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Abstract. Probabilistic flood inundation mapping is per-

formed and analysed at the ungauged Xerias stream reach,

Volos, Greece. The study evaluates the uncertainty intro-

duced by the roughness coefficient values on hydraulic mod-

els in flood inundation modelling and mapping. The well-

established one-dimensional (1-D) hydraulic model, HEC-

RAS is selected and linked to Monte-Carlo simulations of

hydraulic roughness. Terrestrial Laser Scanner data have

been used to produce a high quality DEM for input data

uncertainty minimisation and to improve determination ac-

curacy on stream channel topography required by the hy-

draulic model. Initial Manning’s n roughness coefficient val-

ues are based on pebble count field surveys and empirical

formulas. Various theoretical probability distributions are fit-

ted and evaluated on their accuracy to represent the esti-

mated roughness values. Finally, Latin Hypercube Sampling

has been used for generation of different sets of Manning

roughness values and flood inundation probability maps have

been created with the use of Monte Carlo simulations. Histor-

ical flood extent data, from an extreme historical flash flood

event, are used for validation of the method. The calibration

process is based on a binary wet-dry reasoning with the use

of Median Absolute Percentage Error evaluation metric. The

results show that the proposed procedure supports probabilis-

tic flood hazard mapping at ungauged rivers and provides wa-

ter resources managers with valuable information for plan-

ning and implementing flood risk mitigation strategies.

1 Introduction

Natural hazards have caused significant damages to natu-

ral and manmade environments during the last few decades.

Floods are among the most destructive water-related hazards

and are the main responsible for the loss of human lives, in-

frastructure damages and economic losses (Tsakiris, 2014).

Nowadays, there is a rising global awareness for flood dam-

age mitigation due to the increase in frequency, magnitude,

and intensity of flood events (Hall et al., 2014). Hence, iden-

tifying flood-prone areas could be very useful in water re-

sources management strategies against floods. Digital Eleva-

tion models (DEMs) and the DEM-derived geomorpholog-

ical and hydrological attributes has become a standard tool

for flood-prone areas identification (Noman et al., 2001; Pa-

paioannou et al., 2015). However, for accurate flood mod-

elling and inundation mapping a hydraulic-hydrodynamic

model is required to simulate flood characteristics such as

flood inundation extent and water depth. Floodplain mapping

and flood risk assessment have been mainly assessed using

one-dimensional (1-D) and two-dimensional (2-D) hydraulic

models (e.g.; Aronica et al., 2002; Horritt et al., 2007; Costa-

bile and Macchione, 2015; Papaioannou et al., 2016). These

models are able to simulate floodplain inundation and river

hydraulics as demonstrated in many studies (e.g. Horritt et

al., 2007; Di Baldassarre et al., 2010; Sarhadi et al., 2012;

Domeneghetti et al., 2013; Dottori et al., 2013; Dimitriadis et

al., 2016). However, most of these studies have been carried

out at gauged watersheds using information from hydromet-

ric stations with discharge data and stage/discharge relation-

ships which limit the application of these models in accurate
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estimation of flood spatial extent (Bates et al., 2006; Aggett

and Wilson, 2009) especially in urban and suburban areas.

Hydraulic modelling of floods is affected by many sources

of uncertainty (i.e. input data, model structure, model pa-

rameters). Furthermore, several factors in each source (type)

of uncertainty affect the flood modelling process and the

mapping results that increase/decrease the uncertainty of

the outcome. Estimation of Digital Elevation Models with-

out errors is impossible in flood inundation modelling and

mapping, especially in complex terrains (Tsubaki and Fu-

jita, 2010; Papaioannou et al., 2016). Photogrammetric and

ground surveying techniques are the most common sources

for DEM creation using topographic data. However, espe-

cially in complex landscapes, flood inundation modelling us-

ing these techniques could put limitations in the coverage of

the study area and in the accuracy of the produced DEM (Md

Ali et al., 2015; Teng et al., 2015). The development of the

new spatial tools to generate high-resolution digital elevation

models might overcome these restrictions and could enable

construction of valid hydraulic models for floodplain inun-

dation mapping. In recent years, new techniques, methods

and instruments arise such as the Terrestrial Laser Scanners

(TLS) or Airborne Light Detection and Ranging (LIDAR),

and/or the Synthetic Aperture Radar (SAR) that could pro-

duce high resolution DEMs. This additional spatial informa-

tion, produced by TLS, are advantageous when compared to

other techniques and could improve flood inundation espe-

cially in urban and suburban areas with complex river and

riverine topography (Sampson et al., 2012). Another impor-

tant factor in floodplain modelling and inundation mapping is

the applied hydraulic modelling structure (1-D, 2-D, 1-D/2-

D). One dimensional (1-D) hydraulic models are the most

common method for flood simulation and flood inundation

mapping because of their simplicity, least amount of input

data and low computational power (e.g. Pappenberger et al.,

2005; Kourgialas and Karatzas, 2014; Teng et al., 2017).

