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Abstract

In this paper, we propose a flexible method
for probabilistic modeling with conditional
quantile functions using monotonic regres-
sion splines. The shape of the spline is pa-
rameterized by a neural network whose pa-
rameters are learned by minimizing the con-
tinuous ranked probability score. Within this
framework, we propose a method for prob-
abilistic time series forecasting, which com-
bines the modeling capacity of recurrent neu-
ral networks with the flexibility of a spline-
based representation of the output distribu-
tion. Unlike methods based on parametric
probability density functions and maximum
likelihood estimation, the proposed method
can flexibly adapt to di↵erent output dis-
tributions without manual intervention. We
empirically demonstrate the e↵ectiveness of
the approach on synthetic and real-world
data sets.

1 INTRODUCTION

The problem of forecasting the future values of a time
series arises in numerous scientific fields and com-
mercial applications. For example, in medicine, we
may wish to predict future glucose levels in patients’
blood (Mhaskar et al., 2017), in finance we may be
interested in forecasting movement of indices (En-
gle, 1982) and in retail an accurate forecast of prod-
uct demand could result in significant cost reductions
through optimal inventory management and alloca-
tion (Simchi-Levi et al., 1999).

Recently, classical forecasting techniques, such as
ARIMA models (Box et al., 2015), or exponential
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smoothing and its state-space formulation (Hyndman
et al., 2008) have been complemented increasingly by
deep learning-based techniques that can learn complex
patterns across time series and make use of rich meta-
data without significant manual feature engineering ef-
fort (Flunkert et al., 2017; Mukherjee et al., 2018; Qin
et al., 2017; Smyl et al., 2018; Bandara et al., 2017;
Wen et al., 2017).

Further, probabilistic forecasting, i.e., estimating the
entire probability distribution of a time series’ future
values conditioned on its past instead of just producing
a point estimate, is becoming increasingly important
in practice, as it allows for the automation of optimal
decision making under uncertainty to which forecast-
ing is just a means to an end.

One of the di�culties of applying classical probabilistic
forecasting methods as well as recent neural network-
based techniques to large scale, real world data sets is
the tension between the parametric assumptions made
on the output distribution (or the forecast error distri-
bution) and the observed data. The vast majority of
techniques assumes a Gaussian distribution—a choice
often based on mathematical convenience rather than
evidence—which is often not adequate.

In this paper we propose SQF-RNN, a methodology
that combines the forecasting capacity of recurrent
neural networks (RNNs) with the flexibility of a quan-
tile function-based specification of the observation dis-
tribution, designed to overcome this di�culty. SQF-
RNN builds on previous advances in RNNs for se-
quence modeling in general (Graves, 2013; Sutskever
et al., 2014), and RNNs for probabilistic forecasting
in particular (Flunkert et al., 2017; Wen et al., 2017).
Whereas the RNN architecture we employ is similar
to that proposed in previous work (Flunkert et al.,
2017; Mukherjee et al., 2018; Wen et al., 2017), the
novelty lies in the way the output distribution is spec-
ified. While previous work either assumes a parametric
form for the density with model parameters learned by
maximum likelihood estimation or focuses on modeling
only a fixed set of quantiles, we employ a spline-based
representation of the entire conditional quantile func-
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tion and learn parameters by minimizing an appro-
priate loss function, the continuous ranked probability
score (CRPS) (Matheson and Winkler, 1976; Gneiting
and Raftery, 2007).

The major contributions of this paper are:

• estimating conditional quantile functions by mod-
eling them using regression splines and learning
model parameters by minimizing the CRPS,

• proposing an RNN-based modeling framework for
probabilistic forecasting, which makes use of a this
spline-based specification of the quantile function
of the observation distribution,

• providing a training procedure for the network
based on minimizing the CRPS and show how the
integral required in computing the CRPS loss for a
spline-based quantile function representation can
be computed e↵ectively, and,

• demonstrating on several real-world datasets that
learning a non-parametric quantile function can
be an e�cient and robust approach that avoids
having to specify a parametric form of the obser-
vation distribution a priori.

