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Abstract Any effective volcanic risk mitigation strat-
egy requires a scientific assessment of the future evo-
lution of a volcanic system and its eruptive behavior.
Some consider the onus should be on volcanologists
to provide simple but emphatic deterministic forecasts.
This traditional way of thinking, however, does not deal
with the implications of inherent uncertainties, both
aleatoric and epistemic, that are inevitably present in
observations, monitoring data, and interpretation of
any natural system. In contrast to deterministic pre-
dictions, probabilistic eruption forecasting attempts to
quantify these inherent uncertainties utilizing all avail-
able information to the extent that it can be relied
upon and is informative. As with many other natural
hazards, probabilistic eruption forecasting is becoming
established as the primary scientific basis for planning
rational risk mitigation actions: at short-term (hours
to weeks or months), it allows decision-makers to pri-
oritize actions in a crisis; and at long-term (years to
decades), it is the basic component for land use and
emergency planning. Probabilistic eruption forecasting
consists of estimating the probability of an eruption
event and where it sits in a complex multidimensional
time–space–magnitude framework. In this review, we
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Introduction

Volcanic eruptions can have a huge impact on so-
ciety, in terms of human losses, environmental con-
sequences, and economic costs. Moreover, the ever-
increasing exposure and vulnerability of society are
going to continuously amplify the overall risk from
such events, leading to greater demand for effective
risk mitigation measures. The primary component for
planning sound risk mitigation actions at different time
scales is to forecast when, where, and how big future
eruptions will be. This scientific goal is complicated
by the very high number of degrees of freedom, of-
ten nonlinearly coupled, that characterize the physical
processes underlying a volcanic eruption. This inherent
complexity and the large uncertainty in the knowledge
of these processes lead to the practical impossibility
of predicting deterministically, or even with a small
uncertainty, the onset time, location, and size of the
impending eruption (e.g., Marzocchi et al. 1997), with
rare exceptions (e.g., the dilatometer-based prediction
of the 1991 Hekla eruption, Linde et al. 1993). In
practice, volcanologists can track the evolution of a
volcanic system only in a probabilistic way, for instance,
identifying different scenarios, each one with their own
probability of occurrence.
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For many years, the use of probabilistic models in
volcanology was almost totally limited to long-term as-
sessment (e.g., Wickman 1966a) with rare investigation
of short-term forecasts (e.g., Decker 1986). While scien-
tists accept the long-term unpredictability of a volcanic
system, they appear much more reluctant to live with
the fact that uncertainties may play a major role also
in short-term assessment. De facto, the deterministic
approach is still more or less explicitly adopted by many
volcanologists, who consider monitoring data reliable
enough to predict the evolution of a phase of unrest
with a reasonable certainty. The reluctance to abandon
this approach is underlain by both a training for de-
terminism in classical physics and the more pragmatic
reason that society and decision-makers usually press
scientists to provide advice without the uncertainties
that the decision-makers often do not know how to
deal with. It is notable that this inability of decision-
makers to manage scientific uncertainty in short-
term forecasts is probably the weakest point of the
whole decision-making process, not only in volcanology
(Marzocchi and Woo 2009), but in seismology (Jordan
et al. 2011) and with weather-related hazards. Con-
versely, at longer time scales, the use of probabilistic
seismic hazard analysis is routine in critical facility
design, building codes, and planning processes.

From a more scientific point of view, the determin-
istic and probabilistic approaches are often seen as two
opposite and irreconcilable aspects of how we describe
nature. We disagree with this dichotomic view; any
probabilistic model that works well must incorporate
the most relevant monitoring anomalies and/or perti-
nent physics. In this view, the only difference between
deterministic and probabilistic approaches is that the
latter incorporates the uncertainties, rather than ignor-
ing them (cf., Jeffreys 1961). The lack of deterministic
predictions should not be seen as a scientific failure but
as a rational approach to the nature of the problem.
Probabilistic forecasts are commonly used in several
fields to justify mitigation actions, and even in our
private life, we take daily decisions without being sure
about consequences and the future possibilities. This
means that, in order to make sound decisions to reduce
volcanic risk, decision-makers have to be trained with
the concept of decision-making under uncertainty (e.g.,
Marzocchi and Woo 2007, 2009; Woo 2008), and scien-
tists have to do their best to estimate probabilities.

In the following sections, we describe in detail the
current state of the art concerning short- and long-
term eruption forecasting. For the purpose of this
paper, probabilistic eruption forecasting is a generic
term that embraces any kind of probabilistic assess-
ment related to the occurrence of an eruption that can

be expressed as the probability of occurrence of an
eruption onset in a given time–space–size interval. The
time interval of interest may vary from hours/days to
decades depending on the type of mitigation actions
envisaged by the forecast; here, we use “short-term”
to indicate a forecast in a time horizon of hours/weeks
or months, typically of interest in managing evolving
episodes of volcanic unrest; and “long-term” for time
windows of years to decades that are required for
land use and evacuation planning. This distinction is
a consequence of more than just the desired usage.
Conceptually, any forecasting model can be applied to
a wide range of forecasting time intervals; nonetheless,
the kind of information used for short- and long-term
forecasts are basically different: short-term forecasting
is mostly driven by monitoring information, while long-
term forecasts are primarily based on the past activity
of the volcano (Decker 1986).

Quantitative probabilistic assessment

The term “probability” has diffused throughout the
scientific literature, but its meaning is still very con-
troversial and has been hotly debated for centuries
(e.g., Gillies 2000). Generally speaking, we can iden-
tify two broad classes of probability definition: the
frequentist (objective probability) and the degree of
belief (subjective probability). In the objective inter-
pretation, the probability represents the expected long-
term frequency of the event that we are considering.
In the subjective interpretation, the probability is no
longer an expected frequency, but it represents the
degree of belief about the occurrence of the next event.
This distinction has many important philosophical and
practical aspects that we do not discuss in this paper
(see Gillies 2000; and Marzocchi and Zechar 2011 for
a discussion in the context of earthquake forecasting).
Here, we simply note that both views have important
merits and that different types of available information
may suggest the use of one rather than the other.

An estimate of objective probability can be obtained
through a stochastic model (e.g., Cox and Lewis 1966)
or empirical analysis. Stochastic modeling is widely
used in long-term eruption forecasting (Bebbington
2009), where the primary information comes from his-
torical and geological catalogs of eruption onsets and,
in some cases, sizes. Eruptions may be considered as
the outcome of stochastic point processes. This al-
lows volcanologists to benefit from a well-developed
theory of point-process models that has been devel-
oped for reliability analysis, such as, for example,
aircraft component failures (Proschan 1963). The
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empirical approach simply calculates the frequency of
past events, assuming that exactly the same frequency
holds also for the future. Statistically, empirical analysis
is “nonparametric,” implying the absence of a model,
and faithfully reproduces the random variation from
the catalog in forecasts. Unless the catalog is a large
one, unlikely in volcanology, the resulting forecasts
tend not to be smooth and can be biased.

Subjective probability is estimated in a different
way. The best procedure (Cooke 1991; Gillies 2000)
is through the formalization of the degree of belief
of a group of scientists (intersubjective probability). A
description of the merits of this definition is beyond the
scope of the present paper. Nonetheless, we emphasize
that the degree of belief of a group of experts usually
tends to be much more coherent than the degree of
belief of one single researcher. Moreover, a group of
experts evaluate the epistemic uncertainty from mul-
tiple perspectives, which increases the likelihood of
considering a fuller range of information, improving
the epistemic evaluation. Methods of eliciting a degree
of belief from a group of experts is an active field of
research. The most accepted procedure is probably the
Delphi method (e.g., Cooke 1991) that has been used
in volcanology (e.g., Aspinall 2006; Neri et al. 2008;
Selva et al. 2010a). The Delphi method relies on a
structured panel of experts where information is fed
back in summary form, allowing the panel to discuss
and revise assessments several times; opinions are usu-
ally kept anonymous in order to leave any researcher
completely free from external conditions. Sometimes,
the experts’ opinions are weighted in order to give
greater weight to the opinion of the “best” experts
but, at the same time, to down-weight experts that are
clearly overopinionated (see Cooke 1991). Despite the
widespread use of this approach, it is worth mentioning
that important initiatives in other fields, such as the Se-
nior Seismic Hazard Assessment Committee (SSHAC;
Budnitz et al. 1997), the Uniform California Earth-
quake Rupture Forecast (Field et al. 2007), and the
Intergovernmental Panel on Climate Change (Solomon
et al. 2007) adopt different ad hoc schemes to include
expert opinions in their forecasts.

In a broad sense, the distinction between objective
and subjective probability is of interest for scientists
and practitioners because these probabilities corre-
spond to two different kinds of uncertainty. Objective
probability is expected to describe the inherent unpre-
dictability of the system or the so-called aleatory un-
certainty. Subjective probability is more closely linked
to the epistemic uncertainty due to the imperfect
knowledge of the system under study. The distinction
between aleatory and epistemic uncertainties is not

straightforward, and it may hide some conceptual mis-
understanding. Nonetheless, we argue that this distinc-
tion is helpful in some way to scientists, because it
marks a separation between the intrinsic randomness
(or variability) of the system (aleatory uncertainty) that
is irreducible and the epistemic uncertainty that may be
reduced as new information, models, or data become
available.

In probabilistic seismic hazard assessment, as well
as in many other kinds of hazard assessment, scien-
tists incorporate both kinds of uncertainty through the
concept of the logic tree (e.g., Budnitz et al. 1997) . A
logic tree is a branching structure where the different
branches represent all relevant sources of epistemic un-
certainty for hazard assessment. A single hazard curve,
corresponding to an individual branch of the logic tree,
quantifies the aleatory aspects of the corresponding
model, while the spread of hazard curves for different
values of the ground-motion parameter of interest is
determined by epistemic uncertainty. Therefore, the
distribution corresponding to the full suite of hazard
curves captures both aleatory and epistemic uncer-
tainties (Budnitz et al. 1997; Bommer and Scherbaum
2008).

In volcanic hazard assessment and eruption fore-
casting, aleatory and epistemic uncertainties can be
incorporated in a structured form, although it is still
not the norm. One approach that has been used is
the event tree concept (Newhall and Hoblitt 2002) in
a Bayesian framework (Marzocchi et al. 2004, 2008,
2010; Neri et al. 2008; Marti et al. 2008; Sobradelo and
Marti 2010). Basically, the event tree is a graphical tree
representation of events in which individual branches
are alternative steps from a general prior event, state,
or condition, through increasingly specific subsequent
events (intermediate outcomes) to final outcomes. In
this way, the scheme shows all relevant possible out-
comes of volcanic unrest at progressively higher de-
grees of detail. The probability of each outcome is
obtained by combining the probabilities at each node
of the tree through classical probability theory (Fig. 1).
With respect to the logic tree, the event tree does not di-
rectly incorporate aleatory and epistemic uncertainties;
both kinds of uncertainty are included in the event tree
through the use of Bayesian inference in calculating the
probability at each node.