Furthermore, two dimensional (2-D) hydrodynamic models

have been applied in recent studies, due to improvements on

model structure and on model parameter estimation methods

(Cook and Merwade, 2009; Tsakiris and Bellos, 2014; Costa-

bile and Macchione, 2015; Shen et al., 2015; Teng et al.,

2017). Finally, the capabilities of coupled 1-D/2-D models

in flood inundation modelling has gained large acceptance in

the scientific community (Apel et al., 2009; Liu et al., 2015;

Teng et al., 2017).

Evaluation of flood inundation areas is usually performed

by deterministic and/or probabilistic hydraulic approaches

(Teng et al., 2017). Deterministic procedures rely on the cal-

ibration principles of a hydraulic model to a specified ob-

served historical flood episode, and the application of the

calibrated model to different flood episodes or to typical de-

sign floods for engineering applications. However, determin-

istic approaches depend on the following crucial assump-

tions: (1) ability of the hydraulic model to simulate satis-

factorily the river dynamics and to estimate accurately the

floodplain inundation areas; (2) model parameter stability

or time stationarity of model parameters which means that

model parameter values (i.e. roughness coefficients) esti-

mated by calibration are suitable for application of the model

in completely different conditions from those of the cali-

bration event; (3) all information (e.g. input flood hydro-

graphs, stage-discharge relationships, runoff measurements,

validation areas) used in hydraulic simulations is error-free

(Domeneghetti et al., 2013). Hence, based on the above

sources of uncertainty, to overcome these assumptions prob-

abilistic approaches are applied to flood inundation mod-

elling and mapping. Recent studies advocate the use of prob-

abilistic instead of the deterministic approaches for three

main reasons (Di Baldassarre et al., 2010; Domeneghetti et

al., 2013; Dottori, et al., 2013; Romanowicz and Kiczko,

2016; Alfonso et al., 2016): (1) the uncertainty in hydro-

logic/hydraulic modelling process could not be neglected;

(2) uncertainty should always be accounted and evaluated

in the presentation of the results for a comprehensive anal-

ysis; (3) probabilistic flood inundation maps could assist wa-

ter resources managers to design and support flood mitiga-

tion strategies. Thus, deterministic procedures might give er-

roneous results in flood inundation mapping that could have

large impacts, if they are used for management purposes.

Classification of uncertainty can be separated in the two

following types: (1) natural or aleatory uncertainty which

is the natural randomness in a process and is introduced by

the natural variability of floods and (2) epistemic uncertainty

which is the scientific uncertainty in the model of the process

and is associated with inadequate knowledge of the system

and with the modelling approach (e.g. input data, employed

model structure, model parameters; Apel et al., 2004; Merz

and Thieken, 2005). Probabilistic approaches have been used

in many studies to model parameter uncertainty on hydraulic

models due to roughness coefficient values (e.g. Aronica

et al., 2002; Pappenberger et al., 2005). The probabilistic

process of floodplain mapping is based on hydraulic model

setup, and ensemble simulation for other observed or design

flood hydrographs (e.g. Bates et al., 2004). The probabilis-

tic approach is not relying on the adopted hydraulic model

structure (i.e. physically-based 2-D model) and subsequently

in the assumption that a complex hydraulic model could rep-

resent the dynamics of the river and floodplain with high

accuracy. The latter was demonstrated by Papaioannou et

al. (2016) for Xerias River, Volos, Greece where several 1-

D and 2-D hydraulic-hydrodynamic models have been eval-

uated for flood inundation and mapping. Based on the results

of that study, 1-D hydraulic models have similar performance

as the 2-D models when high quality data (derived from

TLS-LiDAR DEM) are used for the hydraulic model setup

(model construction; Papaioannou et al., 2016). Furthermore,

1-D hydraulic modelling is commonly used in computation-

ally intensive applications such as Monte Carlo analysis and

probabilistic mapping of outputs (Di Baldassarre et al., 2010;

Alfonso et al., 2016; Teng et al., 2017).
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Figure 1. Flow diagram of the proposed framework.

In this study, a generic procedure for uncertainty analysis

of floodplain mapping due to roughness coefficient is devel-

oped for the ungauged Xerias river, Volos, Greece. The HEC-

RAS 1-D hydraulic-hydrodynamic model is used to assess

the uncertainty introduced by the roughness coefficient using

Monte-Carlo simulations. Manning’s n roughness coefficient

initial ranges are estimated using several empirical formulas

employing pebble count and field survey data, and various

theoretical probability distributions are fitted and evaluated

using several goodness-of-fit criteria. Latin Hypercube sam-

pling has been used for the generation of different sets of

Manning roughness coefficients and several realizations of

flood inundation maps are created. The uncertainty is esti-

mated based on a calibration process which is based only on

the flood extent derived from historical flood records for an

observed extreme flash flood event.