In Section 2 we review the building blocks of our
methodology: quantile functions, the quantile loss,
and the CRPS. In Section 3 we describe how these
building blocks combine to yield the backbone of our
methodology: a spline-based quantile function repre-
sentation and its estimation by minimizing the CRPS.
In Section 4 we describe how this specification of
the output distribution is combined with an RNN-
based model tailored to the probabilistic forecasting
use case. We describe the network architecture as well
as the training procedure of the proposed forecasting
method. In Section 6 we empirically demonstrate the
performance of our method on various datasets. In
Section 7 we discuss possible extensions, and conclude
the paper in Section 8.

2 PRELIMINARIES

For a real-valued random variable Z, denote by
f
Z

(z) its probability density function (PDF), and
by F

Z

(z) =
R

z

�1 f
Z

(⇣)d⇣ its cumulative distribution
function (CDF). The associated quantile function of
Z is defined as

F�1
Z

(↵) = inf{z 2 R : ↵  F
Z

(z)}. (1)

As indicated by the notation F�1
Z

, the quantile func-
tion is the inverse of the CDF F

Z

if the inverse ex-
ists (namely if F

Z

is continuous and strictly monoton-
ically increasing). Intuitively, the quantile function

F�1
Z

: [0, 1] ! R maps a quantile level ↵ 2 [0, 1] to
the point z such that the probability that Z takes on
values less than z is ↵. Conversely, for any function
G : [0, 1] ! R that is left-continuous and monotoni-
cally non-decreasing, there is a unique probability dis-
tribution F whose quantile function is G = F�1. We
denote the set of all such functions by Q.

The quantile function has several appealing proper-
ties: Foremost, it can be used directly for reading o↵
prediction intervals and to generate samples from the
distribution (by sampling u ⇠ Uniform(0, 1) and com-
puting z = F�1

Z

(u) one obtains a sample z from the
distribution F

Z

). Further, the monotonicity require-
ment for quantile functions can be easier to enforce
and verify than the constraints imposed e.g. on the
PDF, which is required to be non-negative and needs
to integrate to one.

2.1 Quantile Regression & Quantile Loss

Given data drawn from a joint distribution
(x, z) ⇠ F(X,Z), one problem with wide applicability
is estimating a particular quantile ↵ of the conditional
distribution of Z given X = x, r

↵

(x) = F�1
Z|X=x

(↵).

Such quantile regression problems (Koenker and
Bassett Jr, 1978; Koenker, 2005) can be solved by
minimizing the pinball loss function (also known as
quantile loss), defined as

⇤
↵

(q, z) = (↵� I[z<q])(z � q), (2)

where I[z<q] denotes the indicator function, taking
value 1 if z < q and 0 otherwise, 0 < ↵ < 1 is the quan-
tile level of interest and q the predicted ↵-th quantile.
The key property of this loss function is that the min-
imizer of its expectation under some distribution F

Z

is the ↵-quantile F�1
Z

(↵), i.e.,

argmin
q

E
z⇠FZ [⇤↵

(q, z)] = F�1
Z

(↵). (3)

In order to estimate r
↵

(x), we can choose a parame-
terized family of functions r

↵

(x; ✓) (e.g. a linear func-
tion or neural network with weights ✓) as a model for
F�1
Z|X=x

(↵) and estimate its parameters ✓ from the

data. By replacing the expectation in (3) with the
empirical average, we can estimate the parameters ✓?

by

✓? = argmin
✓

1

N

N

X

i=1

⇤
↵

(r
↵

(x; ✓), z
i

). (4)

See Koenker (2005) for more details.

2.2 Continuous Ranked Probability Score

(CRPS)

The continuous ranked probability score (CRPS)
(Matheson and Winkler, 1976; Hersbach, 2000; Gneit-
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ing and Raftery, 2007) measures the compatibility of a
probability distribution F (represented by its quantile
function F�1) with an observation z. It has an intu-
itive definition1 as the pinball loss integrated over all
quantile levels ↵ 2 [0, 1],

CRPS(F�1, z) =

Z 1

0
2⇤

↵

(F�1(↵), z) d↵. (5)

An important property of the CRPS is that it is a
proper scoring rule (Gneiting and Raftery, 2007), i.e.,
Z

g(z)CRPS(G�1, z) dz 
Z

g(z)CRPS(F�1, z) dz

(6)
for any distributions F andG (with g being the density
of G). In other words, if our data is drawn from G, the
CRPS will be minimized if the predictive distribution
F is equal to G. Further, for deterministic predictions
CRPS reduces to the absolute error.

