through V nw̃k. We refer to W̃ =
[w̃0, . . . , w̃K−1] as a reduced trajectory.
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2.5. Non-intrusive model reduction and problem formulation

Deriving reduced model (2.6) by forming the matrix-matrix products (2.7) of the basis matrix V n and the
operators A and B of the high-dimensional system is intrusive in the sense that A and B are required either in
assembled form or implicitly through a routine that provides the action of A and B to a vector. In the following,
we are interested in the situation where A and B are unavailable. Rather, we can simulate the high-dimensional
system (2.5) at initial conditions and control inputs to generate state trajectories. Building on non-intrusive
model reduction, we learn the reduced operators Ã and B̃ from state trajectories without having A and B

available. A major component of intrusive model reduction, besides constructing reduced models, is deriving
error estimators that rigorously upper bound the approximation error of the reduced models with respect to the
high-dimensional solutions [11, 15, 30, 37, 41–43]. However, such error estimators typically depend on quantities
such as norms of A and residuals that are unavailable in non-intrusive model reduction. Thus, error estimators
developed for intrusive model reduction typically cannot be directly applied when reduced models are learned
with non-intrusive model reduction methods.

3. Certifying reduced models learned from data

Our goal is two-fold: (i) learning the reduced operators (2.7) from state trajectories of the high-dimensional
system and (ii) learning quantities to establish a posteriori error estimators to rigorously bound the error
‖wk −V nw̃k‖2 in the 2-norm ‖ ·‖2 of the reduced solution w̃k with respect to the high-dimensional solution wk

at time step k for different initial conditions and different inputs than what was used during (i). The reduced
operators and the quantities for the error estimators are learned under the setting that the high-dimensional
operators in (2.5) are unavailable in assembled and implicit form. We build on a non-intrusive approach for
model reduction based on operator inference [29] and re-projection [27] and on an error estimator for linear
evolution equations [15]. We show that the required quantities for the error estimator can be recovered from
residual trajectories corresponding to training control inputs in a non-intrusive way similar to learning the
reduced operators with operator inference and re-projection. These quantities then allow bounding the state
error for other inputs and initial conditions.

Section 3.1 reviews operator inference with re-projection introduced in [27] and provides novel results on
conditions which permit recovery of the reduced system operators. Section 3.2 discusses an error estimator
from intrusive model reduction as presented in [15]. To carry over the error estimator [15] to the non-intrusive
model reduction case, an optimization problem is formulated in Section 3.3 whose unique solution leads to the
required quantities for error estimation under certain conditions. Sections 3.4 and 3.5 address prediction of the
state a posteriori error for other control inputs. The former utilizes a deterministic bound for the state error. In
contrast, the latter offers a probabilistic error estimator whose reliability, the probability of failure of the error
estimator, can be controlled by the number of samples. A summary of the proposed approach comprised of an
offline (training) and online (prediction) phase is then given in Section 3.6.

3.1. Recovering reduced models from data with operator inference and re-projection

Let V n be the basis matrix with n columns. Building on [29], the work [27] introduces a re-projection scheme
to generate the reduced trajectory W̃ = [w̃0, . . . , w̃K−1] that would be obtained with the reduced model (2.6) as
if it were available by querying the high-dimensional system (2.5) alone with input trajectory G = [g1, . . . , gK ].
We define a queryable system as follows.

Definition 3.1. A system (2.5) is queryable if the trajectory [w0, . . . ,wK ] with K ≥ 1 can be computed for
any initial condition w0 ∈ Vn and any input trajectory G = [g1, . . . , gK ] ∈ G.

For example, system (2.5) can be black-box and queryable in the sense that the operators A and B are
unavailable but w0 and G can be provided to a black box to produce W . In contrast, if there is a high-
dimensional system for which a trajectory W for an input trajectory G is given, without being able to choose
G and initial condition, then such a system is not queryable.
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For a queryable system, the re-projection scheme alternates between time-stepping the high-dimensional
system (2.5) and projecting the state onto the space Vn spanned by the columns of V n. Let w0 ∈ Vn be the
initial condition and define w̄0 = V T

nw0. The re-projection scheme takes a single time step with the high-
dimensional system (2.5) with initial condition V nw̄0 and control input g1 to obtain w1. The state w1 is
projected to obtain w̄1 = V T

nw1, and the process is repeated by taking a single time step with the high-
dimensional system (2.5) with initial condition V nw̄1 and control input g2. The high-dimensional system is
re-simulated to obtain the re-projected trajectory W̄ = [w̄0, . . . , w̄K−1]. It is shown in [27] that W̄ is the
reduced trajectory W̃ = [w̃0, . . . , w̃K−1] in our case of a linear system (2.5). Furthermore, the least-squares
problem

min
Â,B̂

K−1∑

k=0

∥
∥
∥Âw̄k + B̂gk+1 − w̄k+1

∥
∥
∥

2

2
(3.1)

has as the unique solution the reduced operators Ã and B̃ if the data matrix

Ψ =
[

W̄
T

GT
]

∈ R
K×(n+p) (3.2)

has full rank and K ≥ n + p; see Corollary 3.2 in [27] for more details.
The following proposition generalizes the least-squares problem (3.1) to trajectories from multiple initial

conditions and shows that in this case there always exist initial conditions and input trajectories such that the
unique solution of the corresponding least-squares problem is given by the reduced operators Ã and B̃. This
may be necessary in scenarios for which Ψ in (3.2), which only depends on a single initial condition, is not
full rank despite K ≥ n + p. This may occur if the system (2.5) evolves slowly such that the rows of Ψ are
numerically linearly dependent.

Proposition 3.2. There exist n + p input trajectories G(1), . . . ,G(n+p) ∈ G, each of finite length K` ∈ N for

` = 1, . . . , n + p, and n + p initial conditions w
(1)
0 , . . . ,w

(n+p)
0 ∈ Vn such that the generalized data matrix

Φ =

[

W̄
(1)

. . . W̄
(n+p)

G(1) . . . G(n+p)

]T

∈ R
(
∑n+p

`=1
K`)×(n+p)

with re-projected trajectories W̄
(`)

= [w̄
(`)
0 , . . . , w̄

(`)
K`−1] ∈ R

n×K` has full rank, thereby guaranteeing the recovery

of the reduced operators Ã, B̃ via least squares regression.