In the event tree, the probability at each node is
described by a beta distribution, with density function

f�(θ)= 1

B(α, β)
θα−1(1−θ)β−1, 0<θ <1, α>0, β >0,

(1)
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Fig. 1 Event tree scheme for
eruption forecasting (up to
node 5), volcanic hazard (up
to node 8), and volcanic risk
assessment (up to node 10).
Each node is characterized by
a probability conditioned by
the events at the previous
node; for instance, node 3 is
characterized by the
conditional probability of
eruption given the presence
of magmatic unrest (node 2).
The probability of eruption at
one specific location and of
one specific size is given by
the combination of the
probabilities of the first
5 nodes
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where B(α, β) denotes the beta function

B(α, β) =
∫ 1

0
θα−1(1 − θ)β−1 dθ. (2)

The expected value for this beta distribution is

E(�) = α

α + β
, (3)

and the variance is

V(�) = E(�)(1 − E(�))

(α + β + 1)
. (4)

The beta distribution is often chosen because it is
defined on the range [0, 1] and is the conjugate prior
distribution in the binomial model (Gelman et al.
1995), which makes easier the merging of expert opin-
ion/model output with observational data. This choice
is subjective, and other distributions can be used, such
as the Gauss distribution for the logistic transformation
of the probability. In practice, the differences arising
from the use of various distributions are not usually sig-
nificant; for this reason, the beta distribution is the most
commonly used in practical applications (e.g., Gelman
et al. 1995). The parameters of the beta distribution
can be set through expert opinion and updated using
the data (if any) of past eruptions (see Marzocchi et al.
2008; Neri et al. 2008).

Bayesian inference, as applied to the event tree,
brings two key advantages. First, the probability at each
node is described by a distribution instead of a single

value; this allows scientists to quantify formally the
uncertainty related to the probability estimation and,
in due course, to the hazard assessment. Second, the
Bayesian inference provides a framework for merging
all the relevant available information such as theoreti-
cal models, prior beliefs, monitoring measures, and past
data (Fig. 1).

The choice of describing the probability as a distri-
bution instead of a single value has many similarities
with the approach taken by the SSHAC but has been
criticized on philosophical grounds. Basically, critics
interpret the probability as the only measure of un-
certainty, and in this view, it does not make sense to
assign an uncertainty to an uncertainty (Bedford and
Cooke 2001). Here, we do not tackle this important
controversy, but we note that the use of a probability
distribution instead of a single value has the undoubted
advantage of providing a measure of the reliability
of any probabilistic assessment, especially in systems
where the epistemic component is significant to the
outcome.

Short-term forecast methods

Short-term forecasting is driven by the information pro-
vided by monitoring anomalies, i.e., by the occurrence
of one or more concomitant monitoring signals outside
the background range. During a phase of unrest, the
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long-term probability and the past frequency of erup-
tions become less important than what is being ob-
served from the monitoring of physical quantities which
are assumed to be related to the possibility of an immi-
nent eruption. In a nutshell, we may describe the short-
term eruption forecasting problem as the quantification
of observed anomalies, also known as precursors, in
terms of a probabilistic assessment. Despite its wide
use, the term precursor has never been clearly defined;
here, we use this term in a broad sense, indicating one
or more anomalies that may anticipate an eruption with
a certain probability in a specific time interval.

As in seismology (Jordan 2006), volcanic precursors
were often interpreted in a deterministic sense in the
past; more formally, the observation of a precursor
was translated into a probability through the implicit
use of the Heaviside function: the probability is zero
if the precursor is not observed and jumps to one
when the precursor is detected. Now, volcanologists
acknowledge that eruptions may be anticipated by sev-
eral different precursors, and some eruptions may occur
without clear premonitory signals. Conversely, many
identified precursors may occur without anticipating
an eruption (e.g., Moran et al. 2011). This lack of a
one-to-one correlation between precursors and erup-
tions emphasizes the need for probabilistic assessment
(UNDRO 1985; Decker 1986; Sparks 2003).

The basic principle is that the observation of a
precursor should increase the estimated probability of
eruption. Despite the simplicity of this principle, we
argue that the probabilistic assessment may be com-
plex. Ideally, if a very large database of past moni-
tored eruptions, and noneruptions, is available, we can
estimate the probability related to each precursor as
its frequency calculated from the database. However,
at the level of individual volcanoes, such databases
are very rare and usually small. Often, volcanologists
face cases where no past monitoring data are available.
The WOVOdat exercise led by Christopher Newhall
(www.wovodat.org) aims at building a database of
monitored episodes of unrest at a worldwide scale.
This database may serve as the primary resource for
a new field of volcano epistemology: during volcanic
crises, it can be used to make queries along the lines
of where else have X, Y, and Z been observed and
what happened subsequently. Since different types of
volcanos have different precursors, a critical source of
epistemic uncertainty is the selection of the analogs
used to subset the database; a poor choice of analog
volcanoes can easily lead to a biased forecast. Notwith-
standing the huge potential impact of WOVOdat, the
ever growing monitoring capabilities at volcanoes will
allow scientists to, at best, calculate the frequency of

the most basic precursors, as the most elaborate and
innovative monitoring measures will be available only
for shorter time periods and fewer volcanoes. For this
reason, the calculation of frequencies is not usually a
viable way to make use of these innovative and new
monitoring measures. More integrated probabilistic ap-
proaches that merge past data, conceptual models, and
expert opinions will be required.

In the following, we present a brief overview of the
most common seismic and ground deformation precur-
sors, without pretending to a complete review of this
very large and rapidly evolving field of research. There
are several other precursors that may be important to
forecast volcanic eruptions, such as geochemical sig-
nals, but their interpretation is usually strongly case-
dependent and requires a volcano-specific conceptual
model. Often, precursors and anomalies are identified
after the eruption, focusing on only those processes that
appeared to lead to eruption. This backward process is
often misleading, as the false positives are not observed;
in other words, there is no guarantee that a precursor
identified a posteriori will show up again for future
eruptions or that a different precursor may not serve as
a functional prior for future events. For these reasons,
we emphasize precursors that are commonly monitored
and/or applied in a prospective way to forecast erup-
tions and are therefore of practical interest. After that,
we describe probabilistic models that produce forecasts
relying on the observation of precursors.

Seismic precursors

Seismic activity is considered the most important signal
in forecasting eruptions. Its use is motivated by the
physical basis of the signals, easy interpretation of data
in real time, and the widespread availability of seis-
mic networks to monitor volcanoes. Magma movement
increases the stress of the surrounding rocks which
is released mostly through seismic activity. Relative
to tectonic seismic activity, the seismicity in volcanic
areas presents a much wider variability, particularly
in the spectral components of the seismic waves (e.g.,
Neuberg 2011). This variability reflects the large range
of elastic behavior and rheology in the rising magma
and surrounding rocks. Volcanoes are characterized by
different magmas (e.g., basaltic and andesitic volca-
noes) and mechanical conditions (e.g., open and closed
conduits); all these features lead to a large variety of
possible seismic precursors, with open conduit effusive
volcanoes showing the most subtle signals, while closed
conduit volcanoes with more silicic magmas usually
present much clearer evidence of precursory seismic
signals.

http://www.wovodat.org
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Upward migration of the seismic activity as the
magma rises is not as common as might be expected;
a few remarkable cases were reported for Tolbachik
(Tokarev 1978), the Piton de la Fournaise (Battaglia
et al. 2005) and Long Valley Caldera (Shelly and Hill
2009). Notably, the lead time to an eruption may be
very short with respect to the upward migration of
the seismicity, such as in the case of Chaiten (Castro
and Dingwell 2009). This indicates that magma can
migrate very quickly towards the surface once it finds a
mechanical weakness. Lateral migrations are probably
more interesting for practical purposes; they have been
observed before the Pinatubo 1991 eruption and in
other volcanoes (White and Power 2001; Pozgay et al.
2005). This precursor is particularly important because
the lead time to eruption is usually much longer than
for upward migration leaving more time for possible
mitigation actions, and identifying lateral migration
requires only epicentral estimation, which has greater
precision than depth estimation.

The presence of fluids/magma leads to a wide vari-
ability in the frequency content of the seismic waves.
Typically, earthquakes that involve fluids in some man-
ner have a spectral content with more energy at lower
frequencies. These events are called low-frequency or
long-period events (LPEs hereafter), the presence of
which is usually an indicator of pressurization in the
system (e.g., Chouet 1996; Neuberg 2000). Notwith-
standing the clear importance of fluids, the exact origin
of these LPEs is still controversial. More important,
from a practical point of view, is that it is not yet clear
how to distinguish the presence of “cold” fluids from
that of magma when analyzing LPEs. This implies a
considerable uncertainty about how to interpret the
presence of LPEs as a possible precursor of an im-
pending magmatic eruption (Chouet 1996; Thomas and
Neuberg 2012). For this reason, derivatives of LPEs
such as the rate acceleration (Traversa et al. 2011), the
link with the amplitude (Hammer and Neuberg 2009),
and variation of the spectral content of seismic signals
(Neuberg 2000; Bryan and Sherburn 2003) have been
suggested as potential precursors.

One of the better known seismic precursors is the ac-
celeration of the seismic rate and/or energy that has an-
ticipated some past eruptions. The rationale behind this
seismic acceleration is based on the extension and coa-
lescence of fractures inside the volcano that can create
a preferred pathway for magma ascent (Voight 1988,
1989; Cornelius and Voight 1996), even though other
possible explanations exist (Lavallée et al. 2008). De-
spite such an acceleration having been retrospectively
observed before recent large eruptions at Pinatubo in
1991 (Cornelius and Voight 1996; Smith and Kilburn

2010) and at Soufriere Hills in 1995 (Kilburn and
Voight 1998), there is still concern about detection of
acceleration prior to an eruption (Bell et al. 2011). Even
in retrospective studies, the lead time to eruption seems
very short, from a few hours to a few days (Smith and
Kilburn 2010; Kilburn 2003; Chastin and Main 2003).

Probably, the most “definite” seismic precursor is
volcanic tremor. The origin of tremor can be due to a
coalescence of LPEs (Neuberg 2000) or by processes
not related to earthquakes, such as fluid flow through
rough-walled conduits (e.g., Benoit et al. 2003; Jellinek
and Bercovici 2011). Notwithstanding its importance,
tremor is not often very useful in practical forecasting
applications because it shows up only immediately be-
fore and during an eruption.

Seismicity has also been used to detect stress changes
before the reactivation of a volcano, using variations
in the seismic noise (Brenguier et al. 2008), shear
waveform splitting (Miller and Savage 2001; Gerst and
Savage 2004), and fault plane solutions (Roman et al.
2006). Discrepancies in the time evolution of a seismic
swarm relative to models used for tectonic earthquakes
such as the epidemic type aftershock sequence (Ogata
1988, 1998) have been used to track the fluid/magma
motion under the crust (Hainzl and Ogata 2005;
Lombardi et al. 2006). Seismic clusters as poten-
tial precursors have also been studied using the pat-
tern recognition approach (Mulargia et al 1991, 1992;
Sandri et al 2005; Jaquet et al. 2006; Novelo-Casanova
and Valdes-Gonzales 2008).

Finally, seismic activity has also been coupled to
other observables in order to identify possible precur-
sors. Thelen et al. (2010) found that the cumulative
seismic moment and the repose time of the volcano
may be indicative of impending eruptions at Mt. St.
Helens. Similarly, Passarelli and Brodsky (2012) found
a correlation between the duration of seismic unrest
before an eruption and the repose time of the volcano.