2 Methodology

In this study special attention is given to develop a generic

procedure for probabilistic flood inundation mapping at un-

gauged river reaches. Figure 1 presents the flow diagram of

the proposed procedure and the steps needed for uncertainty

mapping of flood inundation areas. The principal parts of

the method, which are analysed in the following subsections,

are: the study area with the river reach and the pebble count

field survey, the theoretical probability distribution fitting on

the Manning’s roughness coefficient values estimated using

several empirical formulae and the hydraulic modelling for

flood inundation probability mapping using the HEC-RAS

1-D model (Fig. 1).

Figure 2. Study area and the selected stream reach with the ob-

served flooded area.

2.1 Study area

The study area is located at the ungauged Xerias river basin,

Greece (Fig. 2). Details on the watershed characteristics and

the observed historical flood event of the 9 October 2006

could be found in recent studies (Papaioannou et al., 2015,

2016). This flood event is simulated using the Clark Instan-

taneous Unit Hydrograph (CIUH: Clark, 1945) on the ex-

treme observed rainfall hyetograph and the simulated flood

extent is compared with the validation area. The later refers

to the observed flooded area (Fig. 2) estimated with the use

of historical data and records (flood recordings from newspa-

pers, several authorities, local interviews and testimonies of

flood victims; Papaioannou et al., 2016). Figure 2 also shows

the study river reach, with length of 2.2 km, where hydraulic

simulations are performed. For this particular river segment,

a high resolution digital terrain model is constructed to ex-

tract details of channel topography for accurate hydraulic

modelling. Specifically, the construction of a high resolution

DEM for flood inundation mapping applications is important

because the hydraulic-hydrodynamic model estimates the

water surface elevations using the cross-sections topography.
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Therefore, terrain elevations are subtracted from simulated

water surface elevations to simulate flood depth and flooded

area (Noman et al., 2001, 2003). High quality DEMs could

disclose channel geometry and enhance hydraulic model effi-

ciency on flood spatial extent. Hence, high-resolution DEMs

could improve the performance of the applied hydraulic

models for floodplain inundation modelling and mapping.

Many studies have evaluated hydraulic model performance

and especially HEC-RAS using high resolution DEM con-

structed from Light Detection and Ranging (LiDAR) and

Synthetic Aperture Radar (SAR) data (Sarhadi et al., 2012;

Marzocchi et al., 2014; Md Ali et al., 2015; Podhoranyi and

Fedorcak, 2015; Papaioannou et al., 2016). These studies

demonstrated that LiDAR data facilitate topographic repre-

sentation of the stream channel, topography and hydraulic

model accuracy (Aggett and Wilson, 2009; Papaioannou et

al., 2013).

The Processed LIDAR (bare earth) DEM was derived from

high resolution TLS point cloud data with the use of geo-

morphological filters, expert knowledge and GIS operations.

The Optech ILRIS 3-D laser scanner was used to create the

point cloud data when weather and hydraulic conditions were

acceptable for unbiased sampling. A zigzag pattern was fol-

lowed to scan the selected area with a total of 86 scans from

both sides of the river banks. Details on the pre and post

processing methodology of the TLS Digital Terrain Model

(Processed LiDAR DEM) could be found in Papaioannou et

al. (2013). The use of LiDAR data in this study has obvi-

ous advantages when compared with the traditional ground

surveying techniques. Some of these pros is the classifica-

tion of the surface prior to surface generation in point clouds

that indicate elevations of LiDAR footprints, and the point

cloud preprocessing (removal of vegetation, obstacles etc.;

Papaioannou et al., 2013). After the LiDAR DEM construc-

tion, the DEM is overlaid with local imagery to provide a

highly realistic virtual 3-D environment for optimal locating

and digitizing cross-sections in HEC-RAS model. Figure 2

shows the selected cross-sections generated with this proce-

dure and based on the existing hydraulic structures and char-

acteristics of the study river reach. Furthermore, the visual

information contained in the derived terrain allowed for op-

timum selection of an initial roughness coefficient value for

the study river reach.

