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In the design of critical components, such as rocket engine parts, we

often find large uncertainties in material properties and loads, particularly

when considering the ultimate capacity of the components. One reason for this

is that the extreme conditions, such as temperature or load, are not known,

nor are the material properties at extreme temperatures as well established.

Therefore, a single finite element analysis of a component may be quite

misleading since it gives no information on the range of responses that can be

expected.

Although analysts often try to guard against this shortcoming by varying

several of the parameters either arbitrarily or on the basis of their

intuition, a more rational and methodical approach to dealing with this

difficulty would be very useful. The probabilistic finite element method

(PFEM) has been developed in response to these needs.

In PFEM [1-3], finite element methods have been efficiently combined with

second-order perturbation techniques to provide an effective method for

informing the designer of the range of response which are likely in a given

problem. The designer must provide as input the statistical character of the

input variables, such as yield strength, load magnitude, and Young's modulus,

by specifying their mean values and their variances. The output then consists

of the mean response and the variance in the response. Thus the designer is

given a much broader picture of the predicted performance than with simply a

single response curve. These methods are applicable to a wide class of

problems, provided that the scale of randomness is not too large and the

probabilistic density functions possess decaying tails. By incorporating the

computational techniques we have developed in the past 3 years for efficiency,

the probabilistic finite element methods are capable of handling large systems

with many sources of uncertainties.

Sample results for an elastic-plastic ten-bar structure and an elastic-

plastic plane continuum with a circular hole subject to cyclic loadings with

the yield stress on the random field are depicted in Figs. I-4. For the ten-

bar structure, a 5% coefficient of variation in the yield stresss gives a [3%

coefficient of variation in the displacement of node [ and an 11% coefficient

of variation in the stress of element I. For this example, along wit|, many

others (not shown here), PFEM compares very well with the Monte Carlo

Simulation (MCS) and the Hermite Gauss Quadrature (HGQ) (see Fig. 2). This is

an example where a situation where a small variance in the yield strength can

result in a much larger variance in the response. It should be noted that the

ratios of computer time are I to 400 when the PFEM is compared to MCS.

*Work performed under NASA Grant NAG3 535 administered by NASA Lewis

Laboratories.
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As for the elastic/plastic continuum problem, the mean displacement and

stress are sinusoidal, resembling closely the forcing function (Fig. 4). The

variances are close to zero until the plate begins to yield in compression.

After this, the variance jumps to a higher value and remains steady u,tll tile

yielding in tension begins. This phenomenon repeats every cycle.

A third numerical example for PFEM methods is a turbine blade problem.

Some results for the turbine blade model shown in Fig. 5 will be presented.

The blade is subjected to a random impulsive load and tile yield stress is

random.

A natural extension of these methods would be to consider fatigue and

failure analysis• Finite element methods, such as PFEM, for analyzing fatigue

and fracture in a probabilistic manner, are very scarce. The fracture related

quantities such as fracture toughness, size and orientation of the cracks, are

usually hard to determine exactly. These and other quantities, which govern

the crack growth, can be treated by finite elements in a similar manner,

although it woud be necessary to incorporate first and second order

reliability methods and to embed singularities in tile variational statements

to correctly represent cracks. The experience obtained so far suggest that

this is a logical extension of PFEM.
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Problem Constants

E = 3.0X107 Ib/in 2
Density = 0.3 Ib/in 3
Thickness = 1.0 in

L = 6.0 in
R = 3.0 in

Poissons Ratio = 0.3

hy = 2000.0 Ib/in
wf -- 1500.0 red/sac
Delta t = 1.0X10 -4 sac

Rayleigh Damping Parameters
eo = 0.0 el = 1.5X10 -8

Rqndom Load

24 Random Variables
Coefficient of Variation = 0.1

Mean Load = 2000.0 Ib/in

Spatial Correlation

R(xl,xj) = exp(-abs(xl-xj)/L#)

4 Node 2D Plane Strain Continuum
Element in Radial Mesh

784 Nodes, 720 Elements
Point o = Element 1

Point b = Element 15
Point c = Element 346
Point d = Element 360

Point A = Node 1
Point B = Node 16
Point C = Node 385

Point D = Node 400

Random Material

15 Random Variables
Coefficient of Variation = 0.1

Mean Youngs Mad. = 3.0X107 Ib/in 2

Spatial Correlation

R(x,,xj)= exp(-obs(x,-xj)/LF_)

Fig. 3 Problem Statement: Plain Strain Continuum with a

Circular Hole.
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Fig. 4a Mean and Variance of Node 400 y-Displacement versus

Load Steps.
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Fig. 4b Mean and Variance of Stress in Element 15 versus

Load Steps.
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