Ground deformation precursors

The pressurization of the volcanic system induces a
ground deformation that can be detected at the sur-
face using different techniques/instruments such as
electronic distance measurements (EDM), tiltmeters,
dilatometers, global positioning system (GPS), and in-
terferometry synthetic aperture radar (InSAR). EDM,
tiltmeters, and GPS provide the deformation at the
site of the instrument, and data can be collected in
real time; InSAR provides a much broader spatial
view, but the frequency at which data are collected is
limited by the satellite’s orbit (e.g., Dzurisin 2003). The
observation of ground deformation on the surface is
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not necessarily linked to an impending eruption (e.g.,
Fournier et al. 2010) since many other processes, such
as pressurization of the hydrothermal system, aborted
intrusions, and tectonics may induce comparable sig-
nals (e.g., Bonafede 1991; Dzurisin 2003; Todesco et al.
2010).

Usually, volcanologists interpret surface ground de-
formations by means of physical modeling; assuming
a physical model responsible for the deformation, the
parameters of the model (e.g., overpressure, depth of
the source, and rheology of the medium) are set to
best reproduce the observations on the surface. This
approach has been followed for many years using an
isotropic point source model in a homogeneous elas-
tic half-space (Mogi 1958), but in recent years, it has
been demonstrated that the adoption of more general
source models (Davis 1986), embedded in a realistically
layered medium, can produce significantly different
interpretations (e.g., Battaglia et al. 2003; Amoruso and
Crescentini 2009, 2011; Trasatti et al. 2011).

Notwithstanding the clear and undoubted impor-
tance of ground deformation, the nonuniqueness of
the inverse problem allows for multiple alternative in-
terpretations of ground deformation. The most recent
trend is to use other measurements, like the gravimetric
field, to better constrain the deformation model (e.g.,
Battaglia and Hill 2009; Amoruso et al. 2008) and
thus estimate the volume of newly intruded magma.
For practical purposes, this kind of modeling is usually
very time-consuming, preventing its use in tracking the
evolution of a rapidly evolving unrest. For this reason,
volcanologists often rely on simple empirical signatures
of ground deformation, the most striking example being
that of the paroxysmal phase of the Mt. St. Helens
eruption in 1980. That eruption actually began in March
1980 in the summit region, without observed defor-
mation precursors. On May 18, the paroxysmal phase,
including a Plinian eruption, occurred. This phase was
triggered by a flank collapse facilitated by a significant
cumulative deformation of hundreds of meters pro-
duced over a few months by a cryptodome (Voight et al.
1981). Although the paroxysmal phase of the eruption
on May 18 did not show any short-term precursors,
the ground deformation clearly brought the volcano to
a critical instability (Voight et al. 1981), and thus the
cumulative ground deformation has to be considered
an important precursor, even though the timing of the
eruption is not estimable since the collapse may occur
immediately or months later.

Many papers report some deformation before erup-
tions (e.g., Swanson et al. 1983; Voight et al. 1999;
Bonaccorso et al. 2002; Iguchi et al. 2008), but it is
not easy to identify a common pattern from them (cf.,

Fournier et al. 2010). In some cases, like Sakurajima
(Iguchi et al. 2008), deformation has been remark-
ably successful as a precursor, with a lead time of
minutes to a few hours. However, deformation is also
often associated with nonerupting volcanoes (Fournier
et al. 2010). As with seismicity, acceleration in ground
deformation is usually considered an important pre-
cursor. Historical chronicles of the last eruption at
Campi Flegrei (Guidoboni and Ciuccarelli 2011) high-
lighted a strongly localized ground deformation accel-
eration a few hours before the eruption, but the pattern
was made more complicated by a strong inversion of
the ground deformation signal, with a considerable
deflation immediately before the eruption onset.

Precursors and probability

How to convert the detection of precursors into the
probability of an eruption is probably one of the most
difficult and less explored issues. The most obvious
approach is the frequentist approach, i.e., calculating
from the data of the past history of the volcano the hit
rate:

γ = m
N

(5)

and the false alarm rate

δ = M − m
M

, (6)

where N is the total number of eruptions, M is the
number of times in which the precursor has been ob-
served, and m is the number of eruptions anticipated
by the precursor in an arbitrary time window τ . When
the time window τ is long, another important para-
meter is the fraction of time in which the precursors
indicate the possibility of an eruption. This approach
has been applied to some frequently erupting volcanoes
by using simple seismic patterns (Traversa et al. 2011, at
Ubinas Volcano in Perù; Novelo-Casanova and Valdes-
Gonzales 2008, at Popocatepetl Volcano in Mexico;
Grasso and Ziapalin 2004, at Piton de la Fournaise;
and Mulargia et al. 1991, 1992, at Etna). Retrospective
testing has shown a large variability in these parame-
ters, with γ from 60 to 100%, and δ from 20 to 60%.
At Soufriere Hills Volcano, Jaquet et al. (2006) used
precursors in a probabilistic framework through the
use of stochastic simulation on the basis of potential
evolution scenarios.

Unfortunately, as noted above, such unrest data-
bases do not yet exist for most high-risk volcanoes.
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The lack of databases and the constant improvement
in high quality monitoring procedures makes the use
of expert opinion unavoidable. As a matter of fact,
volcanologists already rely strongly on subjective
interpretation of precursors, usually in terms of alert
levels (see, for instance, the alert levels at Vesuvius:
http://www.protezionecivile.gov.it/jcms/en/view_pde.wp;
jsessionid=9D8024967566483BC206C6859D2994E3?
contentId=PDE12771#livelli_allerta). Nonetheless, we
propose that a more structured and transparent
probabilistic procedure to forecast volcanic eruptions
may have significant advantages. Probably the most
important advantage is that the use of probabilities
facilitates the establishment of transparent and quan-
titative decision-making protocols (Marzocchi and
Woo 2009). These protocols have to prepared before
the crisis and take the form of quantitative rules that
explain how different probability values are translated
into mitigation actions. Such protocols can justify, even
a posteriori, each step of the decision-making process;
they are formidable educational and communication
tools for both society and scientists. During an
emergency, volcanologists can be under a great deal of
pressure which may affect their perspective. A protocol
established through an inclusive process in a period
of repose may be much more effective than hasty
evaluation under pressure.

To date, for high-risk volcanoes, several efforts have
been devoted to translating the observation of one or
more precursors into a probabilistic assessment using
expert opinion. Notable are the event tree (Newhall
and Hoblitt 2002; Marzocchi et al. 2004, 2008), and the
Bayesian belief network (BBN, Aspinall et al. 2003,
2006). Both techniques have a similar structure and
represent a general quantitative framework where all
relevant monitoring observations are embedded into a
probabilistic scheme through expert opinion, concep-
tual models, and possibly data of past monitored phases
of unrest.

The BBN is a graphical representation of the rel-
evant observations (nodes) and causal links among
the nodes. Associated with each node, there is a set
of conditional probabilities that describe the relation-
ship between the states of the variable at the node
with the states of the other variables at the connected
nodes. These conditional probabilities are then com-
bined through Bayes Theorem in order to get the
probability of any specific event in which we may be
interested. Noteworthy is the similarity with the event
tree philosophy described above. The BBN developed
by Aspinall et al. (2003) for Galeras is fed directly
with conditional probabilities obtained by frequency of
observations and/or expert opinion. In Montserrat, the

monitoring observations were transformed into condi-
tional probabilities through repeated expert elicitation
sessions (Aspinall 2006). This approach may not be
feasible during the evolution of a rapidly evolving crisis
(e.g., the case of the Ruaumoko exercise, Lindsay et al.
2010) since it may take time to convene experts and to
reach a coherent and shared assessment.

The Bayesian event tree (Marzocchi et al. 2008) and
its subsequent applications (Sandri et al. 2009, 2012;
Lindsay et al. 2010; Selva et al. 2012) follow a different
strategy: expert opinion is elicited regarding which, and
what level of, monitoring anomalies best characterize
a phase of unrest (node 1), a magmatic displacement
(node 2), and an imminent eruption (node 3; see Fig. 1).
A monitoring anomaly is usually related to the obser-
vation of a single monitoring signal, but it can be also
associated with the simultaneous observation of two or
more signals of different nature. In this way, during a
period of unrest, monitoring information allows us to
calculate in almost real-time the time evolution of the
eruption probability. For example, if monitoring at time
τ identifies a number Z (τ ) of monitoring anomalies
at one specific node, this number is translated into a
probability using a suitable transfer function. For nodes
2 and 3, the simplest learning curve is used (Marzocchi
et al. 2008, see also Fig. 2)

E(�) = 1 − a exp(−b Z (τ )) (7)

where E(�) is the average of the beta distribution
(see Eq. 3), a and b are parameters that are estimated
from past monitored phases of unrest (if any) through
Bayesian inference (Marzocchi et al. 2008). This func-
tional form has some interesting features. Firstly, this
relationship is monotonically increasing so that the
larger the Z (τ ), the larger the probability. Secondly,
it implies that the largest increase in probability mean
occurs when one of the monitoring variables shows
some degree of anomaly; as more monitored variables
become anomalous, the probability mean continues
to rise but more slowly. It should also be noted that
including more monitoring measures does not decrease
the probability mean, even if they are all unobserved.
This procedure implies that each monitoring anomaly
(associated with a single or multiple monitoring signals)
yields an absolute amount of information about the
state of the preeruptive process that does not depend
on how many other anomalies are observed or not.
Marzocchi et al. (2008) set the variance of the beta
distribution (see Eq. 4) at its largest value, account-
ing for the very rough knowledge of the preeruptive
processes, but this value can be modified if more

http://www.protezionecivile.gov.it/jcms/en/view_pde.wp;jsessionid=9D8024967566483BC206C6859D2994E3?contentId=PDE12771#livelli_allerta
http://www.protezionecivile.gov.it/jcms/en/view_pde.wp;jsessionid=9D8024967566483BC206C6859D2994E3?contentId=PDE12771#livelli_allerta
http://www.protezionecivile.gov.it/jcms/en/view_pde.wp;jsessionid=9D8024967566483BC206C6859D2994E3?contentId=PDE12771#livelli_allerta
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Fig. 2 An example of how
monitoring measures are
transformed into a
probabilistic assessment for
node 3 of the event tree
(Fig. 1). How one monitoring
measure xi is translated in a
degree of anomaly zi
according to a selected
membership function μ(·) (a).
A measure below x1 is
considered background,
above x2 is anomalous, and in
between it has a certain
degree of anomaly. After
collecting the degree of
anomaly for all parameters
considered, we combine them
using a weighted average (ωi
is the weight of the i-th
parameter) in order to obtain
the total degree of anomaly
(b). The parameters, weights,
and thresholds may be
selected by a panel of experts
through elicitations. Then the
total degree of anomaly is
transformed into an average
probability using a predefined
function (see Eq. 3); for
example, for node 3 Eq. 7 is
used (c). Finally, the
probability distribution is
obtained by imposing the
average as calculated in c, and
an equivalent number of data

 (Eq. 38) that mimics the
reliability attached to the
probability estimate (d).
Usually, 
 is small when a
substantial disagreement
among scientists exist, and 


is large when most of experts
agree on the selected
parameters and thresholds.
The plot shows the
distribution using different
values of 
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realistic conceptual models are available. The advan-
tage of this procedure is that experts are queried
directly about what they know best (monitoring anom-
alies) instead of being asked to provide probabilities,
which are usually more challenging to assess directly.
(For this reason, many expert elicitation sessions start
with a short probability course illustrating the most
common fallacies in assigning probabilities.) From a
practical point of view, the method is able to provide
probabilistic assessment in almost real-time since all

rules to identify anomalies have been decided during
a period of repose.