3 SPLINE QUANTILE FUNCTIONS

By minimizing the pinball loss ⇤
↵

we can estimate
the conditional quantile r

↵

(x) for a single level ↵. If
we are interested in multiple levels, say ↵1 < ↵2, we
could estimate separate functions r

↵1 and r
↵2 , but risk

running into the well-known issue of quantile crossing,
i.e., 9x : r

↵1(x) > r
↵2(x). Here, we propose an alter-

native which does not su↵er from this problem, and
results in a more expressive description of the entire
conditional distribution F

Z|X=x

and its quantile func-

tion F�1
Z|X=x

(↵). To achieve this, we first construct
a parameterized family of quantile functions Q ⇢ Q
indexed by a parameter ✓ 2 ⇥ ✓ RD. Given such
a family, we can define a family of conditional quan-
tile functions q

�

(↵|x) = q
✓(x;�)(↵) by constructing a

mapping from the value of the conditioning variable
x to the parameters ✓, denoted ✓(x;�), which is itself
parameterized by � 2 � ✓ RD

0
. While the general

framework is applicable to other choices of Q (see e.g
(Lang, 2005) for some other options), we focus on lin-
ear isotonic regression splines here.

3.1 Linear Isotonic Regression Splines

Linear splines are piecewise-linear functions of the
form

s(x; �,b,d) = � +
L

X

l=0

b
l

(x� d
l

)+, (7)

1We define the CRPS here as a loss function in negative
orientation, i.e., lower is better. Other equivalent defini-
tions of the CRPS exist, e.g. as the average of Brier scores,
CRPS(F, z) =

R1
�1(F (q) � I[z<q])

2dq, or CRPS(F, z) =

EF |X � z|�EF
1
2 |X �X 0|. See (Hersbach, 2000; Gneiting

and Raftery, 2007) for more details.

where � 2 R is the intercept term, b 2 RL+1 are
weights describing the slopes of the function pieces,
d 2 RL+1 is a vector of knot positions, i.e., the start-
ing points of the pieces, and (x)+ = max(x, 0) is the
“hinge” or ReLU function. The number of pieces L is
a hyperparameter of the spline.

In order to construct a family of quantile functions
from such splines, we re-parameterize the spline func-
tion in order to restrict its domain to [0, 1] and to
enforce monotonicity.

First, we ensure that the knot positions d
l

are or-
dered, i.e., d

l

< d
l+1, for l = 0, . . . , L � 1, and sat-

isfy 0  d
l

 1. We achieve this by setting d0 = 0,
and re-parameterizing d

l

=
P

l

l

0=1 �l0 , where the �l0 de-
note the spaces between the knots, satisfing �

l

0 � 0 and
P

L

l

0=1 �l0 = 1. Next, we need to ensure the monotonic-
ity of the spline. The slope between two knots d

l

and
d
l+1 is given bym

l

=
P

l

l

0=0 bl0 . Thus, if we want (7) to
be non-decreasing, we need to ensure that m

l

� 0, 8l.
Setting b

l

> 0 is too restrictive, as this would restrict
(7) to convex functions. Instead, we set b

l

= �
l

��
l�1,

where �
l

� 0, l = 0, . . . , L � 1. One can easily verify
that parameterizing b

l

in this way yields m
l

= �
l

� 0
as required.2 In summary, we have a spline quantile
function q

✓

(↵) with parameters ✓ = (�,�, �), where

� 2 R, � 2
n

u 2 [0, 1]L :
P

L

l=1 ul

= 1
o

and � 2 RL

+

with a total of 2L+ 1 parameters.

3.2 Parameter Estimation by Minimizing

CRPS

Analogously to (4) and encouraged by (6), one ap-
proach to finding the best-fitting (non-conditional)
quantile function q

✓

? 2 Q given data z1, . . . , zN is by
minimizing the empirical average of CRPS, i.e.,

✓? = argmin
✓2⇥

1

N

N

X

i=1

CRPS(q
✓

(·), z
i

). (8)

This idea can easily be extended to the conditional
setting given a mapping ✓(x,�) as described above, by
minimizing with respect to � instead:

�? = argmin
�2�

1

N

N

X

i=1

CRPS(q
�

(·|x
i

), z
i

), (9)

where {(x
i

, z
i

)}N
i=1 is the data given. Note that by con-

struction q
�

(·|x) is a valid quantile function q
�

(·|x) 2
Q for any x, so that quantile crossing can not occur.