2.2 Hydraulic modelling

Hydraulic flood modelling and subsequent floodplain map-

ping require the use of the most capable and suitable tools

according to the EU Directive on floods (2007/60). The

1-D modelling approach is usually followed due to minor

input data requirements and low computational resources

as well as the proven accuracy in flood inundation pro-

cesses (Tsakiris, 2014). However, in landscapes with com-

plicated channel geometry and river network, 1-D-modelling

approach might be inadequate and could produce significant

errors. Therefore, in areas of complex terrain, different mod-

elling approaches should be investigated and the most suit-

able one should be selected for flood modelling and map-

ping (Papaioannou et al., 2016). Furthermore, recent bench-

mark studies on assessing hydraulic model structures have

shown that complex 2-D models with high resolution grids

show marginal improvements on flood estimation and inun-

dation mapping and exhibit instabilities as grid size moves

closer to the scale of processes under investigation (Horritt

and Bates, 2002; Dimitriadis et al., 2016; Papaioannou et al.,

2016). Lastly, 2-D hydraulic/hydrodynamic models are not

preferred at ungauged river reaches because they are more

complicated, require extensive parameterization to perform

satisfactorily on floods modelling and due to vast uncertainty

of the flood process. Hence, the 1-D hydraulic model HEC-

RAS, is adopted for use on the probabilistic flood inundation

mapping framework.

The well-known HEC-RAS one dimensional (1-D)

hydraulic-hydrodynamic model has been developed by the

Hydrologic Engineering Center (HEC) of United States

Army Corps of Engineers (Brunner, 2016a). The HEC-RAS

model has been used in many studies of river and floodplain

analysis (e.g. Di Baldassarre et al., 2010; Dottori et al., 2013;

Alfonso et al., 2016) to simulate flow over several hydraulic

structures (culverts, weirs, road overtopping etc) and to cal-

culate water surface profiles for several system formulations.

Channel geometry and flow data for specified formulations

could be used for comparisons between existing and/or future

channel and flow simulations. Optional capabilities in HEC-

RAS allow for mixed flow regime calculations, and flow dis-

tribution calculations via segmentation of the cross-section

in left and right overbanks, based on geometric, hydraulic

and roughness characteristics. HEC-RAS can simulate both

steady and unsteady flow conditions in river channels and

floodplains. Steady state flow conditions are calculated based

on the one-dimensional energy equation, whereas unsteady

state flow conditions are simulated based on the full dynamic

1-D Saint Venant Equation. Finally, the delineation of the

flooded area is based on the intersection of the modelled wa-

ter levels with the floodplain surface (Brunner, 2016a). The

hydraulic modelling procedure usually includes three stages:

namely the pre-processing, HEC-RAS modelling and post-

processing.

In pre-processing, the channel geometry required by HEC-

RAS is estimated using HEC-GEORAS and the LiDAR de-

rived DEM. The stream centerline, riverbanks, levee and ter-

rain cross-sections, are estimated in this stage. Each cross-

section is manually checked and the banks are relocated

on flat areas to ensure accuracy with the LiDAR DEM.

Initially, cross-sections were generated for variable length

(Fig. 2) as explained in the previous section and because wa-

ter surface profiles are found to be highly sensitive to cross-

section spacing and DEM accuracy (Sarhadi et al., 2012),

finally cross-sections are interpolated at intervals of 1 m. All

Adv. Geosci., 44, 23–34, 2017 www.adv-geosci.net/44/23/2017/



G. Papaioannou et al.: Probabilistic flood inundation mapping 27

Table 1. Empirical relationships proposed in the international literature for assessing Manning’s roughness coefficient (n) values.

A/A Equation Roughness (n) Source

Coefficient Value

1 n = 1
(2.1+2.3x+6ln(10.8vR))

0.035 Gwinn and Ree (1980)

2 n = 0.1129R1/6

1.16+2log(R/D84)
0.043 Marcus et al. (1992)

3 n = 0.0326 + 1.3041SW 0.052 Loukas and Quick (1996)

4 n = 0.322S0.38
f

R−0.16 0.074 Romero et al. (2010)

5 n =
[

0.183 + ln

(

1.762S0.1581
f

Fr0.2631

)](

D0.167
84√

g

)

0.074 Romero et al. (2010)

6 n = (n0 + n1 + n2 + n3 + n4)m 0.103 Jarret (1985)

7 n = (n0 + n1 + n2 + n3 + n4)m 0.074 Jarret (1985)

8 n = 0.121(SW)0.38(R)0.08 0.061 Chang (2002)

9 Base scenario estimated using guidelines of Chow (1959) 0.106 Chow (1959)

Extreme case scenario using guidelines of Chow (1959) 0.12

10 n = 0.104(SW)0.177 0.049 Chang (2012)

11 n =
D

1/6
90

15.29
0.056 Ho and Huang (1992)

12 n =
D

1/6
90

16
0.054 Ho and Huang (1992)

13 n = 0.0593D0.179
50

0.038 Javan et al. (1992)

14 n = 0.0561D0.179
65

0.039 Javan et al. (1992)

15 n = 0.0495D0.16
90

0.043 Javan et al. (1992)

16 n = 0.0431D
1/6
90

0.037 McKay and Fischenich (2011)

17 n = 0.0439D
1/6
90

0.038 McKay and Fischenich (2011)

18 n =
[

0.183 + ln

(

1.7462S0.1581
f

Fr0.2631

)]

