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Abstract

A probabilistic approach to phase-field brittle and ductile fracture with random material and
geometric properties is proposed within this work. In the macroscopic failure mechanics, ma-
terials properties and exactness of spatial quantities (of different phases in the geometrical
domain) are assumed to be homogeneous and deterministic. This is unlike the lower-scale with
strong fluctuation in the material and geometrical properties. Such a response is approximated
through some uncertainty in the model problem. The presented contribution is devoted to
providing a mathematical framework for modeling uncertainty through stochastic analysis of a
microstructure undergoing brittle/ductile failure. Hereby, the proposed model employs various
representative volume elements with random distribution of stiff-inclusions and voids within
the composite structure. We develop an allocating strategy to allocate the heterogeneities
and generate the corresponding meshes in two- and three-dimensional cases. Then the Monte
Carlo finite element technique is employed for solving the stochastic PDE-based model and
approximate the expectation and the variance of the solution field of brittle/ductile failure by
evaluating a large number of samples. For the prediction of failure mechanisms, we rely on
the phase-field approach which is a widely adopted framework for modeling and computing
the fracture phenomena in solids. Incremental perturbed minimization principles for a class of
gradient-type dissipative materials are used to derive the perturbed governing equations. This
analysis enables us to study the highly heterogeneous microstructure and monitor the uncer-
tainty in failure mechanics. Several numerical examples are given to examine the efficiency of
the proposed method.

Keywords: Monte Carlo simulation, phase-field model, random distribution, brittle/ductile
fracture, Probabilistic failure.

1. Introduction

Investigation of crack initiation and propagation in brittle and ductile materials is a
topic of intensive research to predict failure mechanisms for various engineering structures.
These applications experience different failure-modes related to the desired operating con-
ditions. Hereby, material and geometrical properties are considered to be homogeneous
and deterministic at their macro-structure level. Whereas, strong fluctuation is observed
in those quantities at the microstructures [1]. This is quite natural as materials may con-
tain a scatter range in their properties around a mean value. Furthermore, the well-known
tolerances in the industrial manufacturing processes along with their real-life applications
will produce a range of perturbations in the geometric properties. For a better understand-

1Corresponding author.

E-mail addresses khodadadian@ifam.uni-hannover.de(A. Khodadadian); noii@ikm.uni-hannover.de (N.
Noii); aldakheel@ikm.uni-hannover.de (F. Aldakheel).

ar
X

iv
:2

20
5.

13
44

7v
1 

 [
m

at
h.

N
A

] 
 2

0 
M

ay
 2

02
2



Probabilistic failure mechanisms of complex microstructures 2

ing of the structure variation, consider the offshore wind turbine with different concrete
microstructures, illustrated in Figure 1. Herein, a random distribution of the aggregates
and pores within the cement matrix is observed. This can vary from one point to an-
other at the lower scale due to the segmentation-tolerance of the computer tomography
CT-images, see [2, 3].

For the safety assessment of such engineering applications, a sufficient large safety-
factor is a must in the design process to account for all the uncertainties in failure mechanic
problems. These applications can significantly benefit from a precisely predictive compu-
tational tool along with experimental techniques to model brittle and ductile fracture in
the design phase of products.

The computational modeling of crack propagation can be achieved in a convenient way
by the continuum phase-field approach to fracture, which is based on the regularization
of sharp crack discontinuities. Due to its simplicity, this methodology has gained wide
interest and started to be used in the engineering community since 2008. From there on
many scientists have worked in this field and developed phase-field approaches for finite
elements, isogeometric analysis, and lately also for the virtual element technology. The
main driving force for these developments is the possibility to handle complex fracture
phenomena within numerical methods in two and three dimensions. In recent years, sev-
eral brittle [5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27]
and ductile [28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41] phase-field fracture for-
mulations have been proposed in the literature. These studies range from the modeling of

Figure 1: Offshore Wind Turbine (source: germanoffshorewind.org) with different
concrete microstructures. The concrete representative volume elements (RVEs) at the
microscale are consisting of aggregates, pores and cement matrix under-water (CT-images
source: www.baustoff.uni-hannover.de related to the recent work of [4]).
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2D/3D small and large strain deformations, variational formulations, multi-scale/physics
problems, mathematical analysis, different decompositions, and discretization techniques
with many applications in science and engineering. All these examples and the citation
therein demonstrate the potential of phase-field for crack propagation.

Due to the deterministic nature of the phase-field approaches, non-unique solutions are
explored for the material, geometric, and meshing perturbation. This raises the feasibility
of possible several solutions and their influence on the design process. Hence, a detailed
study of such randomness in those properties along with the associated system response
is inescapable. To this end, we utilize the probabilistic approach to the deterministic so-
lution, which gives us an estimation of the bounds of system response. Specifically, this
work is devoted to a rigorous mathematical formulation of the stochastic-based variational
framework of failure mechanisms at the micro-level. The key goal of development is to
predict the failure response of materials for certain randomness and fluctuations of differ-
ent phases in the highly heterogeneous microstructure. In this regard, the Monte Carlo
finite element method (MC-FEM) is employed to solve the stochastic PDE-based model
and approximate the expectation and the variance of the solution field of brittle/ductile
failure by evaluating a large number of samples. In the MC-FEM, finite elements are
utilized to discretize the computational domain and the random points according to the
probability distribution to model the uncertainty [42, 43, 44]. In order to improve the
convergence of the random points and the computational complexity, quasi Monte Carlo
techniques [45, 46, 47], multilevel Monte Carlo [48, 49, 50, 51] and their combination
[52, 50] are proposed in literature.

Incomlete physics

Conflicting  of information

Ignorance

Lack of DATA

Environment 

random error

Sensor error

Experimental/ 

Instruments error

Data Variation

Inexact boundary condition

Inexact geometry

Inaccurate elements

Discretization 

error

Numerical

approximation

Numerical

integration
Truncation 

error
Round-off

error

Separation of scales

Separation of physics

Iterative solver

Non- uniqueness

Linearization

Convexity and local supremum

Objectivity

Reduced dependency

Homogeneity

Reduced models

Simplification

Lack of knowledge

Approximation

Lack of information about  dependency of 

input parameters

Fluctuation of model

parameter

Fluctuation of material

parameter

Parameter

Uncertainties

DATA Physics

Calibration

Blunders

Model

Numeric
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Compared to the deterministic modeling, different sources of uncertainty such as fluc-
tuations in experimental devices, noises due to the coupling of the model problems (cap-
turing all physical phenomena from the nano-to-macro scale), and spatial variation of
the material parameters lead to fluctuation in the observed results. A summary of these
sources is given in Figure 2.