Long-term forecast methods

The probabilistic attitude to eruption forecasting was
first adopted for long-term assessment by Wickman
(1966a). The most extensive application has been that
connected with the proposed high-level radioactive
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waste repository at Yucca Mountain, summarized by
Crowe et al. (1998) (see also Connor et al. 2000). The
risk associated with a possible eruption of Vesuvius
has also received considerable attention (e.g., Scandone
et al. 1993; Marzocchi et al. 2004), and the hazard
from many other volcanoes has been estimated using
a variety of approaches that we will discuss later. In
contrast to short-term forecasting, where the focus is
on the treatment of the monitoring observations, long-
term hazard assessment is far more concerned with
the quality and quantity of the available past eruption
data. Nonetheless, more data are not always better, as
inhomogeneity must need complicate the model, and
different eruption catalogs can lead to different erup-
tion forecasts (Wang and Bebbington 2011). The erup-
tive history of Mt. Etna is probably the most extensively
examined, providing a detailed dataset that can be
used for investigations of many types. Hence, the many
studies of long-term volcanism at Mt. Etna have been
more often concerned with determining “what makes it
tick,” rather than primarily with hazard assessment.

The shift from short-term to long-term eruption
forecasting is determined by whether or not there are
anomalous monitoring observations. In the absence of
the latter, probabilistic forecasts have to be made of the
basis of the past eruption history of the volcano.

Given this dependence on the past behavior, we are
confronted with a question: Has the observed history
of the volcano been characterized by activity at statisti-
cally different levels (or rates) for different intervals of
that history? If not, then we can use a stationary model;
otherwise, we need a nonstationary model, which may
involve trend(s) or level changes in activity. As the
models for the former are simpler, we will begin with
them. First, we require some notation.

Let us suppose that our observed history consists
of eruption onsets at times 0 = t0 < t1 < t2 < . . . < tn,
where T is the elapsed time from t0 to the present. We
will assume that there is no information about activity
before t0, in keeping with the idea that absence of
evidence is not evidence of absence. The volume of the
ith eruption is denoted by vi and the interonset times
defined as ri = ti − ti−1 for i = 1, . . . , n. The latter are
often referred to as repose times, although strictly that
should mean the time between the end of an eruption
and the onset of the subsequent eruption. The incom-
plete current repose T − tn is denoted r∗. For further
discussion on the issue of treating eruptions as point
events (in time), see Bebbington (2008) and Garcia-
Aristizabal et al. (2012); a model incorporating erup-
tion durations was proposed by Bebbington (2007).

Volcanological data are broadly of two types: his-
torical (or observed) and geological. Historical records
are usually short, often no longer than a few centuries,
apart from at a handful of well-recorded volcanoes, and
subject to incomplete observation, particularly in the
earlier part of the records. Geological data on the other
hand can go back a millennia. Such data are typically
sourced from distal tephra records or dating of prox-
imal volcanic products. In either case, the data needs
to be age-interpolated consistent with stratigraphy, and
multiple records may need to be merged. Also, the
geologic record often incompletely preserves evidence
of smaller eruptions, and burial of older deposits is
common. Turner et al. (2008a) introduced the use of
monotone spline functions and Monte Carlo simulation
for sediment cores to fit hazard models to geological
data. Other methods have been suggested by Cronin
et al. (2001), Mendoza-Rosas and De la Cruz-Reyna
(2008, 2010), and by Bebbington and Cronin (2011).
Turner et al. (2009) explored the issue of merging
multiple geological records, and Burt et al. (2001) have
examined the problem of missing observations in the
depositional record.

There are many types of models that can be fit
to eruption onset data. Some decisions such as, for
example, use of volume information, may be decided
by the availability or reliability of data. Others, such as
stationarity, can be determined by a simple statistical
test. This leaves the question of which distribution or
stochastic process from among the possible alternatives
best describes the data. As different models can have
different numbers of parameters, we need a means of
compensating for the effect of additional parameters
and thus avoiding overfitting. If models are fit using
maximum likelihood techniques, this can be done us-
ing the Akaike information criterion (AIC) (Akaike
1977):

AIC = −2p + 2 log L, (8)

where p is the number of parameters and log L the log
likelihood. Larger AIC indicate better models. Note
that we cannot, in general, use the corrected AIC
(Hurvich and Tsai 1989), as there is no proof of its
validity for point-process models (Claeskens and Hjort
2008), unlike for linear regression and autoregressive
models. Linear regression is not usually applicable for
model fitting, except for survival analysis techniques
such as the Weibull plot (see, e.g., Bebbington and
Lai 1996b). It cannot be used on the empirical survival
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curve (although least squares can), as the points on
the survival curve are not independent. If the models
are nested, then the difference in AIC is the basis of
a formal likelihood ratio test (e.g., Bebbington and
Marzocchi, 2011). Given a sufficiently long record, an
alternative procedure for comparing models is sequen-
tially via the probability gain (Passarelli et al. 2010b).

Stationary methods

In some sense, stationary models constitute a maximum
ignorance alternative, in that no information about the
temporal evolution of the activity is sought or pos-
sessed. They are also more robust, as incorporating
an incorrect nonstationary model will lead to greater
bias. Hence, from a statistical point of view, tests are
best constructed with stationarity as the null hypothesis,
evidence being required to reject this.

If we have n onsets in a time window of length T,
then our definition of stationarity that the observed
history of the volcano has been characterized by activity
at a constant level would imply that the n events are
distributed randomly along the interval T. In statis-
tical terms, the interonset times r1, . . . , rn, r∗ should
not show any trend with time. This hypothesis can be
checked with various parametric and nonparametric
tests such as the sign test and the Laplace trend test
(Cox and Lewis 1966). Although they are stationary,
clustering processes, such as in the extreme case of
the Auckland Volcanic Field (Bebbington and Cronin
2011), may not be amenable to such analysis.

Some stationary data show a correlation between
r1, . . . , rn, r∗ and the eruptive volumes v0, v1, . . . , vn, in
which case some form of volume dependence needs to
be included in the model. Otherwise, provided that the
reposes are not autocorrelated (i.e., there is no corre-
lation between successive repose lengths), we have a
renewal process. If the repose lengths are consistent
with an exponential distribution, this is the special case
of a Poisson process.

Long-term average (Poisson process) behavior

The reason that the Poisson process is of particular im-
portance is derived from the exponential distribution of
the repose lengths. Suppose that the most recent onset
occurred at some time u and that a time s has elapsed
since. If N(u, s) is the random variable corresponding to
the number of onsets in the time interval (u, s), then the

conditional distribution that the current repose extends
at least a further time t is

Pr [N(u, s + t) = 0|N(u, s) = 0] = Pr [N(u, s + t) = 0]

Pr [N(u, s) = 0]

= exp[−λ(s + t)]
exp[−λs]

= exp(−λt)

= Pr [N(s, s + t) = 0] .

(9)

In other words, the distribution of the remainder of
the repose length is independent of the elapsed repose
length. This is the memoryless property and implies
that we know nothing about the temporal structure of
the process. The parameter λ = n/T is the average rate
of onsets, and an equivalent characterization is to say
that the probability of an onset in a short time interval
of length � is approximately λ�, or that the number
of onsets in a time interval of length S has a Poisson
distribution with a mean of λS.

Note that the memoryless nature of the process
works two ways. If, particularly with geological data, we
are unsure about the exact onset times, then assuming
a Poisson process is robust to that uncertainty. The
model is also parsimoniously parameterized and can
be a nested model within any point-process formu-
lation. These properties make it an obvious baseline
model; other models can then be evaluated on their
performance relative to the Poisson process by using
measures such as the probability gain (e.g., Passarelli
et al. 2010a).

There have been a number of approaches to per-
turbing the rate λ in the Poisson process, driven by the
fact that the mean and standard deviation of repose
lengths are not usually equal, as is implied by the
exponential model. Ho (1990) suggested a Bayesian
approach, in which λ has a gamma prior distribution.
Solow (2001) augmented this to an empirical Bayes
formulation by suggesting that an informative prior
could be constructed from the eruption records of a
group of similar volcanoes. However, the gamma prior
results in the number of eruptions in a time inter-
val having a negative binomial distribution and hence
forces overdispersal on the data. This was addressed
by Rodado et al. (2011), using the Conway–Maxwell–
Poisson distribution, which allows both underdispersal
and overdispersal, as a base. Bebbington and Lai (1998)
took a different line by incorporating serial dependence
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in a generalized negative binomial distribution, applied
to eruptions from Mt. Sangay (Ecuador).

For the Poisson process, the parameter λ is the rate
at which new onsets occur. In this case, the rate is
constant, and the result is called a (time)-homogeneous
process. All other processes are time-inhomogeneous,
where the constant rate λ is replaced by a function of
time, λ(t). This has the interpretation that the proba-
bility of an onset in the short time interval (t, t + �)

is approximately λ(t)�. The function λ(t) is usually
termed the “hazard rate” but can also be called the
point-process intensity.

The hazard rate λ(t) uniquely defines the forecast
behavior, in that the probability of at least one eruption
in a time interval (s0, s1) is as follows:

Pr[N(s0, s1) > 0] = 1 − exp

[
−

∫ s1

s0

λ(t)dt
]

. (10)

All desired forecast quantities can be obtained from
Eq. 10. There are two basic families of time-
inhomogeneous models, depending on whether λ(t)
varies stochastically as a function of the past history, or
whether it is externally forced.

Previous-eruption dependence

As the basic character of the Poisson process implies
that λ(t) is constant, in order to weaken this constraint,
we need to examine the tenets of the Poisson process.
One of these tenets is that in a short enough time inter-
val at most one event can occur, which is automatically
satisfied by the definition of what makes an eruption. A
second tenet is that events occur independently. There
are many ways in which this dependency can be ex-
pressed, but the simplest is to assume that the previous
eruption influences the timing of the next eruption
onset. This is intuitively attractive for volcanoes, being
the realization of a magma chamber model. If the size
of the previous event is taken into account, we have a
time-predictable model; otherwise, we have a renewal
model.

Renewal models A renewal process is characterized
by the intervals between events being independent and
identically distributed with a distribution function F.
Thus

λ(t) = f (t − s)
1 − F(t − s)

, t > s, (11)

where the most recent event occurred at time s < t, and
f = F ′ is the renewal density. As t − s is the elapsed
repose time, Eq. 11 can be rewritten:

λ(r) = f (r)
1 − F(r)

. (12)

Thus only the elapsed time since the last eruption may
control the time to the next eruption. Previous erup-
tions exert an influence only through their contribution
to the parameter estimates in f . The special case in
which λ of Eq. 11 does not depend on r is the expo-
nential distribution (Poisson process) described above.

A variety of tests exist to detect whether an observed
process deviates significantly from a renewal process.
These reduce to testing for (a) a constant average rate
of events, (b) independence between successive repose
times, and (c) goodness-of-fit to the hypothesized re-
newal density f . Of particular interest in the latter is
whether an exponential distribution also fits. This cor-
responds to testing the Poisson null hypothesis versus a
more general renewal process where the time elapsed
since the last eruption is important. For more details,
see Reyment (1969), Bebbington and Lai (1996a), and
Bebbington (2010).