Proof. The generalized data matrix Φ is induced by the least squares problem

min
Â,B̂

n+p
∑

`=1

K`−1∑

k=0

∥
∥
∥Âw̄

(`)
k + B̂g

(`)
k+1 − w̄

(`)
k+1

∥
∥
∥

2

2
(3.3)

which is an extension of the least squares problem (3.1) for the case when there are ` = 1, . . . , n + p initial

conditions w
(1)
0 , . . . ,w

(n+p)
0 and input trajectories G(`) = [g

(`)
1 , . . . , g

(`)
K`

] ∈ R
p×K` . If Φ is full rank, Â, B̂ in (3.3)

recover the reduced operators Ã, B̃ as discussed in [27].
We now derive specific initial conditions and control inputs that lead to a full-rank Φ. First, we select n

linearly independent initial conditions w
(1)
0 , . . . ,w

(n)
0 ∈ Vn, which exist because Vn has n dimensions. Cor-

respondingly, w̄
(1)
0 , . . . , w̄

(n)
0 ∈ R

n are linearly independent as well. To see this, note that w̄
(i)
0 = V T

nw
(i)
0

holds for i = 1, . . . , n and thus V n

[

w̄
(1)
0 , . . . , w̄

(n)
0

]

=
[

w
(1)
0 , . . . ,w

(n)
0

]

because w
(1)
0 , . . . ,w

(n)
0 ∈ Vn. Because

V n has orthonormal columns, the rank of
[

w̄
(1)
0 , . . . , w̄

(n)
0

]

= V T
n

[

w
(1)
0 , . . . ,w

(n)
0

]

is equal to the rank of
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V n

(

V T
n

[

w
(1)
0 , . . . ,w

(n)
0

])

=
[

w
(1)
0 , . . . ,w

(n)
0

]

, which is n. Set g
(i)
1 = 0p×1 for i = 1, . . . , n where 0m×n rep-

resents an m × n matrix of zeros. Second, set w
(n+1)
0 = · · · = w

(n+p)
0 = 0N×1 ∈ Vn and select p linearly

independent control inputs g
(n+1)
1 , . . . , g

(n+p)
1 ∈ G, which exist because R

p ⊂ G per definition; see Section 2.3.
Taking these n+p initial conditions and input signals and time-stepping with re-projection the high-dimensional
system for a finite number of times steps leads to a generalized data matrix Φ that contains at least the following
rows

[

w̄
(1)
0

g
(1)
1

]T

, . . . ,

[

w̄
(n+p)
0

g
(n+p)
1

]T

.

The matrix Φ therefore contains n + p linearly independent rows and thus has full rank. Note that K` ≥ 1 for
` = 1, . . . , n + p. �

Remark 3.3. Proposition 3.2 considers trajectories from multiple initial conditions to show that initial con-
ditions and input trajectories exist to recover the reduced model via operator inference and re-projection. It
is possible for the generalized data matrix Φ to be full rank even though fewer than n + p initial conditions
are utilized. However, Proposition 3.2 demonstrates in a constructive manner that only at most n + p initial
conditions are necessary to recover the reduced model. To ease exposition, we build on the formulation with
a single initial condition (3.1) in the following and in all our numerical results. However, the following results
immediately generalize to the formulation with multiple initial conditions used in Proposition 3.2.

3.2. Error estimation for linear reduced models in intrusive model reduction

We now elaborate on an a posteriori estimator for the state error in intrusive model reduction by following
the presentation by Haasdonk and Ohlberger [15]; note, however, that intrusive error estimation for reduced
models of parabolic PDEs has been studied by Grepl and Patera [11] as well and the following non-intrusive
approach may extend to their error estimators too. For k ∈ N, define the state error at time k as wk − V nw̃k

and the residual rk as

rk = AV nw̃k + Bgk+1 − V nw̃k+1. (3.4)

The state error is

wk − V nw̃k = Ak(w0 − V nw̃0) +
k−1∑

l=0

Ak−l−1rl. (3.5)

Define

∆w

k (c0, . . . , ck;w0,G) = c0‖w0 − V nw̃0‖2 +

k−1∑

l=0

cl+1‖rl‖2 (3.6)

which relies on the initial condition w0, input trajectory G ∈ G, and constants c0, . . . , ck ∈ R. The norm of
(3.5) is then bounded by

‖wk − V nw̃k‖2 ≤ ∆w

k

(

‖Ak‖2, . . . , ‖A0‖2;w0,G
)

= ‖Ak‖2‖w0 − V nw̃0‖2 +
k−1∑

l=0

‖Ak−l−1‖2‖rl‖2. (3.7)

If max0≤l≤k ‖Al‖2 ≤ C for a constant C ∈ R, then the following holds

‖wk − V nw̃k‖2 ≤ ∆w

k (C, . . . , C
︸ ︷︷ ︸

k+1

;w0,G).

The error w0 − V 0w̃0 of the initial condition is the projection error w0 − V nV T
nw0 and can be computed if

V n and the initial condition w0 are known.
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3.3. Recovering the residual operators from residual trajectories

The residual norm ‖rk‖2 at time step k is a critical component for the error estimator in [15]; directly
computing ‖rk‖2 using formula (3.4) would require either the high-dimensional system operators A and B or
querying the system (2.5) at each w̃k. Following [15], the squared residual norm is expanded as

‖rk‖2
2 = w̃T

k M1w̃k + gT
k+1M2gk+1 + 2gT

k+1M3w̃k + w̃T
k+1M4w̃k+1 − 2w̃T

k+1Ãw̃k − 2w̃T
k+1B̃gk+1 (3.8)

with the matrices

M1 = V T
nAT AV n, M2 = BT B, M3 = BT AV n, (3.9)

and M4 = V T
nV n. Observe that after the reduced model has been obtained with operator inference and re-

projection (Sect. 3.1), the matrices Ã, B̃, and M4 can be readily computed without A and B. Only matrices
M1,M2,M3 are needed additionally to compute the squared residual norm with (3.8).

Let W̄ = [w̄0, . . . , w̄K−1] be the re-projected trajectory using an input trajectory G. Let further R̄ =
[r̄0, . . . , r̄K−1] be the residual trajectory corresponding to the re-projected trajectory defined as

r̄k = AV nw̄k + Bgk+1 − V nw̄k+1,

following the residual expression in (3.4). The following proposition shows that M1,M2,M3 can be derived
via a least-squares problem using R̄, W̄ ,G.

Proposition 3.4. Define the data matrix D ∈ R
K× 1

2
(n+p)(n+p+1) as

D =





vech
(
2w̄0w̄

T
0 − diag(w̄0w̄

T
0 )
)

· · · vech
(
2w̄K−1w̄

T
K−1 − diag(w̄K−1w̄

T
K−1)

)

vech
(
2g1g

T
1 − diag(g1g

T
1 )
)

· · · vech
(
2gKgT

K − diag(gKgT
K)
)

2 vec
(
g1w̄

T
0

)
· · · 2 vec

(
gKw̄T

K−1

)





T

(3.10)

where vec(·) is the vectorization operator, vech(·) is the half-vectorization operator of a symmetric matrix, and

diag(·) is a diagonal matrix preserving only the diagonal entries of its matrix argument. Let f ∈ R
K whose

(k + 1)-th entry is

[f ]k+1 = ‖r̄k‖2
2 − w̄T

k+1M4w̄k+1 + 2w̄T
k+1Ãw̄k + 2w̄T

k+1B̃gk+1

and consider the least squares problem

min
M̂1∈R

n×n,

M̂2∈R
p×p,

M̂3∈R
p×n

K−1∑

k=0

(

w̄T
k M̂1w̄k + gT

k+1M̂2gk+1 + 2gT
k+1M̂3w̄k − [f ]k+1

)2

. (3.11)

If K ≥ (n + p)(n + p + 1)/2 and the data matrix D has full rank, the unique solution to (3.11) is M̂1 =
M1,M̂2 = M2,M̂3 = M3 with objective value 0.

Proof. The least squares problem (3.11) is equivalent to

min
ô

‖Dô − f‖2
2 (3.12)

where

ô =





vech(M̂1)

vech(M̂2)

vec(M̂3)



 ∈ R
1
2
(n+p)(n+p+1).