In the design and manufacturing process, it is essentially worthwhile to consider the
material’s probabilistic behavior using a microstructure. For instance, the concrete ma-
terial properties vary/fluctuate even using a similar manufacturing procedure [53, 54].
Therefore, considering the spatial variation of the concrete elastic properties, fracture
energy, and plastic property (e.g., hardening) provide a more reliable modeling platform.
In the Monte Carlo simulations, we generate random samples (according to the given
distribution) to estimate the possible events (randomness in materials and particles spa-
tial variations) and approximate the relative crack behavior. Of course, more number
of replications will include more possible events (provides more informative data) that
result in a more accurate expected value and variance. For the quasi-brittle materials,
the Monte Carlo finite element method (MC-FEM) was used to model the dependence
of the computed crack probabilities on the type of perturbation in [55, 56, 57], and the
polynomial chaos expansion in functionally graded materials with random material prop-
erties is used to model the phase-field fracture, see [58]. In computational mechanics,
stochastic discretization techniques have been employed for variational theory for nonlin-
ear problems with stochastic coefficients [59, 60, 61], inelastic media under uncertainty
[62], elastic-plastic material with uncertain parameters [63], fatigue crack propagation due
to the inherent uncertainties according to the material properties [64], nonlinear fracture
mechanics of concrete [65], and stochastic fracture response and crack growth analysis of
laminated composites [66]. In addition to MC-FEM, different numerical methods, such
as polynomial chaos expansion (PCE) [67], the method of time-separated stochastic me-
chanics (TSM) [68, 69, 70] and stochastic finite element method [71, 72, 73, 74] with
applications to fracture mechanics.

Recently, a Bayesian inversion approach as a probabilistic technique for the phase-
field fracturing modeling has been proposed to identify material/model parameters due
to the uncertainty of the fracturing material in [75], coupled with plasticity in [76]. In
stochastic analysis (more specifically MC-FEM) hundreds or thousand forward runs are
necessary to be performed. In numerical optimization using adjoint methods (the adjoint
problem is linear, but is running backward in time) resulting in a high computational
cost. Consequently, the general natural idea is to use dimension reduction techniques, as
proposed in [77]. For reducing the computational costs of the phase-field failure analysis
in a probabilistic framework (mainly Bayesian inversion), a non-intrusive global-local
approach is recently introduced, rather than using fine-scale high-fidelity finite elements
[78]. In this type of concurrent multiscale framework, the phase-field model is solved on
the fine-scale, and a linearized model (without phase-field) is employed on the global scale.
While the fracture propagates, the local and global sub-domains are adjusted dynamically
with the help of an adaptive predictor-corrector procedure, as shown in [79].

To explore the random nature of the material structure and its effect on the failure and
fracture, this contribution first extends the prescribed model in [76] to a stochastic setting.
The developed framework allows us to model the effect of the random distribution of the
particles (densities, positions, size) and the spatial variation of the material parameters.
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Next, we will study the effect of the randomness on a local scale, i.e., microscopically, in
different parts of the structure in which crack patterns can occur. The results are extended
to a global approach, i.e., by computing the amount of the necessary forces for failure
initiation and, therefore full fracture. Using several replications enables us to provide an
accurate global pattern. Thus, by taking the expectations, the results can be extended
to the whole structure. Furthermore, we will have an interval (between maximum and
minimum of the forces) to determine how much force (at least) is needed for the fracture in
a part of the domain and applying which amount of forces will give rise to a full fracture.

The rest of the paper is organized as follows. In Section 2, a stochastic phase-field
framework for modeling fracture in brittle and ductile materials will be introduced. In
Section 3, an allocating strategy will be developed to model the random distribution of ag-
gregates/pores and cement matrix in the concrete structure for two- and three-dimensional
simulations. In Section 4, we present different multi-dimensional test experiments to
model crack behavior for ductile and brittle concrete using the stochastic framework and
the allocating strategy. Finally, the obtained results are summarized in Section 5.

2. Stochastic phase-field modeling of fracture

In this section, the effect of randomness, fluctuation, and variation in phase-field frac-
ture problems will be investigated.

2.1. Primary fields and function spaces

We consider B ⊂ Rδ be an arbitrary solid geometry, δ = {2, 3} with a smooth boundary
∂B. We assume Dirichlet boundary conditions on ∂DB and Neumann boundary conditions
on ∂NB := ΓN ∪ C, where ΓN explains the outer domain boundary and C ∈ Rδ−1 points
out the fracture boundary. Furthermore, we present a probability space (Ω,A,P), where
Ω indicates the set of elementary events (the sample space), A is the σ-algebra of all
possible events, and P : A→ [0, 1] is a probability measure. A real-valued random variable
ξ : Ω → R is a set of possible events (Ω), mapping the probability space to the real
values. A realization ω = (ω1 . . . ωn) is given on the probability space and denote as
n-dimensional random variable. In this work, the randomness points out the stochastic
distribution of the heterogeneity (inclusions, voids), their random number (according to
random distribution), the relative random radius, and fluctuation in material parameters.
The randomness changes the macroscopic as well as the microscopic structure and affects
the corresponding stiffness. We study this effect locally (monitoring the crack propagation
pattern) and globally (the variation of the load-displacement diagram).

Denoting the event ω ∈ Ω, the expectation function can be defined by E[ξ] :=∫
Ω

ξ(ω) dP and the variance function is defined by V[ξ] := E[ξ2] − (E[ξ])2. We define

an inner product for set of (ξ, ζ) as a real-valued random variable (ξ, ζ) : Ω → R for a
possible events as a 〈ξ, ζ〉A := E [ξ ζ] and the following Lebesgue space of the random
variables using the finite variance

A := L2(Ω,R) = {ξ : Ω→ R : ‖ξ‖2
A := 〈ξ, ξ〉A = E[ξ2] <∞}. (1)

Using the above-mentioned definition, we define the the covariance operator given by
COV(ξ, ζ) := E [(ξ − E[ξ]) (ζ − E[ζ])] = 〈ξ − E[ξ], ζ − E[ζ]〉A. Obviously, the variance
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function can be defined as V(ζ) = COV(ζ, ζ). We can set the uncorrelated random
variables when we have COV(ξ, ζ)=0. A random variable ξ(x;ω) : Ω×X → R is related
to the spatial variable x ∈ X and the random variable ξ ∈ Ω. Considering the fixed
random variable ω ∈ Ω, ξ(ω, ·) indicates the deterministic cases, which is one observation
in the phase-field problem (ductile/brittle).

Considering the random variable ω ∈ Ω, the response of the material at point x ∈ B
and at time t ∈ T = [0, T ] can be presented by the random displacement field u(x, t;ω) :
B × T × Ω → Rδ, the random crack phase-field d(x, t;ω) : B × T × Ω → [0, 1]. Here,
d(x, t; ·) = 0 and d(x, t; ·) = 1 characterize an undamaged and a completely fractured
material state, respectively. The loading time interval can be discretized as

0 < t1 < t2 < · · · < tn < · · · < tN = T. (2)

We note that for any variable used from now onward •n = •(tn). Having a random
variable ω, with the purpose of stating variational principles, we introduce the following
function spaces

U := {u ∈ H1(B) : u = u on ∂DB}, (3)

V := {d ∈ H1(B) : d ≥ dn, d(t = 0) = 0}, (4)

where H1(B) = (H1(B))
δ

and dn is the damage value in a previous time instant which
introduces the evolutionary character of the phase-field, incorporating an irreversibility
condition in incremental form.