(D84)
1/6

√
g

0.072 Ugarte and Madrid-Aris (1994)

19 n =



0.183 + ln





1.3014S0.0785
f

(

R
D84

)0.0211

Fr0.1705









(D84)
1/6

√
g

0.076 Ugarte and Madrid-Aris (1994)

20 n =



0.219 + ln





1.3259S0.0932
f

(

R
D50

)0.026

Fr0.2054









(D50)
1/6

√
g

0.075 Ugarte and Madrid-Aris (1994)

21 Optimum value according to calibration process 0.09

n = Manning’s n roughness coefficient (m3 s−1). x = Retardance class. v = Velocity (m s−1). R = Hydraulic radius (m). Di = Characteristic size of bed

material which is larger than i % of particles (m). SW = Water surface slope (m m−1). Sf = Energy slope (m m−1). Fr = Froude number. r = Acceleration

due to gravity (m s−2).

pre-processed river and floodplain geometry was inserted to

HEC-RAS.

In HEC-RAS modelling, flood inundation mapping with

HEC-RAS is performed. This stage requires input data such

as flow data, boundary conditions, cross-section and flood-

plain topography, and the friction parameter as explained by

the Manning’s roughness coefficient (n) values. The input

flow hydrograph is estimated with the Clark Instantaneous

Unit Hydrograph (CIUH) for the observed extreme hyeto-

graph of the flood event on 9 October 2006. The CIUH is

based on time-area unit hydrograph theory and establishes

a relationship between the travel time and a portion of a

basin that may contribute runoff during that travel time. The

time-area histogram is a translation hydrograph because the

volume of water on each area within the basin is simply

“translated” to the outlet using the associated travel time for

the translation time. Then the translation unit hydrograph is

routed through a linear reservoir with a routing coefficient

(McCuen, 2005). All flow simulations were done using the

upstream estimated discharge as input to HEC-RAS model

for hydraulic simulation, while the friction slope estimated

with the LiDAR DEM was used as downstream boundary

condition and with default contraction and expansion coef-

ficients of 0.1 and 0.3, respectively (Brunner, 2016b). Topo-

graphic characteristics of the cross sections and the flood-

plain are estimated based on the LiDAR DEM. The rough-

ness coefficients values are initially estimated based on field

assessment of the type and size of the bed, banks and over-

bank material of the channel (Coon, 1998). However, due

to the large uncertainty associated with the roughness val-

ues the pebble count method as shown in Fig. 1 is used for

the estimation of the final Manning’s n values. The assess-

ment of particle size in gravel-bed and cobble-bed torrents

is mainly estimated using pebble count methods (Bunte et

www.adv-geosci.net/44/23/2017/ Adv. Geosci., 44, 23–34, 2017
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Table 2. Evaluation criteria of the applied theoretical probability distributions.

Goodness of fit statistics Goodness of fit criteria

Distributions Kolmogorov-Smirnov Cramer-von Mises Anderson -Darling AIC BIC

Normal 0.1307 0.1008 0.6818 97.5191 −95.337

Lognormal 0.1458 0.0793 0.5153 101.437 −99.2552

Exponential 0.4239 0.8333 4.1749 74.8262 −73.7352

Gamma 0.131 0.08 0.5303 100.762 −98.5796

Beta 0.1304 0.0801 0.5327 100.673 −98.4905

Uniform 0.3358 0.7077 inf NA NA

Logistic 0.1292 0.0867 0.625 96.6285 −94.4465

Cauchy 0.2002 0.137 0.9604 87.7592 −85.5771

Weibull 0.1296 0.0848 0.5794 98.6621 −96.48

Figure 3. Pebble count field survey: Wolman pebble count method

(a) and typical examined river bed materials (b, c).

al., 2009; Ward et al., 2016). Figure 3 presents the Wolman

pebble count method with a step-toe procedure and follow-

ing a zigzag pattern for Xerias river reach. Based on the field

survey for the larger part of the study reach (Fig. 3) deter-

mination of particle size was identified for predefined size

diameters of d50, d65, d75, d84 and d94. The selection of the

predefined size diameters is based on the use of empirical

equations proposed in the international literature for estimat-

ing Manning’s roughness coefficient (n) values from known

particle sizes (Table 1). Several empirical relationships were

applied according to Table 1 for the estimation of roughness

coefficient values. For probabilistic flood inundation map-

ping, several theoretical probability distributions (e.g. Nor-

mal, Lognormal, Gamma, Logistic) were fitted to the initial

values and evaluated using several goodness-of-fit statistics

and criteria (Table 2). The best fitted theoretical distribution

was selected for inclusion in the generic procedure for uncer-

tainty estimation of flood inundation area due to roughness

coefficient values.