As the data matrix D is full rank with K ≥ (n + p)(n + p + 1)/2, it follows that (3.12) has a unique solution.
This implies that (3.11) also has a unique solution due to the equivalence between (3.11) and (3.12). From the
residual norm expression (3.8), notice that M̂1 = M1,M̂2 = M2,M̂3 = M3 yields an objective value of 0
for (3.11). Therefore, it is the unique minimizer for the least squares problem (3.11). �
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3.4. Error estimator based on the learned residual norm operators

Consider a queryable system (2.5). The residual trajectory of the re-projected state trajectory can be
computed during the re-projection step. Let V n be a basis matrix, wtrain

0 ∈ VN an initial condition, and
Gtrain = [gtrain

1 , . . . , gtrain
K ] ∈ G an input trajectory. Consider further the corresponding re-projected trajectory

W̄
train

= [w̄train
0 , . . . , w̄train

K−1] and the corresponding residual trajectory R̄
train

= [r̄train
0 , . . . , r̄train

K−1]. Denote by

Ψtrain =

[
(

W̄
train

)T (
Gtrain

)T
]

∈ R
K×(n+p)

the data matrix for operator inference and Dtrain the data matrix (3.10) with w̄k = w̄train
k and gk = gtrain

k .
If Ψtrain and Dtrain have full rank with K ≥ (n + p)(n + p + 1)/2, the reduced model (2.6) can be recovered
together with M1,M2,M3 defined in (3.8) following Section 3.1 and Proposition 3.4.

Set J > 0 as the number of time steps for prediction and let W test = [wtest
1 , . . . ,wtest

J ] be the state trajectory
resulting from system (2.5) subject to the initial state wtest

0 and the input trajectory Gtest = [gtest
1 , . . . , gtest

J ] ∈
G. For the initial state w̃test

0 = V T
nwtest

0 , denote by W̃
test

= [w̃test
1 , . . . , w̃test

J ] the associated reduced state
trajectory produced by the recovered reduced model derived from operator inference and re-projection. The

norm of the residual of the trajectory W̃
test

with respect to the high-dimensional model can be computed via

(3.8) by invoking M1,M2,M3 learned as in Proposition 3.4. Under certain conditions, the state error of w̃test
k

can be bounded as follows.

Proposition 3.5. If ‖rtest
k ‖2, k ∈ N, is the residual norm of w̃test

k calculated through (3.8), under the assump-

tion that ‖A‖2 ≤ 1, the state error of the learned reduced model can be bounded via

‖wtest
k − V nw̃test

k ‖2 ≤ ∆w

k (1, . . . , 1
︸ ︷︷ ︸

k+1

;wtest
0 ,Gtest) = ‖wtest

0 − V nw̃test
0 ‖2 +

k−1∑

l=0

‖rtest
l ‖2. (3.13)

Proof. Using the basis matrix V n, the input trajectory Gtest, the recovered reduced operators Ã, B̃ from
Section 3.1, and the recovered matrices M1,M2,M3 from Proposition 3.4, the residual norm ‖rtest

k ‖2 can be
computed for k = 0, . . . , J − 1.

From (3.5), we deduce

‖wtest
k − V nw̃test

k ‖2 ≤ ‖Ak‖2‖wtest
0 − V nw̃test

0 ‖2 +

k−1∑

l=0

‖Ak−l−1‖2‖rtest
l ‖2 ≤ ∆w

k (1, . . . , 1
︸ ︷︷ ︸

k+1

;wtest
0 ,Gtest). (3.14)

The second inequality in (3.14) holds as ‖Al‖2 ≤ ‖A‖l
2 ≤ 1 for 0 ≤ l ≤ k. �

Remark 3.6. Proposition 3.5 shows that ∆w

k is a pre-asymptotic, computable upper bound on the generaliza-
tion error of the learned reduced model with respect to control inputs.

The condition stated in Proposition 3.5 is met, for example, in the following situations. Let the bilinear form
a in (2.2) be symmetric. If β = 0 in (2.5) (forward Euler) and the basis functions ϕi are, e.g., orthonormal such
that M is a multiple of the identity matrix, then A is symmetric and there exists a sufficiently small time-step
size δt such that the spectral radius ρ(A) = ‖A‖2 ≤ 1. Alternatively, certain mass lumping techniques [39] may
be applied to attain an M with such structure. Finally, if β = 1 in (2.5) (backward Euler), it can be shown
that there exists δt such that the maximum singular value of (I − δtM−1K)−1 is at most 1, which relies on
the symmetry of M and K.
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Remark 3.7. The error estimator ∆w

k can be reformulated when the state error is measured with respect to
a different norm. Consider the reduced basis solution to a symmetric parabolic linear PDE. Let (·, ·)L2 be the
inner product on L2 and {ηi}n

i=1, n � N , be the low-dimensional finite element basis such that the reduced
basis solution w̃(x, t) to w(x, t) is expressed as w̃(x, t) =

∑n
i=1 w̃i(t)ηi(x). Define the energy norm for v ∈ V at

t = tk as

‖v(tk)‖2
a = (v(tk), v(tk))L2 + δt

k∑

k′=1

a(v(tk′), v(tk′)).

It was shown in [11] that at t = tk, the error of the reduced basis solution satisfies

‖w(·, tk) − w̃(·, tk)‖a ≤ δt

k∑

k′=1

r̆(tk′)T K−1r̆(tk′)

where r̆(·) ∈ R
N is the residual of the reduced basis solution at a particular time and K is the stiffness matrix

defined in Section 2.2. Using computations analogous to those carried out in [15], r̆(tk′)T K−1r̆(tk′) admits
an expression similar to (3.8) whose operators can be inferred using the strategy in Section 3.3. This enables
the calculation of the above bound for other control inputs without recourse to the high-dimensional system.
However, obtaining trajectories of r̆(tk′)T K−1r̆(tk′) poses a challenge to training the error operators since this
presumes knowledge of K which is unavailable in our setting.

3.5. Probabilistic a posteriori error estimator for the state

We discuss an approach to bound ‖Al‖2, 0 ≤ l ≤ J , if the condition ‖A‖2 ≤ 1 in Proposition 3.5 is not met
or if it is unknown if ‖A‖2 ≤ 1 holds. We seek an upper bound for ‖Al‖2 with probabilistic guarantees in order
to derive a probabilistic a posteriori error estimator for the state in Section 3.5.1. The practical implementation
of this error estimator is then discussed in Section 3.5.2. In the following, denote by N(µ,Σ) the multivariate
Gaussian distribution with mean µ and covariance matrix Σ.

3.5.1. Probabilistic upper bound for ‖Al‖2 and the state error

Lemma 3.8. For l ∈ N, let Θ(l) = AlZ1 where Z1 ∼ N(0N×1, IN ) so that Θ(l) is an N -dimensional Gaussian

random vector with mean zero and covariance Al
(

Al
)T

. Suppose that {Θ(l)
i }M

i=1 are M ∈ N independent and

identically distributed N -dimensional random vectors with the same law as Θ(l). Then, for γl > 0,

P

(

γl max
i=1,...,M

‖Θ(l)
i ‖2

2 ≥ ‖Al‖2
2

)

≥ 1 −
[

Fχ2
1

(
1

γl

)]M

(3.15)

where Fχ2
1

is the cumulative distribution function of the chi-squared distribution with 1 degree of freedom.