In the case of von-Mises plasticity theory, we define the plastic strain tensor
εp(x, t;ω) : B × T× Ω→ Rδ×δ

dev and the hardening variable α(x, t;ω) : B × T× Ω→ R+.
Here, Rδ×δ

dev := {e ∈ Rδ×δ : eT = e, tr [e] = 0} is the set of symmetric second-order
tensors with vanishing trace. Since, gradient non-local plastic theory is employed here,
the plastic strain tensor is considered as a local internal variable, while the hardening
variable is a non-local internal variable. Therefore, the rate of the hardening variable α
follows the evolution equation

α̇ =

√
2

3
|ε̇p|. (5)

At the first time step, α(x, 0, ·) can be viewed as the equivalent plastic strain, which starts
to evolve from the initial condition α = 0. Concerning the function spaces, we assume
sufficiently regularized plastic responses, i.e., endowed with hardening and/or non-local
effects, for which we assume εp ∈ Q := L2(B;Rδ×δ

dev ). Moreover, in view of (5), it follows
that α is irreversible. Assuming in this section the setting of gradient-extended plasticity,
we define the function spaces

Z := {α ∈ H1(B) : α = αn +
√

2/3 |z|, z ∈ Q, α(t = 0) = 0 }. (6)

The hardening law (5) is thus enforced in incremental form by restricting the solution
space Z where z ∈ εp − εpn (shown as Zεp−εpn). Considering the random variable ω, the
gradient of the displacement field defines the symmetric strain tensor of the geometrically
linear theory as

ε(x, t;ω) =
1

2
[∇u(x, t;ω) +∇u(x, t;ω)T ]. (7)
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In view of the small strain hypothesis and the isochoric nature of the plastic strains, the
strain tensor is additively decomposed into an elastic part εe and a plastic part εp as

ε(x, t;ω) = εe(x, t;ω) + εp(x, t;ω) with tr [ε] = tr [εe]. (8)

2.2. Variational principles

Let C denote the set of constitutive state variables. In the most general setting con-
sidered in this study, one has

C(x, t;ω) := {ε, εp, α, d,∇α,∇d}, (9)

where the random variable ω ∈ Ω affects the functions (u, α, d). In order to derive the
perturbed variational formulation in the stochastic space, we set the perturbed energy
density function per unit volume W

(
C(x;ω);q(x;ω)

)
, such that

W := E
[
W

(
C(x;ω);q(x;ω)

)]
=

∫
Ω

W (·;ω)P(ω), (10)

where q(·) is a random quantity denoting the randomness in the geometry (e.g. inclu-
sions/voids) along with the material parameters. Hereby, for a fixed random variable,
the perturbed energy function is additionally decomposed into a perturbed elastic con-
tribution Welas(· ;q), a perturbed plastic contribution Wplas(· ;q), and a perturbed fracture
contribution Wfrac(· ;q) results in

W (C;q) := Welas(ε, ε
p, d, α;q) + Wplas(α, d,∇α;q) + Wfrac(d,∇d;q), (11)

and therefore by taking the expectation we have

W = E[W ] = E
[
Welas(ε, ε

p, d, α;q)
]

+ E
[
Wplas(α, d,∇α;q)

]
+ E

[
Wfrac(d,∇d;q)

]
. (12)

2.3. Computing statistical moments

Let us compute statistical moments for the response observed during different noises
arises from elastic-plastic setting. To do so, we introduce the quantity of interest as
J(u, d, α;ω). Considering the stochastic space, M different realizations are employed to
compute the expected value and afterward the variance function as

E[J] = E
[
J(u, d, α;ω)

]
≈ EMC[J] :=

1

M

M∑
i=1

J(u(i), d(i), α(i))

V[J] = V
[
J(u, d, α;ω)

]
= E[J2(u, d, α;ω)]− (E[J(u, d, α;ω)])2

≈ VMC[J] :=
1

M

M∑
i=1

(
J(u(i), d(i), α(i))− E[J(u(i), d(i), α(i))]

)2

.

For the expected value function, we assume two random variables ω and ζ belong to Ω.
Then, J(ω) and Q(ζ) are two random scalar-valued function along with their expected
scalar-valued function E[J] and E[Q], respectively, so the following properties holds:

• E[J + Q] = E[J] + E[Q] holds, if both expected values are finite.
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• For the constant c ∈ R, we have E[cJ] = cE[J].

• Considering the Jensen’s inequality and the convex property of the norm function,
we have ‖E[J]‖ ≤ E[‖J‖].

• Cauchy-Schwarz inequality: E [‖JQ‖] ≤
(
E
[
‖J‖2]

])1/2 (E [‖Q‖2
])1/2

.

• Minkowski inequality for theH1-space:
(
E
[
‖J + Q‖2

])1/2 ≤
(
E
[
‖J‖2

])1/2
+
(
E
[
‖Q‖2

])1/2
.

Regarding the spatial discretization, for a fixed time step t ∈ T, and fixed random variable
ω ∈ Ω, we assume that Eh = {E1, . . . , Enel} is a quasi-uniform mesh defined in Bh ≈ B
with mesh size h := maxEj∈Eh diam(Ej). For the sake of simplicity, we use lowest order

Galerkin discretization in Bh := S1,1
u (Eh)× S1,1

d (Eh)× S1,1
α (Eh), where

S1,1
u (Eh) := {u ∈H1(B) : u|E ∈ P 1(E) ∀ E ∈ Eh},

S1,1
d (Eh) := {d ∈ H1(B) : d|E ∈ P1(E) ∀ E ∈ Eh},
S1,1
α (Eh) := {α ∈ H1(B) : α|E ∈ P1(E) ∀ E ∈ Eh}.

Here P 1(E) and P1(E) indicate the vectorial and scalar space of polynomials of total
degrees less or equal than one, respectively [80]. Hence, we define

Uh :=
{
uh ∈ S1,1

u (Eh) : uh|∂DB = u
}
, (13)

Vh :=
{
dh ∈ S1,1

d (Eh) : dh ≥ dhn , dh(t = 0) = 0
}
, (14)

Zh :=
{
αh ∈ S1,1

α (Eh) : αh = αhn +
√

2/3 |zh|, zh ∈ Q, αh(t = 0) = 0
}
. (15)

Then, we define the continuous solution space X := U × V × Z with the corresponding
norm ‖ · ‖X and the discrete solution space Xh := Uh × Vh × Zh which is a subset
of X. Considering a fixed random variable ω ∈ Ω, the quantity J(u, d, α;ω) can be
approximated by Jh(u, d, α;ω) ≈ J(uh, dh, αh;ω).

In MC-FEM simulations, to obtain an accurate estimation of the stochastic solution,
a sufficiently small mesh size in addition to several number of evaluations are needed. To
this end, we define the Bochner space L2(Ω;X) for the function Y , giving

‖Y‖L2(Ω;X) :=
(∫

Ω

‖Y(·;ω)‖2
X P(ω)

)1/2

= E
[
‖Y(·;ω)‖2

X

]1/2

. (16)

Here, the variance function is given by V(Y) = ‖E[Y ] − Y‖2
L2(Ω;X). With respect to the

mesh size h the discretization error is computed by

Ih := (‖E [u− uh] ‖X + ‖E [d− dh] ‖X + ‖E [α− αh] ‖X). (17)

Let us assume χ is a member of (u, d, α), and χh is one of the approximations (uh, dh, αh).
The following lemma denotes the convergence of the statistical Monte Carlo estimator.