2Note dL and bL can be omitted when computing s(·),
as we always have dL = 1, and bL does not a↵ect the value
of s(·) on [0, 1].
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3.3 Evaluating the CRPS Integral

In order to solve the optimization problem (9) e.g.
through gradient-based stochastic optimization, we
need to evaluate the CRPS integral (5) and its deriva-
tives wrt. F�1. In general, this may require numeri-
cal integration, e.g. a simple Monte-Carlo estimate by
sampling random quantile levels ↵ uniformly, or more
sophisticated quadrature techniques such as Clenshaw-
Curtis quadrature (Clenshaw and Curtis, 1960). For-
tunately, in some special cases, such as when F�1 is
given by a piecewise linear spline of the form (7) with
monotonicity restrictions imposed as described above,
the integral can be evaluated analytically. In particu-
lar, for the piecewise-linear spline (7) we have,

Z 1

0
2⇤

↵

(s(↵; �,b,d), z)d↵ = (2ã� 1)z + (1� 2ã)�

+
L

X

l=0

b
l

✓

1� d3
l

3
� d

l

�max(ã, d
l

)2 + 2max(ã, d
l

)d
l

◆

.

(10)
Here, ã is the quantile level such that s(ã; �,b,d) = z,
given by

ã =
z � � +

P

l0

l=0 bldl
P

l0

l=0 bl
, (11)

where l0 = max{l|s(d
l

; �,b,d) < z, 0  l  L}, with
d0 = 0, which can be easily found in O(L) time. See
the supplement for more details.

4 FORECASTING WITH SQF-RNN

We now turn to how such a spline-based representation
of the quantile function can be combined with recur-
rent neural networks and applied to probabilistic fore-
casting, yielding our proposed model SQF-RNN. The
general probabilistic forecasting problem is the follow-
ing. We are given a set {z1:Ti}N

i=1 of N univariate
time series, where z1:Ti = (z1, z2, . . . , zTi) and z

t

2 R
denotes the value of the i-th time series at time t.
Further, let {x1:Ti+⌧

}N
i=1 be a set of associated, time-

varying covariate vectors with x

t

2 RD.3 Our goal is
to produce a set of probabilistic forecasts, i.e., for each
i = 1, . . . , N we are interested in (some representation
of) the probability distribution of future trajectories
z
Ti+1:Ti+⌧

given the past:

p (z
Ti+1:Ti+⌧

|z1:Ti ,x1:Ti+⌧

;� ) . (12)

Here � denotes the learnable parameters of the model,
which are shared between and learned jointly from all
N time series.

3Note that covariates are assumed to be available also
during prediction. They can, for example, encapsulate in-
formation about holidays, product promotions, etc. that
is known in advance.

hi,0

zi,0,xi,1

hi,1

✓i,1|hi,1

q✓i,1(·)

Li,1

zi,1,xi,2

hi,2

✓i,2|hi,2

q✓i,2(·)

Li,2

. . .

zi,T�1,xi,T

hi,T

✓i,T |hi,T

q✓i,T (·)

Li,T

Figure 1: Training: At each time step t, the inputs to
the network are the covariates x

i,t

, the target value at
the previous time step z

i,t�1, as well as the previous
network output h

i,t�1. The network output h

i,t

=
r(h

i,t�1, zi,t�1,xi,t

) is then fed to the projection layer,
which outputs the parameters ✓

i,t

= ✓(h
i,t

,�) that
define the spline function. Finally, the spline function
and the target value z

i,t

are used to compute the CRPS
loss and train the model.

At a high level, our modeling setup is the following:
The time series z

i,t

and covariates x
i,t

are provided as
input to an autoregressive LSTM-based recurrent neu-
ral network whose architecture follows that described
in (Flunkert et al., 2017). The network is autoregres-
sive and recurrent in the sense that it takes as an input
the value of the time series in the previous time step
and the previous state of the network. The real-valued
output of the network is passed through a projection
layer that provides a set of parameters which define
a spline quantile function. Finally, the CRPS is used
as a loss function, measuring the fit of the quantile
function to the observed time series data points. In
order to produce forecasts, Monte Carlo samples from
(12) are generated through sequential sampling from
the quantile functions.