Given a density f (r) and observed interonset times
ri, i = 1, . . . , n, the parameters can be estimated by
maximum likelihood. That is, the values are chosen,
either algebraically or numerically, to maximize the
likelihood:

L(r1, . . . , rn, r∗) = [
1 − F(r∗)

] n∏
i=1

f (ri), (13)

where r∗ is the elapsed time since the most recent
eruption, and 1 − F(r) is the survival function for the
reposes, i.e., the probability that a repose lasts longer
than r. The likelihood Eq. 13 can be augmented by a
term for a first incompletely observed repose, but as
the start of the observation period is often impossible
to establish at typical time scales, we usually consider
observation to have started at the first recorded onset.
Occasionally, other methods for estimating the parame-
ters are used, such as the method of moments or least
squares.

A large number of renewal distributions have been
used, as noted in Table 1, including the exponential

f (r) = λ exp(−λr), λ > 0 (14)

which is exactly the Poisson process, the Weibull

f (r) = α(βr)α−1 exp
[−(βr)α

]
, α, β > 0, (15)
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Table 1 Renewal models for
volcanic hazard

aHow the estimated hazard
λ(r) changes as the current
repose length r increases.
C Constant, I Increasing,
D Decreasing, U Unimodal,
V Various
bPoisson process
cAlso used the Weibull
density
dThe two component version
is decreasing
eAlso used the exponential
and log-logistic densities
fThe two component version
has eight possible shapes
(Jiang and Murthy 1998)
gAlso known as the Brownian
passage time model
hAlso used the log-normal
and gamma densities

Distribution Trenda in λ(r) Volcano References

Linear I Hekla, Katla Thorlaksson (1967)
Exponentialb C Kilauea, Mauna Loa Klein (1982)

Yucca Mountain Crowe et al. (1982)
Villarrica, Llaima, Munoz (1983)
Tupungatito
Etna Mulargia et al. (1985)
Aggregate De la Cruz-Reyna (1991)
Azores Caniaux (2005)

Pareto D Colima Medina Martinez (1983)
Lognormal U Various Bebbington and Lai (1996a)

Katla Eliasson et al. (2006)
Weibull I or D Various Bebbington and Lai (1996a)

Ruapehu, Ngauruhoe Bebbington and Lai (1996b)
Power law D Aggregate Pyle (1998)
Gamma I or D Citlaltepetl De la Cruz-Reyna and

Carrasco-Nunez (2002)
Log-logistic U Soufriere Hills Connor et al. (2003)

Various Watt et al. (2007)c

Mixture of Vd Colima De la Cruz-Reyna (1993)
exponentials

Colima, Popocatepetl Mendoza-Rosas and
De la Cruz-Reyna (2009)

Villarrica, Llaima Dzierma and Wehrmann (2010)c,e,
Wehrmann and Dzierma (2011)c,e

Mixture of Weibulls Vf Taranaki Turner et al. (2008a, 2009)
Inverse Gaussiang U Miyakejima Garcia-Aristizabal et al. (2012)c,e,h

which includes the exponential as a special case, as does
the gamma

f (r) = βαrα−1 exp(−βr)/(α), α, β > 0, (16)

which is the sum of α independent exponential random
variates if α is an integer. While Settle and McGetchin
(1980) fitted a Gaussian density to the interonset times
of eruptions at Stromboli, the nonzero probability of
a negative repose means that it cannot be used for
forecasting purposes. Other distributions tried so far
include the Pareto

f (r) = a(1 + bu)−a/b−1, a, b > 0, (17)

power law

f (r | r > c) = r−1−1/b

bc−1/b
, r > c > 0, b > 0, (18)

log-normal

f (r) = 1

rσ
√

2π
exp

[
− (ln r − μ)2

2σ 2

]
, σ > 0, (19)

log-logistic

f (r) = ηγ rγ−1

(1 + ηrγ )2
, η, γ > 0, (20)

and inverse Gaussian

f (r) =
√

μ

2πα2r3
exp

[
− (r − μ)2

2α2μr

]
, μ, α > 0. (21)

The basic distributions above can also be used to
construct mixture distributions

f (r) =
∑

i

πi fi(r),
∑

i

πi = 1, (22)

where the components fi need not be from the same
distribution. The idea of a mixture renewal model is
that the distribution of the next repose is chosen ran-
domly according to the probabilities {πi}. Thus, for
example, a two component model might represent the
possibility of the previous eruption closing the conduit
(cf., Marzocchi and Zaccarelli 2006) or the depletion
of the upper magma plumbing system, requiring a
recharge from the mantle on a longer time scale (cf.,
Turner et al. 2008b). As each additional component
adds p + 1 parameters, where p is the number of pa-
rameters in the additional density, mixture models can
easily have a large number of parameters and, hence,
a complex structure. This allows them to fit data much
more closely, and the danger of overparameterization
must be guarded against by comparing their perfor-
mance with that of simpler (ideally nested) models
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Table 2 Nyamuragira
eruption data from Wadge
and Burt (2011)

Onset date DRE volume
(year) (106 m3)

1901.5 59
1904.364 21
1905.556 54
1912.923 62
1938.079 170
1948.164 52
1951.877 19
1954.142 53
1956.877 1
1957.992 5
1958.600 116
1967.310 71
1971.227 62
1976.978 43
1980.082 62
1981.984 118
1984.148 64
1986.540 51
1987.997 6
1989.318 93
1991.721 198
1994.507 46
1996.918 45
1998.795 62
2000.074 43
2001.101 127
2002.564 54
2004.351 62
2006.907 42
2010.005 50

using AIC or similar methods. The underlying conun-
drum is known as the bias-variance tradeoff. Given
a sufficiently complex model, the observed data can
be fitted arbitrarily closely. However, assuming some
degree of aleatory uncertainty, the model will conform
too closely to the observed sample, resulting in a high
degree of variance in the forecasts made from it. If
the model is not complex enough, the forecasts will
exhibit little variance but have large bias relative to the
underlying system.

In general, a renewal density can be characterized by
the shape of the associated hazard rate λ(r). If eruptions
tend to cluster in time, then the hazard rate will be
greatest immediately after the previous event, and so
λ(r) will be decreasing with r. Both increasing and
unimodal (first increasing and then decreasing) hazard
rates imply that eruptions will tend to be more regular
in time than random (Poisson process) behavior. The
decrease beyond the peak of a unimodal hazard rate
may signal a change in the behavior of the volcano. For
example, the inverse Gaussian hazard rate tends to a
constant, or Poisson, behavior at long intervals, which is

the open–closed conduit model proposed by Marzocchi
and Zaccarelli (2006). On the other hand, the Weibull
and gamma distributions can be of increasing or de-
creasing character and also include the Poisson process
as a special case, which means they can be used to
identify clustering or periodicity in the volcanic record.
The mixture of Weibulls renewal model is capable of
a complex variety of shapes, with both the Weibull
renewal and Poisson processes nested within it, and
thus can be used for more detailed investigation and
modeling. Examples of renewal densities fitted to the
onset data for Nyamuragira 1901–2010 (Wadge and
Burt 2011), reproduced here as Table 2, are shown in
Fig. 3 along with the derived hazard rate functions. We
see that the mixture of Weibulls density is the only one
that reproduces the observed features of the data and
suggests a strong mode of eruption onsets separated
by 2–3 years but with significant likelihood of longer
reposes. The estimated hazard decreases if the mode is
passed without an eruption occurring, before increasing
again.

Time-predictable models It has been observed that
the onset process of volcanic eruptions can exhibit
more structure than is consistent with a simple Poisson
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process or a renewal process. Martin and Rose (1981)
observed that the intervals between eruptions of Fuego
Volcano (Guatemala) appeared to be proportional to
the volume of the preceding eruption. Hill et al. (1998)
successfully forecast the 1999 eruption of Cerro Negro
Volcano in Nicaragua using time–volume relationships
that were supported by petrogenetic models. This is
most simply explained by assuming that the rate of
magma input is constant, and an eruption occurs when
a certain magma level is reached. Such behavior is
termed “time-predictable.”

If a central volcano can be thought of as a magma
reservoir fed from below at a constant rate (Wadge
1982), erupting when a critical level is reached, the
time-predictable model is appropriate. However, the
critical level may vary due to factors such as the state
of the conduit, presence or absence of a dome, tectonic
influences, and geochemical and hydrological condi-
tions (De la Cruz-Reyna 1991). Hence, there is a less
than perfect correlation between the previous eruption
volumes and the subsequent repose or, alternatively,
the reposes have a probability distribution which is
correlated with the size of the previous eruption.

This correlation was first described by Burt et al.
(1994) who performed a regression analysis of {ri+1} on
{vi}. Sandri et al. (2005) generalized the test for time
predictability to a regression analysis of {log ri+1} on
{log vi}, so that an estimated slope of b significantly
different to zero implies a time-predictable relation
ri+1 ∝ vb

i . A similar analysis of {log vi} on {log ri} can be

conducted to see if there is any relation between the
repose length and the subsequent eruption size. This
is the size-predictable model, which will be discussed
later. Examples of the analysis for the Nyamuragira
data in Table 2 are shown in Fig. 4. The sequence
appears to be time-predictable but not size-predictable,
in agreement with the analysis of Wadge and Burt
(2011) and Burt et al. (1994).

The logarithmic transformation in the repose-size
regression analysis is also advisable to reduce the high
leverage of the tail points due to both the repose and
volume distributions usually being highly skewed. Ad-
ditionally, the transformation leads directly to a sto-
chastic model, as the residuals in a linear regression
are assumed to be normally distributed. Hence, the
underlying regression model in the Sandri et al. (2005)
analysis is as follows:

log r = a + b log v + ε (23)

where ε is the normally distributed error. This implies
that r has a log-normal distribution with density Eq. 19,
where σ 2 is the variance of ε and

μ = a + b log v. (24)

In this form, it was proposed as the generalized
time predictable model (GTPM) by Marzocchi and
Zaccarelli (2006). The density Eq. 19 with the link
function Eq. 24 can be plugged into the renewal model,
and the parameters a, b , and σ estimated via the usual

Fig. 4 Time (a) and size
predictability (b) of the
Nyamuragira eruption record
from Wadge and Burt (2011).
The lines are fitted by linear
regression, and the P value
gives the likelihood of the
observed slope or greater
under a null hypothesis of no
trend. The time-predictable
model in a assesses whether
there is a correlation between
the repose length and the
previous eruption size, i.e.,
whether larger eruptions lead
to longer reposes. The
size-predictable model in
b assesses similarly whether
longer reposes are more
likely to be terminated by
larger eruptions
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maximum likelihood procedures. Passarelli et al.
(2010a) put the result within a Bayesian hierarchical
model to allow the incorporation of information from
additional covariates, such as eruption duration.

Markov processes Another way to introduce depen-
dence on the previous eruption is to model the behavior
via a continuous-time Markov chain, first proposed by
Wickman (1966b). This entails defining a number of
eruptive and repose states, with prescribed permitted
transitions between them. The sojourn time in each
state has an exponential distribution, and the time
between onsets is the passage time through the erup-
tive and repose states, which will have a compound
exponential distribution, i.e, be the sum of a number
of exponential random variables of differing means.
Hence, there are similarities to a mixture of gammas
distribution model. The difference is that the different
temporal distributions are explicitly identified in the
Markov chain model, and hence the record of the vol-
cano has to be matched to the states (e.g., Carta et al.
1981) from geologic data, although hidden Markov
model techniques to automate the process have been
suggested by Bebbington (2007).