Lemma 1. For the number of samples M , χ ∈ L2(Ω;X) satisfies [81]

‖E[χ]− EMC[χ]‖L2(Ω;X) = M−1/2V[χ]. (18)
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Proof. We use the defined Bochner norm in (16)

‖E[χ]− EMC[χ]‖2
L2(Ω;X) = E

[∥∥∥E[χ]− 1

M

M∑
i=1

χ(i)
∥∥∥2

X

]
=

1

M2

M∑
i=1

E
[
‖E[χ]− χ(i)‖2

X

]
=

1

M
E
[
‖E[χ]− χ‖2

X

]
= M−1V2[χ].

As the next step, we can compute the total error denoting the discretization error as
well as the statistical error. Lemma 1 controls of the sampling error. The discretization
error also relates to used polynomial order in the finite element method.

Proposition 1. For χ ∈ L2(Ω;X) and its finite element approximation χ
h
, we assume

that we have the convergence rate ν of the discretization error [82]

‖E[χ− χ
h
]‖L2(Ω;X) ≤ ahν , (19)

and we have the upper bound for the variance estimator

V[χ
h
] ≤ b, (20)

where a and b are positive constants, introduced in [82]. For the MC-FEM estimator, we
have the following upper error bound denoting discretization and statistical error

‖E[χ]− EMC[χh]‖L2(Ω;X) ≤ ahν + bM−1/2 = O(hν) +O(M−1/2). (21)

Proof. By defining the root mean square error (RMSE), employing the triangle inequality
and Lemma 1, we will have

RMSE := ‖E[χ]− EMC[χh]‖L2(Ω;X)

≤ ‖E[χ]− E[χh]‖X + ‖E[χh]− EMC[χh]‖L2(Ω;X)

≤ ‖E[χ− χh]‖X +M−1/2V[χh]

≤ ahν + bM−1/2

= O(hν) +O(M−1/2).

(22)

The above-mentioned proposition points out that by reducing the mesh size and in-
creasing number of replications, the total error reduces. Thus, following (19), for the
couples system of equations (u, d, α), we have

‖E [u− uh] ‖X ≤ a1h
ν1 ‖E [d− dh] ‖X ≤ a2h

ν2 ‖E [α− αh] ‖X ≤ a3h
ν3 . (23)

So, by replacing (23) in (17) and by defining ν̂ := max{ν1 , ν2 , ν3}, we will have Ih ≤ âhν
?

where â represents the three positive constants.
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2.4. Perturbed rate-dependent functionals

Herein, an extension of the model proposed in [76] is considered by further perturbing
the energy functional and domain space (the stochastic setting). We can define a per-
turbed pseudo potential energy functional augmented with the random quantity q(x; ·)
as following:

E(u, εp, α, d;q) :=

∫
B
W (C;q) dv − Eext(u;q), (24)

here Eext considers the perturbed external loads as

Eext(u;q) :=

∫
B
f · u dv +

∫
∂NB

τ · u da. (25)

The quantity q indicates the perturbered material parameter in the homogeneous and
heterogeneous structures can be defined using the perturbation value η as

q = q̄ + ηΘ̃, (26)

where Θ̃ is a uniformly distributed random variable in [-1, 1], and η denotes as the material
parameters variations. For the phase-field fracture in brittle and ductile materials, a set of
parameters, i.e., q̄ ∈ {E, µ,K,Gc, ψc, H, σY } is given in Table 1. Denoting the variation
parameter η, the perturbed materials can be defined point-wise (heterogenous), or for
the whole domain (homogeneous). We use this notation to point out the fluctuation in
the material property (homogeneous/heterogeneous) in addition to the randomness due
to the random distribution of the particles (aggregates/voids).

Considering the effect of the randomness, the energy functional is defined as

E(u, εp, α, d) = E
[ ∫
B
W (C;q) dv

]
− E [Eext(u;q)] . (27)

Next, to formulate the variational formulation setting, it is required to define the per-
turbed constitutive energy density functions, namely Welas, Wplas, and Wfrac.

2.4.1. Elastic energy contribution. The elastic energy density function Welas in
(11) formulated based on the effective strain energy density ψe(ε

e;q). Here, the per-
turbed effective strain energy density function is additively decomposed into fracturing
and unfracturing parts is employed. Thus, the strain tensor is decomposed into volume-
changing (volumetric) and volume-preserving (deviatoric) to avoid failure in compression
parts, as

εe(u,x;ω) = εe,vol(u,x;ω) + εe,dev(u,x;ω),

where

εe,vol(u,x;ω) :=
1

3
(εe((u,x;ω) : I)I,

εe,dev(u,x;ω) := P : εe, with P := I− 1

3
I⊗ I and Iijkl :=

1

2

(
δikδjl + δilδjk

)
.

(28)

The perturbed effective strain energy function ψe(ε
e;q) reads:

ψe

(
I1(εe;ω), I2(εe;ω);q(x;ω)

)
= ψ+

e

(
I1, I2;q

)
+ ψ−e

(
I1, I2;q

)
, (29)
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such that

ψ+
e = H+[I1]ψvole

(
I1;q

)
+ ψdeve

(
I1, I2;q

)
and ψ−e =

(
1− H+[I1]

)
ψvole

(
I1;q

)
. (30)

Therein, H+[I1(εe;ω)] is a positive Heaviside function which returns one and zero for
I1(εe;ω) > 0 and I1(εe;ω) ≤ 0, respectively. We note that the volumetric and deviatoric
counterpart of energy admits following additive split:

ψvole

(
I1;q

)
=
K

2
I2
1 and ψdeve

(
I1, I2;q

)
= µ

(I2
1

3
− I2

)
, (31)

in terms of the the bulk K and shear modulus µ, where I1(εe;ω) := tr[εe] and I2(εe;ω) :=
tr[(εe)2] denote the first and second invariants. So the total elastic contribution to the
pseudo-energy (11) finally reads

Welas(ε, ε
p, d, α;q) := g(d) ψ+

e (I1, I2;q) + ψ−e (I1, I2;q), (32)

such that
E
[
Welas(ε, ε

p, d, α;q)
]
≈ EMC

[
Welas(ε, ε

p, d, α;q)
]
, (E)

where +g(d(x;q)) is the degradation function.