The model architecture and the training and inference
procedures of the model are illustrated in Figures 1
and 2.

Our objective is to estimate the conditional quantile
function

F�1 (z
i,t

|z
i,1:t�1,xi,1:Ti+⌧

) (13)

for t = T
i

+ 1, . . . , T
i

+ ⌧ given all the past observa-
tions and all the covariates. For this, we consider a
spline quantile function model q

✓(hi,t,�)(↵) 2 Q. The
parameters ✓ are functions of the output h

i,t

of an au-
toregressive recurrent neural network (Graves, 2013),
with

h

i,t

= r(h
i,t�1, zi,t�1,xi,t

,�). (14)

Here, the function r(·) is a multi-layer recurrent neu-
ral network with LSTM cells (as described in (Flunkert
et al., 2017)), and � denotes the set of parameters of
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hi,Ti

zi,Ti ,xi,Ti+1

hi,Ti+1

✓i,Ti+1|hi,Ti+1

q✓i,Ti+1(·)

ẑi,Ti+1

ẑi,Ti+1,xi,Ti+2

hi,Ti+2

✓i,Ti+2|hi,Ti+2

q✓i,Ti+2(·)

ẑi,Ti+2

. . .

ẑi,Ti+⌧�1,xi,Ti+⌧

hi,Ti+⌧

✓i,Ti+⌧ |hi,Ti+⌧

q✓i,Ti+⌧ (·)

ẑi,Ti+⌧

Figure 2: Inference: In the conditioning range (t  T
i

)
the (known) history of the time series z

i,t

is fed in
to the network, along with the corresponding covari-
ates. In the prediction range (t > T

i

) a sample
ẑ
i,t

= q
✓(hi,t)(↵), with ↵ ⇠ Uniform(0, 1), is drawn and

provided as input for the time step, until the end of
the prediction range t = T + ⌧ , generating one sample
path. Repeating this prediction process yields samples
from the joint prediction distribution.

the neural network. The mapping ✓(·) takes the real-
valued network output and maps it to the (possibly re-
stricted) domain of the quantile function parameters.
For the spline quantile function described in Section 3,
we apply an a�ne transformation followed by a soft-
max and softplus transformation to obtain � and �,
respectively.

During training, we split each time series into fixed-
size windows with di↵erent starting points, thereby
generating multiple training instances. Each window
has a fixed length T , spanning the conditioning and the
prediction range. For each window, we then compute
the loss L

i

=
P

t

L
i,t

, where

L
i,t

= CRPS(q
✓(hi,t,�)(·), zi,t) (15)

and t = 1, . . . , T correspond to the time stamps con-
tained in the chosen window. This loss is then mini-
mized using the Adam (Kingma and Ba, 2014) adap-
tive stochastic gradient descent optimizer.

During inference, the time series values in the predic-
tion range, i.e., z

i,Ti:Ti+⌧

, 8i, are unknown and the
network output h

i,t

cannot be computed for t � T
i

.
To obtain Monte Carlo sample paths from the model,
at each time step t � T

i

we generate a single sam-
ple ẑ

i,t

= q
✓

(h
i,t

,�?)(↵), with ↵ ⇠ Uniform(0, 1), and
use it as input to the network for the subsequent time
step. By repeating this process we construct multiple
sample paths, which we can use to evaluate any em-
pirical confidence interval or specific quantile value of
the distribution (12). Figure 2 illustrates this inference
procedure.

5 RELATED WORK

Probabilistic modeling with quantile functions—while
not widely used in Machine Learning—has been ex-
plored in the literature for a wide range of applica-
tions (see e.g. (Gilchrist, 2000) and references therein).
Quantile regression, i.e., estimating quantiles of condi-
tional distributions, has also been studied extensively,
both in terms of theory as well as applications in nu-
merous disciplines, with a large body of literature sum-
marized in (Koenker, 2005).