Proof. It suffices to show that

P
(

γl‖Θ(l)‖2
2 ≥ ‖Al‖2

2

)

≥ 1 − Fχ2
1

(
1

γl

)

(3.16)

because using the fact

P

(

γl max
i=1,...,M

‖Θ(l)
i ‖2

2 ≤ ‖Al‖2
2

)

=
[

P
(

γl‖Θ(l)
i ‖2

2 ≤ ‖Al‖2
2

)]M

,

we conclude that

P

(

γl max
i=1,...,M

‖Θ(l)
i ‖2

2 ≥ ‖Al‖2
2

)

= 1 −
[

P
(

γl‖Θ(l)
i ‖2

2 ≤ ‖Al‖2
2

)]M

≥ 1 −
[

Fχ2
1

(
1

γl

)]M
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as desired. The proof of (3.16) uses ideas similar to that in [5]. Recall that

‖Al‖2 =

√

λmax

((

Al
)T

Al

)

where λmax(·) represents the largest eigenvalue of the matrix argument. Since
(

Al
)T

Al is real and symmetric,
(

Al
)T

Al = QΛQT where Q ∈ R
N×N , QT Q = IN , and Λ is a diagonal matrix whose entries [Λ]ii = λi satisfy

0 ≤ λ1 ≤ · · · ≤ λN = ‖Al‖2
2. By setting Z2 = QT Z1, we have Z2 ∼ N(0N×1, IN ) and that

‖Θ(l)‖2
2 =

(

Θ(l)
)T

Θ(l) = ZT
1

(

Al
)T

AlZ1 = ZT
1 QΛQT Z1 = ZT

2 ΛZ2 ≥ ‖Al‖2
2 ([Z2]N )

2

where [Z2]N is the N -th component of Z2. Since [Z2]N ∼ N(0, 1), ([Z2]N )
2 ∼ χ2

1, i.e., it is a chi-squared
random variable with 1 degree of freedom. It follows that for a constant γl > 0 with

P
(
γl([Z2]N )2 ≥ 1

)
= 1 − Fχ2

1

(
1

γl

)

we obtain

P
(

γl‖Θ(l)‖2
2 ≥ ‖Al‖2

2

)

≥ P
(

γl ([Z2]N )
2 ≥ 1

)

= 1 − Fχ2
1

(
1

γl

)

·

�

Remark 3.9. Results similar to (3.15) can be obtained for other distributions on Θ(l) building on, e.g., [3, 5].

Using (3.15), we derive a probabilistic a posteriori error estimator as the next result demonstrates.

Proposition 3.10. For l = 1, . . . , J , let Θ(l) = AlZ where Z ∼ N(0N×1, IN ) so that Θ(l) is an N -dimensional

Gaussian random vector with mean zero and covariance Al
(

Al
)T

. Let
{

Θ
(l)
i

}M

i=1
be independent and identically

distributed N -dimensional random vectors with the same law as Θ(l) and define

Ξl =

√

γl max
i=1,...,M

‖Θ(l)
i ‖2

2,

for γl > 0, l ≥ 1 with Ξ0 = 1. For an initial state w0 ∈ VN and an input trajectory G, the following holds

P

(
J⋂

k=1

{‖wk − V nw̃k‖2 ≤ ∆w

k (Ξk, . . . ,Ξ0;w0,G)}
)

≥ max

(

0, 1 −
J∑

l=1

[

Fχ2
1

(
1

γl

)]M
)

. (3.17)

Proof. Define the events El =
{

Ξ2
l ≥ ‖Al‖2

2

}

for l = 1, . . . , J and the event

E =

J⋂

k=1

{‖wk − V nw̃k‖2 ≤ ∆w

k (Ξk, . . . ,Ξ0;w0,G)} .

Recall from (3.7) that

‖wk − V nw̃k‖2 ≤ ∆w

k

(

‖Ak‖2, . . . , ‖A0‖2;w0,G
)

, k = 1, . . . , J,
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holds, which means that we obtain
P (E) ≥ P

(
∩J

l=1El

)
.

Using the Fréchet inequality, we obtain

P
(
∩J

l=1El

)
≥ max

(

0,
J∑

l=1

P (El) − (J − 1)

)

.

Therefore, using Lemma 3.8,

P (E) ≥ max

(

0,

J∑

l=1

(

1 −
[

Fχ2
1

(
1

γl

)]M
)

− (J − 1)

)

= max

(

0, 1 −
J∑

l=1

[

Fχ2
1

(
1

γl

)]M
)

.

�

3.5.2. Sampling random vectors from queryable systems

We now discuss a practical implementation of the probabilistic error bound in Proposition 3.10. We resume
the setup outlined in Section 3.4. Recall that the reduced model (2.6) and M1,M2,M3 are recovered using

the input trajectory Gtrain. Also, W test and W̃
test

are the state and reduced state trajectories owing to the
input trajectory Gtest while ‖rtest

k ‖2 is the residual norm of w̃test
k calculated through (3.8).

To construct an upper bound for ‖wtest
k −V nw̃test

k ‖2 according to Proposition 3.10, realizations of the random

vectors Θ(l) ∼ N

(

0N×1,A
l
(

Al
)T
)

, l = 1, . . . , k need to be simulated. Therefore, for fixed M , if {zi}M
i=1 are

realizations of Z, realizations
{

θ
(l)
i

}M

i=1
of Θ(l) and hence a single realization

ξl =

√

γl max
i=1,...,M

‖θ(l)
i ‖2

2

of Ξl for l = 1, . . . , J can be simulated by querying (2.5) for J time steps with control input gk = 0p×1 for all k
and with the realizations {zi}M

i=1 serving as M initial states, i.e., w0 = zi for i = 1, . . . ,M . This produces M
trajectories of wk = Akw0. Note that ξ0 = 1.

For specified γl > 0 which controls the confidence level (failure probability) of the probabilistic error estimator
in (3.17), an error estimate for ‖wtest

k − V nw̃test
k ‖2 for k = 1, . . . , J is provided by

∆w

k

(
ξk, . . . , ξ0;w

test
0 ,Gtest

)
= ξk ‖wtest

0 − V nw̃test
0 ‖2 +

k−1∑

l=0

ξk−l−1 ‖rtest
l ‖2 (3.18)

which we refer to as learned error estimate. Observe that ∆w

k (ξk, . . . , ξ0;w
test
0 ,Gtest) is a single realization of

the error estimator ∆w

k (Ξk, . . . ,Ξ0;w
test
0 ,Gtest).

Remark 3.11. Bounds on an output, a quantity of interest which is obtained via a linear functional of the
state wk, can also be formulated if the norm of the output operator is available. Let the output at time k be
expressed as

yk = Cwk

for which it is assumed that ‖C‖2 is known. The output for the low-dimensional system ỹk is therefore

ỹk = CV nw̃k.
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Algorithm 1. Data sampling with re-projection.