2.4.2. Fracture energy contribution. The phase-field contribution Wfrac is ex-
pressed in terms of the crack surface energy density γl and the regularized fracture length-
scale parameter lf to smooth fracture sharp response. In favor of regularization, following
[7], the sharp-crack surface topology C is modified by a smooth functional Cl. The regu-
larized functional reads

Cl(d) = E
[ ∫
B
γl(d,∇d) dv

]
. (33)

For ω ∈ Ω, the standard density function for the γl is defined as

γl(d,∇d;q) :=
1

cf

(
∆(d)

lf
+ lf∇d · ∇d

)
with cf := 4

∫ 1

0

√
∆(b) db, (34)

where ∆(d) is a monotonic and continuous local fracture energy function such that ∆(0) =
0 and ∆(1) = 1 where the effect of the randomness is taken into account as well. In the
following, two different accepted formulation denoted as a linear (with elastic stage) and
quadratic (without elastic stage) order are formulated. Hence, for a fixed event ω we
define

∆(d, ·) :=

{
d =⇒ cf = 8/3 AT-1,
d2 =⇒ cf = 2 AT-2.

(35)

Thus, the perturbed fracture contribution related to (11) is computed denoting the
randomness, i.e.,

Wfrac(d,∇d;q) := gfγl(d,∇d;q)
]
, (36)

such that
E
[
Wfrac(d,∇d;q)

]
≈ EMC

[
Wfrac(d,∇d;q)

]
, (F)

where gf is a parameter that allows to recover different models. This will be formulated
in Section 2.5.
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2.4.3. Plastic energy contribution. The plastic energy counterpart Wplas is formu-
lated based on an effective plastic energy density denoted as ψp in ω ∈ Ω for gradient-
extended von Mises plasticity, as:

ψp(α,∇α;q) :=
1

2
Hα2(x;ω) +

1

2
σY l

2
p∇α(x;ω) · ∇α(x;ω), (37)

here, σY is the initial yield stress, H ≥ 0 is the isotropic hardening modulus and lp is the
plastic length-scale. Thus, the perturbed plastic pseudo-energy density (11) formulated
as:

Wplas(α, d,∇α;q) := g(d) ψp(α,∇α;q), (38)

such that
E
[
Wplas(α, d,∇α;q)

]
≈ EMC

[
Wplas(α, d,∇α;q)

]
. (P)

2.4.4. Plastic dissipation. Next, we define the plastic dissipation-potential density
function. This thermodynamically consistent function provides a major restriction on
constitutive equations for elastic-plastic and dissipative materials based on the principle
of maximum dissipation. This thermodynamical restriction is due to the second law of
thermodynamics (Clausius- Planck inequality) within a reversible (elastic) domain in the
space of the dissipative forces. So, let us define dual driving force {sp,−hp} with respect
to the primary fields {εp, α}. Following the classical von-Mises plasticity setting, the yield
surface function reads

βp(sp, hp, d;q) :=
√

3/2 |F p| − hp − gp(d)σY with F p := dev[sp] = sp − 1

3
tr[sp]I. (39)

Thus, with the yield function at hand, dissipation-potential density function for plastic
response reads

Φ̂plast(ε̇
p, α̇, d;q) = sup

{sp,hp}
{sp : ε̇p − hpα̇ | βp(sp, hp; d;q) ≤ 0}, (40)

which follows from the principle of maximum plastic dissipation. Taking supremum of
inequality function (40) yields, as a necessary condition, the primal representation of the
plasticity evolution problem in the form of a Biot-type equation:

{sp,−hp} ∈ ∂{ε̇p,α̇} Φ̂plast(ε̇
p, α̇; d;q). (41)

Considering the effect of the randomness, the dissipation potential functional for plastic
flow defined as

Dplast(ε̇p, α̇, d;q) =

∫
Ω

∫
B

Φ̂plast dv P(ω) = E
[ ∫
B

Φ̂plast dv
]
. (42)

Following [7], the dissipative function Φ̂vis due to viscous resistance forces is defined as

Φ̂vis(ḋ, α̇;ω) :=
ηf
2
ḋ 2(x;ω) + I+(ḋ) +

ηp
2
α̇2(x;ω) + I+(α̇). (43)

Here, ηf and ηp are material parameters that characterize the viscous response of the
fracture and plasticity evolution, respectively. In this work, we assumed that the values
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for ηf and ηp are not perturbed, so deterministic values are used. As before, a global rate
potential of the dissipative power density with viscous regularized evolution reads

Dvis(ḋ, α̇) := E
[ ∫
B

Φ̂vis(ḋ, α̇;q) dv
]
. (44)

The total dissipation potential given by:

D(Ċ;q) = Dplast(Ċ;q) +Dvis(Ċ;q). (Diss)

2.4.5. Minimization principle for the perturbed evolution problem. Here,
the governing equations of the failure analysis for brittle and ductile materials can be
derived from basis of the energy functional (24) by invoking rate-type variational princi-
ples [83]. Hence, the energy functional for the fracturing elastic-plastic solid material is
required for the following potential

Π(ε̇, ε̇p, d, α̇;q) : =
d

dt
Ê(ε, εp, d, α;q) +D(ε̇, ε̇p, d, α̇;q)− Eext(u̇;q), (45)

to be minimized. Thus perturbed rate-dependent gradient-extended energy functional is
miminzied through following compact form

(ε̇, ε̇p, d, α̇;q) = arg
{

inf
u∈U

inf
d∈V

inf
{εp,α}∈Q×Z

εp−ε
p
n

Π(ε̇, ε̇p, d, α̇;q)
}
, (min.rate)

2.5. Perturbed incremental functional

In this section, to formulate of transition rules from intact region to the fully damaged
bulk response, degradation function is introduced. Specifically, the fracture phase-field
enters as a geometric internal variable for both elastic and plastic contribution in a simple
quadratic form through following degradation function:

g(d) =
(
1− d(q(x;ω))

)2

along with fracture constant gf = 2lfcfψc, where ψc is a specific critical fracture energy.

Next, to further extend a global rate potential form Π(u, εp, α, d;q) given in (min.rate),
in-line with our recent study in [76], a perturbed incremental energy minimization based
on Π∗(u, εp, α, d;q) is defined on the finite time increment [tn, tn+1], through following
potential

Π∗(ε, εp, d, α;q) : =

∫ tn+1

tn

Π(ε̇, ε̇p, d, α̇;q) dt

= Ê∗(ε, εp, d, α;q) +D∗(ε̇, ε̇p, d, α̇;q) + E∗ext(u;q).