One of the first approaches that uses neural networks
to estimate quantiles appears in (Taylor, 2000) where
a quantile regression neural network (QRNN) is pro-
posed. In QRNN, for a fixed quantile level, the quan-
tile loss with some regularization terms is minimized
and the model is applied to estimate quantiles of
multi-period returns. Cannon (2011) provide an R
implementation. The literature contains further vari-
ants (Feng et al., 2010; Xu et al., 2016) all of which
su↵er from the quantile crossing problem.

Hatalis et al. (2017) propose another approach to esti-
mating multiple quantiles simultaneously using a NN
model that minimizes a smooth approximation of the
pinball loss function (Zheng, 2011). The network out-
puts a list of preselected quantiles instead of a single
one, however there is no guarantee that there will be
no quantile crossover (although a heuristic to reduce
this e↵ect is proposed). Xu et al. (2017) propose a
NN that outputs the value of a given quantile and is
trained using the pinball loss (and the Huber version
of it (Cannon, 2011)) for a grid of di↵erent quantiles.
However, none of these methods are directly applicable
to sequential (time series) data.

Flunkert et al. (2017) propose DeepAR, a sequence-to-
sequence probabilistic forecasting model with RNNs.
DeepAR outputs the parameters of a distribution and
is trained with maximum likelihood estimation. Se-
quential sampling is applied to provide probabilistic
forecasts. This method requires the user to specify
the density function of an output distribution that fits
the data. Wen et al. (2017) propose a multi-horizon
quantile RNN (MQ-RNN) forecaster, that does not
require user to postulate a distribution. MQ-RNN es-
timates a number of preselected quantile values while
using a multi-horizon strategy, i.e., it models a multi-
variate target that corresponds to the future values of
the time series instead of generating samples and feed-
ing them back to the network in order to estimate the
subsequent values. Again, this approach su↵ers from
the quantile crossing problem.

Our approach is closely related to (Flunkert et al.,
2017; Mukherjee et al., 2018) in that we that we em-
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ploy an almost identical RNN architecture. However,
we do no assume a pre-defined standard density func-
tion (Flunkert et al., 2017) or a mixture of Gaus-
sians (Mukherjee et al., 2018; Bishop, 1994). Neither
do we prescribe specific quantile values (Wen et al.,
2017). Instead, we optimize the network based on
CRPS which takes into account the whole range of
quantiles and we avoid quantile crossing by construc-
tion.

While the CRPS is commonly used to evaluate a given
trained model, its direct usage as a loss function for
learning is rare. Gneiting et al. (2005) provides one of
the few exceptions, where the CRPS is minimized to
learn the coe�cients of an ensemble model. However,
a normal distribution is assumed, for which the CRPS
also has an analytic form.

More recently, Ostrovski et al. (2018) proposed gen-
erative modeling via quantile functions and minimiz-
ing the CRPS. While shown to be e↵ective for the
considered domain (image modeling), they did not re-
strict their quantile function approximation to be non-
decreasing, thereby also being prone to quantile cross-
ing.

6 EXPERIMENTS

The following experiments with synthetic and real-
world data provide evidence for the practical e↵ective-
ness of our approach.

6.1 Distribution Recovery

First, we analyse the distribution recovery ability of
the proposed SQF-RNNmodel. For this, we generate
the value at time t for time series i as follows:

z
i,t

= n
i,t

, 8i, t, (16)

where n
i,t

follows a fixed Gaussian Mixture Model,
GMM(⇡,µ,�), with ⇡ = [0.3, 0.4, 0.3]>, µ =
[�3, 0, 3]>, and � = [0.4, 0.4, 0.4]> being the mixture
coe�cients, the mean, and the standard deviation of
the components, respectively. We create 500 time se-
ries with 8736 observations each, which corresponds to
one year of hourly observations (i.e., 24⇥ 7⇥ 52).

We use the above synthetic dataset to train our model
using a conditioning range of 96 and a prediction range
of 24. Based on the above generation process, the
conditional distribution of each time step is identical
to the noise distribution. Figure 3 shows the (true)
noise distribution in comparison to the distribution of
the generated samples during inference. We observe
that the generated samples follow the true distribution
closely. This indicates that the model is able to adapt

and capture the complex nature of the true distribu-
tion. Note that the model has no information about
the true distribution apart from the actual time series
samples, i.e., there was no explicit modeling of the
GMM or the number of components. This shows the
robustness of the proposed method because it can cap-
ture complex multi-modal densities without any prior
information or assumptions.