Nonstationary methods

Renewal processes, including the homogeneous Pois-
son process and the time-predictable model are station-
ary in time in that the distribution of the number of
events in an interval depends only on the length of the
interval, not its location. In other words, events occur
at the same average rate at all times, which is the third
tenet of the Poisson process. More general models can
incorporate a trend in the occurrence rate with time.

Guttorp and Thompson (1991) outlined a nonpara-
metric method of estimating the occurrence rate over
time using a kernel smoothing approach, allowing for
incomplete observation. Time series methods can then
be used to predict the future hazard rate and, hence,
forecast the next eruption. However, the uncertainties
rapidly grow beyond those of a parametric approach.

Nonhomogeneous Poisson processes

In a nonhomogeneous Poisson process, the number of
events in the interval (0, t] has a Poisson distribution
with mean μ(t) = ∫ t

0 λ(s)ds. Ho (1991) used an example
of a nonhomogeneous Poisson process known as the
power law process, with

λ(t) = β

θ

(
t
θ

)β−1

. (25)

This includes the homogeneous Poisson process as
a special (β = 1) case, while if β �= 1, the process
is nonstationary. Note that despite the similarity in
formulation, this is a very different model from the
Weibull renewal process described above. The renewal
process is stationary, with hazard depending on the
time elapsed since the previous eruption. Here, the
power law process is nonstationary, with hazard de-
pending on the time from some fixed origin, which is
not reset following an eruption. The hazard rate Eq. 25
is monotonic and, hence, can model either an increase
or decrease in volcanic activity, but not both. There
are a number of tests for whether the data are con-
sistent with a power law process (Bebbington and Lai
1996a).

The parameter estimates in Eq. 25 are sensitive to
the position of the time origin (Bebbington and Lai
1996a), and estimates of β > 2, which are quite feasible
due to selection of the time origin and short length of
records relative to the life span of the volcano, indicate
a constantly accelerating, or convex, hazard rate. Nei-
ther of these properties is particularly desirable from
a physical viewpoint, and hence the power law process
is not suitable to model entire volcanic histories. Salvi
et al. (2006) identified that the Mt. Etna flank eruption
sequence was stationary before 1980 and constructed
a composite model using the power law process for
the post-1980 section. This characterization was formal-
ized by Smethurst et al. (2009) using piecewise linear
hazard rates, with a constant level of 0.11 onsets/year
until 1964, after which the fitted hazard rate rises at
0.016/year per year.

Jaquet et al. (2000) (see also Jaquet and Carniel
2001) proposed a temporal occurrence model using the
Cox process. This is a doubly stochastic process where
the occurrence rate λ(t) is itself a stochastic process,
which has the advantage of allowing for correlation in
time. The disadvantage is that the fitting and inference
procedures are very complex, and the standard cautions
regarding overparameterization, particularly on small
or sparse datasets, apply.

There is a framework in which the inhomogeneous
Poisson process and the renewal process models can
be unified. Given an increasing function �(t) and a
renewal distribution F, the trend renewal process (TRP)
is defined by the values r#

i = �(ti+1) − �(ti) being in-
dependent and identically distributed random variables
with distribution function F. This preserves the inde-
pendence property of the reposes, which is both sta-
tistically and physically attractive. If �(t) = ∫ t

0 ψ(s)ds
for some function ψ(s) ≥ 0 such that �(T) = T, then
ψ(t) is a time scaling, taking values less (greater) than
one where the onset rate is lower (higher) than average.
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The model can be fitted to the observed data by a small
modification of the likelihood Eq. 13,

L = {1 − F[�(T) −�(tn)]}
n∏

i=1

f [�(ti) − �(ti−1)]ψ(ti).

(26)

We also see that the TRP is a stationary renewal
process when ψ(t) = 1, while if f = F ′ is the expo-
nential density Eq. 14, then the TRP is a nonhomoge-
neous Poisson process with hazard rate λψ(t). Hence,
Bebbington (2010) used the Weibull density Eq. 15,
which includes increasing and decreasing hazard rates,
and trend functions including the power law Eq. 25,
wax-and-wane, and cyclic terms, concluding that ob-
served clustering is better explained via nonstationarity
than between-event clustering. The speculated control
of eruption recurrence patterns at Colima by magma
differentiation processes (Luhr and Carmichael 1990)
can also be modeled using this technique (Bebbington
2010).

While methods such as the AIC can identify which
of multiple candidates is the model best fitting the
data, they cannot assess whether or not the model is a
good fit in absolute terms. To determine this, various
goodness-of-fit tests, like the Kolmogorov–Smirnov
one sample test and the chi-square test, can be applied.
In particular, nonhomogeneous Poisson processes can
be assessed for their absolute fit to the observed data
by using the point-process compensator (Ogata 1988).
This involves the scaling

τi =
∫ ti

0
λ(t)dt (27)

to produce the residual process times τ1, . . . , τn. If the
model is a satisfactory fit to the observed record, then
the residual process will be a Poisson process of unit
rate. Standard tests then apply (e.g., Bebbington and
Harte 2001).

Regimes

It has been suggested (Wickman 1966a; Wadge 1982;
Marzocchi and Zaccarelli 2006) that volcanoes may
exhibit different, but constant, levels of activity, rather
than a trend with time. These regimes may represent
changes in the eruption mechanism, the mechanism for
transport of magma to the surface, or the eruptive style.
If in each regime, the volcano exhibits stationarity,
transitions between regimes are themselves random,
and the regimes are recurrent, then the model will have
no long-term trend.

Proposed means of identifying changes in regime
include a running mean of time between onsets (Klein
1982), the theory of change-point problems (Mulargia
et al. 1987), the cumulative count of eruptions in a
statistical control chart (Ho 1992), and rank order sta-
tistics for the size of event (Pyle 1998), although none
of them provide a means of forecasting future changes
in regime.

A mixture model can be seen as a trivial example of
a regime model, but the regime of each repose is being
chosen randomly, independent of the previous and sub-
sequent regimes, and hence, there is no temporal struc-
ture to the regimes. This was addressed by Cronin et al.
(2001) in a hierarchical model where onsets occurred
in “episodes”, the number of eruptions in each episode
being random, with different renewal distributions cor-
responding to interepisode and intraepisode reposes.
The piecewise-constant model fitted to Mt. Etna flank
eruptions by Smethurst et al. (2009) is also a regime
model, although the regimes have a trend in this case.

More general structural dependence in the regimes
was introduced by Bebbington (2007) using a hidden
Markov model. The unobserved state represents the
regime, which controls a renewal process, whose para-
meters are different in each regime. The number of hid-
den states required can be determined via AIC, which
was shown to be more consistent than other alternative
procedures. Regimes can be statistically identified via
the Viterbi algorithm, which finds the most likely path
through the hidden states, and as the regime oper-
ates as a Markov chain, switching (or not) after erup-
tions, future eruption probabilities are readily forecast.
Bebbington (2007) also formulated an extension to a
bivariate renewal model controlled by a hidden Markov
chain, allowing for repose-size dependence.

Volume dependence

The time-predictable model has the repose length de-
pending on the volume of only the most recent erup-
tion. It is possible to generalize this, as postulated by
De la Cruz-Reyna (1991) in his general load-and-
discharge model.

The volume-history (dependent) model (Bebbington
2008) has

λ(t) = exp {α + ν [ρt − V(t)]} , (28)

where V(t) = ∑
k:tk<t vk is the cumulative volume

erupted prior to time t. The parameter α incorpo-
rates the unknown state of the volcano at time 0. The
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parameter estimates must be found by maximizing the
point-process log likelihood

log L =
n∑

i=1

log λ(ti) −
∫ T

0
λ(t)dt, (29)

which rewards (first term) a large value of λ(t) at an
observed onset time, and penalizes (second term) large
values of λ(t) elsewhere. Bebbington (2008) fitted the
model Eq. 28 to flank eruptions of Mt. Etna, identifying
possible long-term quasicyclic behavior, and to Mauna
Loa, finding a long-term decrease in activity. An ex-
ample of the hazard rate estimated from the volume-
history model for the Nyamuragira data in Table 2 is
shown in Fig. 5, along with the estimate from the GTPM
defined above, cf. Eq. 24. We see that the two mod-
els interpret the time evolution of the system in very
different ways. According to the AIC criterion Eq. 8,
the GTPM is the best fitting of the models considered
for Nyamuragira in this paper. It can also be shown that
the residual process Eq. 27 in the GTPM is stationary,
although the untransformed onset times are not. More-
over, both the untransformed and transformed repose
times are autocorrelated, which appears to be picking
up the variation in stress-field controls identified by
Wadge and Burt (2011).

Excitation process

Motivated by an observed “flare-up,” with at least 30
of the 49 Auckland Volcanic Field events in the 250 ky
record occurring within a 20-ky period, Bebbington and
Cronin (2011) proposed a model with

λ(t) = μ + ν

σ

√
2

π

∑
j:t j<t

exp

[
− (t − t j)

2

2σ 2

]
. (30)

Thus, each eruption adds to the likelihood of a sub-
sequent eruption, but this addition decays over time
in a sigmoid fashion. This is an extreme example of
a clustering process and can be fitted to the data by
maximizing the point-process log likelihood Eq. 29. The
estimated additional contribution from each previous
event in the fitted model has a half-life on the order of
3,000 years but starts at a level four times that of the
background rate μ.

Externally forced and coupled models

Volcanic eruptions do not occur in isolation. There
is always a driver, be it only magma input from the
mantle. The modeling techniques above examine the
eruption time–volume recurrence data as a closed
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Fig. 5 Hazard rate estimates for Nyamuragira based on time
and volume data. The middle panel shows the observed (time–
volume) data. The GTPM hazard rate in the top panel and the
volume-history hazard rate in the bottom panel are fitted by
maximizing the point-process log likelihood Eq. 29. This rewards
the model for having a large hazard rate at the time an eruption

occurs, and penalizes it for having large hazard rates at other
times. The volume–history model explains the increasing rate of
eruptions as being due to a gradual increase in cumulative magma
storage, while the GTPM explains it as being due to a correlation
between individual eruption volumes and subsequent reposes
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system including any magmatic drivers. However, other
processes may perturb the observed eruption record.

Earthquake dependence

Static stress changes decay as 1/L3, and so changes
from earthquakes resolved at dike locations tend to
be small, with the exception of earthquakes within a
few fault-lengths of the dike. However, physical mecha-
nisms that explain how small changes in static stress, or
larger but transient dynamic stress changes, can have
observable effects on a volcanic system also imply the
possibility of delayed triggering.