(46)

Considering the randomness, we take the expectation from the energy function as

Π∗(ε, εp, d, α;q) = E
[ ∫
B

(
W (C;q)−W (Cn;q)

)
dv
]

+ E
[ ∫
B
τ Φ̂∗vis + I+(d− dn)

)
dv
]

+ E
[ ∫
B

(
τ Φ̂∗plast + I+(α− αn)

)
dv
]

+ E
[ ∫
B
f · (u− un) dv +

∫
∂NB

τ · (u− un) da
]
,

(47)
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with

Φ̂∗vis =
ηf
2τ 2

(d− dn) 2 + I+(d− dn) +
ηp
2τ 2

(α− αn2) + I+(α− αn), (48)

and incremental plastic dissipation potential as

Φ̂∗plast(ε
p, α, d; εpn, αn;q) =

1

τ
sup
{sp,hp}

{sp :
(
εp − εpn

)
− hp

(
α− αn

)
| βp(sp, hp, d) ≤ 0},

(49)

where τ = tn+1− tn > 0 denotes the step length. Here, both plasticity and the phase-field
functions are a function of space x ∈ B and ω ∈ Ω. Through the incremental poten-
tial given in (47) at hand, the time-discrete counterpart of the canonical rate-dependent
variational principle in (min.rate) takes the following compact form:

(ε, εp, d, α) = arg
{

inf
u∈U

inf
d∈V

inf
{εp,α}∈Q×Z

εp−ε
p
n

Π∗(ε, εp, d, α;q)
}
. (min.incr)

Accordingly, the global primary fields are determined through the stationarity conditions
of the minimization problem (min.incr): find u ∈ U , α ∈ Z, and d ∈ V such that

E
[ ∫
B

[
σ(ε, εp, d;q) : ε(δu)− f · δu

]
dv
]
− E

[ ∫
∂NB

τ · δu da
]

= 0 ∀ δu ∈ U ,

E
[ ∫
B

(
−
√

3

2
|F p(ε, εp, d)|+ (1− d)2σY + ∂αI+(α− αn)

+ (1− d2)Hα + σY l
2
p(1− d)2∇α · ∇(δα)

)
δα dv

]
3 0 ∀ δα ∈ Z.

E
[ ∫
B

((
(1− d)H− d

)
δd− ηf

τ
(d− dn)δd− l2f∇d · ∇(δd)

)
dv
]

= 0 ∀δd ∈ V,

(M)

In (M) the crack driving force function shown as H(x, t;q) is used to impose the damage
irreversibility condition through history field as:

H(x, t;q) := max
s∈[0,t]

D̃
(
C(x, s);q

)
with D̃ := ζ

〈ψ+
e + ψp
ψc

− 1
〉
, (H)

where, the Macaulay bracket denotes the ramp function 〈x〉 := (x+ |x|)/2. Additionally,
ζ ≥ 0 is a scaling parameter to further providing relaxation of the formulation, allowing
to tune the post-critical range [76].

Remark 2.1. So far, we studied ductile phase-field fracture in a stochastic space which is
either elastic-plastic response followed by damage (hereafter E-P-D); or elastic, followed
by elastic-plastic, and then plastic-damage (hereafter E-P-DP). To reduce the model into
a brittle fracture response, it is sufficient that σY → ∞ and lp → 0 (hereafter E-D) to be
imposed. Additionally, in the case of E-D, we have used AT-2 in (35), while for E-P-D

AT-1 is used.
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3. Random allocation of the heterogeneities

In this section, we developed a placing strategy to define the random position, number,
and size (radius) of the heterogeneities (particles) within a matrix. A uniform probabil-
ity distribution is assumed for those heterogeneities (namely voids and inclusions). To
this end, a given particle density is firstly considered, then we follow the procedure de-
scribed in Algorithm 1 as long as the volumes/areas of both components(voids ”V” and
inclusions ”I”) are less than the given density. Furthermore, we should guarantee that
there is no overlap between the particles and that all of them are fully allocated in the
given domain (square/cube). Therefore, for each particle (void or inclusion), we consider
the minimum and maximum coordinates (xmin/xmax) and the radius (rmin/rmax) in the
Cartesian coordinate system as

x = xmin + θ (xmax − xmin) and r = rmin + θ (rmax − rmin) , (50)

Figure 3: Allocating process of inclusions (aggregates) and voids (pores) to avoid over-
lapping.
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where the random variable θ is uniformly distributed between 0 and 1. In such a het-
erogeneous structure, the thickness of the matrix-material can be related to the particles
sizes as well documented in [84, 85, 86]. Hereby, the allowed minimum thickness of the
matrix-material: a) between the heterogeneities (with radius ri) and the boundary is con-
sidered as 2γ · ri and b) between two heterogeneities is assumed as γ times the size of the
component, as shown in Figure 3. The value of the distribution parameter γ depends on
the volume fraction of heterogeneity. To ensure this condition, we enlarge the particles
size to (1 + γ)2r, then we follow the placing strategy to estimate the positions; however,
the radii will be determined without the enlargement. In the numerical examples, we set
γ = 0.1. However, the allocation strategy can be used for different values of γ, even γ = 0.
In summary, the chosen algorithm for the random distribution of the heterogeneities is
given in Algorithm 1. We use the allocating strategy for the two- and three-dimensional
cases based on the explained randomness and the given densities. To study the efficiency
and the accuracy of the allocating algorithm, we produce RVE structures for different
densities of inclusions and voids as shown in Figure 4. For the 2D distributions, we will
use quadrilateral meshes and for the 3D ones, the tetrahedral meshes will be employed.

4. Numerical examples

This section demonstrates the performance of the proposed stochastic phase-field ap-
proach for brittle and ductile fracture in one-, two- and three-dimensional cases. As
outlined in Section 1, the materials in standard phase-field problems are assumed to have
a uniform macroscopic structure and properties (globally). However, those properties vary
spatially at the heterogeneous microstructure (locally). In the local approach we monitor

Figure 4: The RVE structure with different percentage of inclusions and voids. In the
first row, from left to right, the inclusions and voids densities are (3%+3%), (5%+5%),
(10%+6%), and (15%+7%). In the second row, the inclusions and voids densities are
(20%+8%), (30%+10%), (40%+10%), and (50%+12%).
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Algorithm 1 The allocating strategy

Inputs: (x•min,x
•
max, r

•
min, r

•
max) with • ∈ {V, I}, voids/inclusions percentage: V̂/Î

domain B volume (volume), enlargement factor: γ.

Initialization: V = 0, I = 0,

V̄ = volume× V̂ and Ī = volume× Î

while V ≤ V̄ and I ≤ Īx
V

= x
V

min + θ
(
x

V

max − x
V

min

)
r
V

= r
V

min + θ
(
r
V

max − r
V

min

) ,

x
I

= x
I

max + θ
(
x

I

max − x
I

min

)
r
I

= r
I

min + θ
(
r
I

max − r
I

min

) .

1) Assume the enlarged aggregates as 2(1 + γ)r
I

.

2) No overlap between the voids and aggregates.

3) The particles are within the domain boundary.

4) Determine total fraction of voids and inclusions:

V = V + 4
3
π(r

V

)3 and I = I + 4
3
π(r

I

)3.

5) Checking step I + V <

∫
B
dx= volume

end while

Outputs: Cartesian coordinate: x = [xV,xI]T , radii: r = [rV, rI]T .

Table 1: The material parameters for the one-, two- and three-dimensional cases.

Example E [MPa] µ [MPa] K [MPa] Gc [MPa.m] ψc [MPa] H [MPa] σY [MPa]
1D-brittle 70 500 – – 0.027 – – –

1D-ductile 70 500 – – – 30 250 330

2D-brittle – 75 100 28 010 25 – – –

2D-ductile – 136 500 70 300 – 25 300 443

3D-brittle – 121 150 80 770 0.0027 – –

Figure 5: Example 1. Geometry and loading setup for the one-dimensional bar.
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the propagation of crack through the matrix material. Whereas, in the global approach,
apart from the crack geometry, we will compute the expected value and the variance of
the force response normal to the top boundary. For this, at time step t ∈ T, we define
the quantity J as

J(i) := J(u(i), d(i), α(i)) :=

∫
∂DB | u6=0

n · σ(i) · n dx ∀ i ∈ N, (51)

where n is the outward unit vector normal to the Dirichlet boundary ∂DB.