6.2 Empirical Study

We evaluate the performance of SQF-RNN model on
the following datasets:

• elec: hourly time series of the electricity
consumption of 370 customers (Dheeru and
Karra Taniskidou, 2017).

• traffic: hourly occupancy rate, between 0 and 1,
of 963 car lanes of San Fransisco bay area freeways
(Yu et al., 2016).

• wiki: daily count time series of number of hits of
9013 wiki pages.

• dom: weekly product gross margin in percent of
105 products in various stores. Subset of the full
dominick’s dataset.4

Note that elec and traffic are highly-regular data
sets whereas wiki and dom are less regular and overall
more challenging to forecast accurately for. Section B
in the supplement contains further details.

To assess the accuracy of SQF-RNN we compare
with DeepAR (Flunkert et al., 2017) as implemented
in (Januschowski et al., 2018) using the student-T dis-
tribution, and the ETS method from (Hyndman et al.,
2007).5

First, we use metrics that quantify the quantile pre-
diction accuracy of the algorithms. In particular, we
compute the mean quantile loss (QLm), the 50-th and
90-th percentile loss (QL50 and QL90, respectively),
and the mean scaled interval score (MSIS) for a 95%
prediction interval. The exact definitions of all met-
rics used are provided in the supplementary material.
Table 1 summarizes the results over these metrics of
all the algorithms and datasets.

The results in Table 1 show that for the regular data
sets, SQF-RNN and DeepAR-t only di↵er marginally.

4https://research.chicagobooth.edu/kilts/marketing-
databases/dominicks

5We also performed preliminary experiments with
Prophet (Taylor and Letham, 2017), but concluded that
manual intervention was needed to provided competitive
results, and hence refrain from reporting results obtained
with default settings here.
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Figure 3: Distribution recovery experiment. Data drawn iid. from a three-component mixture of Gaussians is
used to train the model, and prediction sample paths are obtained. The left plot shows the recovered marginal
CDF of the samples and of the true data distribution, while the right plot shows the corresponding quantile
functions. As can be seen, the model learns parameters of the linear spline which recover this multi-modal
distribution.

This is due to the regular nature of the data which
fits the modeling assumptions in DeepAR-t. ETS per-
forms well for elec, but not for traffic. The latter is
due to the weekly seasonality, which cannot be mod-
eled by the implementation of ETS used.

We note that for the data sets that are less regular,
wiki and dom, SQF-RNN outperforms the other meth-
ods, in particular for the extreme quantile scores and
the overall distribution shape. This confirms the ex-
periments in Section 6.1 on real-world data.

Apart form the quantile related metrics, we assess
the performance of the algorithms using metrics that
quantify the point estimate prediction accuracy. In
particular we compute the Normalized Root Mean
Square Error (NRMSE), the symmetric Mean Abso-
lute Percentage Error (sMAPE) and the Mean Ab-
solute Scaled Error (MASE). Since the algorithms do
not produce directly point forecasts we use the median
forecast values for the evaluation of these metrics. Ta-
ble 1 summarizes the results over these metrics of all
the algorithms and datasets. We note that overall,
SQF-RNN and DeepAR-t behave roughly similar wrt.
the point forecasts accuracy metrics and both outper-
form ETS consistently. This is additional evidence for
the robustness of our method, in the sense that the
increased accuracy for probabilistic metrics does not
come at the expense of reduced point forecast accu-
racy.

In a final experiment, we evaluate the proposed
SQF-RNN model on the M4 forecasting competition
dataset6, which consists of 105 time series. Following
the competition guidelines, we compute the Overall
Weighted Average (OWA) of the sMAPE and MASE

6https://www.m4.unic.ac.cy/

metrics, defined as

OWA = 0.5
sMAPE

0.15201
+ 0.5

MASE

1.685
, (17)

which assesses the point-forecast ability of the algo-
rithms, and the MSIS metric for a 95% prediction in-
terval. We compare SQF-RNN with default param-
eters (given in Appendix B) with the winning model
of the competition, Smyl et al. (2018). In Table 2 we
summarize the results. We observe that, even with-
out any hyperparameter optimization or model adap-
tations for the M4 datasets, OWA is less than 8% worse
than the winning model, which is finely tuned for the
M4 competition, showing the robustness and flexibil-
ity of SQF-RNN. Further, the MSIS result of SQF-
RNN would have ranked second in the M4 competi-
tion, showing again the e↵ectiveness of the model.