Many accounts (see Manga and Brodsky 2006;
Bebbington and Marzocchi 2011, for reviews) have
noted a causal effect on volcanic eruptions from large,
not too distant, earthquakes, but none provided a
model able to provide forecasts. Bebbington and Mar-
zocchi, (2011) instead took a point-process modeling
viewpoint, multiplying the hazard rate λ in some of the
models above (the Poisson process, Weibull renewal
process, GTPM, and volume-history model) by a time-
, distance-, and magnitude-dependent triggering term.
This was applied to volcanic eruptions (VEI 2+) and
large earthquakes (Mw 7+) in the Indonesian arc since
1900. The method weighs both positive and negative
(i.e., absence of eruptions following an earthquake)
evidence of triggering. Of 35 volcanoes with at least
three eruptions in the study region, seven (Marapi,
Talang, Krakatau, Slamet, Ebulobo, Lewotobi, and
Ruang) showed statistical evidence of triggering over
varying temporal and spatial scales, but only after the
eruption volume history of the volcano was accounted
for, indicating that the earthquake triggering was only
significant in cases where an eruption was already im-
minent due to the buildup of magma. However, those
volcanoes with strong time-predictable behavior were
not susceptible to earthquake triggering. Earthquake
triggering appeared to be independent of the number
of eruptions and their size.

Coupled volcanic sources

An extension (Bebbington 2008) to the volume-
dependent eruption rate model (28) can be used to in-
vestigate the relation between summit and flank erup-
tions (cf., Takada 1997), the relation between neigh-
boring volcanoes (cf., Klein 1982; Bebbington and Lai
1996b), or between different styles of eruption (cf.,
Turner et al. 2008b). The central idea is that eruptions
of one class can extract magma from, or add magma
to, the stored volume associated with other classes. In
order to make the model at all tractable, these “transfer

rates” are assumed to be constant proportions of the
erupted volume, and thus we are seeking to measure an
average tendency, a procedure akin to the regression fit
Eq. 24 underlying the GTPM.

We suppose that the stored magma volume is divided
among the classes, with the stored volume associated
with class i evolving as

Ui(t) = Ui(0) + ρit −
∑

j

θ jiV(i)(t) +
∑
j�=i

θijV( j)(t) (31)

for i = 1, . . . , m, where V( j)(t) is the cumulative volume
erupted from class j, and θij the proportion of erupted
volume transferred from class j to class i (θii = 1), which
may be positive (i.e., an eruption from class j transfers
additional stored magma to class i) or negative (an
eruption of class j partially drains the reservoir for
class i). The ρi are the rates of magma input. Devel-
oping this model results in a point process with hazard
rate

λi(t)=exp

⎡
⎣αi+νi

⎛
⎝ρit−

∑
j

θ jiV(i)(t)+
∑
j�=i

θijV( j)(t)

⎞
⎠

⎤
⎦ ,

(32)

for each class i, which can be fitted to data using a sum
of point-process likelihoods Eq. 29.

Bebbington (2008) found significant evidence that
summit eruptions of Mt. Etna are dependent on pre-
ceding flank eruptions, with both flank and summit
eruptions being triggered by the other type. The model
also found a marginally significant relationship be-
tween eruptions of Mauna Loa and Kilauea, consistent
with the hypothesized invasion of the latter’s plumbing
system by magma from the former.

Forecasting eruption location and energetics

Long-term eruption location

Forecasting the location of the impending eruption in
the case of central-vent volcanoes may appear trivial,
even though there a spatial element may arise in the
form of flank eruptions that are potentially dangerous
and important (e.g., Salvi et al. 2006; Selva et al. 2012).
On the other hand, spatial variability is probably more
important than temporal variability in calderas or vol-
canic fields due to the infrequent nature of eruptions.
This problem is often oversimplified by adopting a
single scenario (i.e., selecting one source location) to
assess the volcanic hazard; the use of a single scenario,
even the most likely one, can lead to a gross under-



Bull Volcanol

estimation of the real hazard (Selva et al. 2010b). To
date, spatial forecasting has been developed for long-
term models (e.g., Connor and Hill 1995; Conway et al.
1998; Martin et al. 2004; Magill et al. 2005; Connor
and Connor 2009; Bebbington and Cronin 2011; Selva
et al. 2012), but very few efforts have been made to
use the localization of monitoring anomalies for short-
term spatial forecasts. In some cases, this problem may
have a trivial solution; for example, a strong superficial
seismic sequence may indicate where magma is going to
erupt, but this pattern might only be observed shortly
before the eruption, limiting drastically the scope for
risk mitigation actions (e.g., Tokarev 1978).

Monogenetic volcanic f ields

In monogenetic volcanic fields, where cones corre-
spond to single eruptions or eruption sequences, the
hazard is spatiotemporal. In this case, we extend the
hazard rate notation to encompass the spatial di-
mension, so that λ(t, x)�t b(�x) is approximately the
probability of having an eruption in the time-space
window (t, t + �t) × (y : ‖y − x‖ < �x), where ‖ · ‖ is
the appropriate Euclidean norm and b(�x) denotes the
measure (area in our case) of a circle of radius �x. Of-
ten, however, the spatiotemporal hazard is calculated as
the product of independent spatial and temporal terms
λ(t, x) = λ(t)η(x). The independence can be assumed,
in the absence of sufficient data to test the hypothesis,
or tested (e.g., Bebbington and Cronin 2011).

Models for spatiotemporal hazard are generally non-
parametric or kernel-type. The spatiotemporal nearest
neighbor estimate (Connor and Hill 1995) is calculated
by inversely weighting the spatial density of volcanic
centers according to the elapsed time since the erup-
tion. More technically, suppose we have n centers, that
the formation of the ith center occurred at time ti, and
that ui is the area of a circle with radius equal to the
distance between the point x of interest and the ith cen-
ter. If j = 1, . . . , m indexes the mth nearest neighbors
to the point x using the distance metric ui(t − ti), then
the estimated intensity at the point x is

λ(x, t) = m∑m
j=1 u j(t − t j)

, (33)

where m is the number of nearest neighbors used in
the estimation, which is usually the number of centers,
although Condit and Connor (1996) proposed a method
for determining an optimal m. A kernel estimate of the
spatial intensity is given by the following:

η(x) = 1

eh

n∑
i=1

κi

h2
, (34)

where eh is an edge correction,

κi = 1

h
√

2π
exp

[−(di/h)2
]

(35)

is the Gaussian kernel (Conway et al. 1998), and di is
the distance from x to the ith center. The parameter h is
a smoothing constant, or “bandwidth.” A small value of
h concentrates the probability close to existing centers,
while a large value distributes it more uniformly. This
has far greater influence on the estimated hazard than
the form of the kernel. Estimating the best value of h
is generally done via some means of cross validation
(e.g., Duong 2007). The kernel in Eq. 34 is isotropic,
i.e., radially symmetric. An anisotropic kernel

η(x) = 1

2π
√

H

n∑
i=1

exp
[−0.5(x − xi)

T H−1(x − xi)
]

(36)

has been suggested by Connor and Connor (2009) and
implemented by Kiyosugi et al. (2010) for the Abu
Monogenetic Volcanic Group and by Bebbington and
Cronin (2011) for the Auckland Volcanic Field. In the
latter case, the orientation of the fitted kernel appeared
to be in accordance with the underlying tectonics, but
in the former, it was not. The anisotropic estimate is
sensitive to the criterion used to determine the kernel.
Examples of both isotropic and anisotropic kernels
fitted to vent locations from the Auckland Volcanic
Field are shown in Fig. 6. The former is more robust to
individual vent locations but provides little insight into
possible directional controls on the spatial hazard.

There have also been more specific investigations of
alignments in location of volcanic vents, in the hope
that these can be related to geological features. In the
two-point azimuth method (Lutz 1986), the azimuth
between every two vents is measured, generating n(n −
1)/2 measurements for n vents. These are then binned
in 10◦ intervals, and the result are tested for departure
from randomness. A correction has to be made for
noncircular fields and/or a nonhomogeneous density of
points as these can produce a preferred orientation.
This can be done via Monte Carlo simulation of random
points from a spatial kernel density (Lutz and Gutmann
1995) to produce a reference distribution from which
departures can be detected. In the Hough transform
(Wadge and Cross 1988), a point (x, y) is converted
into the normal parameterization (ρ, θ), where ρ =
x cos θ + y sin θ . In this way, each point generates a
curve in the (ρ, θ) plane as θ varies, and multiple
(more than two curves) intersections of these define the
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Fig. 6 Spatial hazard density
for the Auckland Volcanic
Field via kernel density
estimation using a least
squares cross-validation
criterion. a Isotropic kernel
from Eq. 34. b Anisotropic
kernel from Eq. 36. Contours
are at intervals of 0.0005
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alignment of colinear points. Again, significance levels
can be obtained via Monte Carlo techniques.

Martin et al. (2004) (see also Connor et al. 2000,
and Weller 2004) embedded the spatiotemporal kernel
into a Bayesian formulation to incorporate informa-
tion from other geophysical data such as P-wave ve-
locity perturbations, geothermal gradients, or gravity
data. The spatiotemporal hazard is used as the prior,
a likelihood function is generated by conditioning the
geophysical data on the locations of volcanic events,
and the result inverted via Bayes’ Theorem to obtain
the posterior estimate of the hazard.

A novel approach to spatiotemporal clustering was
suggested by Magill et al. (2005) for the Auckland
Volcanic Field. A statistic based on Ripley’s K-function
was used to determine a characteristic distance range
for clustering, and the 49 centers were thus collapsed
into 18 events using the eruption order. Separate sto-
chastic models were then constructed for the spatial
distribution within and between events. Unfortunately,
in the absence of any age data, many neighboring cen-
ters were assigned consecutive places in the eruption
order, introducing an element of circular reasoning.
Using additional age determinations including inver-
sion of tephra dispersal, Bebbington and Cronin (2011)
found no dependence between the spatial and temporal
aspects. However, the method remains valid and is a
recommended starting point in any situation where a
time hierarchy of events in space exists.

Polygenetic volcanoes

In general, spatial quantification of hazard on polyge-
netic volcanoes is of interest mainly if flank eruptions
or collapses are possible or if multiple vents exist and
provide distinct channels for lahars, lava, or pyroclastic

flows. If the spatial dimension can be usefully cate-
gorized into a small number of possibilities, a simple
Markov chain approach can be used (e.g., Cronin et al.
2001).

A number of studies have considered the relation-
ship between summit and flank eruptions. Klein (1982)
showed that the classification of the previous event at
Kilauea provided no information about the time of the
next eruption, but at Mauna Loa, reposes following
flank eruptions were significantly longer than those fol-
lowing summit eruptions. While Kilauea summit erup-
tions tend to cluster in time due solely to the long
summit sequence of 1924–1954, Mauna Loa displays no
tendency for clustering or alternation of summit and
flank eruptions. However, Bebbington (2008) found
that summit and flank eruptions at Mt. Etna have a
statistical tendency to trigger an event of the other
type.

Salvi et al. (2006) considered the azimuth distrib-
ution of flank eruptions from Mt. Etna, detecting no
significant difference in the pre- and post-1536 distri-
butions, although Smethurst et al. (2009) did detect a
change in the spatial pattern of flank eruptions follow-
ing the formation of the South East Crater in 1971.
Wadge et al. (1994) created a spatial density map for
the opening of a flank vent and simulated the resulting
lava hazard.

Calderas and rift zones

In general, the methods described above for mono-
genetic fields are applicable in varying degrees to
calderas. In the case of rift zones, such as Taveuni,
the spatial location can be reduced in dimension to the
distance along the rift (Cronin et al. 2001). Using a
Markov chain approach, Eliasson et al. (2006) divided
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the Katla caldera, Iceland, into three sectors to examine
the spatial progression of volcanogenic flood events.