1: Set w̄0 = V T
nw0

2: for k = 0, . . . , K − 1 do

3: Query (2.5) for a single time step to obtain wtmp = AV nw̄k +Bgk+1

4: Set w̄k+1 = V T
nwtmp

5: Compute the residual r̄k = wtmp − V nw̄k+1

6: end for

7: Return [w̄0, w̄1, . . . , w̄K ] and [r̄0, r̄1, . . . , r̄K−1]

Following [15], since

‖yk − ỹk‖2 = ‖C(wk − V nw̃k)‖2 ≤ ‖C‖2‖wk − V nw̃k‖2,

and ∆w

k (ξk, . . . , ξ0;w0,G) is an error estimate for ‖wk − V nw̃k‖2, we deduce that ỹk − ∆y
k and ỹk + ∆y

k are
lower and upper bound estimates for yk∈ R where

∆y
k = ‖C‖2∆

w

k (ξk, . . . , ξ0;w0,G). (3.19)

3.6. Computational procedure for offline and online phase

The proposed offline-online computational procedure for non-intrusive model reduction of certified reduced
models is summarized in Algorithm 2. It builds on the reprojection scheme in Algorithm 1 introduced in [27]
which is modified to include computation of the residual trajectory. The offline phase serves as a training stage
to determine the unknown quantities while the online phase utilizes these for certified predictions.

The inputs to Algorithm 2 include the number of time steps K (training), J (prediction), initial condition w0,
the snapshot matrix W basis = [w0,w

basis
1 , . . . ,wbasis

K ] owing to the input trajectory Gbasis = [gbasis
1 , . . . , gbasis

K ] ∈
G, the basis dimension n, the input trajectories Gtrain,Gtest for training and prediction, M ≥ 1, {γl}J

l=1, and
the input trajectory Gnorm = [0p×1, . . . ,0p×1] ∈ R

p×J for finding an upper bound for ‖Al‖2, 1 ≤ l ≤ J , and
the computational model (2.5) that can be queried.

The offline stage constitutes operator inference with reprojection (Sect. 3.1) and estimation of state error
upper bounds (Sects. 3.3 and 3.5) with the input trajectory Gtrain ∈ G. It is composed of three parts: inferring
the reduced system, inferring the residual-norm operator, and finding an upper bound for the norm of A in
the error estimator. The offline phase proceeds by building the low-dimensional basis V n from trajectories of
the state contained in W basis. The re-projection algorithm is then invoked to generate the re-projected states
w̄train

k and its residual r̄train
k corresponding to the control input Gtrain. Using data on w̄train

k and Gtrain, the least
squares problem (3.1) is formulated in order to recover the reduced system (2.6) in a non-intrusive manner. The
second part of the offline stage utilizes the inferred reduced system and data on the residual r̄train to set up the
least squares problem (3.11). Solving (3.11) yields the operators M1,M2,M3, which enable the computation
of the residual norm (3.8) at any time for a specified control input. Finally, upper bounds for the operator norms
‖Al‖2 in the a posteriori error expression (3.6) are sought by querying the system (2.5) at initial conditions
consisting of M realizations of Z ∼ N(0N×1, IN ). The M trajectories corresponding to each initial condition
are employed in the definition of ξl which is a realization of the probabilistic bound Ξl, i.e., ‖Al‖2 ≤ Ξl. Notice
that Algorithms 1 and 2 do not rely on knowledge of A,B in (2.5) and M1,M2,M3 in (3.8). Furthermore, it
is unnecessary to use the same input trajectory Gtrain for solving the least squares problems (3.1) and (3.11).

In the online stage, the deduced quantities in the offline stage are invoked to compute the low-dimensional
solution (2.6), the norm of its residual (3.8), and consequently an upper bound for the state error (3.13) or (3.18)
for an input trajectory Gtest ∈ G.

Algorithm 2 serves as the reference for the numerical examples undertaken in Section 4.
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Algorithm 2. Data-driven model reduction.

Offline phase

1: Construct a low-dimensional basis V n from the snapshot matrix W basis

2: Generate {w̄train
k }K

k=0 via re-projection and its residual {r̄traink }K−1
k=0 (Algorithm 1) using Gtrain

3: Perform operator inference by solving (3.1) to deduce Ã, B̃

4: Infer M1,M2,M3 from (3.11) for the computation of (3.8)
5: Simulate M realizations {zi}

M
i=1 of Z ∼ N(0N×1, IN )

6: Produce M realizations {θ
(l)
i }M

i=1 of Θ(l) for l = 1, . . . , J by querying (2.5) for J time steps withw0 = zi, i = 1, . . . , M

and input Gnorm

7: Compute ξl =

√

γl maxi=1,...,M ‖θ
(l)
i ‖2

2 for l = 1, . . . , J

Online phase

8: Calculate the low-dimensional solution {w̃test
k }J

k=1 to (2.6) using the inferred Ã, B̃ and input Gtest

9: Evaluate ‖rtestk ‖2
2 for k = 0, . . . , J − 1 in (3.8) utilizing the deduced M1,M2,M3

10: Estimate the a posteriori error for the state via (3.13) or (3.18) for k = 1, . . . , J

3.7. Computational cost comparison

We compare the computational cost for certifying low-dimensional models under intrusive and non-intrusive
model reduction. The cost for both approaches in the online phase is identical. In the offline stage, the procedure
of generating snapshots and a reduced basis are the same in the intrusive and the proposed non-intrusive
approach. The intrusive approach then assembles the reduced operators via matrix-matrix products (2.7) and
sets up the error estimator by computing the quantities M1,M2,M3, {‖Al‖2}J

l=1 which involves the matrix-
matrix products in (3.9) and computing the largest singular value of a matrix.

In contrast, the proposed non-intrusive approach samples trajectories via re-projection in which the full
model is queried. The reduced operators are then fitted to data by solving the least squares problem (3.1) which
scales according to O(K(n + p)2). Finally, the error-estimator quantities M1,M2,M3, {ξl}J

l=1 are learned via

least-squares regression (3.12), which scales as

O
(

K

(
(n + p)(n + p + 1)

2

)2
)

,

and by simulating the full model to realize probabilistic bounds of
{

‖Al‖2

}J

l=1
.

4. Numerical results

The numerical examples in this section illustrate the following points: (1) the quantities for error estimators
are learned from data up to numerical errors, (2) the learned low-dimensional system and the residual norm for
the a posteriori error estimators are exact reconstructions of those resulting from intrusive model reduction,
(3) the learned quantities can be used to predict the low-dimensional solution and provide error estimates for
specified control inputs, and (4) error estimators for the output, i.e., quantity of interest, can be deduced if the
output operator is linear in the state and its norm is available.

An implementation of operator inference with the proposed non-intrusive error estimation is available in
Python1. It requires a blackbox function that timesteps the high-dimensional system to perform non-intrusive
model reduction. It computes the reduced model operators and operators in the error estimator for both types
of model reduction. The sample script provided reproduces Figure 1b and 2c below.

1https://github.com/wayneisaacuy/OpInfErrEst.

https://github.com/wayneisaacuy/OpInfErrEst
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Table 1. Relative average state error over time and its corresponding error estimates obtained
from intrusive model reduction and operator inference.