4.1. One-dimensional brittle and ductile fracture

As the first case study, we consider the material (microscopic) fluctuation in brittle and
ductile fracture. Hereby, a bar of unitary length L = 1 is considered where x ∈ B := [0, 1]
that is initially unstretched and undamaged. Its left end is fixed, i.e., x = 0, while on its
right end, i.e., x = 1, a monotonic displacement increment ∆ū = 1× 10−5 mm is applied
for 151 time steps. The example setup and boundary conditions are shown in Figure 5.
Regarding to the finite element mesh size, 300 elements are used and we replicate the
sampling in 400 iterations. The material parameters denoted as q based on deterministic
values q̄ are given in Table 1.

For the stochastic case, we define two scenarios. First, materials have a homogeneous
structure with a given variation. In each simulation, a value of the material parameter
is determined using (26). The second possibility is related to the heterogeneity, in which
at each point of the bar, the material parameters are fluctuated (i.e., the point-wise
variation). In other words, we use (26) to estimate the material values at each point.

Figure 6: Example 1a (brittle fracture) with 10% variation. The mean value (first col-
umn), 100 different samples (middle), and the variance (third column) of the homogeneous
case (first row) and the heterogeneous case (second row).
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Figure 7: Example 1b (ductile Fracture) with 5% variation. The mean value (first
column), 100 different samples (middle), and the variance (third column) of homogeneous
case (first row) and heterogeneous case (second row).

4.1.1. Brittle fracture. In this numerical test, the Elastic-Damage behavior in one-
dimensional setting will be considered. Specifically, we investigate how the uncertainty
affects the crack-surface. Figure 6 (the first row) shows the mean value and 100 different
crack patterns (using 400 simulations) for the homogeneous case. As the crack phase-field
profile is regularized (using the length scale), only a minor variation around the peak
point (at x = 0.5 where the crack starts) is occurred. However, the fluctuation does not
affect the fracture point (zero variance at x = 0.5). In heterogeneous cases, the crack
point has been varied due to the heterogeneity, and the variance is significantly higher
compared to the homogeneous case.

4.1.2. Ductile fracture. In this numerical example, we perform a stochastic analy-
sis on the Elastic-Plastic-Damage behavior in one-dimensional setting of ductile fracture.
Similar to the brittle fracture, two cases are considered, namely homogeneous and het-
erogeneous cases with a 5% variation. The results are demonstrated in Figure 7. Herein,
although the crack profile is regularized, the imposed variation affects the crack-pattern
significantly. However, the crack point shows a fixed value (negligible variation in the
crack point). In contrast to the homogeneous case (first row), a negligible variation for
the heterogeneous scenario will change the crack profile considerably. As Figure 7(second
row) shows, a significant variance is observed in the crack profile indicating the effect of
the heterogeneity.

4.2. Two-dimensional microstructural RVE under tension

In the second case study, a two-dimensional microstructure RVE with stochastically
distributed inclusions (aggregates) and voids (pores) under tension is considered. Both
brittle (E-D), and ductile fractures (E-P-D) settings are considered. A boundary value
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Figure 8: Geometry and loading setup for (a) the two-dimensional setting in Example
2, and (b) the three-dimensional setting in Example 3.

problem applied to the square plate is shown in Figure 8a. We set H = 1 mm and
W = H hence B = (0, 1)2 mm2 that includes randomly allocated inclusions and voids in
domain. As a loading setup, we set the initial values for displacement and phase-field as
u0 := 0 ∈ B and d0 := 0 ∈ B. Here, Galerkin finite element method with H1-conforming
bilinear (2D) elements are used for the Q1-finite elements. A minimum element size of
h = 0.01 mm is considered such that the spatial discretization of the model includes
approximately 20,000 four-node quadrilateral elements. Thus, the fracture length-scale
is set as l = 0.02 mm. The condition fulfills the heuristic requirement h < l/2 for the
element size inside the localization zone (i.e., the support) of d, see [7]. Note that the
plane-strain situation is considered. The displacement control is used with increments of
∆ū = 1× 10−4 and 600 time steps. The material parameters are given in Table 1.

To deal with heterogeneous microstructure materials, we further define the mismatched
ratio between two categories of materials (inclusions and voids) pointing out by χ, de-
scribed as

•inc = χ •mat for • ∈ {E, µ,K,Gc, ψc, σY }.
In the upcoming examples, we set χ = 10, i.e., inclusions (aggregates) are 10 times stiffer
compared to the listed homogeneous structure in Table 1. Next, we employ our allocating
strategy to simulate the random distribution of voids and inclusions. This randomness
procedure includes:

1. Random density of inclusions/voids:

• Inclusions varies between 30 and 40 percent of the whole volume.

• Voids varies between 5 and 10 percent of the whole volume.

2. Random size of the particles (inclusions/voids).

• Inclusions varies between 5 mm and 20 mm (radius).

• Voids varies between 0.2 and 5 mm (radius).

3. Random position of the particles (see Algorithm 1).
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Figure 9: Example 2. 16 different mesh configuration denoting the random distribution
of voids and inclusions in 2D and the corresponding crack pattern in brittle fracture.
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Figure 10: Example 2. 16 different mesh configuration denoting the random distribution
of voids and inclusions in 2D along with the corresponding crack pattern and hardening
in ductile fracture case.
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Figure 11: Example 2. The load-displacement curves for 300 different random distribu-
tion of inclusions and voids for the brittle (top) and ductile (bottom) materials. The gray
region (in the right column) shows the area between the maximum and the minimum of
the diagrams during different time-steps. The mean values are shown with a solid red
line.

The random position of the particles will give rise to different crack propagation behav-
ior. For instance, congestion of the inclusions (aggregates) in a part prevents the crack
extension in this region. On the other hand, several voids will facilitate crack propagation
easily. Figure 9 shows the different distribution of the inclusions and voids. Considering
the brittle case, we have the corresponding crack behavior in Figure 9. As observed,
the randomness in the matrix-material (e.g. concrete) leads to completely different crack
patterns. In fact, after the crack nucleation, it propagates through the voids and among
the inclusions. Considering the ductile concrete, 16 different mesh configurations along
with the related fracture behavior and hardening are illustrated in Figure 10.

In order to study the crack behavior during different time-steps, the load-displacement
curve for 300 different random distributions are plotted for both brittle and ductile struc-
ture materials. Furthermore, we define a region denoting the maximum and minimum
of the load-displacement curves for these simulations. The obtained information shows
the possible range for all events. Figure 11 demonstrates the diagrams, ranges and the
mean values (shown in red). As shown, the ductile materials are much more resistant to
fracture compared to the brittle materials, i.e. more than 3 times of the force is needed.
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Table 2: The three-dimensional example: Two defined cases considering the sources of
uncertainty in inclusions/voids and material parameters. In Case a, the heterogeneous
structure using a variation η = 10% in the material parameters is considered. In Case b,
the first row is related to inclusions and the second one is for voids. Here, U denotes the
uniform distribution.