A different approach has been recently proposed by
Selva et al. (2012) and applied to the spatial forecast
of the next eruption at Campi Flegrei. The method
relies on Bayesian inference to merge prior information
and data of past activity. The possible vent openings
are binned into a grid of n cells covering the whole
caldera, on which is estimated a probability distribution
of vent opening through a Dirichlet distribution which
generalizes the beta distribution (see Eq. 1). The choice
of this distribution implies that the cells represent a set
of mutually exclusive and exhaustive possibilities, i.e.,
the eruption can occur only in one specific cell and the
possibility of multiple simultaneous vents is neglected.
The posterior Dirichlet distribution is obtained as

�post = Din(α1 + y1, . . . , αn + yn)

= Din(E[�1](
 + n − 1)

+ y1, . . . , E[�n](
 + n − 1) + yn) (37)

where y j is the number of times that a past eruption has
occurred in the j-th cell and α j, j = 1, . . . , n are the pa-
rameters of the prior Dirichlet distribution. The right-
hand side describes the same distribution in terms of
simpler and more intuitive parameters, i.e., the central
values E[� j]( j = 1, ..., n) and the equivalent number of
data 
 (Marzocchi et al. 2008)

α j = E[� j](
 + n − 1). (38)

Equation 38 shows that the parameter 
 is related
to the parameters of the Dirichlet distribution, but it
has a simpler practical interpretation. In fact, it quan-
tifies the worth of the prior information in terms of
equivalent number of data; specifically, 
 = 1 means
that the weight of the prior information has the same
importance of one single real datum. In practice, the
averages E[� j] represent the best-guess probabilities,
while 
 is a measure of the dispersion around the
average, quantifying our confidence regarding the best-
guess probabilities (epistemic uncertainty; see Marti
et al. 2008). The parameter 
 is a single value belonging
to the entire prior model, not to the individual loca-
tions, and is a measure of the confidence in the prior
distribution that is simpler and more intuitive than the
usual variance. The larger 
, the greater the confidence
in the reliability of the prior model, so that the number
of past data needed to significantly modify the prior
must be larger. Conversely, if 
 is small, even a small
number of past data can drastically modify the prior. In
the case of maximum ignorance, 
 is set to 1 and E[� j]
to 1/n, resulting in a uniform distribution.

In the case of Campi Flegrei, Selva et al. (2012)
defined the prior as

E[� j] = W j
n∑

k=1
Wk

, (39)

and 
 = 1, where W j is a parameter that takes into
account the mechanical weakness of the floor of the
cell. It is high where faults and/or past vents are present
and low for the intact caldera floor (more details can
be found in Selva et al. 2012). This prior information
has been incorporated in the posterior distribution
using the locations of the most recently active vents
(Eq. 37). As with the kernel estimates covered above
under monogenic fields, this procedure implies that
cells hosting a high number of past eruptions are more
likely to be the location of future events.

Eruption energetics

Forecasting the size of an impending eruption is proba-
bly one of the most controversial scientific issues, with
a huge impact on decision-making (Marzocchi et al.
2004). In the long-term perspective, the problem has
been approached using the concept of “maximum ex-
pected event” (e.g., Rosi 1996; Mastrolorenzo et al.
2006), or “worst credible event.” The former definition
is unsatisfactory from a scientific point of view, as it is
impossible to define a maximum expected event from
many natural systems that are often characterized by
power law distribution (e.g., Bak et al. 1987). Similarly,
worst credible event depends on the meaning of “cred-
ible,” The essence of probabilistic hazard analysis is
that any size of eruption has a specific probability of
occurrence which can be estimated (e.g., Bebbington
et al. 2008; Orsi et al. 2009); the choice of what size
of eruption becomes “not credible” thus imposes the
choice of a probability threshold. This selection has
many similarities with the choice of an “acceptable”
risk; we believe that the choice of what is credible or
acceptable (or of any other probability threshold) is not
a scientific issue. The task of the scientist is to estimate
the full range of possible events and their probability
of occurrence and pass these on to the decision-makers
for action (e.g., Marzocchi and Woo 2007, 2009; Sandri
et al. 2012). To do otherwise is for the scientists to usurp
the functions of the decision-maker.

For short-term forecasting, no monitoring parame-
ter(s) that indicates the size of the impending eruption
has been identified to date. A tutorial example was
given by the Pinatubo eruptions in the early 1990s,
where a similar preeruptive pattern was detected both
before the June 1991 event and before a much smaller
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eruption which occurred the year following (Ramos
et al. 1996).

VEI, magnitude, volume, and intensity

The size of volcanic eruptions can be summarized
through different quantities such as the volcanic explo-
sivity index (VEI; Newhall and Self 1982), intensity,
magnitude, and volume. Here, we report the definition
of these quantities as found in the Encyclopedia of
Volcanoes (Sigurdsson et al. 2000) and Volcanoes of the
World (Simkin and Siebert 1994).

– Intensity A measure of the rate at which magma
is discharged during an eruption. It is measured in
kilograms per second.

– Magnitude The total mass of material ejected
during an eruption. It is measured in kilograms.
Pyle (2000) proposed a magnitude scale anal-
ogous to that for earthquakes as magnitude =
log10 erupted mass − 7.

– Volume The total volume of material ejected during
an eruption. It is measured in cubic meters.

– VEI A crude measure of the potential impact of
an eruption on the atmosphere, without consider-
ation of the sulfer gas release, based, in order, on
tephra volume, column height, “explosivity,” erup-
tion type and duration. It is measured on a scale
from 0 to 8.

Notwithstanding the more subjective nature of the VEI
measure, it is the most widely used because it can, and
has been, assessed for most known eruptions. This is
difficult, where even possible, for the other measures.
However, while VEI is commonly used as a magnitude
scale for explosive eruptions, it does not measure well
the magnitude of nonexplosive eruptions, as it is not a
mass-based scale.

Statistical distributions

As for the size of many other natural events, such as
earthquakes, floods, landslides, etc., the global catalog
seems to show a power law distribution between the
number of events and their magnitude/volume/intensity
(Simkin and Siebert 1994).

log(Ni) = a − b log(Si) (40)

where Ni is the number of events with magni-
tude/volume/intensity Si, and a and b are parameters.
As for the Gutenberg–Richter in seismology, the dis-
tribution Eq. 40 becomes exponential when the VEI
is taken into consideration, or we use the logarithm
of the volume or intensity. While this distribution is

widely accepted for global activity, significant doubts
persist about what is the best distribution for each sin-
gle volcano, mirroring the debate in seismology about
characteristic magnitudes for individual fault segments.
In some cases, past activity seems to fit well power law
distributions, like at Campi Flegrei (Orsi et al. 2009),
Vesuvio (Marzocchi et al. 2004) and Mt. Taranaki
(Bebbington et al. 2008). However, in other cases like
at Miyakejima Volcano, the volume distribution ap-
pears much more regular, being characterized by a
preferred size (Garcia-Aristizabal et al. 2012). We note
that the hypothesis of a power law distribution requires
many data to be adequately tested, particularly in the
tail describing the largest events, and is susceptible to
bias from differential reporting rates in geological and
historical records. Extreme value distributions for the
eruption size have been inverted to estimate catalog
completeness (Deligne et al. 2010; Furlan 2010).

Size-predictable models

Estimating hazard using an event size drawn inde-
pendently from a power law (Bebbington et al. 2008)
or extreme value distribution (Mendoza-Rosas and
De la Cruz-Reyna 2008) is common, but very little
research has appeared regarding the possible size of
future events conditioned on the prior eruptive his-
tory. Burt et al. (1994), and Wadge and Burt (2011)
formulated the size-predictable model as a regression
analysis of the subsequent volume {vi} on the length
of the repose {ri} but found it described the behav-
ior of Nyamuragira less well than the time-predictable
model (see also Fig. 4). A global analysis by Marzoc-
chi and Zaccarelli (2006), generalizing the regression
analysis to one of {log vi} on {log ri}, reached the same
conclusion. Bebbington (2007) introduced a coupling
between the distributions of the repose and subsequent
eruption duration via a hidden Markov model. Tested
on flank eruptions from Mt. Etna, it likewise provided
less information than the alternative eruption duration-
subsequent repose coupling.

An open research direction is whether other ancil-
lary data can be used to constrain the size-prediction
problem. For example, Wadge and Burt (2011) tested
the relationship over the last 110 years between the
local stress field and 30 flank eruptions at Nyamuragira.
Eruptions fed by dikes parallel to the East African Rift
Valley were found to have longer durations (and larger
volumes) than those fed by other dikes. The intrusion
of a major dike during the 1977 volcano–tectonic event
at neighboring Nyiragongo Volcano appeared to have
changed the system dynamics, and since then, most
eruptions have been of short-duration fed by dikes



Bull Volcanol

perpendicular to the Rift. A subsequent volcano–
tectonic event in 2002 may have resulted in a further
change.

Future research directions

The primary means for scientists to abate natural risks
is through reducing uncertainties. Uncertainties cannot
be completely eliminated because natural processes
usually own an intrinsic unpredictability (aleatory
uncertainty), but they can be reduced significantly
through the development of more reliable and skilled
forecasting models. A careful analysis of the past and
recent literature on eruption forecasting highlights the
need to make more efforts on all fronts. Nonetheless,
some gaps appear more evident.

First, the most urgent (and conceptually simple)
need is that of obtaining more and more reliable data to
build and test theoretical and empirical models. While
statistics is always called upon to make forecasts from
less data than desired (or at times, even sufficient) in
volcanology, the uneven coverage of, lack of homo-
geneity in, and inaccessibility of, the data is particularly
evident and poses barriers to improvement in eruption
forecasting science.

Secondly, and dependent on more data being assem-
bled, there is an urgent need to test the power and
applicability of various forecasting models on a wide
range of volcanoes. At present, methods are developed
based on one, or a few, volcanoes, and we lack any
evidence as to whether they are portable even to ge-
ologically similar settings.

Finally, and from a more scientific point of view, the
largest gap is in forecasting the size of future/impending
eruptions. Current best practice is to use an indepen-
dent power law or extreme value distribution, and the
monitoring data do not seem to carry discernable in-
formation constraining the dimension of the impending
eruption. We feel that this represents the most impor-
tant future research direction in this field. A further
promising avenue is in the investigation of how ad-
ditional measurements, for example, from covariates
of the eruptions themselves or from earthquakes (e.g.,
Bebbington and Marzocchi, 2011), tectonic models,
GPS deformation etc., can be mined for information
concerning future eruption times and sizes.

Conclusion

At the present state of knowledge, the use of proba-
bility is unavoidable in order to properly account for

uncertainties in eruption forecasts. We are optimistic
that precursors can be generalized and recast into a
more suitable probabilistic forecast. Probabilistic fore-
casts can be more rationally used in societal decision
making to select mitigation actions (Marzocchi and
Woo 2007, 2009; Woo 2008) in a way that more generic
or deterministic predictions cannot, as probabilistic
forecasts can properly take uncertainties into account.
This benefit is particularly important for managing the
evolution of an unrest phase in high-risk volcanoes,
where mitigation actions, such as evacuation, require
some lead time before the eruption but also incur con-
siderable costs and may result in unacceptable loss of
life and property if incorrectly applied.
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