Errors and error estimators Definition

Error of reduced solution via oper-
ator inference

e(3) =
∑J−1

k=0
‖wtest

k −V nw̃
test
k ‖2

J
∑J−1

k=0
‖wtest

k
‖2

(4.3)

Intrusive model reduction upper
bound for the state error

∆(1) =
∑J−1

k=0
∆w

k (‖Ak‖2,...,‖A0‖2;wtest
0 ,Gtest)

J
∑J−1

k=0
‖wtest

k
‖2

(4.4)

Realization of probabilistic upper
bound for the state error

∆(2) =
∑J−1

k=0
∆w

k (ξk,...,ξ0;wtest
0 ,Gtest)

J
∑J−1

k=0
‖wtest

k
‖2

(4.5)

Learned deterministic upper bound
for the state error

∆(3) =
∑J−1

k=0
∆w

k (1,...,1;wtest
0 ,Gtest)

J
∑J−1

k=0
‖wtest

k
‖2

(4.6)

4.1. Error quantities

We compute the following quantities to assess the predictive capabilities of reduced models learned from data
for test input trajectories Gtest and test initial conditions wtest

0 .
Error of the reduced solution:

e(1) =
‖W test − V nW̆

test‖F

‖W̆ test‖F

(4.1)

where W̆
test

refers to the trajectory of the reduced system inferred via intrusive model reduction
(

Ŵ
test
)

or

operator inference
(

W̃
test
)

and ‖ · ‖F is the Frobenius norm.

Time-averaged residual norm:

e(2) =
1

J

J−1∑

k=0

‖rtest
k ‖2 (4.2)

where the residual norm ‖rtest
k ‖2 is computed through the two approaches for model reduction we compare:

intrusive
(
‖r̂test

k ‖2

)
vs. operator inference

(
‖r̃test

k ‖2

)
.

Relative average state error over time and its corresponding a posteriori error estimates tabulated in Table 1.
In (4.5), ξk, k = 0, . . . , J , are realizations of the random variables Ξk defined in Proposition 3.10. In our

experiments, we set γl = γ for l = 1, . . . , J so that the probability lower bound in (3.17) becomes

PLB(γ,M, J) = max

(

0, 1 − J

[

Fχ2
1

(
1

γ

)]M
)

. (4.7)

Relative state error at a particular time point k and its corresponding a posteriori error estimates tabulated
in Table 2.

4.2. Heat transfer

The setup for non-intrusive model reduction applied to this example is first described which is followed by
the numerical results.
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Table 2. Relative state error at a particular time point k and its corresponding error estimates
obtained from intrusive model reduction and operator inference.

Errors and error estimators Definition

Error of reduced solution via oper-
ator inference

e(4) =
‖wtest

k −V nw̃
test
k ‖2

‖wtest
k

‖2
(4.8)

Intrusive model reduction upper
bound for the state error

∆(4) =
∆w

k (‖Ak‖2,...,‖A0‖2;wtest
0 ,Gtest)

‖wtest
k

‖2
(4.9)

Realization of probabilistic upper
bound for the state error

∆(5) =
∆w

k (ξk,...,ξ0;wtest
0 ,Gtest)

‖wtest
k

‖2
(4.10)

Learned deterministic upper bound
for the state error

∆(6) =
∆w

k (1,...,1;wtest
0 ,Gtest)

‖wtest
k

‖2
(4.11)

4.2.1. Setup

For Ω = (0, 1), T = (0, T ), T = 5, consider the heat equation on (x, t) ∈ Ω × T given by

∂

∂t
w(x, t) = µ

∂2

∂x2
w(x, t),

w(0, t) = 0,

∂

∂x
w(1, t) = u(t)

w(x, 0) = 0.

To discretize the PDE, Ω is subdivided into N = 133 intervals with width ∆x = 1/N. Let {ϕi}N
i=1 be linear hat

basis functions with ϕi(j∆x) = δij where δij is the Kronecker delta function. We obtain the continuous-time
system

M
dw(t)

dt
= Kw(t) + µ







0
...
0

u(t)







where [K]ij = −µ
∫ 1

0
∂ϕi

∂x
∂ϕj

∂x dx for i, j = 1, . . . , N . In our simulation, we set µ = 0.1 for the diffusivity parameter
and temporally discretized the continuous system using backward Euler with δt = 0.01 being the time step size.

The basis V n was constructed from the snapshot matrix of K = 500 time steps driven by the control input
ubasis(t) = et sin(20πt/T ). The objective functions (3.1) and (3.12) were optimized using the input trajectory
Gtrain = [0, z1, . . . , zK−1] where zi is a realization of Zi, i = 1, . . . ,K − 1, which are independent and identically
distributed N(0, 1) random variables. The training control input need not be random but it aids in exciting
the system to produce a full rank data matrix for the least squares problems we solve. Random signals are also
utilized in system identification [24]. If information is available on a specific signal that is appropriate for a
particular system, it could also be utilized in the training stage.

4.2.2. Results

We now assess the performance of the learned reduced model and quantities required for a posteriori error
estimation. In the online stage, the control input utest(t) = et sin(12πt/T ) was discretized using 500 time steps.
The quantities listed in Section 4 are calculated up to n = 8 basis vectors.

Figure 1 demonstrates that the reduced system and quantities required for error estimation can be recovered
up to numerical errors. In particular, Figure 1a plots (4.1) for the reduced solution resulting from intrusive model
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Figure 1. Heat equation: The results in plots (a) and (b) indicate that the reduced system
and the quantities required for error estimation under operator inference, i.e., residual norm
operators, are equal to their intrusive counterparts up to numerical errors.

reduction compared to that from operator inference. It demonstrates the theory established in earlier work [27]
on the recovery of the reduced operators in the system (2.6). Due to this, the error of the reduced trajectory
from either approach is almost identical. The quantity (4.2) involving the residual norm for both approaches
of model reduction is presented in Figure 1b. The plot shows that both methods are in close agreement. If the
conditions in Proposition 3.4 are met, the matrices M1,M2,M3 in (3.8) and hence the residual norm itself
can also be recovered.

In this simulation, our knowledge of M ,K informed the choice of δt so that ‖A‖2 ≤ 1 and thus, the deter-
ministic error estimator (3.13) is applicable. If this is not the case, the probabilistic error estimator introduced
in Section 3.5 can be utilized instead. Figure 2 shows the deterministic and probabilistic a posteriori error
estimates. For the probabilistic error estimate, we chose γ = 1, M = 25, J = 500 so that PLB(γ,M, J) ≈ 0.9641.
Only one realization of each of the random variables Ξl, l = 1, . . . , J was generated for this example. Figures 2a
and 2b display the learned reduced model error (4.8) and the intrusive (4.9), probabilistic (4.10), and determin-
istic (4.11) error estimates at t = 1 and t = 5, respectively. These plots depict the intrusive model reduction
error estimate (3.7) for the state error. We notice that the intrusive and deterministic (non-intrusive) error esti-
mates are almost identical. In addition, the plots convey that the learned error estimate (3.18) under operator
inference is roughly of the same order of magnitude as the error estimate provided by the intrusive approach.
The calculated quantities for the time-averaged learned reduced model error (4.3) and its corresponding intru-
sive (4.4), probabilistic (4.5), and deterministic (4.6) error estimates are likewise shown in Figure 2c. The plot
reveals that the behavior of the time-averaged relative state error is similar to that of the relative state error at
various time instances.