In post-processing, the HEC-RAS outputs of the hydraulic

modelling process are imported into a GIS, for graphical rep-

resentation of the results with the other geoinformation such

as the constructed DEM. Hence, post-processing involves

generation of different themes and maps and is the visualiza-

tion process of the HEC-RAS modelling stage. In this study

the post-processing is included and analysed on the devel-

oped HEC-RAS Monte-Carlo framework.

2.3 HEC-RAS Monte-Carlo framework

A framework for automated HEC-RAS uncertainty analy-

sis and implementation is developed in this study at un-

gauged watersheds. The framework is capable to provide

Monte-Carlo simulation experiments within the HEC-RAS

and automated data handling and manipulation procedures

(Fig. 1). The required inputs to HEC-RAS are called from

the framework using VBA routines based on the work of

Goodell (2014). The user must specify the number of de-

sired acceptable simulations (realizations) for probabilistic

flood inundation mapping and the selected statistical crite-

ria based on the inherent calibration process for uncertainty

analysis due to roughness values. Latin Hypercube Sampling

(LHS) of the best fitted theoretical probability distribution

is executed to generate large Manning roughness coefficients

data sets which were automatically imported into HEC-RAS.

LHS ensure that all parts of the probability distribution are

represented in the generated samples and for n random num-

bers from the distribution, the distribution is divided into n

intervals of equal probability 1/n (Millard, 2013). Latin Hy-

percube Sampling is also known as stratified sampling with-

out replacement (McKay et al., 1979). Because of the dif-

ficulties in the evaluation accuracy process at the ungauged

river reaches, qualitative criteria are mainly used for fulfill-

ing this target. Usually these criteria are based on the match-

ing agreement of the 2 × 2 contingency table (or confusion

matrix) using observed and simulated inundation areas and

answers the question of whether the flood extent reflected in

the map is the same on the ground (Horritt and Bates, 2002,

2001; Aronica et al., 2002; Alfieri et al., 2014; Papaioannou
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Figure 4. HEC-RAS model responses to changes in roughness co-

efficient values (Manning’s n), in terms of Median Absolute Per-

centage Error (MdAPE) and selected threshold for acceptable be-

havioural models.

et al., 2016). In this study, qualitative (the Threat Score, TS

or Critical Success Index, CSI) and quantitative criteria (such

as the MSE, RMSE, MAE and Bias) have been included in

the framework for accurate Monte-Carlo experiments. These

statistical criteria are estimated from the observed flooded in-

undation area (Fig. 2) with the intersection of simulated flood

extent at the study cross-sections.

Based on the input data discussed in the previous para-

graphs and the specified user selection criteria, the frame-

work iteratively assigns new roughness coefficient values

based on LHS to HEC-RAS model for each simulation run.

For each simulation run and the selected statistical criterion,

calculated for each simulation between simulated and ob-

served flood areal extent, the framework accepts or rejects the

simulation and then is adjusted for a new simulation run with

a new roughness n value. The framework is terminated when

the desired number of realizations for probabilistic flood in-

undation mapping is fulfilled (e.g. 1000 realizations). The

Median Absolute Percentage Error (MdAPE) is selected be-

cause it is an unbiased quantitative statistical criterion (Hyn-

dman and Koehler, 2006). The MdAPE, calculated for each

simulation between simulated and observed flood areal ex-

tent, is defined as:

MdAPE = median

(∣

∣

∣

∣

100(Yt − Ft )

Yt

∣

∣

∣

∣

)

(1)

where Yt is the observed flood extent and Ft is the simulated

flood extent for all cross-setions.

Acceptable behavioural models are selected when MdAPE

is lower than 20 %. This threshold is selected based on pre-

liminary sensitivity analysis of the employed statistical cri-

teria (not shown due to paper length limitations). Figure 4

shows MdAPE variation results with the roughness coeffi-

cient values (Manning’s n) and the selected threshold for

Figure 5. The rainfall hyetograph of the 9 October 2006 with the

estimated CIUH flood hydrograph.

acceptable behavioural models. The post-processing stage

in this study is the visualization process of the HEC-RAS

Monte-Carlo framework. Due to large number of HEC-RAS

outputs several scripts were built with the use of Model-

Builder in ArcGIS. The ultimate target was to transform

HEC-RAS results to flood extent polygons and raster water

depth files for obtaining probabilistic flood inundation maps

due to roughness values. Finally, probability maps are gen-

erated for the acceptable realizations and the statistical crite-

rion used.

3 Results and Discussion

The developed Monte-Carlo procedure (Fig. 1) is applied to

the ungauged Xerias stream reach (Fig. 2). The 1-D HEC-

RAS model is applied for probabilistic flood inundation map-

ping based on roughness coefficient values. The procedure is

demonstrated for the observed historical flood event of the

9 October 2006. In the following paragraphs the estimation

of input data, and the concurrent application of the HEC-

RAS model within the HEC-RAS Monte-Carlo framework

are presented and analysed.