Uncertainty radius position density materials
Case a constant constant constant η = 10%

Case b
U(6, 15) random U(10, 25) constant

U(4, 8) random U(5, 12) constant

Furthermore, in the brittle case, the fracture happens sharply; whereas, in the ductile
case, the crack requires more time to initiate (due to the plastic deformation).

4.3. Three-dimensional microstructural RVE under tension

In the last case study, a three-dimensional microstructure RVE with stochastically
distributed aggregated and pores under tension is considered. The three-dimensional
setting helps us to monitor the crack propagation more illustratively. In this section,
we only consider the brittle fracture (E-D) behavior, to avoid repetition compared to the
analysis introduced in previous sections.

A boundary value problem applied to the block specimen is shown in Figure 8b. This
is a tension test such that monomaniacal load is applied in both top and bottom (in
opposite) directions. We set H1 = 1 mm and H1 = H2 = H3, and hence the cube space
is B = (0, 1)3 that includes randomly allocated inclusions (aggregates) and voids (pores).
As a loading setup, the initial values for displacement and phase-field are u0 := 0 ∈ B
and d0 := 0 ∈ B. For the element technology, Galerkin finite element method with H1-
conforming trilinear (3D) elements is employed for FEM simulations. In this regard, the
density of the inclusions varies between 10 and 25 percent, and the void density varies from
5 and 12 percent of the whole structure (concrete). The radii are from 6mm to 15mm for
the inclusions and between 4mm and 8mm for the voids. Hereby, a tetrahedral meshes
with an element size of h = 0.02mm is considered with averagely 500 000 elements in
each simulation. A prescribed load of ū = 2 × 10−4 with 250 time-steps is used in the
numerical simulation. The material properties are given in Table 1, and χ = 10. In the

Figure 12: Example 3 (Case a). The evolution of the crack phase-field for the 3D
distribution of voids and inclusions in a heterogeneous case.
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Figure 13: Example 3 (Case b). The evolution of the crack phase-field for the 3D
distribution of voids and inclusions.

following, we consider two different cases regarding the material fluctuation, described in
Table (2).

4.3.1. Case a - Random Material Properties. First, we consider a heterogeneous
structure using the material parameters variation of η = 10% applied in (26). However,
the inclusions/voids have no spatial fluctuation. Specifically, for different samplings, we
have only a point-wise material variation with a constant position and number of the
particles (inclusions/voids).

The crack propagation during time is shown in Figure 12 for an arbitrary sample. The
variation interval for the load-displacement diagram using 300 simulations is depicted in
14 (left). As only a variation in the material parameters is considered, the gray area of
all possible solutions is smaller than other examples.

4.3.2. Case b - Geometrical Perturbation. Next, different distribution of parti-
cles are investigated, in which the inclusions are 10 times stiffer than the matrix material.
We monitor the crack propagation during different time-steps, as shown in Figure 13 for

Figure 14: Example 3. The load-displacement curve. Case a (left): Random heteroge-
neous material structure in a fixed spatial coordinates of different phases. Case b (right):
Different random distribution of inclusions and voids using 300 replications for the brittle
materials. The gray region shows the area between the maximum and the minimum of the
diagrams during different time-steps. The mean values are plotted with a solid red-line.
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an arbitrary sample. The crack initiates in different parts of the specimen and propagates
until the complete failure. In this analysis, the simulations are replicated 300 times. Fig-
ure 14 (right) shows the maximum and minimum of the load due to uncertainties versus
prescribed displacement and the corresponding expected value.

To present the effect of uncertainties due to spatial variations of different phases, 16
specific three-dimensional distributions of inclusions (aggregates) and voids (pores) are
shown in Figure 15 at the final deformation states. As expected, the randomness results
in different fracture patterns.

5. Conclusions

Heterogeneous materials at the lower scale are typically subjected to several uncertain-
ties that inherently exist through the volume fraction defects at the micro or mesoscale.
The classical approach to formulate those defects relies on a deterministic approximation
of failure response, while such effects are not captured for the unavoidable uncertainties of
each parameter associated with experimental observations. To overcome that, the current
work is devoted to a rigorous mathematical formulation of stochastic-based variational for-
mulations of failure mechanisms at the micro/meso-level. More specifically, uncertainties
in brittle and ductile failure are investigated. The primary objective of this contribution
is to model randomness and fluctuations of different phases in the highly heterogeneous
meso/microstructures.

To explore the fundamental nature of the proposed model, first, we studied a local-
ization effect within a one-dimensional bar due to the variation in material proprieties
for gradient-based plasticity and damage models. The main observation is that point-
to-point correlations of the crack phase fields in the underlying heterogeneous bar can
be captured. These stochastic solutions are represented by random fields or random
variables in contrast to the classical deterministic solution spaces. Next, in two- and
three-dimensional scenarios, by using the Monte Carlo finite element method, we mod-
eled the random distribution of the inclusions/voids and considered their effects on the
material stiffness locally (the crack propagation pattern in different slides) and globally
(considering the force-displacement diagram). In this way, different evolution of cracks
at the lower scale emerges as a consequence of the underlying uncertainty of physical
model parameters. To formulate these uncertainties, we developed a procedure for the
allocating process of highly numbers of inclusions/voids with different volume fractions in
such a way that there is no intersection between them. The results enable us to provide
a confidence interval for the fracture energy denoting the minimum/maximum necessary
force for the fracture. Hereby, the computed expected value represents the average for all
heterogeneities.
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Figure 15: Example 3 (Case b). The crack phase-field for randomly distributed aggre-
gates/pores in cube at the complete failure for the brittle fracture.
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tle fracture along the thickness direction of plates and shells,” International Journal
for Numerical Methods in Engineering, 2022. https://doi.org/10.1002/nme.7001.

[25] X. Zhuang, S. Zhou, G. Huynh, P. Aerias, and T. Rabczuk, “Phase field mod-
elling and computer implementation: A review,” Engineering Fracture Mechanics,
p. 108234, 2022.

[26] M. Seiler, S. Keller, N. Kashaev, B. Klusemann, and M. Kästner, “Phase-field mod-
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[39] J. Storm, M. Pise, D. Brands, J. Schröder, and M. Kaliske, “A comparative study of
micro-mechanical models for fiber pullout behavior of reinforced high performance
concrete,” Engineering Fracture Mechanics, vol. 243, p. 107506, 2021.

[40] J. Ulloa, J. Wambacq, R. Alessi, E. Samaniego, G. Degrande, and S. François,
“A micromechanics-based variational phase-field model for fracture in geomateri-
als with brittle-tensile and compressive-ductile behavior,” Journal of the Mechanics
and Physics of Solids, vol. 159, p. 104684, 2022.

[41] Z. Khalil, A. Y. Elghazouli, and E. Mart́ınez-Pañeda, “A generalised phase field
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