In practice, the learned error estimator may depend on the realizations of the random variables Θ(l) simulated.
In all simulations described above, we performed calculations using only a single realization of Ξl. We therefore
generate multiple realizations of Ξl and study the variability in the resulting learned error estimate associated
with various sets of realizations of Θ(l). Figure 3 compiles the mean (solid) of 100 realizations of the learned
error estimator (4.10) for t = 1 and t = 5 and (4.5) in Figures 3a, 3b, and 3c, respectively. In each panel, the
vertical bars symbolize the minimum and maximum among the simulated realizations while the error estimate
from the intrusive approach is also shown. We observe from the minimum and maximum values that there is
low variability in the learned error estimates generated.
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Figure 2. Heat equation: The plots illustrate that the deterministic (non-intrusive) error
estimator (3.13) and the learned (probabilistic) error estimator derived in Proposition 3.10
bound the error of the reduced solution in this example. The intrusive and deterministic error
estimates are close. In addition, the learned error estimator indicates an error of the same
order of magnitude as the intrusive error estimator. The parameters used for the learned error
estimator were chosen as γ = 1, M = 25, J = 500 so that the learned estimator gives an upper
with probability PLB ≈ 0.9641.

4.2.3. Computational cost

Finally, we compare the offline runtime for certifying low-dimensional models under intrusive and non-
intrusive model reduction. Note that the online runtime for both is identical. The comparison is carried out for
the experiment corresponding to Figure 2. The results are shown in Figure 4 where the runtime is reported for
reduced dimensions between 1 and 8, averaged over 100 runs. The runtime of both approaches is dominated by
setting up the error estimator. For intrusive model reduction, this is due to computing ‖Al‖2 for l = 1, . . . , J . For
the proposed non-intrusive approach, this is due to querying the high-dimensional system to obtain realizations
of ξl, l = 1, . . . , J . The runtime of solving the least-squares problem (3.12) is negligible in this example.

4.3. Convection-diffusion in a pipe

The setup for this problem is first described followed by the numerical results for two types of control inputs
and bounds on the output error.
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Figure 3. Heat equation: The mean, minimum, and maximum of the quantities (4.10) and
(4.5) computed from 100 samples of the learned error estimator are shown. It is observed that
there is low variation among the samples of the learned error estimator.

4.3.1. Setup

We now consider a parabolic PDE over a 2-D spatial domain according to the convection-diffusion equation.
Let T = (0, 0.5) and Ω = (0, 1) × (0, 0.25). For (x1, x2, t) ∈ Ω × T , the PDE examined is

∂

∂t
w(x1, x2, t) = ∇ · (µ∇w(x1, x2, t)) − (1, 1) · ∇w(x1, x2, t), (4.12)

w(x1, x2, t) = 0 for (x1, x2) ∈ ∂Ω\ ∪5
i=1 Ei,

∇w(x1, x2, t) · n = ui(t) for (x1, x2) ∈ Ei, i = 1, . . . , 5,

w(x1, x2, 0) = 0

where the domain Ω and the segments Ei, i = 1, . . . , 5 with Neumann conditions are visualized in Figure 5.

The finite element discretization is constructed using square elements with width ∆x1 = ∆x2 = 1/75 and
associated linear hat basis functions {ϕi(x1, x2)}N

i=1 where N = 1121. The continuous-time system resulting
from this PDE is

M
dw(t)

dt
= Kw(t) + Fu(t)
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Figure 4. Heat equation. Comparison of runtime of the offline phase for intrusive model reduc-
tion and the proposed non-intrusive approach. Setting up the error estimator dominates the
offline costs. In case of intrusive model reduction, the offline costs are dominated by comput-
ing ‖Al‖2, l = 1, . . . , J . In case of the proposed non-intrusive approach, the offline costs are
dominated by generating realizations ξl, l = 1, . . . , J, for the probabilistic bound.

Figure 5. Domain Ω for the convection-diffusion PDE in Section 4.3 with segments of the
boundary with Neumann conditions indicated by thin solid lines.

where M is the mass matrix as before, [K]ij = −µ
∫

Ω
∇ϕj · ∇ϕi dx −

∫

Ω
((1, 1) · ∇ϕj)ϕi dx for i, j = 1, . . . , N

and [F ]ij = µ
∫

Ej
ϕi dx for i = 1, . . . , N, j = 1, . . . , 5. This was then discretized using forward Euler with the

time step size δt = 10−5.

Two variants of this problem are investigated in Sections 4.3.2 and 4.3.3 in which we implemented different
pairs of control signals (ubasis(t),utest(t)) in each variation. The control inputs for basis generation and the
testing stage are more similar in nature in Section 4.3.2 than in Section 4.3.3. The same control input utrain(t)
is used to solve the optimization problems (3.1) and (3.10) for both variants which is discretized to obtain
Gtrain. The trajectory Gtrain was simulated as follows: for the time points {tk}K−1

k=0 , K = 5 × 104, [gk]j is a

realization of Z
(j)
k ∼ N(0, sin2(jπtk)) such that Z

(j)
k , Z

(j)
l are independent for k, l = 1, . . . ,K − 1, k 6= l.

4.3.2. Results for exponentially growing sinusoidal control input

The diffusivity parameter in this example is set to µ = 0.5. The basis V n is constructed using the control
input ubasis

j (t) = sin(2jt), j = 1, . . . , 5 while the control input utest
j (t) = et sin(1.75jt), j = 1, . . . , 5 is used for

prediction in the online stage. Both of these control inputs are discretized in time using K = 5 × 104 (basis)
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Figure 6. Convection-diffusion equation: Numerical approximation of the solution to (4.12)
at times t = 0.1 and t = 0.5 for µ = 0.5 and control input Gtest.

Figure 7. Convection-diffusion equation (Sect. 4.3.2): The graph indicates that the residual
norm (3.8) needed for the a posteriori estimate (3.6) can be recovered under operator inference.

and J = 5 × 104 (prediction) intervals of equal width. To visualize trajectories of the high-dimensional system
resulting from the control input utest(t), Figure 6 illustrates w(x1, x2, t) for t = 0.1, 0.5.

We now examine the accuracy of the inferred reduced model and its state error estimate under operator
inference by computing the errors listed above. The quantity (4.2) corresponding to the intrusive and operator
inference approach as a function of the basis dimension n is contrasted in Figure 7. The plot demonstrates the
recovery of the residual norm (3.8) in the latter method. The reduced system operators for both methods are
also almost identical.

We then investigate the effect of the parameters γ and M in the learned error estimator (3.18) in Figures 8
and 9. Figures 8a and 8b depict the learned reduced model error (4.8) and the intrusive (4.9) and learned
(probabilistic) (4.10) error estimates at times t = 0.1 and t = 0.5. Each panel presents, for γ = 7, 20, 50, a
single realization (3.18) of the probabilistic error estimator (3.17) using M = 10 with their respective lower
bound probabilities of PLB ≈ 0.7543, 0.9985, 0.9999. The same set of realizations of Ξl for l = 1, . . . , J were
utilized for the values of γ considered. For fixed M , the learned error estimates become more conservative with
respect to the intrusive error estimate in favor of increased confidence in the estimate; cf. the definition of Ξl

in Proposition 3.10.

Figure 9 plots the same quantities shown in Figure 8 but for the parameters γ = 1 and M = 35, 100, 500,
i.e., M is varied while γ is fixed. The lower bound probability values for each M are PLB ≈ 0.9212, 0.9999, 1.
The sets of the M = 35, 100, 500 realizations of Θ(l) for l = 1, . . . , J are nested. For this example, increasing
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Figure 8. Convection-diffusion equation (Sect. 4.3.2). Increasing γ leads to a more conservative
learned error estimate (3.18) for fixed M,J with respect to the intrusive error estimate. This
simultaneously corresponds to a larger lower bound probability PLB. The parameters used were
M = 10 and γ = 7, 20, 50 for which PLB ≈ 0.75, 0.9985, 0.9999.