3.1 HEC-RAS model setup and input data estimation

The estimation of the inflow flood hydrograph based on the

implementation of the Clark Instantaneous Unit Hydrograph

(CIUH) on the inlet of the study stream reach for the ex-

treme observed rainfall hyetograph on that day gave the in-

flow flood hydrograph (Fig. 5). For that day total rainfall was

210 mm with 12 h duration which resulted in a flood episode

with 490 m3 s−1 peak flow and a duration of 16 h (Fig. 5).

Hence, this extreme event is characterised as a flash flood

episode. Flash floods, a common type of floods in abun-

dant Mediterranean catchments (Aronica et al., 2012), are

categorized as the most devastating hazards concerning in-
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frastructures and mortality (Gruntfest and Handmer, 2001).

This specific flood episode with an estimated return period

of 100 years had major impacts on the study area caus-

ing significant damages to the primary and secondary sector

(i.e. agricultural and industrial activities), transportation net-

works and other technical infrastructures (Papaioannou et al.,

2015).

The estimation of roughness coefficient values based on

the application of the pebble count survey with the measured

cobble and gravel bed materials and the study empirical for-

mulas that gave large bounds in the roughness coefficient val-

ues. Manning’s n values are ranging from 0.03 to 0.12 for

the predefined size diameters of d50, d65, d75, d84 and d94

(Table 1). Hence, nine theoretical probability distributions

used on various Monte-Carlo experiments (Normal, Lognor-

mal, Exponential, Gamma, Beta, Uniform, Logistic, Cauchy

and Weibull) are applied to the estimated range values and

checked using several goodness of fit criteria (Venables and

Ripley, 2002; R Core Team, 2017). Figure 6 shows the cu-

mulative distribution function of the fitted theoretical prob-

ability distributions to the estimated Manning’s values. The

empirical probability of the roughness values is also shown

on Fig. 6. Based on this figure, the lognormal distribution

followed by the Gamma distribution should be potential dis-

tributions to simulate the empirical probability distribution

of Manning’s values. However, it should be mentioned that

due to the small sample of roughness values, Table 2 shows

that the superiority of the above mentioned distributions is

questionable. For example, if the judgment of the theoret-

ical distribution is based on the Kolmogorov-Smirnov test,

the Logistic and the Weibull distributions should be selected.

Overall, as proven by the goodness of fit Akaike Information

Criterion (AIC) and Bayesian Information Criterion (BIC)

the Lognormal should be the first choice to resemble the em-

pirical derived Manning’s n values. The Gamma distribution

could be a potential alternative to the Lognormal theoretical

distribution (Table 2).

3.2 HEC-RAS Monte-Carlo framework application

The developed framework is demonstrated for a specific test

case. The test case is that the Lognormal distribution is able

to simulate the empirical probability of the used theoretical

equations which determine Manning’s values based on par-

ticle size. Then, Latin Hypercube Sampling (LHS) is per-

formed to generate large Manning roughness coefficients

data sets for 1000 acceptable realisations.

The framework allows the selection of the subset of be-

havioural models that are then used to simulate the ob-

served historical flood episode. Flood inundation probability

maps are created with the inherent calibration process using

MdAPE with a threshold tolerance of 20 %. Hence this study

rejected all the models that have MdAPE larger than 20 %.

Each simulation run is accepted or rejected according to the

MdAPE and if rejected the framework is adjusted for a new

Figure 6. Distribution fitting on the empirical derived Manning’s

values.

Figure 7. Probability of inundation using 1000 realizations and log-

normal distribution in roughness coefficient generation.

simulation run with a new roughness n value. If accepted

then the framework saves the simulation and starts again a

new simulation run. The framework is terminated when the

desired number of realizations for probabilistic flood inun-
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dation mapping is fulfilled (1000 realizations in this test set).