7 EXTENSIONS

In order to clarify the exposition, we have focused on
a particular class of parameterized quantile functions,
namely linear isotonic splines. In preliminary exper-
iments we have explored other classes of spline func-
tions, namely sigmoidal splines and I2-splines, which
can be restricted to non-decreasing functions in a sim-
ilar way (Lang, 2005), and might be more appropriate
for a given application. Further, while we have focused
on the application to probabilistic forecasting, the ap-
proach is more generally applicable to modeling condi-
tional distributions or otherwise related quantile func-
tions. One such application is robust (linear) regres-
sion, as a direct extension of quantile regression ap-
proaches (Koenker, 2005) to multiple quantiles while
avoiding quantile crossing.

In previous work on quantile regression with neural
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dataset method
probabilistic metrics point metrics

QLm QL50 QL90 MSIS NRMSE sMAPE MASE

elec SQF-RNN 0.049 0.066 0.035 10.21 0.518 0.113 0.937
DeepAR-t 0.051 0.068 0.033 7.77 0.55 0.110 0.931

ETS 0.076 0.100 0.050 9.992 0.838 0.156 1.247

traffic SQF-RNN 0.093 0.119 0.090 5.25 0.381 0.117 0.449
DeepAR-t 0.093 0.117 0.090 5.54 0.396 0.104 0.442

ETS 0.427 0.488 0.325 20.856 0.872 0.594 1.881

wiki SQF-RNN 0.252 0.306 0.303 15.68 3.126 0.219 1.072

DeepAR-t 0.275 0.325 0.350 19.35 3.188 0.254 1.136
ETS 0.788 0.440 0.836 61.685 3.261 0.301 2.214

dom SQF-RNN 0.318 0.438 0.227 9.143 1.015 1.466 0.847
DeepAR-t 0.347 0.426 0.314 17.57 0.993 1.447 0.819

ETS 0.471 0.485 0.358 16.387 0.954 1.434 0.967

Table 1: Comparison against competing methods based on various probabilistic as well point metrics.

method sMAPE MASE OWA MSIS

SQF-RNN 0.1244 1.60 0.885 14.09
Smyl et al. (2018) 0.1137 1.54 0.821 12.23

Table 2: M4 competition results.

networks, a smoothed version of the pinball loss—
essentially an asymmetric version of the Huber loss—
has been proposed, to avoid the non-di↵erentiability of
the pinball loss function at zero (Cannon, 2011). We
have experimented with a variant of the CRPS based
on this quantile loss function in our framework, but
have not found it to be advantageous in practice.

In some settings, the model as described might be
too flexible, and one may wish to impose further
restrictions on the mapping ✓(·). In particular,
in the forecasting setting, a reasonable assumption
might be that the individual conditional distributions
p(z

i,t

|z
i,1:t�1,xi,t�1) vary in their location and scale,

but have a common shape. Such restrictions are easy
to incorporate through suitable re-parameterizations
of the spline function. In practice, we have found
the restriction to a common shape to be e↵ective for
smaller data sets.

Finally, in practice one may wish to emphasize certain
quantiles over others. This can easily be incorporated
by using a quantile-weighted version of CRPS, as pro-
posed by Gneiting and Ranjan (2011).

8 CONCLUSIONS

We have proposed a framework for modeling condi-
tional quantile functions using isotonic splines, and
shown how their parameters can be learned by min-

imizing the CRPS. We have described an RNN-based
probabilistic forecasting model based on this idea, and
have demonstrated its e↵ectiveness on artificial and
real data sets.

We think the results obtained with our approach are
promising, and warrant further investigation of mod-
els combining conditional quantile function estimation
and deep learning.

Modeling the quantile function directly, as opposed
to using a flexible parametric density model (e.g. a
mixture of Gaussians), can be advantageous, especially
when the quantile function is the object of interest
or when the resulting optimization problem is more
stable or easier to solve. By restricting the quantile
function to a particular form (e.g. a linear spline) one
imposes a particular inductive bias, and it depends on
the application whether this bias is suitable.
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