Figure 9. Convection-diffusion equation (Sect. 4.3.2). Increasing M only slightly changes the
learned error estimate (3.18) for fixed γ, J in this example. The parameters used were γ = 1
and M = 35, 100, 500 for which PLB ≈ 0.92, 0.99, 1.

M did lead only to slight changes in the learned error estimate. The influence of M is more difficult to gauge

numerically since the maximum of {θ(l)
i }M

i=1 may not differ substantially as a function of M . The results in
Figures 8 and 9 indicate that in this example, for a fixed value for PLB, it is more favorable to choose a larger
value of M and a smaller value of γ to obtain a tighter learned error estimate that is close to the error estimate
from intrusive model reduction with a high confidence in the estimate. This is because increasing γ results
in scaling ξl by

√
γ which then yields a more conservative error estimate (3.18) while only gaining a modest

increase in PLB. In contrast, increasing M (which requires additional queries to the full system) implies a faster
convergence of PLB to 1 without necessarily incurring a scaling of ξl. We therefore see that there is a trade off
between a conservative bound and high PLB for γ while there is a trade off between computational expense and
high PLB for M .
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Figure 10. Convection-diffusion equation (Sect. 4.3.2). The mean, minimum, and maximum
of (4.10) based on 50 samples of the learned error estimator are depicted together with the error
estimate from intrusive model reduction. The parameters used were γ = 1, M = 35. There is a
low variation among the samples of the learned error estimator.

We now assess the variation in the realizations of the learned error estimator. The simulation is carried out
for γ = 1, M = 35. We generated 50 sets of M = 35 realizations of Θ(l) to produce 50 realizations of Ξl and
of the learned error estimate (4.10). The mean (solid) of the 50 realizations of (4.10) for t = 0.1 and t = 0.5
are illustrated in the panels of Figure 10 together with their minimum and maximum values (vertical bars). For
reference, the error estimate (4.8) under intrusive model reduction is also included. The plots show that the
variation among samples of the learned error estimator is low.

4.3.3. Results for sinusoidal control input

In this case, the diffusivity parameter is set to µ = 1. The control input ubasis(t) for constructing the basis
V n consists of

ubasis
1 (t) = 5t sin(πt) (4.13)

ubasis
2 (t) = e5t sin(2πt)

ubasis
3 (t) =

√

3 + t2 sin(3πt)

ubasis
4 (t) = 50t2 sin(4πt)

ubasis
5 (t) = e2t sin(5πt)

while the components of the control input utest(t) for prediction were chosen as utest
j (t) = sin(jπtzj), j = 1, . . . , 5

where zj is a realization of a N(0, 1) random variable.

Figure 11 summarizes the predictive capabilities of operator inference. The quantity (4.2) is plotted in
Figure 11a wherein we see concordance between the intrusive and operator inference approaches. Observe that
the errors in Figure 11a are larger than in Figure 7 since the basis and test control inputs are less similar in
nature. Figure 11b contains graphs of the learned reduced model error (4.3) and the intrusive (4.4) and learned
(probabilistic) (4.5) error estimates in which 1 sample of the learned error estimator was generated. The param-
eters for the learned error estimator were set to γ = 1, M = 40, J = 5×104 so that PLB(γ,M, J) ≈ 0.9883. The
learned error estimate is close to the error estimate given by the intrusive approach.
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Figure 11. Convection-diffusion equation (Sect. 4.3.3). The panels show that operator infer-
ence recovers the residual norm necessary for deriving error estimates of the state. Furthermore,
the learned state error estimate is only slightly higher than the error estimate provided by the
intrusive method.

4.3.4. Results for bound on output error

We now study the efficiency of the learned error estimator for the state in constructing bounds for an
output. We resume the setup in the previous subsection wherein the control input is sinusoidal. We consider

two quantities of interest for this case, namely, y
(j)
k = C(j)wk for j ∈ {1, 2} with the control input Gtest. The

matrices C(1) and C(2) are defined as follows: The first output is the average of the state components of wk at
each time which is

y
(1)
k = C(1)wk where C(1) =

[
1

N
, . . . ,

1

N

]

∈ R
1×N . (4.14)

The second output is the integral of the finite element approximation to w(x, t) over the edge E5 at each time
given by

y
(2)
k = C(2)wk where C(2) =

[∫

E5

ϕ1 dΓ, . . . ,

∫

E5

ϕN dΓ

]

∈ R
1×N . (4.15)

The output yk and its bounds ỹk ± ∆y
k over time are displayed in Figures 12 (first output) and 13 (second

output); cf. Remark 3.11. These quantities were sketched for n ∈ {7, 12, 17} basis dimensions in the first output
and n ∈ {5, 10, 15} in the second output. The output bound ∆y

k is computed via the learned error estimator for
the state ∆w

k with the same parameters above, i.e., γ = 1, M = 40, J = 5×104. The panels show that increasing
n yields a decrease in the output bound width 2∆y

k over time, i.e., the bounds are sharper with respect to the
output value. This is supported by Figure 11 which demonstrates decrease of the learned state error estimate
as a function of the basis dimension.

5. Conclusions

This work proposes a probabilistic a posteriori error estimator that is applicable with non-intrusive model
reduction under certain assumptions. The key is that quantities that are necessary for error estimators developed
for intrusive model reduction can be derived via least-squares regression from input and solution trajectories
whereas other quantities that are necessary can be bounded in a probabilistic sense by sampling the high-
dimensional system in a judicious and black-box way. The learned estimators can be used to rigorously upper



PROBABILISTIC ERROR ESTIMATION FOR NON-INTRUSIVE REDUCED MODELS 759

Figure 12. Convection-diffusion equation (Sect. 4.3.3). The panels show the predictive capa-
bility of the learned error estimator for the state error in constructing lower and upper bounds
for the output (average of state components). The bounds correctly indicate that the errors of
the predicted reduced-model outputs decreases if the basis dimension is increased.

Figure 13. Convection-diffusion equation (Sect. 4.3.3). Similar behavior as described in
Figure 12 is observed in these panels for the quantity of interest based on the integral over
the Neumann boundary.

bound the error of reduced models learned from data for initial conditions and inputs that are different from
those used during the training phase (offline phase). Thus, the proposed approach establishes trust in decisions
made from data by realizing the full workflow from data to reduced models to certified predictions.

The framework introduced here for learning error estimators may be extended beyond linear time-invariant
systems by exploiting a posteriori error estimators from intrusive model reduction provided that these can be
derived for such systems. See [15] as an example for linear time-varying systems. While details remain future
work, it seems the proposed approach is applicable to linear time-varying systems for which the time-varying
operators can be decomposed as a linear combination of time-independent matrices with time-varying scalar
coefficients. These matrices are then inferred from data on the squared residual norm if the time-dependent
coefficients are known. For nonlinear systems, the method here should be adapted to specific nonlinear PDEs
for which error analysis of the intrusive reduced model is possible. This will be the subject of future work.
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