The results are then combined to produce an uncertain flood

extent map. For the creation of the flood extent maps a bi-

nary wet-dry reasoning is selected in order to estimate the

flood inundation probability for each cell. In particular, each

acceptable realisation is attributed a likelihood weight in the

range [0, 1] according to the MdAPE values. All probabil-

ity maps created for each acceptable realization are summed

to create the total one. Finally, the probability maps are cre-

ated by dividing the total with the number of ensemble mem-

bers and the probabilistic map is obtained by performing a

weighted sum of each Monte Carlo simulation at each ith cell

(Horritt, 2006). Hence, for computational purposes the prob-

ability maps are classified in 10 probability classes: 0–10,

10–20, 20–30, 30–40, 40–50, 50–60, 60–70, 70–80, 80–90,

90–100 %. Figure 7 shows the uncertain flood extent map ob-

tained by combining the results and reflects the likelihood of

inundation of any point for the observed flood event due the

uncertainty of roughness values. In Fig. 7, inundated areas

are overlaid with a high resolution aerial orthophoto to high-

light spatial extension of the flooded areas in various proba-

bilistic conditions for a better understanding of the flooding

hazard. In the same figure the deterministic application of

HEC-RAS is also depicted as the optimum simulation (red

boundary area in Fig. 7) for comparison purposes. Deter-

ministic flood inundation maps are typically used to clas-

sify floodplains into two distinct regions of wet (flooded) and

dry areas. This binary map is produced by calibration of the

HEC-RAS model. Manual calibration was performed by trial

and error to simulate this historical flood inundation event

and to get an estimation of the average Manning’s n value for

the study river reach. Since, during this episode official flood

extent data were not available, the only evidence used for cal-

ibration was an inundation extent map developed in previous

studies (black boundary area in Fig. 7). It should be men-

tioned that the deterministic and stochastic maps cannot be

directly compared (Kiczko et al., 2013). However for com-

parison purposes, the deterministic flood inundation map is

assumed to represent flooded areas with a probability of ex-

ceedance of 0.5. Based on this deterministic simulation the

MdAPE is estimated as 16 % with average estimated Man-

ning’s n value equal to 0.09 (Table 1).

It should be mentioned that the proposed framework is de-

veloped for application in gravel-bed and cobble-bed streams

which are typical characteristics of flash flood events in

mountainous and semi-mountainous watersheds. It takes into

account only the uncertainty of roughness coefficient values

and neglects all other sources of uncertainty (e.g. input data

uncertainty such as design flood, DEM errors, channel geom-

etry and model uncertainty such as 1-D, 2-D model structure,

and model parameterisation). Furthermore, extensive testing

of the framework is required for general application at un-

gauged rivers (e.g. use of other theoretical distributions for

describing the roughness values, number of acceptable solu-

tions, use and acceptable tolerance of other employed statisti-

cal criteria). Furthermore, the application of the deterministic

and probabilistic approach in the same study area highlights

and exemplifies the pros and cons of the two methods for

floodplain mapping at ungauged watersheds. For more de-

tails, the reader is referred to recent studies and references

therein (Di Baldassarre et al., 2010; Dottori, et al., 2013; Al-

fonso et al., 2016). These studies showed that the calibra-

tion process of a hydraulic model on a historical event with

a specified return period could give poor results in flood in-

undation mapping due to the uncertainty in model param-

eters when applied in other synthetic design flood hydro-

graphs. Therefore, probabilistic approaches should be fol-

lowed which are less sensitive to the non-stationarity of

model parameters (Di Baldassarre et al., 2010).

4 Concluding Remarks

A probabilistic procedure for floodplain inundation map-

ping is developed and analysed for the ungauged Xerias

stream reach, Volos, Greece. The developed process eval-

uates the uncertainty introduced by the roughness coeffi-

cient values on hydraulic models in flood inundation mod-

elling and mapping. The well-established hydraulic model,

HEC-RAS 1-D is selected and linked to Monte-Carlo sim-

ulations of hydraulic roughness. Terrestrial Laser Scanner

data have been used to produce a high quality DEM for in-

put data uncertainty minimisation and to improve representa-

tion accuracy of stream channel topography required by the

hydraulic model. Initial Manning’s n roughness coefficient

values are based on pebble count field surveys and empiri-

cal formulas. Various theoretical probability distributions are

fitted and evaluated on their accuracy to represent the esti-

mated roughness values. Finally, Latin Hypercube Sampling

has been used for generation of different sets of Manning

roughness values and flood inundation probability maps have

been created with the use of Monte Carlo simulations. Histor-

ical flood extent data, from an extreme historical flash flood

event, are used for the validation of the method. The calibra-

tion process is based on a binary wet-dry reasoning with the

use of Median Absolute Percentage Error evaluation metric.

The results of this study support probabilistic flood hazard

mapping and provide water resources managers with valu-

able information for planning and implementing flood risk

mitigation strategies. However, extensive testing of the pro-

cedure in a probabilistic framework is required for general

application at ungauged stream reaches.

Finally, deterministic and probabilistic approaches for

flood inundation mapping at ungauged rivers are compared

and evaluated in this study. The simulated flood hydrograph

which corresponds to a specific return period and the Man-

ning’s roughness values used to map the flooded spatial ex-

tent are affected by significant uncertainty in their estima-

tion. Based on these conditions, visualising flood hazard in

a study reach as a probability map seems to be more correct
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than a deterministic assessment. Hence, probability maps for

mapping flood extent are attractive ways of flooding likeli-

hood visualisation and add extra credibility in their estima-

tion. Flood inundation prediction under different probabilis-

tic scenarios could assist in floodplain risk management and

to minimize the social and economic impacts of floods.
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